ZeptoOS — KTAU DEMO
10/2005
KTAU Development Team (ktau_team(@cs.uoregon.edu)

OBJECTIVE

Using KTAU and KTAUD to provide a trace of BG/L 10 node kernel activities while
running iotest benchmark on 16 compute nodes.

REQUIREMENTS
- BG/L account
- ZeptoOS-v.1.2 http://www-unix.mcs.anl.gov/zeptoos/software/
- KTAU-1.6 http://www.cs.uoregon.edu/research/ktau/downloads.php

- Latest TAU release http://www.cs.uoregon.edu/research/tau/downloads.php
Note: Please configure TAU with option:

For Jumpshot : -TRACE —slog?

For Vampir : -TRACE —vtf=< VTF3 Trace Generation Package>

CONTENTS

1. ZeptoOS and KTAU Setup

2. Running Job on BG/L

3. Interpreting KTAUD Trace Output
4. Output Conversion and Visualization

NOTE

- Sample KTAU trace output used in this demonstration is available in
ktau/docs/ZeptoOS-KTAU demo/

1) ZeptoOS and KTAU Setup

First, follow ZeptoOS-KTAU installation instruction in the documentation on the KTAU
website (http://www.cs.uoregon.edu/research/ktau/DOCS/KTAU_ZeptoOS_Installation-
chunked/index.php).

In ZeptoOS configuration tool, enable KTAUD with following parameters:

- KTAU source path : <full path of KTAU distribution>

- KTAUD path : <full path of KTAUD binary>

- KTAUD configuration path : <full path of KTAUD configuration file>

- KTAUD output directory : <full path to user’s home dir>/ktaud_output/
- KTAUD Mode of Operation : Trace

- KTAUD Sampling Period : 1 sec

- KTAUD Sampling Mode D All

Arrow keys navigate the menu, <Enter> zelects submenuz ———>, Highlighted letters are hotkeyz, Presszing <¥>
zelectes a feature, while <M> will exclude a feature, Press <Esc»<Esc> to exit, <% for Help, Legend: [*]
feature iz selected [] feature iz excluded

AT

[/bgl/home/suraveedktaus] tau source path
[/bol homes suravee ZeptolS BGL bui 1d/ZeptolS-1. 1/ktaud) TAUD Path
{/bgl homessuravees/ZeptolSs/BGL bui ld/ZeptolS-1, 1/ktaud . conf) TAUD Configuration Path
[/bl homessuraveektaud_output/) TAUD output directory

TAUD Mode of Operation (Trace) --—»
1) TAUD Sampling Period {sec)

TAUD Sampling Mode (A11) --—>

<Exit > < Help >
Figure 1: KTAUD configuration page of ZeptoOS configure tool

Note: Make sure that the symlink in /bgl/argonne-utils/profiles/<username>/ is setup
correctly i.e. ramdisk should be linked to the ramdisk.elf, and INK should be linked to the
zlmage.elf that is built.

2) Running Job on BG/L

The ioteset benchmark is included in ZeptoOS distribution (ZeptoOS/BGL/ionode-
ramdisk/test/). To run the benchmark,

cqsub -q short -k <user-name> -n 16 -t 30 ./iotest -f io.txt

Please refer to cqsub —h for detail of command-line option.

3) Interpreting KTAUD Trace Output

Once the job is finished, the trace output should be in the ktaud output directory as
specified in the configure tool. In this case, iotest benchmark use 1 10 node and 16
compute node. Therefore, KTAUD is generating one trace file, and 2 other files
outputted from running ps —ax at the beginning and at the end of the run.

zsuraveeld] oginl: ™ ktaud_output> ls
ionnde3h,all ionode3h,ps_out_start ionode3h,ps_out_stop
suraveeli]loginl: ™ ktaud_output> cat ionodedh,ps_out_start

