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Neuroanatomical segmentation is a problem of extractianaescription of
particular neuroanatomical structures of interest thié¢ets the morphometry (shape
measurements) of the subject’s neuroanatomy from any imeagkering the
neuroanatomical structures of the subject. This disserntgtresents a set of algorithms
for automatic extraction of cerebral white mater (WM) andygmatter (GM) as well as
reconstruction of cortical surfaces from T1-weighted MRgas.

Neuroanatomical segmentation presented in this disgertatperformed by an
image analysis pipeline that steps through five major praieed 1) the original MR image
is processed by a nemlative thresholdingrrocedure and a net@rrain analysigprocedure
such that all voxels are classified into one of the three typéd, GM, and background;
2) the topology defects of the WM are eliminated by a maultiscale morphological

topology correctioralgorithm; 3) cerebral WM is extracted from its supersetvatnew



procedure calledell-complex-based morphometric analy€$ cerebral GM is extracted
based on the prior cerebral WM extraction with a set of molgdioal image analysis
procedures; and 5) cortical surfaces are finally reconstdugreserving correct topology
with an existing marching cube isosurface algorithm.

In this dissertation, we evaluated our neuroanatomicahsegation tool both
guantitatively and qualitatively on a set of MR images withyndtruth or manual
segmentation, compared the results of our tool with thogewfother tools, and demon-
strated that the performance of our tool is highly accurate,ist, automatic and computa-
tionally efficient.

The advantages of our tool are mainly attributed to extensikploration of various
structural, geometrical, morphological, and radiolob&ariori knowledge, which per-
sists despite of image artifacts and inter-subject
anatomical variations. By exploiting priroi knowledge, we also demonstrated that per-
forming voxel classification prior to brain extraction is@mising research direction, con-
trary to the traditional procedure of brain extractiondaled by voxel classification.
Finally, it's worth noting that the algorithms of voxel ckfication and morphological
image analysis presented in this dissertation for neutoameal segmentation can be

potentially applied in wider areas in computer vision.
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CHAPTERII

Introduction

1.1 Problem Statement

Image segmentiois the problem of extracting the figure (object of interestjr an ar-
bitrary image [1]. It can also be defined as the subdivisioaroimage into its constituent
parts or objects [2]. Byeuroanatomical segmentatiowe mean the extraction of a de-
scription of particular neuroanatomical structures oéiiast that reflects the morphometry
(shape measurements) of the subjects’s neuroanatomy ¢Brollnatomical segmentation
is usually conducted on T1-weighted magnetic resonancgeméviRI) due to their rel-
atively good image quality in tissue contrast and signatdse ratio. Neuroanatomical
structures of interest include cerebral cortex, cerebtatenmatter, brainstem, ventrical
systems, cerebellum, and so on. The morphometric desmripgually takes the form of
a surface representation. For example, we can represenetabral cortex by the inner
cortical surface (the interface between the cortex and thieewnatter), the outer corti-
cal surface (the interface between the cortex and the aespioal fluid), or the middle
cortical surface running midway through the cortical timeks. Morphometric analysis of
neuroanatomical structures in conjuction with neuropeladical, neurological, and psy-
chiatric observations, and coupled with functional nemaging, has found broad appli-
cations such as precisely locating active brain regionamational neuroimaging studies,
planning treatments for brain damage, and various neunofmagical studies [3].



Magnetic resonance imaging (MRB a non-invasive method for rendering images of
the inside of an object mainly based on the relaxation ptagseof excited hydrogen nuclei
in water and lipids. Each image element (iv@xelin 3D image volumes) has a bright-
ness, commonly referred to as intensity, that correspam@smeasurement of the tissue
weighted by certain MR parameters averaged over a small@brreln T1-weighted MR,
spin-lattice relaxation time is selected as the image atiipm parameter. Other MRI tech-
niques include T2-weighted and Proton-density(PD), wiseia-spin relaxation time and
no relaxation time is used respectively in image acquisitio

Neuroanatomical segmentation should be precise, rolftistert and automatic in or-
der to be pratically applied for morphometric analysis [gpst existing neuroanatomical
segmentation methods classify image voxels as belongithgee types: gray matter, white
matter, and cerebrospinal flui@reciseneuroanatomical segmentation requires high geo-
metrical accuracy and topology correctness of neuroanasbstructures. It also requires
morphometric description at a finer level. For example, tteeige morphometric descrip-
tion of cerebral cortex requires further segmentation efdhay matter into the cerebral
cortex and the telencephalic nuclei. The cortical surfateaild be topologically equiva-
lent to a sphere if the opening at the brainstem is artificidtdsed. Byrobust we mean that
the neuroanatomical segmentation should be able to praageptable results for a vari-
ety of subjects and for an appropriate range of the qualigvaflable data . Furthermore,
neuroanatomical segmentation shoulddfécientand automaticsuch that the computa-
tion can be accomplished in a reasonable amount of time andres no or limited user
intervention.

Despite vigorous research for many years, precise, roéfiisient and automatic neu-
roanatomical segmentation remains as an unsolved prollaere are several challenges
that make the problem difficult.

1. The exact intensity a given location is determined noy duyl the tissue type at the
location but also by the neighboring tissues. This may pcedan effect of blurring
borders of different tissues.

2. Spatial inhomogeneities in the radio frequency (RF) gaitme RF coil [4] lead to
intensity homogeneitigdiH), or bias field in the single tissue. The presence of IIH



as a shading effect over the image causes significant ogdrketpreen histograms of
different tissues.

3. Mainly due to insufficient resolution, thpartial volumeeffect [4] when the volume
sampled by a single voxel contains more than one kind ofdisgoe blurs the tissue
border and very thin structures.

4. There are significant variations in the intrinsic tissaemeters. For example, frontal
cortex has been found to have an averadgehat is 20% longer than that found in
motor and somatosensory cortex [5]. It has been reportadifierent regions of
white matter also have significantly differefit properties [6].

5. There are normal anatomical variations among differebjexts [7]. This inter-
subject variation plus the highly convoluted shape of thelwal cortex brings fur-
ther difficulties, particularly to those model and templadsed methods

6. Noise is inevitable in MRI, as in almost all image acquasitmethods.

7. There may be other image artifacts such as motion, bload écho, and so on.

As a summary, the main difficulty in neuroantomical segm@macome from intensity
variations in a single tissue, the complex anatomical sirecand the inter-subject anatom-
ical variations.

1.2 Overview Of The Methodology

There are three key components in the work flow of most exjsteuroanatomical MR
image segmentation tools: 1) a brain extraction compor@ttgenerates a brain mask
for subsequent brain tissue classification, 2) a bias fieldecbon component for intensity
inhomogeneity elimination such that the subsequent tisessification is simplified, and
3) a brain tissue classification component that recogntzesissue type for each voxel in
the brain. Brain tissue classification is commonly perfalméth statistical modeling on



the image intensities and is sometimes combined with ceat@iriori knowledge such as
tissue probability maps where each location in a standarith Bpace is given a probability
for each tissue being present. In different segmentatidhoas, these components may be
conducted sequentially or in an iterative loop that alteraaunning the three components
until a conversion point is reached.

The present work on neuroanatomical MR image segmentatffersdfrom the tra-
ditional workflow in several aspects and attempts to overctime relevant segmentation
problems or limitations. First, bias field correction, notterif it is performed prior to
or simultaneously with tissue classification, is a procedhat attempts to explicitly re-
construct the image without bias field. However, there hasb® guarantee for ideal
correction under all circumstances [8]. The present methodhe other hand, performs
robust segmentation against IIH without explicit bias fietdrection. This is due to a new
tissue classification algorithm referred to ratative thresholdingwhich regards IIH as
transparent in the segmentation.

Second, good brain extraction is a prerequisite for brasue classification in most
segmentation work flows. However, brain extraction itseldidifficult problem and poor
brain extraction usually leads to poor brain tissue clasgifbn. In the present work, rel-
ative thresholding for brain tissue classification is inglegent of prior brain extraction.
Brain extraction follows as a procedure that eliminatesdfglositives of the relative thresh-
olding result. This new perspective of brain extractiondaasn tissue classification ex-
ploits morphology properties of the brain structures anihiierently more accurate and
more robust than traditional brain extraction approach.

Third, one of the major difficulties in neuroanatomical segwation involves the sig-
nificant amount of intensity variations within a single tiss Our initial tissue classification
algorithm, relative thresholding, is based on an image niragl¢éhat is formulated as spa-
tial constraints on intensities of different voxels inste&traditional statistical distributions
such that it allows reasonable yet high extent of intensatyations for a given tissue.

Exploiting variousa priori knowledge is the essential methodology in our approach
to the neuroanatomical MR image segmentation problem. We Baploited structural,
geometrical, and morphologicabriori knowedge with respect to neuroanatomy as well as
radiological properties with respect to MR imaging. Thaseiori knowledge are invariant



across different subjects and robust against various MRjiimggparameters¢, Interestingly,
in contrast, the priori knowledge used in traditional methods such as the tissumapiiity
maps, may cause an over-regularization problem where thmesgation may not fully
adapt to inter-subject variations.

1.3 Overview Of The Dissertation

Neuroanatomical segmentation presented in this dissmrtigtperformed by an image
analysis pipeline that steps through five major procedwsdsliws.

1. The original MR image is processed by an origiretive thresholdingorocedure
and an originaterrain analysigprocedure such that all voxels are classified into one
of the three types: white matter (WM), gray matter (GM), aadkground.

2. The topology defects of the WM are eliminated by an origmaltiscale morpho-
logical topology correctioralgorithm.

3. Cerebral WM is extracted from its superset with an origpracedure calleaell-
complex-based morphometric analysis

4. Cerebral GM is extracted based on the prior cerebral WVaetibn with a set of
morphological image analysis procedures.

5. Cortical surfaces are finally reconstructed preservargect topology with an exist-
ing marching cube isosurface algorithm.

Note that step 2 through 4 can be seen as a series segmeetatiooorrection procedures
after initial brain tissue classification with relative ésholding and terrain analysis. Step
3 and 4 together can be taken as a cerebrum extraction precédiowing brain tissue
classification and white matter topology correction.

