
EyeDraw v2.5
Programmer’s Documentation

07/13/04
Anna Cavender and Rob Hoselton

1. INTRODUCTION 3

2. EYEDRAW SOURCE FILES 3

2.1 eyedata.h 3
2.1(a) GazeDataGetterThread 3
2.1(b) FileDataGetterThread 4
Fig 2.1 Messages Relating to Eye-Movement Data in EyeDraw 5

2.2 EyeDrawDlg.cpp 6
2.2(a) OnEyeMovement(wParam,lParam) 6
2.2(b) OnFixationCompleted(wParam,lParam) 6
2.2(c) OnEyeDwell(wParam,lParam) 6
2.2(d) OnStateChange(wParam,lParam) 6
2.2(e) OnDialogMessage(wParam,lParam) 8
2.2(f) OnCalibrationComplete(wParam,lParam) 8

2.3 EyeDrawButtons 8
2.3(a) ED_ShapeButton: 8
2.3(b)ED_StampButton: 9
2.3(c)ED_ColorButton: 9
2.3(d) ED_UtilityButton: 9

2.4 PaintDlg.cpp 10
2.4(a) OnEyeMovement(wParam,lParam) 10
2.4(b) OnEyeDwell(wParam,lParam) 10
2.4(c) OnFixationCompleted(wParam,lParam) 10
2.4(d) OnStateChange 11
2.4(e) OnDialogMessage 11
2.4(f) OnPropertyChange 11
2.4(g) OnGridChange 11
2.4(h) OnUndoChange 11

2.5 Shape.cpp 11
2.5(a) setStartingPoint(POINT starting) 12
2.5(b) setEndingPoint(POINT ending) 12
2.5(c) setPen(LOGPEN* lpen) 12
2.5(d) setBrush(LOGBRUSH* lbrush) 12
2.5(e) getShapeRect() 12

2.6 EyeCursor.cpp 12

3. HELPER FILES 12

3.1 FindFile.cpp (Author: Louka Dlagnekov) 12

3.2 wildcard.cpp (Author: Louka Dlagnekov) 13

 2

3.3 iniFile.cpp (Written by: Adam Clauss, rewritten by: Shane Hill) 13

4. COMMON TASKS 13

4.1 Adding buttons 13

4.2 Drawing the eye cursor 14

4.3 Adding new messages 15

4.4 Adding bitmap resources 15

4.5 Switching to playback mode 16

4.6 Switching to random mode 16

 3

1. INTRODUCTION

The following document covers the important aspects of the EyeDraw application with respect to
the application’s code, its files, and functions. It also explains how to do some of the common tasks
and procedures for adding new functionality.

All code is written in C++ using Microsoft Visual Studio .NET. This application was written for the
11-06-03 release of the LC Technologies Eyegaze software.

This documentation assumes a fundamental knowledge of the C++ programming language in a
windows environment.

Please refer to the LC Technologies programmer’s manual for anything regarding the eye tracker
and its programming interface.

2. EYEDRAW SOURCE FILES

2.1 eyedata.h

eyedata.h contains much of the LC Technologies code to collect eye movement data. All eye-
movement data in EyeDraw is collected from one of the two threads within eyedata.h. The
GazeDataGetterThread uses the Eyegaze thread provided by LC Technologies to receive gaze
samples from the camera. The FileDataGetterThread either extracts eye-movement data from a
previously recorded file (PLAYBACK mode) or generates random data on its own (RANDOM
mode).

The camera’s image of the eye displayed in the upper right of the screen in generated here. It can
be turned on or off by setting the variable eyeImage to true or false respectively.

2.1(a) GazeDataGetterThread

The purpose of this thread is to collect gaze samples and determine the following states, all
of which are returned by the fixation detection function, DetectFixation() supplied by LC
Technologies.

 FIXATING
 FIXATION_COMPLETED
 MOVING

More on this function and its return values can be found in the LC Technologies
programmer’s manual. The basic idea is that FIXATING is returned during a fixation,
MOVING is returned during a saccade, and FIXATION_COMPLETE is returned the moment
a fixation ends (and a saccade begins). Based on these return values, a user-defined
windows message (UWM) is posted to the creator of the thread (in this case EyeDrawDlg) to
be processed and to initiate the proper action.

