
ZeptoOS – KTAU DEMO
10/2005

KTAU Development Team (ktau_team@cs.uoregon.edu)

OBJECTIVE

Using KTAU and KTAUD to provide a trace of BG/L IO node kernel activities while
running iotest benchmark on 16 compute nodes.
__

REQUIREMENTS

 - BG/L account
 - ZeptoOS-v.1.2 http://www-unix.mcs.anl.gov/zeptoos/software/
 - KTAU-1.6 http://www.cs.uoregon.edu/research/ktau/downloads.php
 - Latest TAU release http://www.cs.uoregon.edu/research/tau/downloads.php
 Note: Please configure TAU with option:
 For Jumpshot : -TRACE –slog2
 For Vampir : -TRACE –vtf=< VTF3 Trace Generation Package>
__

CONTENTS

1. ZeptoOS and KTAU Setup
2. Running Job on BG/L
3. Interpreting KTAUD Trace Output
4. Output Conversion and Visualization

NOTE

- Sample KTAU trace output used in this demonstration is available in
ktau/docs/ZeptoOS-KTAU_demo/

1) ZeptoOS and KTAU Setup

First, follow ZeptoOS-KTAU installation instruction in the documentation on the KTAU
website (http://www.cs.uoregon.edu/research/ktau/DOCS/KTAU_ZeptoOS_Installation-
chunked/index.php).

In ZeptoOS configuration tool, enable KTAUD with following parameters:

- KTAU source path : <full path of KTAU distribution>
- KTAUD path : <full path of KTAUD binary>
- KTAUD configuration path : <full path of KTAUD configuration file>
- KTAUD output directory : <full path to user’s home dir>/ktaud_output/
- KTAUD Mode of Operation : Trace
- KTAUD Sampling Period : 1 sec
- KTAUD Sampling Mode : All

Figure 1: KTAUD configuration page of ZeptoOS configure tool

Note: Make sure that the symlink in /bgl/argonne-utils/profiles/<username>/ is setup
correctly i.e. ramdisk should be linked to the ramdisk.elf, and INK should be linked to the
zImage.elf that is built.

2) Running Job on BG/L

The ioteset benchmark is included in ZeptoOS distribution (ZeptoOS/BGL/ionode-
ramdisk/test/). To run the benchmark,

 cqsub -q short -k <user-name> -n 16 -t 30 ./iotest -f io.txt

Please refer to cqsub –h for detail of command-line option.

3) Interpreting KTAUD Trace Output

Once the job is finished, the trace output should be in the ktaud_output directory as
specified in the configure tool. In this case, iotest benchmark use 1 IO node and 16
compute node. Therefore, KTAUD is generating one trace file, and 2 other files
outputted from running ps –ax at the beginning and at the end of the run.

Figure 2: Showing the output of running ps –ax command at the beginning of the run.

In this experiment, KTAUD was reading kernel trace data from the ring buffer of every
process running at the time for every second, and stored output into the file ionode35.all.
The naming convention of the trace output from KTAUD is

<hostname>.<pid | all>
 Example:

ionode35.all : multiple-pid
 and

ionode12.23 : single-pid

Each time KTAUD reads the kernel trace data, it appends new information to the end of
the file. The following figure shows a sample of output trace. From figure 3,

 - TSC : The frequency (Hz) of the PPC time-base counter on the
 processor.
 - No Profiles : The number of pids being sample at that particular time.
 - PID : The Linux process id.
 - No entries : Number of trace entries being read.
 - 1st column : Timestamp read from the time-base counter
 - 2nd column : Memory address of the function being traced
 - 3rd column : 0 = function entry, 1 = function exit

Figure 3: Example from the KTAUD trace output

In this scheme, the tracing buffer of the process might get overflow if KTAUD does not
empty out the ring buffer at a fast enough rate (default sampling information every 1
second might not be sufficient if the process is overwhelmed by the instrumentation
points in the path of execution). There are several factors that contribute to the chance of
buffer overflow.
 - Amount of instrumentation points (configurable in the kernel)
 - Process kernel activities
 - Size of the ring buffer (configurable in the kernel)
 - KTAUD sampling frequency (configurable in the ZeptoOS configure tool)

Once the ring buffer is overflow, trace events are lost. KTAU represents the period of
losing events in the trace output as a function namely ktau_lost_event with address 0.
Figure 4 show a section of the trace output that contains ktau_lost_event. In this figure,
pid 70 has 5121 entries, which is the default maximum size specified in the KTAU
configuration inside Linux. The two entries showing memory address = 0 represent the
beginning and the end of ktau_lost_event.

Figure 4: Example from the KTAUD trace output showing ktau_lost_event for pid 70

4) Output Conversion and Visualization

Currently, KTAU trace output supports two formats, VTF and SLOG2. Vampir (Intel
trace analyzer) is used to view VTF format, and Jumpshot for SLOG2. There are several
phases of format conversion.