In this dissertation, we will evaluate our neuroanatonmsegimentation tool both quan-
titatively and qualitatively on simulated and real MR imagdth groundtruth and manual



segmentation respectively, and compare the results obolmith leading brain segmen-
tation tools (Freesurfer, SPM5, FSL and BrainVisa) usingriceof accuracy, automation,
robustness, and computational efficiency.

1.4 Contributions Of The Dissertation

In this dissertation, we proposed a new work flow for neurt@méal MR image seg-
mentation in which brain tissue classification is condugigdr to brain extraction and
is independent of explicit bias field correction, designad anplemented a set of origi-
nal algorithms that were applied in different stages in tloekwlow, and demonstrated by
comparative evaluation that our method is highly accuratajst, automatic and computa-
tionally efficient.

The major original algorithms presented in this dissestatnclude arelative thresh-
olding algorithm for initial brain tissue classificationpaultiscale morphological topology
correctionalgorithm for topology correction of white matter,call-complex-based mor-
phometric analysialgorithm and a 3zurve skeletonizatioalgorithm.

The relative thresholding algorithm is based on a new sireghodeling of neuroanatomy
and a new image modeling of the T1-weighted MR images exptpitarious structural,
geometrical and radiological priori knowledge. Brain tissue classification with relative
thresholding is free from three typical problems that odoutraditional intensity based
segmentation methods. First, it is independent of priombeatraction and thus avoids
performance instabilities caused by poor brain extragtianany traditional methods. Sec-
ond, relative thresholding is robust against intensityomlbgeneities without explicit bias
field correction. Third, relative thresholding is also atbeadapt to large intensity vari-
ations within a given brain tissue and thus tends to produaesraccurate segmentation.
On the other hand, relative thresholding can be seen as abkpdge (or intensity differ-
ence) based segmentation method that overcomes sevéicdlalisadvantages of edge
based segmentation approaches. First, it produces cahegions labeled with brain
tissue types. Second, it is able to recognize blurred edgégissue boundaries where



intensities vary smoothly. Third, it is able to suppressrgmus edges between voxels of
same tissue types. In these respects, we see relativedhlteghas a fusion of intensity

based segmentation and edge based segmentation. Thendaaefective in other image

segmentation problems, particularly where there are siteimmhomogeneities and blurred
edges.

The cell complex based morphometric analysis simplifies aBject into a 1D struc-
ture and gives a quantitative measurement on the widendssoamectivity on every loca-
tion in the 3D object. This is a significant advancement olrerfact that traditionally only
a “thickness” metric (i.e. the distance to the boundary) lsarcalculated for each point
in the 3D object. This new 3D morphometric instrument wilkgratially promote more
applications of morphological analysis for various profen computer vision and image
understanding. By applying this new morphometric analgsighe white matter gener-
ated, we are able to eliminate non-brain tissues and divideshtire white matter at the
brain stem based on tlaepriori knowledge of strong connectivity of cerebral white mat-
ter. Cerebrum extraction using cell-complex-based marpdtac analysis provides higher
robustness than other brain extraction such as traditiormaphological image analysis,
deformable model based methods, and atlas based methods.

The white matter topology correction algorithm is basednaatpriori observation that
human white matter, particularly cerebral white matteg surface-like object. Preserva-
tion of this morphological property is taken as the majotecion for eliminating topology
defects. In addition, our topology correction algorithmdlves WM, GM and background
in the procedure, in contrast to the traditional procedunene only the foreground and
background are involved. Our three-fold procedure exiplgihe surface-likeness morpho-
logicala priori knowledge tends to more robustly produce reasonable sokito topology
defect elimination than other methods.

The 3D curve skeletonization algorithm is performed diseah a 3D object in contrast
to the traditional methods that depend on prior surfaceestigization and tend to gener-
ate skeletons with better “medialness”. A variant of ournveuskeletonization is referred
to as “shape and topology preserving erosion” in which theletkinization procedure is
conducted in certain iterations instead of until conversidhis variant algorithm is used
as an important component in the white matter topology ctioe algorithm as well as for



generating topology correct gray matter in our neuroanetarpipeline. A similar proce-
dure can also used in 3D object smoothing to eliminate naisirysions on the 3D object.
This framework of 3D curve skeletonization is based on aesyatic point classification
of discrete 3D objects. In this classification approach, veppsed the central notion of a
thick-simple point This notion enables deeper and wider topology and geonchtgac-
terization of any points in a 3D digital object.

1.5 Organization Of The Dissertation

The segmentation pipeline is described step by step in ehafitl, but the key al-
gorithms are separately presented in previous chapterapt@hlll describes the relative
thresholding algorithm (summarized in section 8.1). Taremalysis as a complemental
technique to relative thresholding for brain tissue clasation is described in section 8.2.
The multiscale morphological topology correction of WM esdribed in chapter VII (sum-
marized in section 8.3). Cell complex based morphometradyais is presented in chapter
6 and its application for cerebral WM extraction is discusgesection 8.4. Cerebral GM
extraction is described in section 8.5 and cortical surfacenstruction is presented in sec-
tion 8.6. The segmentation pipeline also depends on se8Brakeletonization routines
as described in chapter V. Chapter IV is a set of definitionslmracterization of differ-
ent points in 3D discrete object, which forms the basis fer3D skeletonization and the
topology correction algorithms. The comparative evabratf the segmentation pipeline
is presented in chapter IX. Chapter Il of the dissertatioma&ins a survey on the existing
neuroanatomical MR image segmentation methods.



CHAPTER I

Neuroanatomical Segmentation In MRI

In this chapter we give a survey on the existing neuroana@imegmentation methods.
There are mainly two types of segmentation methods: inteihsised methods and edge-
based methods. Intensity-based methods classify images/based on the voxel intensi-
ties while edge-based methods extract anatomical conbasesd on a gradient or edge map
of the original image. A variety of widely applied intensityased automatic segmentation
methods are also often referred to as clustering methodsselmethods, such as k-means
clustering and finite mixture resolving assume there is tenisity inhomogeneities and are
supposed to be performed on the brain region extracted ilmagocedure. Basic cluster-
ing methods are often extended with atlas or Markov randdohtiiemprove performance.
Intensity inhomogeneity correction has been researchezktanding the exiting segmen-
tation methods or by proposing a separate preprocessicgquee. There are mainly two
types of edge-based segmentation methods: those use gigndetection or fuse edge
detection with other segmentation techniques such as roturgical operations and region
growing, and those based on deformable models, in whichfacaumodel is deformed
such that it is attached to the salient edges while maimtgitiie smoothness of the model.

In the first section of this chapter, we present several besgtering segmentation
methods. In section 2 and section 3, we describe segmentaigbhods using Markov
random field and brain atlas respectively that extend the liiensity-based segmenta-
tion methods. Edge-detection based segmentation metheds\aewed in section 4 and
segmentation based on deformable models is described tiorsé&c Intensity inhomo-
geneity correction and brain extraction methods are res@kim section 6 and section 7
respectively.
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2.1 Clustering

Clustering can be loosely defined as the unsupervised fata$in that groups similar
objects from a collection of unlabeled data, in which eageals associated with a vector
of feature values. The similarity is determined based orféh&ure vectors, which could
be simply the pixel intensities in image segmentation. €lae two basic clustering meth-
ods for image segmentation: partitional clustering andanahical clustering. Partitional
clustering generates a flat group structure in that all dedags form disjoint cluster sets.
Hierarchical clustering generates pattern groups in aatgshical structure (i.e. dendro-
gram) which can be cut at a dissimilarity level forming a pin. In neuroanatomical MR
image segmentation, many methods either extend traditpamttional clustering and use
them to generate initial results for further processingsBkction describes some common
partitional clustering methods used in neuroantomical kigge segmentation.

2.1.1 K-means Clustering And Fuzzy C-means Clustering

k-means clustering and fuzzymeans clustering are two widely used clustering meth-
ods. k-means clustering partitions samples with the sum-of+sgl+arror criterion. Start-
ing from an initial partition, it iteratively classifies alhmples intd: clusters according to
nearest mean and then recompute the means in each iteratieniteration stops when
there is no change in the means.

Fuzzyc-means clustering is an extension of theneans clustering with fuzzy set the-
ory. We assume that each sampjéhas some graded or “fuzzy” membership in a cluster.
At root, the “membership};; is equivalent to the posterior probabilify(w;|y;). The

fuzzy c-means clustering seeks a minimum of a heuristic globatroit functionJ,,. =
c N

D “(wi)’ly; — mil|*, whereb is a parameter chosen to adjust the “blending” of differ-

i=1 j=1
>t (i)'

D i (pag)®

7. whered;; = [|y; — m;||?. The fuzzyc-means clustering al-

ent clusters. It can be shown that whép,. arrives at a minimumy; =

(1/d)"/ =1
>ovey (1/dyy) V=1

and;; =
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gorithm proceeds iteratively recomputing andy,; according to the above two equations
until they reach stable values.

K-means [9] and fuzzy c-means [10, 11, 12] clustering areroonly applied for image
segmentation. The main issue of the two methods is to deterthe feature composition of
each pattern. Generally speaking, the measurementsésatould be point multispectral
values, point color components and derived color comp@nenderived statistics such as
mean, standard deviation, and modes, in a certain neighbdrbf the pixel [13].

It has been shown that tikemeans algorithm converges to a locally optimal solution.
Generally the fuzzy--means algorithm is better than the hardneans algorithm, but it
may still converge to local minima of the squared error cote [14]. Note that little or
no spatial information is considered in the feature spasedbalustering methods. Usually
only the spatial coordinates of a pixel are considered agtiaddl features. This tends
to result in poor segmentation, particularly when the @esiegions do not form simple
regions with similar coordinates.

2.1.2 Finite Mixture Resolving

This is a parametric clustering method in that the interisitgls of pixels in the image
are assumed to be a mixture of finite number of certain prdibadistributions, usually
Gaussian, with a parameter vectof~ormally, letw = {w;, 1 <1i < N} be the pixel types
and P (y,|w;, 0.,,) be the probability of the intensity level of pixel j conditional on the
pixel classw; and the given parametefis,. Then the marginal probability of the intensity
level y; over all labels isP(y;|0) = ZP(yj\wi,Hwi)P(wi). After the parameters are

estimated, usually by the Expectationl-maximization (EMitimod [15], the region type of
a pixel is determined by maximization of the posterior plulily P(w;

yj). A commonly
used parameter estimation method is to take the labels dsrhm missing data and to use
the expectation-maximization method to maximize the iii@d P(y, w|0).