FIXATING determines that there have been a minimum number of samples
(min_fix_samples) within a given threshold (gaze_deviation_thresh_pix). The gaze point is
then smoothed and a UWM_ED_MOVE message is posted with the smoothed gaze point.
(The main program needs to know that there is still movement even though the eye is
fixating. For example, we still want to display movement of the eye cursor). If there have

 4

been min_fix_samples of gaze points returned as FIXATING and they are all within
gaze_deviation_thresh_pix from the previous gaze point, then an ED_DWELL message is
posted.

FIXATION_COMPLETED causes a UWM_ED_FIXATION_COMPLETED message to be
posted and MOVING causes a UWM_ED_MOVE message, both of which reset the number
of current fixations.

Finally, this thread writes all of the smoothed coordinates and setting changes to a file
labeled EDdatayear-month-day-time.dat which is stored in EyeDraw/Data/. This file can be
used at a later time to playback the drawing session. More on this playback ability can be
found in the following section on the FileDataGetterThread.

2.1(b) FileDataGetterThread

This thread performs one of two actions: playing back data from a pre-recorded drawing
session or generating random data that simulates eye movements. In either case, the
thread has the same functionality as GazeDataGetterThread in that it runs the mock gaze
points through DetectFixation() and sends the same messages with smoothed data to its
creator (EyeDrawDlg).

The following are programmer-defined settings located after the #include statements in
eyedata.h:

During a session, GazeDataGetterThread writes all eye data including setting changes to a
file created at runtime. These files are stored in EyeDraw/Data/. To playback a previous
session, the file name needs to replace filename in “CString playbackfile =
“EyeDraw/Data/filename.dat”;” and the line
“#define PLAYBACK” needs to be uncommented, both located in eyedata.h. The variable
timeBetweenSamples, measured in milliseconds, can also be set to determine the speed of
the playback. If set to 100/6, the playback will most closely resemble the actually speed of
the drawing session since the eye tracker captures 60 frames per second; 100/12 would be
close to double the speed and 100/3 would be close to half the speed.

If the “#define RANDOM” line is uncommented, FileDataGetterThread generates random
gaze points and also uses timeBetweenSamples to determine its speed. This mode can be
used for stress-testing purposes.

If neither PLAYBACK nor RANDOM are defined, the program runs normally, receiving data
from the camera. Although possible, PLAYBACK and RANDOM should not be defined at
the same time. The effect would be a situation where the gaze samples received would
alternate between those extracted from a file and those generated at random. Neither
would work properly because the random samples would disrupt those from the file and
samples from the file would disrupt the randomly generated “fixations”.

The diagram below shows the message-sending and message-handling communication scheme of
messages that are related to eye movements (listed in 2.1(a) and 2.1(b)). All messages of this type
originate in eyedata.h, are handled by EyeDrawDlg.cpp, and are propagated to all of the client
applications (the canvas, all of the buttons, and the dialog windows) from there. More on the
handling of these messages can be found in the following section on EyeDrawDlg.cpp.

 5

Fig 2.1 Messages Relating to Eye-Movement Data in EyeDraw

An indicates a message being passed.

eyedata.h Main Drawing Program
(EyeDrawDlg.cpp)

Client Apps.
(Buttons, Canvas, etc.)

Sets up data control structure.
Calibrates. Initializes the Eyegaze
thread (EgInit). Then, loops
continuously asking for eye data.
After each sample, calls
detectFixation(). Posts messages
based on the results from that call
(as seen below).

When the program starts up,
EyeDrawDlg enters the function
OnInitDialog(). This function starts
the gaze-data-getter thread, which
is inside eyedata.h

Case: MOVING or FIXATING
Action: Sends the user-defined
windows message
UWM_ED_MOVE message.

Maps to the function
OnEyeMovement() which moves
eyecursor to new location and posts
UWM_ED_MOVE to client apps.

Receives a button clicked message,
determines where it came from and
does the action associated with that
button.

Each app. has its own
OnEyeMovement() function
that this message maps to
which moves its own cursor.
More on this in Fig. 2.2
Buttons click themselves after
enough samples.

Case: min_fix_samples of
FIXATINGs occur in a row.
Action: Sends a UWM_ED_DWELL
message.

Maps to the function OnEyeDwell()
which post message
UWM_ED_DWELL to canvas.