FID TTY lid Size State Command
1 root Bog S init
2 oot 0 5 [keventd]
S ook 0 5 [ksoftirgd_CPUD]
4 oot 0 5 [kswapd]
] oot 0 S5 [bdflush]
B ook 0 5 [kupdated]
53 rootk B8 5 /binfutelnetd -d -1 /binlogin
70 ook 0 5 [rpciod]
152 root 1216 S5 /bgl/dists/shindzshd
175 1 1472 5 Ssbindportmap
186 root 1584 5 Jsbindrpc.statd
215 oot 175048 5 Ashindciod_f1,440
2EE oot bod S Sbindsh
267 rootk 1284 5 Jbindktaud —f Aetcdktaud.conf -1
273 root Bod S sh —o pz —ax » Afbgllhomelszuravessktaud_out
274 root Bop B ps o-ax

suravee®loginl " ktaud_output>]
Figure 2: Showing the output of running ps —ax command at the beginning of the run.

In this experiment, KTAUD was reading kernel trace data from the ring buffer of every
process running at the time for every second, and stored output into the file ionode35.all.
The naming convention of the trace output from KTAUD is

<hostname>.<pid | all>
Example:
ionode35.all : multiple-pid
and
ionodel2.23 : single-pid

Each time KTAUD reads the kernel trace data, it appends new information to the end of
the file. The following figure shows a sample of output trace. From figure 3,

- TSC : The frequency (Hz) of the PPC time-base counter on the
processor.

- No Profiles : The number of pids being sample at that particular time.

- PID : The Linux process id.

- No entries : Number of trace entries being read.

- 1% column : Timestamp read from the time-base counter
- 2™ column : Memory address of the function being traced
-3 column : 0 = function entry, 1 = function exit

zuravesldloginl ™ ktaud_output> head -n 20 ionodedb,all
TSC: FOOO0Z360, 419560

Mo Profiles: 14

FPID: 1 Mo Entries: 1126

217863634 cOOnE334
317883596 co00E334
217880073 cOn0fFe1a
317889294 con0fFh18
217933173 conne334
317947334 con0E334
317948001 co0fF518
217950566 cOO0FR1E
317997250 co00E334
217872108 conne334
317973913 con0E334
217390930 cO00s334
317996703 cOO0fF518
318001761 co0Fs1a
218002304 cOnnE334
318018289 con0E334
218018913 cOn0fFe1a
suravesiloginl:®ktaud_output>]

fe Rl el i e e e e .

Figure 3: Example from the KTAUD trace output

In this scheme, the tracing buffer of the process might get overflow if KTAUD does not
empty out the ring buffer at a fast enough rate (default sampling information every 1
second might not be sufficient if the process is overwhelmed by the instrumentation
points in the path of execution). There are several factors that contribute to the chance of
buffer overflow.

- Amount of instrumentation points (configurable in the kernel)

- Process kernel activities

- Size of the ring buffer (configurable in the kernel)

- KTAUD sampling frequency (configurable in the ZeptoOS configure tool)

Once the ring buffer is overflow, trace events are lost. KTAU represents the period of
losing events in the trace output as a function namely ktau_lost event with address 0.
Figure 4 show a section of the trace output that contains ktau_lost _event. In this figure,
pid 70 has 5121 entries, which is the default maximum size specified in the KTAU
configuration inside Linux. The two entries showing memory address = 0 represent the
beginning and the end of ktau lost event.

18787704487 cO00F518
18787923664 cO0OF518
187387924200 cOo0ddal
18787925702 coo0ddal
18787926015 cO017F28
18787926928 cOO17F28
18787927559 cO00fs18
FID: 4 Mo Entries:
FII: 5 Mo Entries:
FID: & Mo Entries:
FID: 53 Mo Entries:
JI0: 70 Mo Entries:
18049661950 O O

18764323081 0 1

18764324060 cO017F28
187645322302 c00al1l158
187645834792 cO00ddal
187645936238 cOn0ddal
1874336532 cO017F28
187645837484 cOO17F28
18764344345 cO00ddal
18764346170 cO004dal
18764346662 cOO17F28

R Re R leBel el st~ o=

121

Pl A e e

Figure 4: Example from the KTAUD trace output showing ktau lost_event for pid 70

4) Output Conversion and Visualization

Currently, KTAU trace output supports two formats, VTF and SLOG2. Vampir (Intel
trace analyzer) is used to view VTF format, and Jumpshot for SLOG2. There are several
phases of format conversion.