The expectation-maximization (EM) algorithm is often usedstimate the parameters
of the probability distributiorP(y, w|f) that models some incomplete data, whedenotes
the observed variables anddenotes the missing or hidden variables. Note that hese
a vector representing all sampl@s, v, ..., ¥.)*. Then the log-likelihood of the observed
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variablesi(0) = log P(y|0) = logZP(y,ww). The EM algorithm attempts to find the

values off such that the Iikelihoou()ﬂ(e) is maximized. The EM algorithm proceeds in
rounds starting from an initial guess of the paramefiert each round, let thé' be the
current parameter setting, we want to find a new parameténget' ! that increase the
log-likelihood. Wheni(¢) converges, we obtained an local maximum value of the log-
likelihood ().

In each round, the EM algorithm finds a lower bouB@d|6*) of ((#) that touches
1(0) at 0" (i.e. VO, B(0]6") < 1(0), and L(6"|6") = 1(6")). Intuitively, when we locally
maximize the bound with respect toin each iteration, it will guarantee that we obtain

an improved estimaté¢’*!. The bound can be derived by Jensen’s inequality as follows:
10) = 108 3" Ply,lf) = log 3 Pleoly, 0) 2L - S pafy, 6 10g L8
w ’ w ’ P(w|y79t) N w ’ P(U)|y,9t)

P(y,w|6") P(y,w|0")

= B(0)0"). SinceP(wly, 0" S Py 0~ Pl , we can show thaB(#"|0")

_ t P(?/»th) - t 0N B
- ;P(ww,@)log P00 PaT) logP(ylﬁ);P(w\yaé’) = log P(y|0") =

1(0"). Note that maximizing3(0|¢") with respect t&d does not involve the nominator of

the log term. Therefore maximizing(6|6") is equivalent to maximizing
Q(010") = > Pwly,0")log P(y,wl0).

An interpretation of?) is that it calculates the expectatidf), [ P(y,w|6)] of the likelihood
of the complete data over the hidden data space (hence theafahe algorithm).

Note that only statistical information are considered i@ $egmentation with mixture
resolving and this often results in poor segmentation. Tihigefimixture model can be
extended with the Markov random field model and probabilggue maps to incorporate
spatial information into the segmentation and even biad Gietrection, as described later
in this chapter.

2.1.3 Clustering With Artificial Neural Networks

Clustering methods based on artificial neural networks ladés@ been applied in med-
ical image segmentation. Many of these methods attemptswvwe the standard finite
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normal mixture model based on competitive learning [16, 1Spme others incorporate
spatial dependence of labels with statistical neural nedsvfil8, 19]. One of the critical

drawbacks of these methods is that most of them can only bieedp small data sets
because obtaining suitable learning/control parameteithé network is difficult and their

execution times are very high for large data sets [14]. Fainb¥R image segmentation,
only results for individual slices were shown. The only natkvthat have been applied
to large data set is the Kohonen net and the results are éeplia thek-means algo-

rithm [20].

2.2 Markov Random Field

2.2.1 Markov Random Field Theory

In probability theory, astochastic process a random function defined over a time
interval or a region of space. In the former case, the stdichpsocess is called ame
series in the latter case, it is calledrandom field Mathematically, a stochastic process is
usually defined as an indexed collection of random varialilesith index: running over
an index setS = {1,2, ..., N} and with the values); of the variables chosen from range
R. For random fieldsS represents a set of sites in space and particularly the cztes
of pixels for an image. A configuratian = {w; € R,i € S} of arandom fieldX is the set
of realization values of the random variablesin Let €2 be the all possible configurations
so that? = {w = (wq, ...,wn)|w; € R,i € S}.

For arandom field: defined on the siteS, define aneighborhood systef’ = {\;,i €
S}, where\; is the set of sites neighboringi ¢ N; andi € N; < j € N;. Arandom
field X is said to be aMarkov Random FieldMRF) on .S with respect to a neighborhood
system\ if and only if for Vw € Q, P(w) > 0 and P(w;|ws—1i}) = P(w;|lwy;). The last
condition is referred to as the local characteristic of MRiam the local characteristic of
MRF, we see that it is a natural facility to model the spatigghehdence of region/tissue

types in an image.
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A MRF is usually constructed with &ibbs distribution Before the definition of the
Gibbs distribution, we remark that the site setogether with the neighborhood system
N define a graph in the usual way. L€tbe all the cliques in the graph represented by
G = {S,N'}. Aclique in a graphG is subgraph of7 and is a complete graph by itself. A
Gibbs distribution with respect t& = {S, N’} is a probability measure on Q2 with the
le—U(w
A

form 7(w) = )T whereZ andT are constants and tlenergy functiori/ is of

the formU(w) = Z V.(w). EachV, is a potential function o2 with the property that

ceC
V.(w) depends only on those variables on the sites c. 7 is the normalizing constant:

Z =Y e VI and s called theartition function The equivalence between MRF and

Gibbswdistribution states that given a site. $etnd a neighborhood system, X is an MRF
with respect toV if and only if 7(w) = P(X = w) is a Gibbs distribution with respect to
N. For image segmentation, a typical formiafis as follows. Ifc is a clique with two
neighboring sitegr, s}, thenV,(w) = (§in the case ofv; = w,, orV,(w) = —F in the case
of ws # w,, whereg is a parameter of the model. dfis a clique with only one site, then
Ve(w) = —a,,,, Wherea,, is another tissue dependent parameter. For all the otlypredi
in the graph}.(w) = 0. This model is the well-knowising model

2.2.2 Hidden Markov Random Field Model

The hidden Markov random fiel{HMRF) model for image segmentation is derived
from hidden Markov mode{siIMM), in which a stochastic process is generated by a Markov
chain, which can be taken as a 1D Markov random field, with éndskate sequence. In
HMM, each observation is assumed to be a stochastic funofitite state sequence. The
underlying Markov chain changes its state accordingite atransition probability matrix,
wherel is the number of states. HMMs have been successfully apipliggplications such
as speech recognition and handwritten script recognition.

The hidden Markov random field model consists of a hidden khanandom field
X = {X;,i € S} with its values in a finite state spaé¢ewith probability P(X = w) =
m(w) and an observable random fiel{d = {Y;,i € S} with its value in a finite state
spacel. For image segmentation, each hidden state representsoa tgge and each
observable state represent an intensity level. Given arnycpkar configurationv €
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of the random fieldX, every observed statg follows a certain conditional probability
distribution P(y;|w;). This distribution is called themission probability functioand Y
is also called theemitted random field In HMRF, the observationg are conditionally
independent given: P(ylw) = [ [ P(yilw:).

Hidden Markov random fiela model have been applied for botrestised [21] and
unsupervised [22, 23, 24, 25] image segmentation. For sigaer segmentation, the emis-
sion probability function can be estimated with nonparaimetethods such as the Parzen-
window method given a training set. For unsupervised seggtion, they usually assume
the same functional fornfi(y;; 6.,.), whered,, is the involved parameters. Gaussian distri-
bution is a typical choice for the emission probability ftinn. We usé to denote all the
parameters involved in all emission probability functi@msl those involved in the prior
distribution P(w) (the latter are usually assumed known in prior).

2.2.3 Image Segmentation With Hidden Markov Random Fieldi&lo

With the hidden Markov random field model defined above, stiped image segmen-
tation can be posed as an optimization problem of finding fitemal estimates of* by
maximization of the posterior probability(w|y) o« P(y|w)P(w); for unsupervised image
segmentation, the involved parametétsas well as the optimal* are estimated concur-
rently by maximization of the posterior probabili(w, 0|y) « P(y|w,#)P(w) given the
observed intensity. However, direct solution of the problem is both analyticahd com-
putationally intractable due to the exponential compiegwit (2 and the multimodal (i.e.
multiple local minima) nature of the posterior distributioMost practical solutions are
performed by iterations of segmentation steps, each whmbthupdates the configuration
of w at local sites. For unsupervised segmentation, the segii@mnis interrupted by a step
of parameter estimation at regular intervals. The segmientatep finds the optimal solu-
tion of w given the current estimation of the parametgra/hile the parameter estimation
step finds the optimal estimation of the paramefegs/en the current segmentation

Simulated annealing (SA) [26] and iterated conditional ;m@€M) [27] are two com-
monly used methods in the segmentation step. The SA algostans all sites (pixels),
randomly drawing a tentative region type for each sites. If the selection otu, increases
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the posterior probability conditional on the labelssdfneighborswy,, P(ws|was,,y) in
supervised case d?(ws|wa,, y, 0) in unsupervised case, then is chosen for site, oth-
erwise, it is chosen according to a certain probability Hasea temperature paramefeyr
which is decreased according to a certain schedule as tbdthlg proceeds. The ICM
algorithm is deterministic and can be taken as an extreme alathe SA algorithm with
the temperature parameter always being zero so that in @ach s, is chosen by local
maximization of the conditional posterior probability. @8A algorithm provides better
approximation of the optimal segmentation, but it is veguns| The ICA algorithm is fast,
but may be trapped into a local minimum. A typical exampleli@pgon of HMRF model
in neuroanatomical segmentation is in FSL [28] in which HMDBdel is used to enforce
spatial regularization in order to improve the segmentatodoustness against image noise.
It is also demonstrated in FSL that implementation of HMRi@$CM can be integrated
with the finite mixiture resolving and bias field correctian the iterative Expectation-
Maximization method. Other work on using MRF for brain MR igeasegmentation are
[29, 30, 31, 21, 22, 23].

The commonly used Ising-like model was criticized for thaends to minimize the
boundary length between tissues [32], which discouragessifications from accurately
following the highly convoluted shape of the complex humartex [33]. This effect is
particularly amplified in brain images where the presendarge uniform regions of single
tissue types results in high estimates of the transitiommpater3 and strong favor for
smooth boundaries. As a possible solution and researcttidineit was suggested in [33]
to use a nonstationary Ising model with different paranseberuniform regions of pure
tissue from those used at places where tissues mix.

