
Do Crosscutting Concerns Cause Defects?
Marc Eaddy, Student Member, IEEE, Thomas Zimmermann, Student Member, IEEE,
Kaitlin D. Sherwood, Vibhav Garg, Gail C. Murphy, Member, IEEE Computer Society,

Nachiappan Nagappan, Member, IEEE, and Alfred V. Aho, Fellow, IEEE

Abstract—There is a growing consensus that crosscutting concerns harm code quality. An example of a crosscutting concern is a
functional requirement whose implementation is distributed across multiple software modules. We asked the question, “How much
does the amount that a concern is crosscutting affect the number of defects in a program?” We conducted three extensive case
studies to help answer this question. All three studies revealed a moderate to strong statistically significant correlation between the
degree of scattering and the number of defects. This paper describes the experimental framework we developed to conduct the
studies, the metrics we adopted and developed to measure the degree of scattering, the studies we performed, the efforts we
undertook to remove experimental and other biases, and the results we obtained. In the process, we have formulated a theory that
explains why increased scattering might lead to increased defects.

Index Terms—Crosscutting concerns, fault proneness, feature location, requirements traceability, mining software repositories,
metrics, statistical analysis, empirical software engineering, open source software.

˙

1 INTRODUCTION

DESPITE the significant effort that developers put into
producing reliable software, defects still surface after

the software is deployed. Defects creep in at every stage of
the development process, avoid detection during testing,
and all too often appear as failures to the user. Enormous
effort goes into avoiding defects (e.g., defensive program-
ming) and, when that fails, detecting defects (e.g., code
inspections, program analysis, prerelease testing) to reduce
the number of defects in a delivered software system. These
efforts might be better directed if we had a better under-
standing of what causes defects.

This paper considers the possibility that one cause of
defects is poor modularization of the concerns of the
program. A concern is any consideration that can impact the
implementation of a program [53]. A software requirement is
an example of a kind of concern. When a concern�s
implementation is not modularized, that is, the implemen-
tation is scattered across the program and possibly tangled
with the source code related to other concerns, the concern
is said to be crosscutting [42]. Several empirical studies [25],
[28], [29], [30], [47], [60], [64] provide evidence that
crosscutting concerns degrade code quality because they

negatively impact internal quality metrics (i.e., measures
derived from the program itself [41]), such as program size,
coupling, and separation of concerns.

But, do these negative impacts on internal quality
metrics also result in negative impacts on external quality?
Internal metrics are of little value unless there is convincing
evidence that they are related to important externally
visible quality attributes [35], [38], such as maintenance
effort, field reliability, and observed defects [21].

We argue in this paper that crosscutting concerns1 might
negatively impact at least one external quality attribute�
defects, i.e., mistakes in the program text. Our theory is that
a crosscutting concern is harder to implement and change
consistently because multiple�possibly unrelated�loca-
tions in the code have to be found and updated
simultaneously. Furthermore, crosscutting concerns may
be harder to understand because developers must reason
about code that is distributed across the program and must
mentally untangle the code from the code related to other
concerns. We hypothesize that this increased complexity
leads to increased defects.

To formulate our theory, we present a formal model of
concerns and their relationship to program elements and
we introduce a set of metrics that measure the extent to
which that relationship is crosscutting. To test our hypoth-
esis, we conducted three case studies to gather data on
scattering and defect counts. We then applied correlation
analysis to gather empirical evidence of a cause-effect
relationship between scattering and defects.

We found a moderate to strong correlation between
scattering and defects for all three case studies. This
suggests that scattering may cause or contribute to defects,
which�if true�has many implications. First and foremost,
our evidence suggests that one way we can improve
software reliability is to modularize crosscutting concerns
�or at least ensure they are well tested. Second, our

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008 497

. M. Eaddy, V. Garg, and A.V. Aho are with the Department of Computer
Science, Columbia University, 1214 Amsterdam Avenue, New York, NY
10027. E-mail: {eaddy, vgarg, aho}@cs.columbia.edu.

. T. Zimmermann is with the Department of Computer Science, University
of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4.
E-mail: zimmerth@cpsc.ucalgary.ca.

. K.D. Sherwood and G.C. Murphy are with the Department of Computer
Science, University of British Columbia, 201-2366 Main Mall, Vancouver,
BC, Canada V6T 1Z4. E-mail: ducky@webfoot.com, murphy@cs.ubc.ca.