4.1) KTAU trace format (ktr) to TAU trace format (trc)

First KTAU trace format (ktr) is converted to TAU trace format (trc). This conversion
introduces several advantages. First, it would allow traces from KTAU to be merged
with TAU and produce a complete trace that contains execution path inside the kernel as
well as in the application (work in progress). Furthermore, it would allow KTAU to use
the existing format conversion utilities available from TAU distribution namely tau2vtf
and tau?slog?.

Available conversion utilities are:

- ktau_convert : Phase 1 conversion

- ktau_convert_fix : Phase 2 conversion

- tau_merge : Merging traces from several source

- tau_convert —dump : Dumping (trc) trace in ASCII format (optional)

- ktau_convert

This tool takes KTAU trace (either single-pid or multiple-pid trace file) and output an
individual (trc) file for each pid. It simply steps through the (ktr) file and parse out trace
information and store them in a separate (trc) file according to the pid.

dynab-203:"/Sof tware/ktaususer—-srodsro/tool sfk tau_demo suravee$ ls

System,map convert,zh ionodedb, all old

dynab-203: " Softwaresktaus/user—sro/sro/tool ek tau_demo suraveed | . ktau_corvert -i ionode3B,all -m System.map -o iotest_ 16
dynab-253:"/Sof twaresktau/user—srodsro/tool sfktau_demo suravee$ ls

System.map iotest 16,175, trc iotest 16,267 .trc iotest_1E,9,trc old
convert,zh iotest_16,186, trc iotest_16,270,tre iotest_1E,03,trc
ionodesh, all iotest_1E,2,.trc iotest_16.276.trc iotest_1E,6,trc
iotest 16,1, trc iotest_16,215.trc iotest_16.3,.trc iotest_1B,70,trc

iotest 16,152, trc iotest_16, 266, tro iotest_16.4,trc iotest_16,edf
dynak-253 1 /Sof tuare/ktaususer—sro/sro/tonl sk tau_demo suraves$ |l

Figure 5: Phase 1 conversion

In figure 5, ionode35.all is a multiple-pid trace file. After running ktau_convert, each pid
has its own output trace file in the (trc) format. Also, an (edf) file is created, which
contains the function mapping information for all the (trc) files. At this point, memory
address used for identifying the function being traced, is mapped to the corresponding
function name using the System.map (kernel symbol table from obtained from
ZeptoOS/BGL/ionode-linux-2.4.19/linux-2.4.19/System.map). Also, the TSC value is
used to convert timestamp from number of ticks to microsecond.

dynab-203: " Software/ktaususzer—srcfsrostools ktau_deno suraveed head -n 30 iotest_16,edf
31 dynamic_trace_svents

FunctionId Group Tag "Hame Tupe" Parameters

KTAU_LOST_EVENT 0 "ktau_loszt_svent" EntryExit

SYSCALL © “"sys_clone" EntryExit

SCHEDULE @ "schedule" EntryExit

SYSCALL © “"syz_open" EntryExit

SYSCALL © “"syz_lseek" EntryExit

SYSCALL © “syz_read" EntryExit

SYSCALL © "sys_write" EntryExit

IRD O "timer_interrupt" EntryExit

BOTTOMHALF © "do_softirg" EntryExit

BOTTOMHALF © "tasklet_hi_action" EntryExit

BOTTOMHALF © "run_timer_list" EntryExit

SYSCALL © "syz_close" EntryExit

SYSCALL © "sys_dup" EntryExit
SYSCALL O "syz_execwe" EntryExit
SYSCALL © "sys_ioctl" EntryExit
SYSCALL O "syz_getpid" EntryExit
SYSCALL © "syz_rt_sigaction" EntryExit
SYSCALL © "syz_reboot" EntryExit
SYSCALL O "syz_newuname" EntryExit
SYSCALL © "sys_socketcall" EntruExit
SYSCALL © "sys_time" EntryExit
SYSCALL © "syz_fontl" EntryExit
SYSCALL © "syz_chdir" EntryExit
SYSCALL O "syz_setsid" EntryExit
SYSCALL © "sys_brk" EntryExit