2.3 Atlas-Based Segmentation

The main idea here is to use a template of the target objeatdcaf ideal match be-
tween the template and the image. The template in the cassiodimaging is usually re-
ferred to as a brain altlas and the relevant segmentatiomadetare called atlas-guided seg-
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mentation methods. A brain atlas is a detailed representafia single subject’'s anatomy
(i.e. anatomical atlas) in a standardized three-dimeasmordinate system [34] or proba-
bility tissue maps (i.e. probabilistic atlas) learned frarimaining set. The most commonly
used coordinate system is the Talairach reference systgnif3wvhich the anterior com-
missure is the origin and the plane containing the line coting the anterior commissure
and the posterior commissure, perpendicular to the shgittiplane, is taken as the hori-
zontal plane. While a probabilistic atlas is usually usegetber with traditional clustering
methods, an anatomical atlas is matched to a new scan in aduaxcalled brain warp-
ing so that any information in the atlas including the tispyees are transferred into the
new scan. Because of the complex structural variabilityraits between individuals, it is
generally impossible to obtain an exact matching with rigndnslation, rotation) or linear
(translation, rotation, scaling, shearing) transforomadiand research on brain warping has
been focusing on deformable atlases, which can be adaptied smatomy of new subjects
with nonlinear transformation.

There are two brain warping approaches based on deformi¢édest volumetric warp-
ing and nonvolumetric (or model-driven) warping. Modeilvdn warping is an image reg-
istration method which requires a segmentation prepraugssep to obtain good perfor-
mance. Key surfaces in the brain are first extracted withrdedble model based methods
and matched to the surfaces in the atlas [36, 37]. Volumesiping [38, 39, 40, 41] aims
to match the atlas and the target scan according to a regedlaciiterion. The most com-
monly used criterion is the sum of cross-correlation [38,489 41] locally calculated on
the intensity or/and the edge maps between the atlas an@rdet scan. Other criteria
include the sum of squared differences [40], and mutuakrim&tion which is more effec-
tive for matching images with different modalities. Theihravarping is thus to find the
optimal deformation field such that the criterion is maxiedzor minimized), which is
an ill-posed problem in that there are many possible saistidJsually some constraints
are used to regularize the solution. These constraintserfnogn the simple maximum
deformation limit [41] to the widely-used physically-baselastic model [38, 39] and the
viscous model [40] that enforces topological propertiestendeformation. To save time
and to obtain better performance, volumetric warping ugdallow a preliminary global
linear transformation and a multi-resolution scheme islusan the implementation.
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In SPM5[42], probability maps for different tissues areduas spatial priors in the fi-
nite mixture model and atlas registration is performed tiogiewith finite mixture resolving
and bias field correction in a circular procedure. The a#igsstration is implemented with
a linear combination of about a thousand cosine transfosaddn Freesurfer[43], the at-
las includes not only prior probabilities for each tissueesslat each atlas location, but also
a Gaussian distribution of the intensities for each clagsaah atlas location and a neigh-
borhood function representing the probability that a gipemt belongs to a label given
the classification of its neighboring points based on anaardpic nonstationary Markov
radom field. The atlas is first registered with the image imedr affine transformation and
then voxels are labeled with the maximum a posteriori (MARthnd and the segmenta-
tion is then sequentially updated using the iterated cardit mode (ICM) algorithm in
which the a posteriori probability of a class at each poiobisiputed as the probability that
the given class appeared at that location in the trainingreess the likelihood of getting
the subject-specific measured value from that class. Tter latcomputed from the PDF
for that label as estimated from the training set. The proityabf each class at each point
is computed. An initial segmentation is generated by agsigeach point to the class for
which the probability is greatest. Given this segmentattbe neighborhood function is
used to recompute the class probabilities in the second Jte@ new class probabilities
are then used for resegmentation in the next round.

2.4 Edge Detection Based Segmentation

Edge detection algorithms produce a map of edge points wihaate magnitudes and
directions. The edge detection results are in the form oéesgggments, which are usually
short and disconnected. The edge-based segmentatioitfaigomainly involve aggregat-
ing these short edge segments into extended edges thasmamceto object boundaries,
a procedure often referred to edge linkingor edge following Edge-based segmentation
methods are effective when there are good contrast betveggons in the image. The
most common problems are due to the presence of edges imolucathere there is no
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object boundary, as well as the absence of edges where aceadidry exists. In this
section, we describe two well-known edge-based 2D imagmeetation methods: edge
relaxation as a local edge linking method and heuristiclyssgarch as a global edge link-
ing method. Another well-known edge linking method, usp#dr line segmentation, is
the Hough transform [44, 45, 13], which is not presented.hdoge that deformable model
based segmentation methods (see section 2.5) that utiigeefermation are also generally
referred to as edge-based segmentation methods. They aro2bfimages as well as 3D
images, and provide additional robustness against nogs@urious edges.

This section first gives an overview of edge detection methfotlowed by two 2D
edge linking methods: edge relaxation and heuristic graainck. Next, a 3D boundary
following method using 2D graph search is described. Calrsiarface reconstruction based
on edge detection are then described in the next two subsesdtllowed by integration of
edge detection and region-growing for improved perforneari€inally, the pros and cons
of the methods based on edge detection are summarized astreubsection.

2.4.1 Edge Detection

In computer vision, edge detection is a process that attetoptapture the disconti-
nuities in the photometrical, geometrical and physicakabiristics of objects [46]. The
basic method of edge detection is to first calculate the gradit each image pixel and
then threshold the gradient threshold to label edges. &nadalculation masks, as shown
below for A, andA,, are used for this purpose. Well-known gradient calcutatiasks
are Prewitt’s masks [47] and Sobel’'s masks [48],

-1 0 1 -1 —a -1
A,=1| —a 0 a andA, =1 0 0 0
-1 0 1 1 a 1

wherea is a positive real number (1 in the case of Prewitts’ maskszamdthe case of
Sobel’'s masks). The performance of these operators detersowhen the image is noisy.
Rosenfeld and Thurston [49] proposed a smoothing operadiceduce the noise image by
replacing the value of a pixel by the average computed on areduwindow.
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Two commonly-used edge detection algorithm are the Canigg etktection algo-
rithm [50] and the zero-crossing edge detection algorithij.[In the zero-crossing method,
the image is convolved with the Laplacian of the Gaussian@l@nd the zero-crossings
are labeled. For efficient computation, LOG can be approtethdy the Difference of
Gaussians (DOG) that subtracts a wide Gaussian from a n&eawgsian. In the Canny’s
method, the image is first convolved with the first-order \d#ives of the Gaussian, and
then the edges are located at the maxima of the gradient n®thken in the direction of
the gradient. Canny’s scheme of edge detection inspiredfisignt research in the field. A
survey of edge detection methods is given in [46].

2.4.2 Edge Relaxation

Edge relaxation is a procedure performed on the crack etfgete think of a 2D image
as a city map with each pixel corresponding to a block, thelaekedge is a street segment
between two blocks. The edge detection algorithm providesitial confidence for each
crack edge with normalized values ranging frontio 1. The relaxation procedure then
iteratively updates the confidence of each crack edge cerisgithe edge properties in the
context of their mutual neighbors until the confidence coges to eithef) or 1. Eventually
crack edges with confidenceare taken as object boundaries and others are discarded.
Edge relaxation can effectively improve segmentationltesthen region contrast is good
at boundaries, but may be corrupted by noises.

A typical context of a crack edge consists of six other craddies with three on each
side of the central edge. A central edge is then classifiddayiair of numbers—b, where
a andb representing the number of edges having greater confidbaneatthreshold. More
sophisticated classification methods are also possible. niéaning of the types and the
related rules to update the confidence are listed below:

e 0 — O isolated edge: negative influence on the edge confidence
e 0 — 2,0 — 3 dead end: negative influence on the edge confidence
e 0 — 1 uncertain: weak positive, or no influence on edge confidence

e 1 — 1 continuation: strong positive influence on edge confidence
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e 1 — 2, 1 — 3 continuation to boundary intersection: medium positivitugnce on
edge confidence

e 2—2,2— 3,3 — 3 bridge between boundaries: not necessary for segmentaton
influence on edge confidence

2.4.3 Heuristic Graph Search

In heuristic graph search based methods, a directed (edgnteighted-graph is first
constructed. In this graph, each vertex corresponds to ga paint in the edge map and
they are linked with directed arcs (the term “arc” is usedehter avoid the abuse of the
term “edge”) according to certain heuristics. CommonlyduBeuristics are based on the
following assumptions: 1) the edge magnitudes along theablijoundaries are approxi-
mately constant; 2) the object boundaries are smooth; atieZdge magnitudes at object
boundaries are high. With such assumptions, two verticdkangraph are linked with
an arc only if their magnitude is greater than a thresholthefr magnitude difference is
smaller than a second threshold, and if their edge diredifterence is smaller than a third
threshold.

The problem that the heuristic graph search algorithm adéseis how to determine the
optimal path between two given pixeglg andpg such that a cost function is minimized. A
typical cost function i€’ = —D+«aF+ [ F, whereD is the sum of the magnitudes of edge
points along the pathy is the sum of the difference of magnitude of adjacent edgetpoi
along the pathF’ is the sum of the difference of directions of adjacent edgetpalong the
path, andy and g are two weighting parameters. Dynamic programming is Ugusied
to implement the algorithm to search for the optimal patreddamn the observation that the
optimal path fronp 4 to pp can be split into two optimal sub-paths: frgm to p; and from
p; to pp. The details of the implementation are omitted here.

2.4.4 3D Boundary Following

3D boundary following algorithms use prior edge detectiesuits [52, 53, 54, 55].
Here, we will present a typical algorithm proposed by Calatieland Rosenfeld [55].
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This algorithm generates a series of 2D boundaries whiclenvetacked, provided a 3D
boundary of the object of interest. An assumption is thatabject has smooth surfaces
and its sections are all connected and approximately eircalgraph search based method
is proposed for following 2D boundaries in each of the cressisn.

The graph search algorithm finds an optimal path with lowest m the graph corre-
sponding to each cross section. The cost function is a catibmof the mean gradient
magnitude, the circularity of the 2D boundary and the clessrof the neighboring 2D
boundaries. The three cost function components are weaigtith scaling factors defined
as program parameters. In this work, the start node in theipatlowed to placed slightly
off the intended boundary. The path found by the algorithmtaios a closed subpath that
consitues the detected boundary.

The inital cross section for 2D boundary following is choseipass near the center of
the object. The 3D boundary following consists of a serie3@ijpasses to generate a 3D
boundary in which 2D boundaries in adjacent cross sectiomsa@nsistent such that they
are “aligned” with one another. In the first 3D pass, a seri@bdboundaries are extracted
independently of one another. The cost function applielerfitst pass is based only on the
mean gradient magnitude and boundary circularity. In syiset passes, the cost function
for 2D boundary detection in a given cross section is extémdénclude constraints from
2D boundaries in adjacent cross-sections.

The Cappelletti and Rosenfeld algorithm was tested on sgmibetic images for ex-
traction of object with simple and compact shape. Howewtjcal surface extraction with
3D boundary following is challenging for various reasonsst-the shape of the cortical
surface is convoluted such that the circularity and compess is not satisfied for many
graph search algorithms for 2D edge linking. Second, in €dgltross section, cortical
surface is not necessarily connected. Third, various inagiifacts may degrade the results
of edge detection. For example, we consistently obserugtiiny edges between WM and
GM in regions such as superior gyri, border between cerelanohcerebellum, and border
between temporal lobes and flesh. 3D boundary following éotical surface reconstruc-
tion may also be disturbed by spurious edges within WM duetsaiand undesired edges
between tissues such as flood vessel, dura mater, fat, ahd fles
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2.4.5 MR Brain Segmentation By Edge Detection

Edge detection algorithms have been used for MR brain segti@m In [56], a two-
stage edge detection scheme is used to segment brain stgirt2D MR images. First, a
location within the desired region, say, white matter, dicated. A differential intensity
map is then created by calculating the absolute value ofiffez@hce of the image intensity
at each pixel with respect to that at the reference locaynpicking a differential value,
the initial contour between the desired region and the sordeegion is created. This
initial contour is improved in the second edge detectiop stsidering the edge detected
by the Sobel operator. For 3D MR brain segmentation, a 2 #ifirst segmented and the
contour is projected into adjacent slices as an initial ganto be improved. The success
of this process requires that the image slices be relatintyand that the user evaluates
the resulting 2D contour and corrects, when necessary, @oksehat occur before they
propagate through the data set.

MR brain extraction with edge detection described in [58uB0G for edge detection
followed by region binarization into brain and non-braigimns. Region classification is
conducted on four slices at a time a time instead of the whdlarage in order to prevent
local errors from corrupting the entire data set. The clasdion assumes that there is
a large brain region in every 4 slices, whose mean intensggther with those of other
regions such as fat and CSF are used to compute thresholdmssification of smaller
regions. Heuristic rules as well as user interaction ardieghfor correction of segmenta-
tion errors. DOG edge detection followed by morphologigagmations is applied in [58]
for segmentation of more anatomical contours in the heall asiskin, bone, brain and the
ventricular systems, but the labeling of these structisetone interactively. DOG edge
detection together with pixel classification is also usefbB] for brain tissue classifica-
tion. Here, significant amount of user interaction is alspuneed for accurate performance
of the segmentation.

2.4.6 Integrating Edge Detection And Region Growing

Region-based segmentation methods directly find coheegindns assuming the re-
gions have homogeneous intensities [44, 45]. Unlike edgedh segmentation methods,
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region-based methods are guaranteed to produce coheggmgavithout linking edges.
However, decisions about region membership are usuallg mtifficult than applying edge
detectors. A commonly used region-based method, regionigge is described below,
followed by presentation of techniques integrating regjoowing and edge detection for
image segmentation.

The basic idea of region growing is to start from a seed paintha initial region
and grow the region by iteratively adding neighboring pixélsome similarity measure
between the region and the neighboring pixel is high enough @reater than a certain
threshold). So region growing mainly involves the selettid the similarity measure.
Two possible similarity measures compare the candidat pih the original seed or its
neighbors in the region. However, the former is sensitihéoselection of the seed pixel
and the latter causes significant drift as the region grovtisédaaway from the original seed
pixel. Acompromise is to compare the candidate pixel witliage region statistics, usually
the mean. By initializing the region with multiple seedse ttandidate pixel can also be
compared with the mean with respect to the variance of themeénother approach is to
use the cumulative difference as one follows a path from #eel $0 the candidate pixel.
Yet another approach is to provide not only the seeds thatighe in the region but also
the seeds that should not be in the region.

Three types of errors may occur in the region boundariesymediby any region grow-
ing process : a) false positive boundaries: a region boyndarot an edge and there are
no edges nearby; b) false negative boundaries: there exésedith no boundaries near
them; and c) false localization: a region boundary corredpdo an edge but it does not
coincide with it. By boundary we refer to border of regionsl &ty edge we refer to low-
level image feature produced by edge detection. Usuallfetlse negative boundaries can
be significantly reduced by proper selection of parametersgion growing, which results
in an over-segmented image and increase of the false pobibundary errors. A bound-
ary elimination technique and a boundary modification téqimare proposed in [60] for
correction of the false positive boundaries and false bagnlbcalization integrating edge
detection results. Following the method in [60], bounddmnimation is performed con-
sidering the contrast along the boundary and the lengthedfttundary penalizing for long
boundaries with low contrast in [61] for MR brain image segtagon. Boundary modifi-



25

cation is performed using deformable model based methodisriig boundaries to nearby
edges with locally maximum contrast. The integration ofsagyrowing and edge detec-
tion may improve the results of plain region growing andpkdge detection. The method
proposed in [60] and applied in [61] is conducted in 2D imadges3D, the criterion for
boundary elimination is more difficult to define.

2.4.7 Pros And Cons

The main advantage of edge detection based techniques isrttey generate accurate
results when the contrast between two regions is high. Edtgztion is also more robust
against intensity inhomogeneity than intensity based ousland the computation is usu-
ally efficient. The weaknesses of segmentation based ondetgetion are as follows[62].
First, edge gaps often occur due to variation in the gradiehgths of the tissue charac-
teristics. For example, we consistently observed no loaatimum of gradient strength
between WM and GM in regions such as superior gyri, the bdvdereen cerebrum and
cerebellum, and the border between temporal lobes and flestond, variation in edge
strength can bring discontinuities in the boundaries. Eamgle, the strength of edge
between GM and WM at many gyri areas are significantly less thase in some sulci
areas. Third, spurious edge may occur due to noise and ¢éexiEimurth, cortical surface
reconstruction by stacking contours in 2D slices is higldgehdent on the accuracy of the
segmentation process in the 2D slices and problematic imdmmetry and topology due
to the highly convoluted shape of the brain, limited imagsohetion, and various image
artifacts. In conclusion, these methods based on plain ddtgetion are not reliable or
robust and require significant amount of user interventosratceptable results.

2.5 Deformable Models

Medical image segmentation methods based on deformablelsmattempt to track
anatomic structures in the image by exploiting (bottom-cqm)straints derived from the
image data together with (top-dowa)oriori knowledge about the location, geometry, and
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shape of these structures [63]. This is a vigorously rebegrarea and numerous methods
have been proposed that vary in the representation of thelnthe constraints imposed
on the model, the optimal approximation methods that fit thel@hs to the measured data,
and the degree of freedom of the model. Deformable modelssoecalled active contours
by some researchers. Those models with preferably feweeds@f freedom are usually
called deformable templates or active shapes (still reghas deformable models) will
also be discussed briefly in this section.

2.5.1 Snakes

The groundbreaking work on deformable models is the corafeptakes [64]. A snake
is a 2D parametric curve(s) = (z(s),y(s))” embedded in the image plahe, y) € IR?,
wherex andy are the coordinate functions ande= [0, 1] is the parametric domain. The
curve is usually closed such that0) = z(1) andy(0) = y(1). An optimal snake is
the one that is attached to salient image features, typiealjes, and maintains internal

smoothness. This is expressed by minimization of the faneti(c) = S(c) + P(c),
1 oc|? 2|2 1

whereS(c) = / als) '% + B(s) ‘E‘ ds, andP(c) = / P(c(s))ds. In physics

0s?
. J0 . . Jo o .
terminology,£ is referred to as an energy functional which consists of germal energy

S of the snake that characterizes its smoothness and an imaggy@ which is derived
from an external image constraint that pushes the snakedmsatient image features. The
first-order term inS makes the snake act like a membrane and the second-ordentdas
it act like a thin plate.P(c) denotes a scalar potential function on the image plane and is
typically defined as the scaled magnitude of the gradieft@f3aussian smoothed image:
P(z,y) = —|V[Gx I(z,y)]|. The weightsy(s) andj3(s) control the relative importance of
the first-order smoothness and the second-order smoothaessrally, they can vary both
along the length of the snake and over time. In practids,usually a positive constant, and
G is usually zero. (We'll see later on that the second-orderathmess is not necessary.)
According to the calculus of variations, the snage that ranziésatQhe energy functional
C C

0 _
%(a%) + @(ﬁ@) + VP(c) = 0.

Taking the snake as a dynamic system in terms of Lagrangiahanes, the minima of the
0, Oc

25 “a5)

£ must satisfy the Euler-Lagrange equation

energy functional can be computed by solving the Lagrangip ration% _
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over time driven by the internal stretching and bendingdsr(he first two terms in the

) — VP(c). An intuitive interpretation is that the shape of the snakanges

right side of the above equation) and external image fortles third term in the right

side) starting from an initial shape. The term in the lefesslreferred to as the damping
force and when it stabilizes (i.e. when it tends to zero), éhergy functional goes to
a local minimum. Finite difference methods [64] and finitereént methods [65] have
been used to discretize the snake and numerical time inignaethods are applied to
iteratively update the coordinates of the snakes over tiegssuntil the difference of the
snake between two successive iterations is sufficientlflsrirathe same spirit, snakes
have been extended for 3D surfaces. The formulation is edltere.

The main advantage of image segmentation using snakesti# fh@vides robust-
ness to noise and spurious edges since the shapes of the ocurserfaces are regulated
by their smoothness [66]. The limitations of the traditibdeformable models including
snakes are: 1) The snake must be initialized close to thetstriof interest to guarantee
good performance [63]; 2) The performance of the deformaiieel is also sensitive to
the weighting parameters and 3; 3) The snakes cannot extrude through any significant
protrusions that a shape may possess without resortingnibb@some resampling tech-
niques [67]; 4) The topology of the object to be segmented lmeiknown beforehand, that
is, the snakes cannot adapt to the topology of the objectseiiiniage without additional
machinery; and 5) Tha priori knowledge is limited to the smoothness of the contour.
Various methods have been developed to address thesealidages, as described below.

2.5.2 Level set based deformable models

Another type of deformable models that saves the paramesampling and has the
advantage of topology adaptability is the level set basedetsq68, 67]. Letp(x) be a
function fromIR" to IR. Then the deformable modelin IR" is defined as a specific level
set of ¢, typically zero level seth(c) = 0. The model is one or more closed curves in
IR? or one or more closed surfacesIR?. A typical way to define the level set function
is ¢(x) = d, where|d| is the shortest distance fromto the zero level set with the sign
chosen depending on X is outside or inside of the zero level set. The level set fionct
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was originally proposed to solve front propagations protdesuch as flame propagation
and crystal growth in [69], where it was shown that the moggnation of the front (i.e.
the zero level set j = F(c(t)) can be solved by solving instead the evolution equation of

the level set functiong—iS = —F|V¢|. HereF(c(t)) is the speed function of the front and

is the time domaino0, co).

The local optimal front can be found by numerically updatingver iterations until the
changes of in zero level set are sufficiently small. When the level satfion is defined
over an 2D or 3D image, it should be updated for each pixel énittiage and the speed
function F' has to been extended to have values over all pixels. For &pilat is notin the
zero level set, its speed can be set to the speed of thegaithe zero level set which is of
the shortest distance from One way to improve the efficiency is to only updateithin a
narrow band around the zero level set while keeping all therststationary until the zero
level set collides with the bounds of the band, when the mab@and is reconstructed.

For image segmentation, a basic criterion of setting thedgenction F' is that it
should be closer to zero in regions of high image gradientcoser to unity in regions
with relatively homogeneous intensity. For example, [68,$hows thatr'(x) = g(|VG x
I(x)|)(c + k)7, wherec is a constants is the curvature at poirk, 7 is the unity normal
vector atx, andg(|VG * I(x)|) is a decreasing function of the gradient of the Gaussian
smoothed image such that| VG = I(x)|) — 0 as|VG = I(x)| — oo. Two examples of
=17 NG I andg(|VG * I(x)|) = eIV,
Herexn acts as a smoothing force. The greater the curvatuxethe greater the speed at

a reasonable areg(|VG * I(x)|)

x; positive curvature of a pointin the zero level set makes it deform inward and negative
curvature make it go outward. The constant teriswreferred to as the advection speed term
and acts similarly as the pressure force or the weight fart@duced in the parametric
balloon model [70, 65], which is a extension of the tradiibsnake model. The pressure
force inflates the model and the weight force deflates the hindependent of the object
geometry so that the boundary of the object can pass spledges when the initial model

is not near the target model. The advection speed also helpsdoncave shapes if the
model is not initialized properly.
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In the geodesic active contours proposed in [71], the delecf the speed functiof’
is formulated in terms of minimization of the energy funa@¢ in the traditional snakes.
It is shown first that the smoothness of the contour can becgarifly regularized by the
first order term in. Generalizing the image potential tef{c) = —|VG * [(x)| with a
decreasing function(|VG x I (x)

), itis then proved that the minimization of the rewritten
energy functional is equivalent to finding the geodesic aonin the Riemannian space
with the Riemannian metrig;; = g(|VG * I|)?6;;. This can be intuitively interpreted as
the minimization of the length of the contour weighted by tieasure of the edge salience
(9(|]VG = I])) of each point in the contour so that the Riemannian length@tontour is
minimal when it is attached to salient edges. In order to miné the Riemannian length
of the contour, the gradient descent method (steepest mtesethod) is used to evolve
the contour according to the equati%gti = gkt — (Vg - n)i. Compared to the speed
term in the previous paragraph, here the additional speed-t€Vg - 77)7 increases the
attraction of the deformation contour toward the bound#ryorks like a doublet in that
when the contour is approaching the boundary, the speedddh@boundary is increased
and when the contour is leaving the boundary, the speed thadfoundary is decreased.
The advection term can also be added to make the performance less dependerg on th
initialization of the contour.

All the discussions on the selection of the spdedan be extended easily for sur-
faces inR®. The changes mainly involve the computation of the 3D gradief Gaussian
smoothed image and the curvature speed term can be demvedie mean surface curva-
ture or the minimum surface curvature.

2.5.3 Image Influences

To address the initialization problem of traditional def@ble models, much research
have been done to impose global image influences on the gantaddition to or replacing
the traditional image influence based on local gradient$oideble models using global
image influences include the balloon model [70, 65] that tisegressure force and the
weight force as described above, the gradient vector flowel[@@, 73], and many models
that incorporate region information [74, 75, 76, 77, 78].
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The initialization problem of traditional deformable mdsglavith local gradient influ-
ences is mainly due to the fact that in homogeneous regi@engrtdients are nearly zero
and the contour is mainly driven by the internal smoothnaeflsences. Letf be the
image intensity which may be Gaussian smoothed Wtfdbe its gradient vector field.
The main idea of the gradient vector flow is to construct a neadignt vector fieldu
in the image domain such that the vectors vary slowly in hoenegus regions and keep
nearly equal values t¥ f at salient edges. This is achieved by solving diffusion équa
88_1; = M|VF)V?u — u(|]Vf])(u — V) starting from the initial fielda = V f. The first
term on the right side of the equation is referred to as theoghmg term since it dif-
fuses the gradient fiel& f. The second term encourages the vector fietd be close to
V f. A andyu are two weighting functions that control the relative inpoice of these two
terms. When the equilibrium solution is computed, the tradal image potential terw f
is replaced withu in the traditional deformable model. The gradient vectddfie has a
larger capture range than the original gradient fiélfland also helps move contours into
boundary concauvities.

2.6 Structural And Geometris Priori Knowledge

A significant characteristic of the brain anatomy is that keptomic surfaces in the
human head are organized in a layered manner. These surfalktete the skin surface, the
outer cortical surface, the inner cortical surface, and/émdricle surface. In particular, the
thickness of the cortical layer (the shortest distancewdst points in the outer cortical
surface and points in the inner cortical surface) is neaslystant. This characteristic has
been used as structural and geomedrjariori knowledge in both deformable models and
statistical segmentation methods.

In [79], distances of each white matter voxeglto the skin surface and the ventricle
surface are taken as a vector of two random variabfes dv;). The skin surface and
the ventricle surface are believed to be much easier to sgigane their segmentation is
performed before that of the white matter. From segmentedjé@s, the joint probability
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density of a random distance pd®(ds;, dv;|z; € W M) is estimated with non-parametric
methods such as histogramming or Parzen Windowing. Thenapsegmentation is ob-
tained by maximization of the posterior probabiliyz;, € W M|ds;, dv;, I;) < P(I;|x; €
WM)P(ds;,dv;|z; € WM)P(x; € WM), wherel; denotes the intensity of the voxel.
The first term at the rightside is a Gaussian intensity mauntehfe white matter voxels and
the third term is the prior probability that a pixel belongshe white matter. The geometric
prior knowledge can be used together with the MRF spatialr priodel or by itself with
stationary spatial prior.

In [80], the outer and inner cortical surface are represeasstwo polyhedral meshes.
The deformation was formulated as a cost function mininergproblem. The cost func-
tion is a weighted summation of several types of terms, ooy the image terms that
push the deforming surface to tissue boundaries, intetreathing and bending terms that
impose surface smoothness, and three additional proxtentys that prevent deformation
from forming a self-intersecting surface and impose camstion the thickness of the corti-
cal layer. The self-proximity terffiy.; r—,rozimity 1S defined for every pair of polygons in the
mesh. If the minimum distance between two polygéhandP; is smaller than a threshold
dijs Tsetf—prozimity(Pi, P;) = (d(P;, P;) — d;;)*. Otherwise Iseit—prozimity 1S Z€r0. The in-
tersurface proximity term is defined in a similar manner. Weghting parameters of these
two terms are set such that as the distaf{@e, ;) approaches zero, the weighting param-
eters approach infinity. In this way, both self-intersectmd intersurface intersection are
prevented. The third term governs the thickness of theaafthyer and is defined for each
pair of corresponding vertices in the two surfa@es e, vertex = (d(z;, z,) — dp)?, where
x; andz, are corresponding vertices in the inner cortical surfackarer cortical surface
respectively and is the preferred distance between the two vertices. The disaavan-
tage of this method is that the deformation involves thewdaton of a huge number of
distances between pairs of polygons and hence the algoisteriremely slow.

Another coupled-surface deformation is proposed in [81finithe framework of level
set formulation. Both the inner cortical surface and theopaortical surface are embedded
as zero-level sets in their level set functiop and¢,,; respectively. The two evolution

equations are given ang + Fin|Voi| = 0 and ?t by Fout|Voou| = 0 respectively.

Since the value of the level set function of a front at any p@Esimply the distance from
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this point to the current front, there is a natural way tolesth a correspondence between
the points on the two evolving surfaces through distancaowit adding much computa-
tional expense. For any point on the inner moving surfaeedistance to the outer moving
surface is the value,,; at this point and vice versa for the point on the outer movung s
face. The constraint on the thickness of the cortical lagemiposed by formulating the
speeds as}, = Fi,h(dow) and Foyy = F,uh(éim), WhereFy, and F,,; are the speeds
formulated without consideration of the thickness comstraf the cortical layer and(z)
regularizes the speeds such that when the distance is tdb@snao large, the speed is
reduced to zero.

2.7 Intensity Inhomogeneity Correction

There are two general ideas regarding how to overcome tkasity inhomogeneity
problem in MR image segmentation. One is to correct the sitgimhomogeneity prior
to brain tissue segmentation and the other is perform iitfeimhiomogeneity correction
simultaneously with brain tissue segmentation. There amemous methods to correct
intensity inhomogeneity as a preprocessing step prior emarsegmentation [82, 83, 84].
These methods is generally based on the assumption thasitytenhomogeneity is a low-
frequency spatial variation that can be distinguished flogher-frequency components
representing anatomic information [85]. It is believed loyn® researchers that the latter
approach has the advantage of being able to use intermedi@t@ation from the segmen-
tation while performing the correction.

There are two prevailing approaches for modeling inhomeijies in methods that
perform simultaneous segmentation [66]. The first appre@askimes that each tissue class
spatially varies independently; the second approach rdtlelinhomogeneities as mul-
tiplicative gain field or additive bias field of the image logfam. As a typical example
of the first approach, [23] extends the standard mixture medelving method with the
MREF spatial prior model and the mean and variance of eachetissallowed to vary over
the spatial domain instead of using spatially invarianapseters. The main difference in
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the implementation from the standard mixture resolving&t the spatially varying param-
eters in each voxel are estimated within a certain neighdmattof the voxel. The second
approach is described in more detail in the following twosagdtions.

2.7.1 Adaptive Fuzzy C-Means

The standard fuzzy c-means objective function for panitig an image represented

c N

as an voxle sefy;|1 < j < N}intocclustersis/ = Y > (u;;)"|ly; — ms||*, where
i=1 j=1

{m;|1 <1 < ¢} are the prototypes (means) of the clustetsrepresents the fuzzy mem-

bership of the voxey, in thei-th cluster, ang is a weighting exponent and determines the
amount of fuzziness of the resulting classification. Hererepresents the feature vector
of each voxel and may simply contain the intensity of the VioXée objective function is
minimized when high membership values are assigned to sexWabse intensities are close
to the centroid (means) of its particular class and low mesibp values are assigned when
the voxel data is far from the centroid.

In [86], the observed intensities of the imagg |l < j < N} are assumed to be

multiplications of the anatomy field and the gain figlgl|1 < j < N} and the objective
N

function is modified to allow smooth intensity variation iissue:.J = Y > " ul|ly; —
i=1 j=1
ming2 + M R1 + M2 Ry, whereR; and R, are two regularization terms that enforce the

smoothness of the gain field angd and \, are their controlling parameters. Hekg is
the sum of the first-order finite differences at each pixehglmws and columngy; is the
sum of the second-order finite differences. One of the problef this method is that it is
sensitive to noise in the image. In [87], the intensigesire logarithmic converted to,
and the multiplicative gain field is hence converted to antaddbias field3;. A spatial
regularizer is used to segment imagNes corrupted by salpapper n%se. The modified
objective function is given by = ; z; w2 — B —mi||2+N&R ; z; u?( ze;/ 2, —
B, —m;||*), whereN; represents the]neighborsygfandNR is the caréinality Zf/\/; ando

is a parameter that controls the importance of the regalaoiz and depends on the signal-
to-noise ratio of the image. The key reason why this objedtimction works is that the
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regularization encourages the smoothness of both the mehip@alues and the bias field
at each voxel.

2.7.2 Adaptive Expectation-Maximization

In [88], intensity data is logarithmically transformed sat the multiplicative gain arti-
fact is converted to an additive bias field. Observed logrisityy; at:th voxel is modeled
as a normal distribution, independent of other voxél&y;|w; = k, 5;) = Gog (yi— ik — i)
WhereGJi (uy) is the normal distribution with meam, and variancer?, w; = k repre-
sents the tissue type of the voxel, anddenotes the bias field ath voxel. In terms of
the independence of probability between voxels, the prdballensity for the entire im-
age isP(y|p) = HP(ini)- The bias field3 is modeled with aV-dimensional zero

mean Gaussian pzrior probability density, whéyeis the total number of the voxels in
the image. The posterior probability of the bias field, givdrserved intensity data, is
P(Bly) < P(y|B)P(B). Use themaximum-a-posterionprinciple, the optimal estimate of
3 is determined by maximization of the posterior probability= arg mﬁax P(Bly). The
eqguation to calculate the optimals derived using the zero gradient condition and is solved
with the EM method in [88]. The model proposed in [88] is founde problematic when
there are tissues in an image that do not follow a Gaussiarnbdison. In [89], these tis-
sues are unified into an outlier class with uniform distridsut Another extension is to use
the MRF to incorporate spatial dependences of tissue tyiegp, 90]. In the EM method
that considers both bias field estimation and MRF spatialeh@&dch iteration consists of
following main steps: 1) estimate the bias field by maxim@aof its posterior probability,
given the current estimation of the tissue types and théhied parameters; 2) update the
likelihood distribution with the new estimation of the biadd; 3) estimate the tissue types
by maximization of the posterior probability of the MRF; afiflestimate the likelihood
parameters by maximization of the expectation of the cotaplata log likelihood.
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2.8 Brain Extraction

There are mainly four basic type of methods that have beguoged for brain extrac-
tion on MR images: the thresholding-with-morphology meththe watershed method, the
deformable-model based method, and the atlas registiagised method in which the im-
age is normalized to a standard space. There are also hybtltbds that combine these
basic methods for more accurate and robust results.

The thresholding-with-morphology [91] method essentigdlconducted as following
procedures. First, lower and upper thresholds are detethimorder to separate the entire
image into three parts: very bright parts such as eyebadlgas, bright parts representing
brain tissues, and dark parts including air and skull. Thghbrpart, however, usually
contains non-brain tissue and a morphology filtering is usgdmove the non-brain bright
part. An erosion operation is first performed on the brigint paithat the “bridges” between
brain and non-brain tissue are eliminated, the isolatedpoorant representing brain tissue
is then determined, and this is then dilated back by the saieateas the erosion resulting
in the final brain mask. There are some variants of this meihdbe thresholding part
with more sophisticated methods for threshold selectiangu&aussian mixture model
[92] or histogram scale-space analysis [93]. Carefullyetbimorphological filtering was
also research in [93], but basically the metric “thickne@®. the distance to boundary)
was used as the measurement on the connectivity betweenameinon-brain tissue.

The watershed method [94] obtained its name as the metaphbetwater flowing
from hills to basins. For brain extraction in MRI, the grayéeis first inverted so that
white matter has lower intensity than gray matter and CSRlaaantensity at each voxel
is regarded as the “height” in the landscape. Voxels are tbhenected into “basins” in a
way similar to how a watershed separates two adjacent ipges. This transform often
leads to an “over-segmentation” problem where there areerhasins in the result than
are desired. This problem is often alleviated by a procedatied “preflooding” [94] to
merge over-segmented basins. In brain extraction, a masio Is finally determined as
the result of brain extraction[94] or as intermediate refar further processing to get a
more accurate result [95].
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A typical deformable-model based brain extraction metisatié one used in BET [96]
(a brain extraction tool in the FSL package). In BET, thenstgy histogram is processed
to get a rough brain/non-brain threhsold. Then the cerftgravity of the head image is
found and the rough size of the head in the image is determifl@g information is then
used to establish an initial triangular tesselation of sesph surface, which is deformed
towards the brain’s edge while maintaining reasonableaiziesmoothness.

A hybrid brain extraction method for more robust performane proposed in the
Freesurfer package [95]. An initial brain extraction isfpened with the same watershed
method presented in [94]. Then a surface model is establisheéhe intermediate result
and deformed to determine the brain’s edge. In the defoamaiocedure, an atlas-based
term is integrated so that the model is regularized witheesm both the smoothness and
deviation from the atlas.
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CHAPTER IlI

Relative Thresholding

Relative thresholding (RT) is characterized as diffeaig the labels of near voxels
by comparing their intensities with respect to a relativeshold [97]. RT is based on a
structural model on the human brain anatomy and a model okdifthted human brain
MR images. The modeling exploit various structural, geoioatand radiologicah pri-
ori knowledge and is formulated as constraints in terms of éirder logic. This chapter
starts with the structure modeling and the image modelingd,then presents the relative
thresholding algorithm.

3.1 Structure Modeling

Let § = Vg(ov) be the gradient vector image gfov ). Throughout this dissertation,
we useg (o) to denote the resultant image of performing Gaussian filgewith standard
deviationo on the input image. We construct a directed gragh = (V, E) from g such
that each vertex; € V corresponds to the voxel; in a region of interesi? and each
directed edge; € £ emanates from; to v;, wherev; is one ofv;’s 26-neighbors that is in
the direction of the gradient vectgy. Wheno; is outsideR, e; is forced to be a loop from
v; to itself.

The structural, geometrical and radiologiegbriori knowledge that we use in RT is:

e K: skull, CSF, GM, and WM are organized as a layered strucham butside to
inside;
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e K, The average intensities of skull, CSF, GM, and WM in locaioes are in
ascending order in T1-weighted MR images;

e K3: The cortex thickness is nearly uniform.

Based on this priori knowledge we use a gradient graph to model the anatomical
structure of the human brain as the following first-orderidogLet 7 be the maximum
cortex thickness of the subject anés a value slightly greater than then we can construct
a gradient grapli- with a suitable parameter; such that:

e For each GM voxel;, there is a path id- of lengthp from v; to a WM voxel;

For each CSF voxel; adjacent to GM, there is a path @ of lengthp from v, to a
WM voxel;

For each CSF voxel; adjacent to GM, there is a path énof length< p from v; to

a GM voxel;

There is no path from a WM voxel to a non-WM voxeldh and

There is no path from any non-brain voxels to WMGirwithout passing CSF.

3.2 Image Modeling

A common approach to image segmentation is based on the imadeling in which
image intensities are modeled as statistical distribgtiodhile the intensities of WM
voxels in the T1-weithed MR image can be safely modeled wathmon statistical distri-
butions (e.g. a normal distribution) once the intensityoimogeneity has been corrected,
the intensities of GM voxels hardly meet any common staastilistributions in practice
even if intensity inhomogeneity has already been corre@aded on this observation, we
model images in terms of the spatial relationships betwesels instead of as statistical
distributions on the absolute voxel intensities. The basigition is that if the segmen-
tation task is not beyond the human recognition capabitiégr voxels of the same type
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should possess less difference in intensity than near sa{allifferent types. With this
type of image modeling, we attempt to avoid the limitatioposed by the form of statisti-
cal distributions and provide a framework for introduciragieusa priori knowledge into

the segmentation task.