4.1) KTAU trace format (ktr) to TAU trace format (trc)
First KTAU trace format (ktr) is converted to TAU trace format (trc). This conversion
introduces several advantages. First, it would allow traces from KTAU to be merged
with TAU and produce a complete trace that contains execution path inside the kernel as
well as in the application (work in progress). Furthermore, it would allow KTAU to use
the existing format conversion utilities available from TAU distribution namely tau2vtf
and tau2slog2.

Available conversion utilities are:
 - ktau_convert : Phase 1 conversion
 - ktau_convert_fix : Phase 2 conversion
 - tau_merge : Merging traces from several source
 - tau_convert –dump : Dumping (trc) trace in ASCII format (optional)

- ktau_convert
This tool takes KTAU trace (either single-pid or multiple-pid trace file) and output an
individual (trc) file for each pid. It simply steps through the (ktr) file and parse out trace
information and store them in a separate (trc) file according to the pid.

Figure 5: Phase 1 conversion

In figure 5, ionode35.all is a multiple-pid trace file. After running ktau_convert, each pid
has its own output trace file in the (trc) format. Also, an (edf) file is created, which
contains the function mapping information for all the (trc) files. At this point, memory
address used for identifying the function being traced, is mapped to the corresponding
function name using the System.map (kernel symbol table from obtained from
ZeptoOS/BGL/ionode-linux-2.4.19/linux-2.4.19/System.map). Also, the TSC value is
used to convert timestamp from number of ticks to microsecond.

Figure 6: Example of (edf) file

- ktau_convert_fix
In case of losing event, 3 scenarios can happen to the trace data:
 Case 1: Losing both entry and exit events of a function
 In this case, we cannot imply anything about the traces being lost.

 Case 2: Losing entry but not exit event of a function
 In this case, we can imply that during the ktau_lost_event period, it might exist
 the corresponded function entry. Therefore, we can pretend that the function
 entry has the timestamp equal to the exit timestamp of ktau_lost_event period.

 Case 3: Losing exit but not entry event of a function
 This case is the inverse of case 2. We can assume that exit event of the function
 is lost inside the ktau_lost_event period. Therefore, we can pretend that the
 function exit has the timestamp equal to the starting timestamp of
 ktau_lost_event period.

ktau_convert_fix is used to insert dummy entry and exit events into each (trc) file in order
to maintain the nesting level of functions inside the trace. This is a necessary step to help
visualization tools render a trace that is readily apparent. However, we encourage that
users configure KTAUD in a way that minimize the amount of event lost. KTAU is
currently resolving this issue, and the solution will be included in the following release.

- tau_merge
When converting multiple-pid trace, multiple (trc) files are generated for each pid. In
such case, tau_merge utility must be used to merge all (trc) files into a (trc) file, which
will be converted into VTF or SLOG2 format later on. Please refer to the tau_merge –h
for more detail.

Please note that (trc) file is in binary format. TAU also provides a utility to dump the
(trc) file into a human readable ASCII format, tau_convert -dump. Figure 7 shows a
partial output from tau_convert –dump.

Figure 7: Example of converting TAU trace format into a human readable ASCII format.

4.2) TAU trace format (trc) to VTF format
To convert, simply run

 tau2vtf <TAU trace> <edf file> <out file>
 vampir <outfile>.

Figure 8: Example screenshot from Vampir

This screen shot shows concurrent kernel activities of process running on BG/L IO node
using Vampir. Please note that the left column (node XXX) is used to identify Linux pid
on a single machine. At this point, the information from ionode35.ps_out_start and
ionode35.ps_out_stop can be used to help identify the name of each process.

Figure 9: Example screenshot from Vampir showing CIOD kernel activities

4.3) TAU trace format (trc) to SLOG2 format

 Figure 10: Example screenshot from Jumpshot

To convert, simply run

 tau2slog2 <tau_tracefile> <edf_file> -o <slog_tracefile>.
 Jumpshot <slog_tracefile>

This screen shot shows concurrent kernel activities of process
running on BG/L IO node using Jumpshot. Please note that the
left column (node XXX) is used to identify Linux pid on a single
machine. At this point, the information from
ionode35.ps_out_start and ionode35.ps_out_stop can be used to
help identify the name of each process.

 For figure 9 and 10, please note that IO node is a single
processor machine. Therefore, when a process is running, others
will be scheduled out. This portion is shown with red portion in
figure 9, and green portion in figure 10.

Black portion in figure 9, and purple portion in figure 10 shows
the ktau_lost_event period. rpciod (pid 70) is a kernel daemon
supporting NFS implementation. Since iotest is an IO intensive
application (writing to a file over NFS), a lot of kernel activities
forwarded from compute node to ciod (pid 215) are also
affecting rpciod. In this case, KTAUD could not catch up with

the overwhelmed trace events being generated, and resulted in ktau_lost_event.