. N. Nagappan is with Microsoft Research, Software Reliability Research,
One Microsoft Way, Redmond, WA 98052. E-mail: nachin@microsoft.com.

Manuscript received 24 Sept. 2007; revised 15 Jan. 2008; accepted 12 Feb.
2008; published online 16 May 2008.
Recommended for acceptance by H. Ossher.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2007-09-0274.
Digital Object Identifier no. 10.1109/TSE.2008.36.

1. For this paper, we consider a crosscutting concern to be synonymous
with a scattered concern [26].

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on February 6, 2009 at 16:47 from IEEE Xplore. Restrictions apply.

findings suggest that cognitive complexity measures (e.g.,
concern-oriented metrics) are perhaps more appropriate
predictors of software quality than structural complexity
measures (e.g., coupling, code churn). Third, it prompts the
need for independent replication of our results to build
confidence that the relationship between scattering and
defects is real. Finally, our findings call for additional
research to determine the root cause of the supposed
relationship: Are changes to highly crosscutting concerns
more likely to be applied inconsistently? Are crosscutting
concerns inherently more difficult to understand?

This paper proceeds as follows: In Section 2, we present
a theory of the relationship between crosscutting and
defects and state our research hypothesis. In Section 3, we
describe our model of concerns and our suite of concern
metrics that are based on the model. In Section 4, we
outline the methodology we used to validate our theory. In
Section 5, we describe our case studies. We present the
results of our studies and a discussion in Section 6. We
address threats to internal and external validities in
Sections 7 and 8. We summarize related research in
Section 9. Section 10 concludes.

2 WHY MIGHT CROSSCUTTING CONCERNS CAUSE
DEFECTS?

Our theory is a set of models [31] that formalizes concepts
such as �concerns,� �program elements,� and �defects,�
and describes their interrelationships, along with how they
relate to the developer. In this section, we model the
relationship between developers and concerns. We use the
model to justify why crosscutting might cause defects,
which we need to draw meaningful conclusions from our
results [21].

Every line of code exists to satisfy some concern.
Concerns may be described in many ways and at various
levels of abstraction:

. Features from a feature list.

. Requirements from a software requirement docu-
ment.

. Design patterns and design elements from a UML
design document.

. Low-level programming concerns such as pro-
gramming language used, coding style, program-
ming idioms, code reuse, information hiding, and
algorithms.

When faced with the task of implementing a concern, a
developer creates�perhaps without realizing it�a concern
implementation plan that guides her implementation deci-
sions. It is in this plan that crosscutting first emerges. One
developer�s plan may entail scattering the implementation
(e.g., she plans to copy-and-paste code), whereas another
may localize it (e.g., she plans to create a shared function).
The plan chosen depends on many variables, including the
development process (e.g., priorities, time, resources),
programming technology (e.g., program language), and
the developer�s aptitude.

The relationship between the concerns and the program
is rarely documented [44]. This makes it difficult for
maintainers of the program to answers questions such as

“Where are all the places that the undo feature is implemented?”
(i.e., top-down analysis [48]) and “What is this piece of code
for?” (i.e., bottom-up analysis [48]). Without a proper
understanding of the scattered nature of the concern
implementation, maintainers may make changes incor-
rectly or neglect to make changes in all the right places.

Our conjecture is that, when the implementation of a
concern is distributed (scattered) across many program
elements, the complexity of that implementation increases,
as does the difficulty of making changes correctly and
consistently, increasing the likelihood of defects. Stated
simply, crosscutting concerns are hard to find, understand,
and work with. More formally, our research hypothesis is
given as follows:

Hypothesis. The more scattered a concern’s implementation is,
the more defects it will have, regardless of the implementation
size.

The last stipulation about size is necessary since past
research has established that size, in terms of lines of code,
is already a strong predictor of defects [22]. Since we expect
scattering to be related to size, we must rule out the
possibility that an increase in defects is caused by an
increase in size alone. We will revisit this technicality in
Section 6.3�so, for now, we ask the reader to ignore it.

Some controlled experiments on program understanding
suggest our theory is valid. Letovsky and Soloway use the
term delocalized plan to refer to a concern whose imple-
mentation is “realized by lines scattered in different parts of the
program.” They observed that programmers had difficulty
understanding delocalized plans, resulting in several kinds
of incorrect modifications [46]. Similarly, Robillard et al.
observed that programmers made incorrect modifications
when they failed to account for the scattered nature of the
concern they were modifying:

“Unsuccessful subjects made all of their code modifications in one
place even if they should have been scattered to better align with
the existing design” [54].

Other studies indicate that programmers make mistakes
when modifying classes whose implementations are scat-
tered due to inheritance. Harrison et al. found that “systems
without inheritance are easier to modify than systems with either
three or five levels of inheritance” [32]. From the perspective of
our theory, inheritance scatters the implementations of the
underlying concerns.

In another study, Bruntink et al. observed that the idiom
used to implement a specific crosscutting concern (excep-
tion handling) made it “too easy to make small mistakes [that]
can lead to many faults spread all over the system” [9].

Finally, enhancements or fixes applied to a crosscutting
concern may induce changes in multiple source files,
leading to increased code churn. Nagappan and Ball
showed that code churn is a good predictor of system
defect density [49] and we propose that changes to
crosscutting concerns may be the root cause.

To validate our theory empirically and test our hypoth-
esis, we next describe our concern model and a suite of
metrics that operationalize the concept of �highly scattered.�

498 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on February 6, 2009 at 16:47 from IEEE Xplore. Restrictions apply.

3 A MODEL OF CONCERNS

Abstractly, a program specification, or simply specification, is a
description of a program. A specification may be executable,
e.g., a set of program elements, or nonexecutable, e.g., a
requirements specification or architectural design. Our
operational definition of a concern is an item from a
program’s nonexecutable specification. Thus, a nonexecutable
specification represents a concern domain of the program.

We define our concern-program element mapping as a
tuple M … ðS; T ; CS; CT ; RÞ. S is a set of concerns
organized into a hierarchy [59] described by
CS … fðs1; s2Þjs1; s2 2 S; s1 6… s2; s1 is the parent of s2g. T is
a set of program elements organized according to CT …
fðt1; t2Þjt1; t2 2 T; t1 6… t2; t1 is the parent of t2 in the
abstract syntax tree [1] of the program}. Finally, R is
the relation of interest between the two specifications,
R … fðs; tÞjs 2 S; t 2 Tg. This is depicted in Fig. 1.

Note that CT does not describe a class inheritance
hierarchy. It describes a forest of trees, the roots of which
are the abstract syntax trees of the individual source files,
which syntactically contain class definitions, which in turn
contain class member definitions, and so forth.

The program elements that are meaningful depend upon
the language in which the program is expressed. The
projects analyzed in this paper were written in Java, so we
are primarily interested in classes, fields, methods, and
statements.

3.1 Terminology
We can now define some common terminology. A concern
is scattered if it is related to multiple target elements and
tangled if both it and at least one other concern are related to
the same target element [5], [17], [24] . For the purposes of
this paper, a crosscutting concern is a concern that is scattered
[26, p. 4].

This binary definition of scattering is simple and
unambiguous but is not very useful when most of the
concerns are scattered, which we believe to be the rule
rather than the exception [17], [62]. Hence, we need metrics
to determine the degree of scattering (DOS).

3.2 Concern Metrics
There are many ways to describe how a concern is
implemented. For the purpose of validating our theory,
we focused on four cognitive complexity metrics that
describe how scattered the concern�s implementation is, in
absolute terms and in terms of statistical distribution, and
with respect to classes and methods (the elements of
interest in an object-oriented implementation). This allows
us to determine which characteristic of scattering, if any, is
the best predictor of defects.

Complexity metrics tend to be heavily influenced by size
(in terms of lines of code), which can lead a researcher to
perceive a cause-effect relationship where none exists [22].
To test for a possible influence, we also measured the
concern�s size, i.e., the total number of lines of code
associated with the concern. We discuss the results of the
concern size tests in Section 6.3.

Table 1 provides a summary of the metrics, which we
will now describe in detail.

3.2.1 Program Element Contribution
Program element contribution (CONT) is the number of lines
of code in a program element that are associated with a
concern. The entire line is counted even if only a portion is
associated with the concern. Indeed, a line may be
associated with multiple concerns.

For a method or field associated with a concern, the
contribution is the number of lines in the method (method
declaration plus method body) or field declaration.

For classes, the contribution includes the lines of the
class declaration plus the contributions of the class�s

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 499

Fig. 1. Relation between concerns and program elements.

TABLE 1
Concern Metrics

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on February 6, 2009 at 16:47 from IEEE Xplore. Restrictions apply.

methods and fields. Inner classes in Java are considered
separate from the enclosing class when determining
contribution and anonymous classes are considered part
of the enclosing method. Note that inheritance has no
bearing on contribution.

When the element is the entire program, P , the
contribution is the sum of the contributions of all the
classes, i.e., the total number of lines associated with the
concern s. We give this special case its own metric, lines of
concern code (LOCC), that is, LOCCðsÞ … CONTðs; P Þ.

3.2.2 Scattering Metrics
The concern diffusion metrics, created by Filho et al., measure
scattering in absolute terms as a count of the number of
classes (CDC) or methods (CDO) that implement the
concern [25]. We include CDC and CDO in our correlation
analysis because they are rigorously defined, are validated
by several studies [25], [28], [30], and they nicely contrast
our degree of scattering metric.

The degree of scattering metric created by Eaddy et al. [17]
provides more information by further considering how the
concern�s code is distributed among the elements. We
believe this more accurately quantifies the modularity of a
concern and so should be a better predictor of defects than
absolute scattering metrics such as CDC and CDO. The
degreee of scattering metric builds upon the concentration
metric (CONC) introduced by Wong et al. [62]:

CONCðs; tÞ …
related to concern s

Source lines in element t

Source lines related to concern s
ð1Þ

…
CONTðs; tÞ
CONTðs; P Þ

: ð2Þ

For the object-oriented programs we studied, we measured
degree of scattering across classes (DOSC), in which case t is a
class, and degree of scattering across methods (DOSM), in
which case t is a method.

Degree of scattering is a measure of the statistical variance
[37, p. 57] of the concentration of a concern over all
program elements with respect to the worst case (i.e., when
the concern is equally scattered across all elements):

DOSðsÞ … 1 �
V arianceðsÞ

V arianceidealðsÞ
; ð3Þ

where

V arianceðsÞ …
P

t2T ðCONCðs; tÞ � CONCworstÞ2

jT j
: ð4Þ

The worst case occurs when the implementation of a concern
is uniformly distributed across all program elements in T , i.e.,
CONCworst … 1=jTj. Substituting this into (4),

V arianceðsÞ …

P
t2T CONCðs; tÞ � 1

jT j

� �2

jT j
: ð5Þ

The ideal variance occurs when CONC is 1 for one
component t and 0 for all other components, i.e., the concern
s is completely localized in t. Equation (5) reduces to

V arianceidealðsÞ …
jT j � 1

jT j2
: ð6Þ

Substituting (6) into (3) and simplifying,

DOSðsÞ … 1 �
jT j

P
t2T CONCðs; tÞ � 1

jT j

� �2

jT j � 1
: ð7Þ

Using the validation methodology and terminology
specified by Kitchenham et al. [43], DOS, and by extension
DOSC and DOSM, has the following properties:

. It is normalized to be between 0 (completely localized)
and 1 (completely delocalized; uniformly distributed)
(inclusive) so that concerns can be meaningfully
compared. DOS can theoretically take on any real
value within this range and is therefore continuous.
DOS is undefined when jT j � 1.

. DOS is proportional to the number of elements
related to the concern and inversely proportional to
the concentration. That is, the less concentrated the
concern is, the more scattered it is.

. DOS is a ratio-scale measure (0 means �no scatter-
ing�). Thus, it is meaningful to compare and rank
concerns by their DOS values and obtain the average
DOS.

. While DOS is unitless, the individual components of
the DOS equation do have units, specifically, the
units are lines of code (LOCs), T , and the structural
unit of T (e.g., classes, methods). One can directly
compare two DOS values only if they are both
obtained from DOS equations with identical units.
This implies that it is not meaningful to directly
compare DOS values for two different programs or
two different versions of the same program when S
or T is different.

3.2.3 Comparing DOSC and CDC
The difference between DOSC and CDC is illustrated in
Fig. 2. The pie charts show how the code related to the
concern is distributed among four classes. In the first
scenario, the implementation is evenly divided among the
four classes (the worst case). In the second, the implemen-
tation is mostly localized. We compute DOSC as follows:

500 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

Fig. 2. Comparing DOSC and CDC for two different implementations of
the same concern.

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on February 6, 2009 at 16:47 from IEEE Xplore. Restrictions apply.

DOSC … 1 �
j4j 0:25 � 1

j4j

� �2
þ 0:25 � 1

j4j

� �2
þ 0:25 � 1

j4j

� �2
� �

j4j � 1
… 1:

In the second scenario, the DOSC value is

DOSC … 1�

j4j 0:97 � 1
j4j

� �2
þ 0:01 � 1

j4j

� �2
þ 0:01 � 1

j4j

� �2
þ 0:01 � 1

j4j

� �2
� �

j4j � 1
… 0:08:

DOSC is close to 0, indicating the implementation is mostly
localized. CDC cannot distinguish the two implementa-
tions, as evident by the value of 4 for both.

4 METHODOLOGY USED TO VALIDATE OUR
THEORY

To validate our theory, we chose to undertake a series of
case studies of open source Java programs. In particular, we
looked for medium-sized programs that had a clear set of
software requirements and documented defects (the rea-
sons for these criteria will become apparent in a moment).
For the three programs we selected, we reverse engineered
the concern-code mapping and the bug-code mapping. We
then inferred the bug-concern mapping. After obtaining the
three mappings, we were able to compute the metrics
described in the previous section and measure the correla-
tion between scattering and defects.

More formally, our methodology for obtaining the
mappings consists of the following steps:

1. Reverse engineer the concern-code mapping: S and CS
(Section 4.1), and R (Section 4.2). This part of our
methodology, depicted in Fig. 3, is subjective.
However, we defined assignment rules to improve
the repeatability of our mappings and chose
statistical methods designed to improve the relia-
bility of our correlation results.

2. Mine the bug-code mapping: S is the set of bugs and R
is automatically determined using bug fix data. This
is depicted in Fig. 5 and described in Section 4.4.

3. Infer the bug-concern mapping. Section 4.5 explains
how we associate a bug with a concern if the

concern�s implementation was modified to fix the
bug (depicted in Fig. 6).

4.1 Concern Selection
Selecting the right set of concerns to analyze is critical to
ensure that our theory is applicable, our statistical analysis
is valid, and our results are meaningful. However, our
broad definitions for �concern� and �nonexecutable speci-
fication� imply an infinite number of concerns from which
to choose. The context of our theory reduces the scope to
actual concerns, i.e., there is evidence that the concerns
provide the rationale for the implementation. For example,
maintainability is not an actual concern if the developer did
not consider it. This is important because our theory only
explains defects when they are related to actual cross-
cutting concerns. This requirement was difficult to satisfy
as most of the 75 open source projects2 we considered did
not have requirement documents.

Another criterion was that the set of concerns should
provide a rationale for most of the code. This reduces
sample bias since all concerns are considered, not just those
that are crosscutting. Furthermore, to ensure that our
correlations were statistically significant, we required that
the final concern set include at least 30 concerns [38, p. 64].
This is easily accomplished by making concerns more
granular; however, at some point, we must increase the
granularity of the program elements assignable to the
concerns or suffer a loss in precision. For example,
associating a concern with an entire method when it is
only related to a single statement inflates the concern�s size.
Unfortunately, our concern and bug assignment tools, and
time restrictions, limited us to field and method-level
granularity (e.g., we could not assign individual state-
ments). We discuss how this limitation affects internal
validity in Section 7.3.

The actual process of selecting concerns involved
determining 1) the appropriate concern domain (e.g., the
software requirement specification), 2) what constitutes a
concern in that domain, including the concern granularity,
and 3) the concern hierarchy. The final concern hierarchy is
entered into a tool we built, called ConcernTagger, so that
we may begin assigning program elements to the concerns.
We give examples of concerns for the three case studies in
Sections 5.1, 5.2, and 5.3. We describe the tool and
assignment procedure in Section 4.2.

4.2 Concern Assignment
Concern assignment is the process of determining the
relationship between a concern and a program element [6].
In our methodology, an analyst determines the relationship
by examining a set of concern descriptions and the source
code (see Fig. 3). For our studies, the most relevant
relationship between concerns and program elements would
be based on a likely-to-contain-defect rule:

A program element is relevant to a concern if it is likely to harbor
defects related to that concern.

In other words, if a bug is reported for a concern, the defect
is likely to lie in one of these program elements. Obviously,

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 501

Fig. 3. Associating concerns with program elements.

2. The list is available in the Online Appendix, which can be found at
http://www.cs.columbia.edu/~eaddy/concerntagger.

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on February 6, 2009 at 16:47 from IEEE Xplore. Restrictions apply.

this relationship is difficult, perhaps impossible, to estab-
lish with any certainty. Instead, we approximate this rule
using the prune dependency rule created by Eaddy et al. [17],
which is easier to decide:

A program element is relevant to a concern if it should be removed,
or otherwise altered, when the concern is pruned.

To properly interpret this rule, consider a software
pruning scenario where a developer is removing a concern
to reduce the footprint of a program or otherwise tailor the
program for a particular environment. In this case, they
want to remove as much code as possible, short of a
redesign,3 and without affecting other concerns.

A benefit of the prune dependency rule is that the
mapping can be directly obtained by actually removing
each concern in turn and noting which elements require
changes. However, this task is very labor-prone and was
not feasible for the scale of the projects we studied. We
therefore relied on a human analyst to estimate the
mapping. Based on our experience assigning the concerns
of five small to medium-sized projects (13-44 KLOCs) by
hand, we believe a prune dependency is easier to estimate
than other types of relationships (e.g., implements [50],
contributes-to [25], [52]) and produces relevant results [17].
In this context, relevance is the extent to which the prune
dependency mapping agrees with the likely-to-contain-
defect mapping.4 Both rules will exclude �obviously�
irrelevant program elements, including methods shared
by all concerns (e.g., the main function), general purpose
methods (e.g., String.concat), and elements contained in
system and generic libraries.5 On the other hand, a prune
dependency assignment will include some elements that
are unlikely to contain defects, e.g., field declarations and
accessor methods.

Deciding if a prune dependency relationship exists
requires human judgment and is therefore subject to
human error. Fortunately, our statistical analysis method
(Spearman�s correlation) mitigates the impact of these
measurement errors since it only considers the relative
ordering of values, not the absolute values themselves. We
revisit the issue of assignment error in Section 7.1.

The actual assignment of elements to concerns was done
by two of the authors using an extension to ConcernMap-
per [55], a plug-in for the Eclipse6 development environ-
ment, developed by Robillard et al. ConcernMapper allows
the user to associate program elements with concerns via
drag-and-drop and so forth. Our extension to Concern-
Mapper, named ConcernTagger,7 further allows the user to
create a hierarchy of concerns and obtain concern metrics
and assignment coverage statistics (see Fig. 4).

The analyst carries out the concern assignment task by
systematically inspecting each program element and

deciding if the prune dependency rule applies to any of
the concerns. In some cases, this decision is easy, e.g., any
field named �log� has a prune dependency on the logging
concern. However, we found that the accuracy of the
majority of the decisions hinged on how well the analyst
understood the program. To aid program understanding,
we relied on project documentation, source code com-
ments, code navigation and search tools, change history
comments, and, in the case of the Rhino study, unit tests.

4.3 Ensuring Independence of Concern Metrics
Correlation and regression analysis can only be applied to
concerns whose concern metrics are independent [37,
pp. 114, 206]. As we mentioned, concerns may be organized
in a containment hierarchy, in which case the observation
below applies.

Observation. The program elements associated with a concern
via the prune dependency rule must (at least) include the
program elements associated with the concern’s descendants.

Justification. The prune dependency assignment rule states
that a program element is associated with a concern if
removing the concern would require modification or
removal of the element. Therefore, when concerns are
organized in a containment hierarchy, removing a
parent concern implies that the parent�s descendants
are also removed. Since removing the parent�s descen-
dants requires modification or removal of the program
elements associated with the descendants, it follows that
the parent concern must also be associated with those
elements.

Our concern metrics are derived from the program
elements associated with a concern. The observation above
implies that the concern metrics for a parent concern are
dependent on those of its descendant concerns (i.e., the
metrics are collinear). For example, the root concern has the
largest size and bug count and is the most scattered.8

Correlation and regression analysis is undefined when the
metrics of the concerns are interdependent [22]. Therefore,
although we assigned all of the concerns, we only
performed statistical analysis on sets of concerns where
no two concerns were descendants of each other (specifi-
cally, leaf concerns). Restricting our analysis in this way does
not introduce sample bias since the leaf concerns provide
the rationale for most of the code, as our concern coverage
statistics (discussed in Section 6) show.

4.4 Bug Assignment
As is typical, we did not have records of individual defects.
Instead, we relied on records of bugs: bug reports stored in
an issue tracking system (ITS) and bug fixes stored in a source
code control system (SCCS) [56]. A bug is caused by one or
more defects. For example, a user might report a crash (i.e.,
a failure [34]) that is caused by multiple defects, whereas a
developer might report access to an uninitialized variable
(a single defect). To validate our theory, we approximate

502 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

3. Assume that disabling the concern using a flag, preprocessor macros,
or code generation is not allowed.

4. If we knew the likely-to-contain-defect mapping, we would measure
similarity directly using the Jaccard similarity metric [58], for example.

5. It is not necessary to consider elements contained in system and
generic libraries because application-specific concerns generally do not
provide a rationale for general-purpose code (a similar argument is made in
[19]).

6. http://www.eclipse.org.
7. http://www.cs.columbia.edu/~eaddy/concerntagger.

8. Except in rare cases, the DOS metrics for a parent will be greater than
or equal to its children.

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on February 6, 2009 at 16:47 from IEEE Xplore. Restrictions apply.

defect counts, which are not directly measurable, with bug
counts, which are directly measurable, as we will soon see.

4.4.1 Associating Bugs with Bug Fixes
When a bug report is filed in the ITS, the bug is given a
unique bug ID. The open source projects we analyzed had
publicly accessible issue tracking systems, so the filer could
be a developer on the project or a user (or both). If the bug
is genuine, not a duplicate, and is caused by defects in one
or more source files, a developer eventually fixes it, submits
the updated files to SCCS along with a reason for the
changes, and then changes the bug status to �fixed.� We
use the term bug fix to refer to the set of lines in the source
code�which may span multiple files�added, removed, or
modified to fix a bug.

Common SCCSs typically record the changes made to
source files in the form of one or more deltas. A delta
provides a list of the lines added, removed, and modified
and the reason for the change (called the commit message).
The SCCS systems used by the projects we studied were
CVS [12] and Subversion [15]. For CVS, the unit of change
described by a delta is a single file, so a fix may consist of
multiple deltas. For Subversion, the unit of change can
include multiple files, so a fix consists of one delta.

A common approach for associating bugs with program
elements is to search for deltas whose commit messages
include keywords such as �bug� or �fix� [51] or include
strings that look like bug IDs [16], [27], [57]. However,
relying on this information alone is insufficient. For one
project we studied, the IDs in 87 (37 percent) of the commit
messages referred to enhancements instead of bugs, which
would have inflated the bug counts for some concerns. This
is easily prevented by using the issue tracking system to
verify that IDs refer to actual bugs. Of course, bugs
identified by keywords instead of IDs cannot be system-
atically verified using this approach.

Furthermore, it is common for a bug to be fixed
incorrectly the first time [51] or be worked on in stages,
requiring multiple updates to the same file [2]. This can
result in the same bug being counted multiple times. Again,
using bug IDs helps us minimize noise since we only count
unique bug IDs.

Our approach for recognizing bug fixes is depicted in
Fig. 5 and described in detail by �Sliwerski et al. [57], which
is similar to the approaches used by Fischer et al. [27] and
by �Cubrani�c et al. [16]:

A delta is called a “bug fix” and associated with a bug if the
change reason refers to a valid bug ID according to the issue
tracking system.

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 503

Fig. 4. ConcernTagger screenshot showing (a) a Rhino source file, (b) the Rhino concern hierarchy showing the program elements assigned to the
“Regular Expression Literals” concern (program elements can be assigned to concerns via drag-and-drop and right click), (c) a view showing which
concerns are assigned to the methods of the Decompiler class, and (d) the Rhino bugs.

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on February 6, 2009 at 16:47 from IEEE Xplore. Restrictions apply.