Suppose that there af€ voxel types among a total af voxels in the space domain
2, which represents either the whole image or a region oféstan the image. In brain
MR image segmentation, we assume tRa¢quals to 3 and the three tissues of interest are
WM, GM, and background and denoted as with the nuB\dzand1 respectively. When
the domain(2 contains exactly the brain volume, the background tisspe tprresponds
to CSF; otherwise, it refers to anything excluding WM and GMthis thesis, we se®
to be whoe image space and do not depend on any prior skplbstg or brain extraction
procedure. Let the coordinates of voxelsdhel < i < N, and the variable and true
label of each voxel respectively bg (or w(z;))e [1, K] andw; € [1,K],1 < i < N.
Incorporating a multiplicative bias field and an additive noisg, the image intensity;
(ory(z;)), 1 <i < N, is modeled as:

K 0 w; #k
yi = b; Zazkyzk + p, whered} = Z (3.1)
k=1 1 wi == ]{7

In equation 3.15%y* represents the component given by tiséui@ the ideal image
without influence from noise and IIH and we refer their sEﬁzl Skyk as theideal image
Here we do not assume any particular statistical form on theenterm. Equation 3.1 is
our initial image model and will be gradually transformedadoilitate image segmentation.

The termy¥ in equation 3.1 can be seen as an arbitrary function overpheesdomain
governed by the constraints on the spatial relationshiwdxen near voxels. Generally, we
think the constraints should considepriori knowledge about the structure and geometry
of the objects in the image as well as the inherent image piepaelated to the image
acquisition process. In brain T1-weighted MR images, wesim®ara priori knowledgek;
and K, and use the following first-order logic to describe a spaiastraint:
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Va;,x; € QVEk € [1, K] Tk e 0, D)d(z;, ;) <p=
@i=kAwy=k+1=r(y,y™) <THA

(@ =w; = (k+1) = r(y’,y)) =T,

a/b a<b

b/a a>b (3:2)

wherer(a, b) = {

In equation 3.27° andT* are forced to be Qi(z;, z;) represents the distance between
voxel z; andzx;, andp is the distance threshold (a voxel cube is of unit dimensaom) is
in the same value as the one used in the structure modelirertios 3.1. Theoretically,
any form of distance, including Euclidean distance, candsgluHoweverD®, D8 or D2
distance is preferable because of the computational eftigie

Spatial constraints expressed in equation 3.2 can alsodwibled informally as fol-
lows. Letr,, represent the ratio between a GM voxeland a WM voxelr; nearz; (we
use a distance threshold to express the nearness betweegoxels). Letr,, represent the
ratio between a background voxel, and a GM voxelr,, nearz,,,. Letr,,,, r,, andry,
respectively, represent the ratio between two near WM wxeb near GM voxel and two
near background voxels. Then we have the following congsain the four ratios:

Tgw > Tww N\ Thg > Tgq (3.3)

Note that inequation 3.3 leaves a great deal of freedomr fpandr,, so that: 1) the
intensities of two near GM voxels can differ even more thanair of near voxels of GM
and WM; and 2) the intensities of two near background voxatsdiffer even more than
those of any pair of near voxels of CSF and GM. In this way, i@l greater extent of
variations among GM voxels and permit the background taumhelvarious type of tissue
types such as CSF, skull, air and so on.

A reasonable assumption about the bias field is that it valiesly across the space
with respect to the intensity variation between differésgues in the ideal image. We use a
first-order logic to describe this assumption in equatiehv@thout any constraints on the
variation patterns.
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Vr;,x; € Q3e € (0,1)
(1—e<1—max(T", ... T A (d(zs,25) < p= 7(bi,bj) > ¢€) (3.4)

Based on the low frequency property of the bias field, we cdelyséet y* absorb the
bias field term and the latter can thus be dropped from equatib while validity of the
constraint in equation 3.2 is maintained. Therefore, thegemartifact of IIH is made trans-

parent in our image model.

Next, we apply Gaussian filtering on the original gray levehge to counteract the
noise and drop the noise term from equation 3.1. tet ¢(o,) be a specific blurred
image. The new image model ons:

5k ok (3.5)

Z; = i

I

Here,z* corresponds to the contribution of tissut the smoothed image. After Gaus-
sian filtering, we want to maintain the spatial relationshygtween voxels, as described

below:

Va;, x; € QVEk € [1, K] 3T% € [0, )d(v, 2;) < p =
(wi:k/\wj:k+1:>r(zf,zf+l) <THA

O =w; =k+1=r(zF 25 > 1! (3.6)
J

177

In terms of the definition of the functioff’, we havez¥ = z; whenw; = k and hence

the equation 3.6 can be rewritten as:

Vo, z; € QVE € [1, K] 3T € [0, 1)d(z,7;) < p =
(wlzl{:/\w] :k+1:>T(Zi,Zj <Tk)/\
(wi = wj =k + 1= T’(ZZ', Zj) 2 Tk+1> (37)

It is well-known that Gaussian filtering blurs both homogaune regions and edges.
This might lead to main two types of violation to the consttaiFirst, for a voxel pair
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(z;, z;) of different types on the opposite sides of an edge, if theytao close to each
other,r(z;, z;) may be significantly increased such that they may be idethifgethe same
type. We think this adverse effect can be minimized by ingirgathe distance between
voxel pairs for comparison in the relative thresholdinggeaure. This can be demonstrated
in figure 3.1, where the spatial constraint is maintainedhen@aussian blurred 1D signal
with o, = 2, p = 10, andT" = 0.45. The second type of violation may occur when the
dimension of some parts of the structure of interest is tamomacompared to the Gaussian
filter aperture §.). We found that for current MRI techiques, the usual resotu¢around
1mm?) is high enough so that this violation brings very little aéige influence.

1 T T T T T
0.5F B
0 1 Il Il Il
0 5 10 15 20 25 30
1 T T T
0.5 B
0 ! P — ! ! !
0 5 10 15 20 25 30
1 T T T T T
0.5 B
0 I ! ! !
0 5 10 15 20 25 30

FIGURE 3.1: Effect of Gaussian smoothing of a 1D signal. Top: a 1D sigNatdle:
noise added; Bottom: smoothed signal.

3.3 Applying Relative Thresholds

Suppose we are given the two relative threshdlgs (between GM and WM) and
Ty, (between background and GM) that govern the constraintsjirateon 3.7. We can
combine the structure model and the image model and eadiynotte following rule to
differentiate WM, GM and background:
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1. All voxels are initialized as WM.

2. For any voxel paifz;, z;) both labeled as WM, if there is a path framto z; of
lengthp in the gradient grapld- and their intensity ratidz; /z; < T,,, thenz; is
relabeled as GM. This rule sets all true GM voxels as GM antnwifflip the label
of true WM voxels. In other words, this rule detects bordessveen WM and GM.

3. For any voxel paifz;, z;) both labeled as GM, if there is a path framto z; of
length< p in G and their intensity ratia;/z; < T,,, thenz; is relabeled as back-
ground. This rule detects borders between backgroundu@iimay CSF) and GM.

We designed two algorithms, algorithm 1 and algorithm 2itplement the above rules
for GM/WM segmentation and background/GM segmentatiopeesvely. The inputs to
both include a comparing imagefrom which voxels are compared, a relative threshold,
and a gradient grapfy constructed on the entire image domain. Both algorithmsiyai
consist of a sequence of voxel comparisons. Each comparigolves an objective voxel
and a reference voxel. The objective voxel is the voxel whissee type is to be determined
at the present comparison. The reference voxel is detedaiséollows.

e In algorithm 1, the reference voxet f,,, (v;) for the object voxel; is the WM voxel
with the maximum intensity in the path of lengththat emanates fromy in G;

¢ In algorithm 2, the reference voxet f,,(v;) for the object voxeb; is the GM voxel
with the maximum intensity in the path of lengttthat emanates from in G.

In practice, we found that it gave better results to templgraubstitute the intensity
z(re fog(v;)) With z(refyu(re fog(vi)))(1 — (1 —1,,) * 2) for each comparison in algorithm
2. This is based on our observation that 1 minus the optinmastiold?;,, is roughly half
of 1 minus the ratio between average GM and WM intensities.

The distance threshojdis a empirical value that we chose based on the average cortex
thickness. In some areas of the brain, such as amygdala addteathe gray matter may
be thicker than the average cortex and some gray matters/oxa} be recognized as WM
because is too short. To work around this issue, we add an additiamal in algorithm
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Algorithm 1: GW-Thresholding
Data: z, G, Ty,
initialization: Vz; € R, w; <—WM,;
foreachvoxelz; in the imagedo
if w(refyw(z;)) = GMthen
| w; «— GM;

else ifr(z;, z(refyw(z:))) < Ty, then
| w; «— GM;

oreachvoxelz; in the imagedo
if w(refyw(x;)) = GM then
| w; «— GM;

—h

Algorithm 2 : BG-Thresholding
Data: z, G, Ty,
foreach voxelzx; in the imagedo
L if w, = GM andr(z;, z(refyy(x;)) < Ty, then
| w; « background;

1: if the reference voxel of the object voxel is relabeled as GM, then; should also be
relabeled as GM.

3.4 Finding Optimal Thresholds

Optimal thresholds can be found by user intervention ina-&md-evaluation scheme.
The user can first try different candidate thresholds betv@d and WM, visually evaluate
the result at the same time and finally select the threshaldgives the best result. The
same procedure can be performed to select the best thrds#talden background and GM.
It is under investigation whether the same two optimal thoéds can be used aspriori
knowledge across different MR images acquired with the sams@nilar parameters.

Figure 3.2 gives a demonstration on the effects of choosifeyent relative thresholds:
figure 3.2(b) shows that over-low threshdlfl, globally makes the white matter too fat
while figure 3.2(c) shows that over-high,,, globally makes it too thin. In either case,
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the GM/WM boundary drifts away the correct situation in eiént directions while the
optimal relative threshold makes the boundary fit at thetrdgtation, as shown in figure
3.2(d).

3.5 Results

Figure 3.3 shows segmentation results of applying reldhvesholding on some real
MRI scans. One of the advantages of relative thresholditigaisit is robust to intensity
inhomogeneity without additional correction processiAgother advantage is that it can
adapt to high level intensity variations within a given tiss

Relative thresholding mainly serves as a initial voxel sifisation processing step.
Since relative thresholding is performed on the entire ieagpn-brain voxels can be la-
beled as brain voxels which may nor may not be connected ttribédorain voxels. This
type of false positive will be eliminated with morphometaalysis presented in chapter
VI and chapter VIII. Another typical type of error missestedn fine portions of the WM
structure. This type of false negative is mainly due to ledisampling resolution and the
blurring effect of Gaussian filter. A procedure calkedrain analysiswill be presented in
chapter VIl to largely recover these missing portions & #tructure. Topology defects
are yet another type of segmentation error, although lidlemetrical deviation may be
involved. