MODULARITY IN DISTRIBUTED FEATURE COMPOSITION

and

THIRTEEN YEARS OF LEARNING FROM MICHAEL JACKSON

Pamela Zave

AT&T Laboratories—Research

Florham Park, New Jersey USA

SOME THINGS I LEARNED FROM MICHAEL

WHAT TO SAY . . .

... after asking the staff of a restaurant to turn the music down, and being told, "We can't, the customers like it."

(possibilities too numerous to list)

WHY THE WORD "MULTIPARADIGM" IS BAD

"Multi paradigm" is a chimera.

Latin Greek
origin origin

an imaginary
monster compounded
of incongruous parts

Start using "polyparadigm".

HOW TO MAKE A LEFT TURN, WHILE DRIVING IN NORTH AMERICA

(despite his many efforts to persuade us, no one at AT&T Research has ever had the courage to attempt this)

TELECOMMUNICATION SERVICES...

... ARE CONCEIVED AND BUILT IN TERMS OF FEATURES SUCH AS:

Speed Dialing
Outgoing Call Blocking
Voice Dialing

Do Not Disturb Voice Mail Find Me

Call Waiting Transfer Conference

FEATURE CHURN

- features are being added and changed continually
- are optional for each subscriber
- can often be enabled/disabled dynamically by their subscribers

FEATURES INTERACT WHEN ONE FEATURE MODIFIES OR INFLUENCES ANOTHER

FEATURE INTERACTIONS ARE VERY COMMON

- all features are modifying or enhancing the same basic service, which is real-time communication among people
- the number of interactions is combinatorial in the number of features

FEATURE CHURN AND FEATURE
INTERACTIONS HAVE CAUSED
SEVERE SOFTWARE PROBLEMS IN
THE CIRCUIT-SWITCHED TELEPHONE
NETWORK

(ever since it became software-controlled in the 1960s)

MODULARITY AND COMPOSITION BASED ON THE DISTRIBUTED FEATURE COMPOSITION ARCHITECTURE

DFC IS AN ADAPTATION OF THE PIPES-AND-FILTERS ARCHITECTURE TO TELECOMMUNICATIONS

A request for service is satisfied by a dynamic graph of features (SIP applications) and signaling connections (SIP dialogs).

MODULARITY

- a feature does not know about or depend on other features
- a feature can be added or deleted without changing others

MANAGEMENT OF FEATURE INTERACTIONS

- the architecture constrains how features can interact
- it is possible to predict potential interactions, enable the good ones, and prevent the bad ones

AT&T CALLVANTAGESM SERVICE

. . . is a consumer, broadband, voice-over-IP service. Its advanced features were built with DFC.

FEATURE DEVELOPMENT

 a group of researchers delivered eleven complex features . . .

> e.g., Mid-Call Move Ten-Way Calling Parallel Find Me

... two months from the inception of the project

this is unprecedented speed

 all the feature interactions were successfully analyzed and managed during the same two months

SYSTEM INTEGRATION

- many integration problems with vendorsupplied components (IP routers, gateways, phone adaptors, media servers)
- DFC modularity was extremely useful for adding adaptors to patch over integration problems

don't want to embed these in the service

DEPLOYMENT AND EVOLUTION

- supported many thousands of customers world-wide (without two media-intensive features)
- easy feature evolution
- the service won two industry awards, citing voice quality and advanced features

T-MEETING

... is a teleconferencing system for internal use at AT&T. It was built entirely with DFC.

PHASE ONE (2006)

- has mid-conference control from both phone and Web, recording, active speaker identification, user switching between multiple conferences
- during development, modularity supported functional prototyping, code reuse, deferred design decisions
- as with CallVantage, there were very few bugs in the application code
- supports millions of user minutes on a typical workday

PHASE TWO (ongoing)

 a re-implementation with our new standards-based software tools