Canvas enters its own
OnEyeDwell() functions and
changes state based on red-
yellow-green metaphor.

Case: FIXATION_COMPLETE
Action: Sends a
ED_FIXATION_COMPLETE
message.
Resets the count for number of
fixations in a row that would cause a
ED_DWELL.

Maps to the function
OnFixationComplete() which posts
UWM_ED_FIXATION_COMPLETE
to canvas.

Canvas enters its own
OnFixationComplete() which
essentially “gets out” of a
yellow or red if it is in this
state.

 6

2.2 EyeDrawDlg.cpp

EyeDrawDlg creates all of the components and starts the eye tracking thread. During program
execution EyeDrawDlg handles all of the processing of new gaze points and distributes messages
to all components that are affected by the new eye gaze data. For every new eye gaze data
processed by GazeDataGetterThread (or FileDataGetterThread), one of the following three
messages is sent out and mapped to its respective handling function for processing.

UWM_ED_MOVE - OnEyeMovement(wParam,lParam)
UWM_ED_FIXATION_COMPLETED - OnFixationCompleted(wParam,lParam)
UWM_ED_DWELL - OnEyeDwell(wParam,lParam)

2.2(a) OnEyeMovement(wParam,lParam)

This function extracts the x and y coordinates of the gaze point and redistributes the
message to PaintDlg and all of the EyeDrawButtons for further processing. The eye cursor
is then erased from its old location, moved to the new location, and redrawn on the screen.

2.2(b) OnFixationCompleted(wParam,lParam)

This function redirects this message onto PaintDlg which uses the information to “get out” of
a yellow or red. No other processing is needed.

2.2(c) OnEyeDwell(wParam,lParam)

This function redirects this message onto PaintDlg which uses the information to progress
through the green->yellow->red sequence that starts and stops shapes.

Besides receiving new eye gaze data messages, EyeDrawDlg is the main message processing file.
It processes all of the following messages and maps them to their respective handling functions:

UWM_ED_STATE_CHANGE - OnStateChange(wParam,lParam)
UWM_ED_DLG_MESSAGE - OnDialogMessage(wParam,lParam)
UWM_ED_CAL_COMPLETED - OnCalibrationCompleted(wParam,lParam)

2.2(d) OnStateChange(wParam,lParam)

EyeDrawDlg handles all of the button clicks (whether they are eye or mouse) from the main window
and processes all of the state changing actions. Once a button has been clicked, a
UWM_ON_STATE_CHANGE message is posted to EyeDrawDlg to process the state change that
should result from that button. The message UWM_ON_STATE_CHANGE is handled by
OnStateChange() in which the new state along with the type of state change is passed though
wParam and lParam respectively. As a side note, all EyeDrawButtons send a
UWM_ON_STATE_CHANGE message so, as a result, OnStateChange() is somewhat of a “hub” of
the current window. The type of processing varies depending on the current state and the new
state requested by the button click. The table below shows the different types of state changes,
what button would cause that change, and the action taken within OnStateChange():

 7

State change Button that was clicked Action
SAVE_STATE Save Pause the ability to draw on the canvas, and open

the modal dialog box to save a drawing.
NEW_STATE New Pause the ability to draw on the canvas, open the

modal dialog box to save, and if it returns OK
(user didn’t cancel), send a message to the
canvas to clear the screen.

OPEN_STATE Open Pause the ability to draw on the canvas, and open
the modal dialog box to open a drawing.

EXIT_STATE Exit Check to make sure the program isn’t in RANDOM
simulation mode, pause the ability to draw on the
canvas, and open the exit dialog box.

UNDO_STATE Undo Post a message to the canvas to undo the last
item drawn.

GRID_STATE Grid Post a message to the canvas requesting the grid
be toggled and also toggle the caption on the grid
button.

SETT_STATE Settings Open the settings dialog box.
DOT_STATE Dot On/Dot Off Toggle the clutch. The clutch is what stops the

eye cursor from moving when the Dot On/Dot Off
button is clicked.
Also, change the caption of that button.

FILL Any of the shape buttons
clicked more than once

Fill occurs when a shape button is clicked more
than once resulting in the current shape tool being
filled. To the canvas, this is considered a property
change versus a state change. So, send the
message on to the canvas.