26 SYSCALL © "syz_suysinfo" EntruyExit

27 SYSCALL © "syz_access" EntryExit

28 SYSCALL © "sys_rt_sigprocmask" EntruExit

dynab-253: "/ Sof tware ktau/user—sre/erc oo ek tau_demo suravees |

Figure 6: Example of (edf) file

[t e e N e o Il el el e B el el el el el e B R Ly B SRR I e]
[y R SN I G e B B p R [CRRETN [S i)

- ktau_convert_fix
In case of losing event, 3 scenarios can happen to the trace data:
Case 1: Losing both entry and exit events of a function
In this case, we cannot imply anything about the traces being lost.

Case 2: Losing entry but not exit event of a function

In this case, we can imply that during the ktau_lost event period, it might exist
the corresponded function entry. Therefore, we can pretend that the function
entry has the timestamp equal to the exit timestamp of ktau_lost event period.

Case 3: Losing exit but not entry event of a function

This case is the inverse of case 2. We can assume that exit event of the function
is lost inside the ktau lost event period. Therefore, we can pretend that the
function exit has the timestamp equal to the starting timestamp of

ktau lost event period.

ktau convert fix is used to insert dummy entry and exit events into each (trc) file in order
to maintain the nesting level of functions inside the trace. This is a necessary step to help
visualization tools render a trace that is readily apparent. However, we encourage that
users configure KTAUD in a way that minimize the amount of event lost. KTAU is
currently resolving this issue, and the solution will be included in the following release.

- tau_merge

When converting multiple-pid trace, multiple (trc) files are generated for each pid. In
such case, tau_merge utility must be used to merge all (trc) files into a (trc) file, which
will be converted into VTF or SLOG?2 format later on. Please refer to the tau merge —h
for more detail.

Please note that (trc) file is in binary format. TAU also provides a utility to dump the
(trc) file into a human readable ASCII format, tau convert -dump. Figure 7 shows a
partial output from tau_convert —dump.

dynak-253: "/ Softwaresktaususer-srosarestool 2k tau_demo suravesd tau_comvert -dump merge,trc merge.edf merge,dump
dynab-253: "/ Softwaresktaususer—srossrestool ek tau_demo suraveed head -n 30 merge.dump
creation programi tau_convert —dump

creation dated Oct-13-2005

number records: 127423

number processors: 16

max processor numd 276

first timestamp; 454088

lazt timestamp; 42230120

#=N0= EVENT== ==TIME [us]= =NODE= =THRD= ==PARAMETER=
1 "EY_INIT" 454038 1 0 3
2 "sysz_clone" 404038 1 i} 1
3 "gysz_clone" 404117 1 i} -1
4 "schedule" 454119 1 0 1
h "EY_INIT" 454124 2 0 3
B "schedule" 454124 2 0 1
7 "schedule" 454125 1] -1
g "sys_clone” 404188 1 0 1
9 "sys_clone” 404208 1 i} -1
10 "schedule” 454209 1 0 1
11 "EY_INIT" 4h4212 3 0 3
12 "schedule" 454212 3 0 1
13 "schedule" 454213 1 0 -1
14 "ays_clone" 4hdz22e 1 0 1
15 "sys_clone" 404243 1 0 -1
16 "ays_clane" 404200 1 0 1
17 "ays_clane" 404278 1 i} -1
18 "achedule” 454279 1 0 1
19 "EY_INIT" 454282 4 0 3
20 "schedule” 454232 4 0 1
21 "FLUSH_CLOSE" 454232 4 0 0

dunaf-253 1 Sof tuarektauuser-sredsrodtonl sk tau_demo suravect Il
Figure 7: Example of converting TAU trace format into a human readable ASCII format.

4.2) TAU trace format (trc) to VITF format
To convert, simply run

tau2vtf <TAU trace> <edf file> <out file>
vampir <outfile>.

Vampir 4.0 - Timeline

IR0
nade 1 BOTTOMHALF
WK TAL_LOST_EYENT
idla & ISCHETIULE
SOCKET
WEYSCALL

hode 3

hode 4

hode 5

hode 6

hode 53

hode 70

hode 152

hode 175

hode 186

hode 215

hode 266

hode 267

hode 275

hode 276

Figure 8: Example screenshot from Vampir

This screen shot shows concurrent kernel activities of process running on BG/L 10 node
using Vampir. Please note that the left column (node XXX) is used to identify Linux pid
on a single machine. At this point, the information from ionode35.ps out start and
ionode35.ps_out stop can be used to help identify the name of each process.

BOTTOMHALF é
MSCHEDULE =2
4
5

.
SOCKET PP AP
{@een

Ll % Vampir 4.0 - Identified Activity
Locations node 215
Operation: sys_urite (7)
Aetivitys SYSCALL (12)
Interwvaly 24,546417 = - 24,049064 =
Duration: 2,647 ns
Sources hane
Next. Intervaly press button for ssarch
Previous Interwali press button for ssarch

Figure 9: Example screenshot from Vampir showing CIOD kernel activities

4.3) TAU trace format (trc) to SLOG2 format

'®@00 TimeLine : merge_16_demo.slog <ldentity Map>
= @
IalvZan B <[> o o e n B8 ne
Lowest / Max. Depth| ' Zoom Level Clobal Min Time View Init Time Zoom Focus Time View Final Time Clobal Max Time Time Per Pixel =% Row B
/ 0 0.00 0.00 37.3950727269 41.776032 41.776032 0.0389338602 Row Coun
CumulativeE...| 5 TimeLines - 17.0
soc-2 - M B
1 |
|
2 | 15
|
3 |
4 : —13
5 |
|
6 | -1
53 :
-9
o 1 |
152 ||
175 : =7
186 :
T T T e—] =
a5 | o et
266 ||
267 || =
275 U
-1
276
@LinelD i [[[[i [i i [i LA Rox
)00 4.00 .00 1200 1600 20,00 2000 2800 3200 36.00 40.00 J
Time tseconds .

) Legend : merge_16_dem...

Figure 10: Example screenshot from Jumpshot

.
[Jrevensae @ @ 10 convert, simply run
!AlignmentExcep[ion E E
B co.ra ¥ tauZslog? <tau_tracefile> <edf file> -o <slog tracefile>.
B ¢o-sorero v @ Jumpshot <slog tracefile>
Jklau lost_event E E
[ooc select @ & This screen shot shows concurrent kernel activities of process
Eerineris ® @ running on BG/L 10 node using Jumpshot. Please note that the
[schectue @ & [eft column (node XXX) is used to identify Linux pid on a single
Bl ooms @ @ machine. At this point, the information from
- lonode>).ps_out_start and ionode>).ps_out _Stop can be used to
Blcoomss @ @ jonode3s.ps out . d ionode35.ps_out_stop can be used t
S“”““s g g help identify the name of each process.
sys_brk
ﬂ“s'clhdir g g For figure 9 and 10, please note that IO node is a single
" processor machine. Therefore, when a process is running, others
!sys_close @ @
= v o will be scheduled out. This portion is shown with red portion in
[w ¢ figure 9, and green portion in figure 10.
- Sys_execve ¥ ™
ﬁm_,mn # & Black portion in figure 9, and purple portion in figure 10 shows
[svs renus @ w - the ktau_lost_event period. rpciod (pid 70) is a kernel daemon
— supporting NFS implementation. Since iotest is an 1O intensive
A= - _ application (writing to a file over NFS), a lot of kernel activities
P —— J forwarded from compute node to ciod (pid 215) are also
(close) . affecting rpciod. In this case, KTAUD could not catch up with

the overwhelmed trace events being generated, and resulted in ktau_lost _event.