COLOR Any of the color buttons Color is also considered a property change, so
send the proper message to the canvas. Also,
notify all of the buttons in case they are interested
in the color change. For example, shape button
display their shape in the current color and other
color buttons display a smaller color square than
the one that is selected.

STAMP Any of the stamp buttons
(but not the Stamps
button)

A change in stamp type is the final property
change that the canvas can receive through the
EyeDrawDlg.

LEFT_STATE The left arrow button Call the function that rotates the menu at the
bottom of the screen to the left.

RIGHT_STATE The right arrow button Call the function that rotates the menu at the
bottom of the screen to the right.

SHAPE_STATE Any of the shape buttons Make sure the color buttons appear on the bottom
of the screen, make sure the stamp buttons do not
appear on the bottom of the screen, notify the
canvas of the new shape tool selected, notify the
buttons so they can choose how to display
themselves.

STAMP_STATE The Stamps button Make sure the stamp buttons appear on the
bottom of the screen, make sure the color button
do not appear on the bottom of the screen, notify
the canvas of the new stamp mode, notify the
buttons so they can choose how to display
themselves.

 8

2.2(e) OnDialogMessage(wParam,lParam)

EyeDrawDlg also receives messages from dialog box windows when they are open, such as
SaveDlg.cpp and OpenDlg.cpp. In these cases, the only object that needs to know about the
message (which contains the filename of the file to open or with which to save the current drawing
under) is the canvas, and so the message is propagated on.

2.2(f) OnCalibrationComplete(wParam,lParam)

The calibration program that runs at the start of EyeDraw is initiated from the
GazeDataGetterThread within eyedata.h. It is spawned as a thread using Calibrate.exe and the
GazeDataGetterThread pauses, waiting for its return. At that point, it notifies EyeDrawDlg that the
calibration completed successfully by posting a UWM_ED_CAL_COMPLETED.
OnCalibrationComplete handles this message by starting the about box (the splash screen seen at
the start of the program). When it is created, the about box started a timer for its own destruction,
but also receives messages from button clicked upon which it would destroy itself if the timer had
not yet gone off. See about AboutDlg.cpp for comments on how this is done.

2.3 EyeDrawButtons

EyeDrawButtons are extended from the MFC CButton class and are owner drawn (meaning that
their appearance and their position on the screen is defined by the programmer). All types of
EyeDrawButtons are located in EyeDrawButton.cpp. They receive UWM_ED_MOVE messages
which are handled by OnEyeMovement() in the EyeDrawButton class (other classes inherit this
function by default). This function receives the new gaze point and determines if the gaze point
falls within its window region by a function called WindowUnderEye(). If the gaze point does fall
within its region the button draws its eye cursor and increments the number of gaze samples. After
a given number of consecutive samples, the button either is 'pressed' or 'released'. Once the button
has been released the clicked() function is called to produce the appropriate action.
EyeDrawButtons can be one of the following based on their functionality: ED_ShapeButton,
ED_StampButton,, ED_ColorButton or ED_UtilityButton and each type of button must override the
following functions: OnStateChange(), redraw(), and clicked().

OnStateChange() notifies the button that some change to the state of the program has been
performed and each button must adapt itself to the new state.

redraw() is the function that defines the appearance of the button on the screen. It is called from
the base class’s OnPaint() method which is called whenever the button needs to be drawn. Each
type of button has a unique visual aspect depending on its type.

clicked notifies the parent with a UWM_ED_STATE_CHANGE message which contains the type of
state change and the new state, both of which depend on the type of button. For example, a click
of the rectangle button will result in a type of state change SHAPE_STATE (because it is a shape
button) and a new state of RECTANGLE (which is passed to it during construction).

The positions of the buttons are defined by the window they are in. The buttons on the main
window are positioned inside OnInitDialog() in EyeDrawDlg.cpp, the buttons in the Open Dialog are
positioned within OnInitDialog() in OpenDlg.cpp and so on.

2.3(a) ED_ShapeButton:

An ED_ShapeButton is a button that determines the type of drawing tool. During
construction of an ED_ShapeButton the type of shape is passed in through the constructor.

 9

When the button is clicked, the clicked() function is called and this value is then passed
along with SHAPE_STATE in a UWM_ED_STATE_CHANGE message to notify the parent
class.

A shape button is displayed by the redraw() function with the type of shape tool this button
represents. The color of the shape depends on which system color has been selected and
whether or not this is the system's current tool. The shape is either filled or not filled
depending on how many times the button has been clicked.

All buttons also received UWM_ED_STATE_CHANGE messages from other button clicks
which map to OnStateChange() notifying the button of program state changes and
information that is used to change how the button is drawn. This function also changes
whether the current shape is filled or not when the button is clicked more than once.

2.3(b)ED_StampButton:

An ED_StampButton is a button that determines the bitmap to be painted to the screen
during stamping mode. The button is constructed by passing the id if the bitmap’s resource
which the button will hold. (See section 4.4 to add a bitmap resource.)

The redraw() function uses the resource id to paint the bitmap to the button.

The clicked() method uses the resource id as a message parameter in the
UWM_ED_STATE_CHANGE message. This resource id is then used to paint the bitmap to
the screen to and display the eye cursor.

This Button does not use the OnStateChange function because it is not affected by changes
in program state. This could be easily added if a situation arises where it would need to be
notified of program changes.

2.3(c)ED_ColorButton:

An ED_ColorButton is a button that determines the color of the shapes. The button is
constructed by passing the macro variable of the buttons color. These macros are located
in EyeDarwDlg.h

The redraw function draws a rectangle of the button’s color.

The clicked method uses the color as a message parameter in the
UWM_ED_STATE_CHANGE message. .

The OnStateChange function changes the size of the rectangle that is drawn on the button
depending on whether or not it is selected.

2.3(d) ED_UtilityButton:

ED_UtilityButton’s are buttons such as Save, Open, New, Undo, Grid, Settings, and Exit.
These buttons display text as to which function they perform. The constructor is given three
parameters; the state with which they will notify the system, and the two strings in which the
button will display if the button toggles between states.

The redraw() function displays the text on the button.

 10

The clicked() function passes an ED_STATE_CHANGE message to the parent with the
button’s state value.

This button does not use the OnStateChange() method but instead has an
OnCaptionChange() function which handles messages of type
UWM_ED_CAPTION_CHANGE, toggling the text on the button when it is clicked.

Every button has a message mapped to a specific function (located in the parent class) to
handle mouse clicks. These functions perform the same actions as the clicked() functions
described above. They pass a UWM_ED_STATE_CHANGE message to the parent with
the type of state change and the new state.

Buttons are added to a vector of buttons so that every button can be notified of a state
change. In addition to the vector of buttons, color and stamp buttons are also added to
either a vector of stamp buttons or a vector of color buttons. These vectors are used to
switch out the palette of buttons located at the bottom of the screen. For example, if the
stamp button was selected, the color buttons will all be hidden while the stamp buttons will
all be displayed. This is done by looping through both vectors and performing the correct
action. This is taken care of in EyeDrawDlg.cpp during a state change message. See the
diagram in 2.2(d) for specifics.

2.4 PaintDlg.cpp

PaintDlg is the implementation file for our drawing canvas. On initialization, the size and location of
the canvas are set along with all of the initial canvas states and the needed device contexts used
for the display.

PaintDlg is notified by EyeDrawDlg of all the eye movement data through the following messages
and their corresponding handlers:

UWM_ED_MOVE - OnEyeMovement(wParam,lParam)
UWM_ED_DWELL – OnEyeDwell(wParam,lParam)
UWM_ED_FIXATION_COMPLETED - OnFixationCompleted(wParam,lParam)

2.4(a) OnEyeMovement(wParam,lParam)

This function handles the drawing of the eye cursor and the temporary display of shapes
during swinging.

2.4(b) OnEyeDwell(wParam,lParam)

This function handles the progression through the green->yellow->red sequence that sets
the starting and ending points of shapes and the permanent drawing to the canvas of
stamps and shapes.

2.4(c) OnFixationCompleted(wParam,lParam)

This function resets the state along with the cursor color to “just looking” mode.

PaintDlg also handles messages from EyeDawDlg of state changes affecting the canvas. These
messages and their corresponding handlers are as follows:

UWM_ED_STATE_CHANGE - OnStateChange(wParam,lParam)

 11

UWM_ED_DLG_MESSAGE - OnDialogMessage(wParam,lParam)
UWM_ED_PROPERTY_CHANGE - OnPropertyChange(wParam,lParam)
UWM_ED_GRID_CHANGE - OnGridChange(wParam,lParam)
UWM_ED_UNDO - OnUndoChange(wParam,lParam)

2.4(d) OnStateChange

This function catches messages from EyeDrawDlg about the changes in program state
which are of the type (either SHAPE_STATE if a shape tool is selected, or STAMP_STATE
if stamps are selected) and the value (LINE, CIRCLE, RECTANGLE if the tool is a shape,
nothing if the tool is a stamp). It then instantiates a new shape tool and this tool becomes
the current drawing tool. The eye cursor becomes either a rectangle or the current bitmap
encompassed by a rectangle depending on the tool selected.

2.4(e) OnDialogMessage

This function catches message from EyeDrawDlg that were passed from dialog boxes. The
messages contain the type of dialog box the message came from and the new value (eg:
filename of file to open or save to). It could do one of two things:

 1. If the message is requesting a 'save', then
 1a. Remove the grid.
 1b. Create a new .bmp file using the filename given.
 1c. Write the drawing data to the file.
 1d. Replace the grid.
 2. If the message is requesting an 'open', then
 2a. Load the bitmap from the filename given.
 2b. Clear all the shapes.
 2c. Draw the new image to the screen and to the device contexts.

2.4(f) OnPropertyChange

Catches message from EyeDrawDlg indicating that a property of a tool should be changed.
The message contains the type of property to change and the new value of the change.
Examples of property changes are a change in color or fill.

2.4(g) OnGridChange

 Catches message from EyeDrawDlg requesting the grid be toggled.

2.4(h) OnUndoChange

Catches message from EyeDrawDlg requesting an undo. Undo has different meaning
based on the state of the program:

 1. If in a 'swing' (IsDrawing is true), just end the swing.
 2. Otherwise, remove the last shape that was drawn.

2.5 Shape.cpp

Shape.cpp implements the high level shape object. All drawing tools extend shape for the basic
functions of all shapes. Every type of shape created gets placed in a vector of shapes. All shape
objects inherit the following functions:

 12

2.5(a) setStartingPoint(POINT starting)

All shapes have a point where the bounding rectangle will begin. This point is set by this
function during an UWM_ED_DWELL message received by the canvas.

2.5(b) setEndingPoint(POINT ending)

Shapes also have an ending point in which the bounding rectangle will end. This point is set
by this function during an UWM_ED_DWELL message received by the canvas. The ending
point must be adjusted as to not include the area of the eye cursor.

2.5(c) setPen(LOGPEN* lpen)

This function sets the shapes pen color, width, and style (the border of the rectangle or
circle, or just the appearance of a line).

2.5(d) setBrush(LOGBRUSH* lbrush)

This function sets the shapes brush color, width, and style (the filled area of the rectangle or
circle, but nothing with respect to a line). So far, EyeDraw’s filled shapes always have the
same color for the pen and the brush, so they appear to have no border.

2.5(e) getShapeRect()

This function returns the bounding rectangle of the shape.

EyeDraw’s current set of drawing tools all extend the Shape class so that they can all be included in
a Shapes array. Every shape object must implement the Draw() function, which draws the shape to
the given device context, and the copy() function, which returned a pointer to a copy of this shape.
The following files contain the classes that extend Shape:

Line.cpp
Rectangle.cpp
Circle.cpp
Stamp.cpp

Stamps are slightly different because they are constructed with the resource ID of the bitmap.
Stamps are drawn by loading a bitmap using the current resource id and then calling
DrawTansparentBitmap to ensure a transparent background for the bitmap. Note - the resourced
bitmap must be 70 x 70 pixels. (See section 4.4 to add a bitmap resource.)

2.6 EyeCursor.cpp

EyeCursor.cpp implements the eye cursor and encapsulates the moving, drawing and erasing of
the eye cursor during eye movements. The eye cursor is set to be a rectangle during most drawing
operations or to the specified stamp with encompassing rectangle during stamping by calling the
setMode() function. For a description of how to draw the eye cursor, see section 4.2.

3. HELPER FILES

3.1 FindFile.cpp (Author: Louka Dlagnekov)

 13

FindFile.cpp searches for files and folders with a variety of different options in a given location. This
class is used for saving and retrieving drawings.

3.2 wildcard.cpp (Author: Louka Dlagnekov)

wildcard.cpp is used by FindFile.cpp.

3.3 iniFile.cpp (Written by: Adam Clauss, rewritten by: Shane Hill)

iniFile.cpp is used to store the current EyeDraw settings of fMinFixMs, and whether the eye cursor
goes through the yellow stage or not.

4. COMMON TASKS

4.1 Adding buttons

The following steps are needed to add a new button to EyeDraw:
Step Action Meaning
1. Under resource view open

IDD_EYEDRAW_DIALOG.
(View->Resource View->EyeDraw.rc->Dialog-
>Double Click on IDD_EYEDRAW_DIALOG)

The resource view shows the main
window with the resources for the
buttons on the that window. Since all of
our buttons are owner-drawn, their
appearance here is not indicative of what
they will look like when the program is
running.

2. Add a new button to the resource view. This
easiest way is to copy an already existing
button.

This creates a resource for your button
that will be used during construction and
for mapping button clicks.

3. Open the properties view and set the button’s
ID and caption. Make sure the Owner Draw
property is set to true.

If you cut and pasted from another
button, the ID won’t be something that
makes since. So, change it to reflect the
meaning of your button. The caption
doesn’t really matter as the button will be
drawn by the programmer, but it’s nice to
keep things straight in the resource view.

4. Open EyeDrawDlg.h. This is where states, colors, and button
click functions for the main window are
located.

5. Add the appropriate state and set its value. For
instance, to add the rectangle button the
following line was added: const int
RECTANGLE = 2; This value will be passed
into the constructor of the button in the next
steps. If a new color button is added then you
will also have to define the color for example,
#define RGB_BLACK RGB(0,0,0).

These are the things that define the
purpose of the button and they need to
be here so that other objects will know
how to interpret messages from the
button.

6. Open EyeDrawDlg.cpp.

Assuming your new button will be on the
main screen, this is where is it
constructed and positioned.

7. Initialize the button with the appropriate class Check your buttons type constructor for

 14

and constructor. This code is placed before the
class definition. For example, the rectangle
button was constructed with the line
ED_ShapeButton m_rectButton(RECTANGLE);

what to pass to it.

8. In
CEyeDrawDlg::DoDataExchange(CDataExcha
nge*pDX) add the line
DDX_Control(pDX, button ID, button)
replacing button ID with the ID given to the
button in the properties view in step 3. For
example, the line
DDX_Control(pDX, IDC_RECT_BUTTON,
m_rectButton) was added for the rectangle
button.

This maps the button you created in the
resource view to the button you just
created by initializing it EyeDrawDlg.cpp.
This allows the program to map button
clicks and drawing techniques to that
button.

9. Under
BEGIN_MESSAGE_MAP(CEyeDrawDlg,
CDialog) add the line to map the button click
message to the appropriate function. For
example,
ON_BN_CLICKED(IDC_RECT_BUTTON,
OnBnClickedRectButton). Be sure to define this
function. See section 2.3 for more on button
click messages. This step also requires adding
an afx_msg to EyeDrawDlg.h. For example, for
a rectangle button, afx_msg void
OnBnClickedRectButton(); was added.

This message mapping diverts the flow
of control to your specified function
whenever that button is clicked with the
mouse. The function you define for this
can do whatever action makes since for
when that button is clicked.

10. In CEyeDrawDlg::OnInitDialog() set the button
window position.

Since all EyeDrawButtons are owner-
drawn we have to position them
ourselves on the screen. This is done
using relative positioning (so that is looks
similar in any screen resolution).

11. Add the button to the buttons vector and if it is
a color or stamp button then add it to its
appropriate vector as well.

All buttons have to be in the buttons
vector in order to receive eye movement
data and updates about program state.
The colors vector and stamps vector are
used to swap out the palette of colors or
stamps along the bottom of the screen
depending on if the program is in stamp
mode or shape mode.

4.2 Drawing the eye cursor

Drawing the eye cursor is done in a series of steps. The task is made simpler by initializing a new
EyeCursor [eyeCursor = new EyeCursor(p_pdc,updateRect)] at the start of the program, or when
the window is initialized. The constructor takes two arguments which are a pointer to the CDC
initializing the object and the ClientRect of the window. For every eye movement data, the previous
eye cursor needs to be erased. This is effectively done by storing a memory device context and
then displaying what was originally the area under the eye cursor. tempDC is the device context to
which the eye cursor will be drawn. Since all of our drawing is first done to a memory device, this
area then needs to be invalidated (updated and redrawn) so that the window will be updated. Next
the eye cursor is moved to the new location, and then drawn. After it has been drawn to the device

 15

context, the area needs to be invalidated once again to show the eye cursor in its new location.
The area that needs to be invalidated can be accessed through eyeCursor->getRect(). Here is a
simplified order of events that occurs with every new eye movement.

Event Code What is does
1. The old eye
cursor is erased.

eyeCursor->erase (&tempDC); Retrieves the memory device
context which contains the
image that appeared where the
eye cursor is now. Draws that
image to the tempDC and
invalidates, essentially erasing
the eye cursor.

2. The eye cursor is
moved to the new
location.

eyeCursor->move (eye_x, eye_y);

Changes the x-, y-coordinates
stored in the eyeCursor class.

3 .The new eye
cursor is drawn.

eyeCursor->draw (&tempDC,
&memoryDC)

The image of the area where
the eye cursor will be drawn is
saved (for erasing is later) from
the memoryDC and the eye
cursor is drawn to the tempDC.

4.3 Adding new messages

The entire list of user defined messages is located EyeDrawDlg.h. If messages other than the ones
previously defined in this header file are going to be added then a new message will need to be
defined here. All user-defined windows messages in EyeDraw begin with UWM_ED_. Whether a
new defined message is added or a previously defined message is going to be used the following
steps remain the same.

The line BEGIN_MESSAGE_MAP (‘your class’, ‘base class’) should be included in every class that
will use messages replacing ‘your class’ and ‘base class’ with the appropriate values. Within this
statement block, add the message map to map the message defined above to its handler function.
For instance, to map the message UWM_ED_MOVE to the handler function OnEyeMovement, the
following line would be added under BEGIN_MESSAGE_MAP: ON_MESSAGE (UWM_ED_MOVE,
OnEyeMovement). Once this has been accomplished the message handler function needs to be
defined within this class.

In order for the message handler function to be defined, the function also needs to be defined in the
header file for the same class. The functions will be added to the public section of the header file
and will begin with afx_msg LRESULT followed by the name of your function and its parameters.

4.4 Adding bitmap resources

To add new bitmap resource to EyeDraw, under Project->Add Resource select bitmap then either
new or import. If you are creating a new bitmap from scratch then select new. If the bitmap has
already been created then select import. Your new bitmap and its ID will be located under resource
view (View->Resource View->EyeDraw.rc->Bitmap). If you select Properties (View->Properties
Window) you will be able to rename the ID of the bitmap. In resource.h your new bitmap will be
defined automatically. Note: if this bitmap is to be used as a stamp, the dimensions should be 70 x
70 pixels.

 16

4.5 Switching to playback mode

Playback mode refers to the program’s ability to playback prerecorded data from a file. To playback
a previous drawing session, the file name of the data file created during the drawing session needs
to replace filename in “CString playbackfile = “EyeDraw/Data/filename.dat”;” and uncomment the
line “#define PLAYBACK”, both located towards the top of eyedata.h. The data files are stored in
EyeDraw/Data. You can choose the speed at which it plays by setting the variable
timeBetweenSamples which is measured in milliseconds. To playback at close to the same speed
as the original recording, set timeBetweenSamples to 100/6 (since the camera records samples at
60 frames per second). About double the speed would be 100/12 and about half the speed would
be 100/3.

4.6 Switching to random mode

Random mode refers to the program’s ability to create random gaze samples to be used for stress
testing purposed. To make the program run in random mode, make sure “#define PLAYBACK” is
commented and “#define RANDOM” is uncommented at the top of eyedata.h. You can choose the
speed at which it plays by setting the variable timeBetweenSamples at similar settings as described
above. Also, you can define randomPlayTime in seconds so that the program only runs for the
amount of time you want.

If neither PLAYBACK nor RANDOM are defined, the program runs normally, receiving data from the
camera. Although possible, PLAYBACK and RANDOM should not be defined at the same time.
The effect would be a situation where the gaze samples received would alternate between those
extracted from a file and those generated at random. Neither would work properly because the
random samples would disrupt those from the file and samples from the file would disrupt the
randomly generated “fixations”.

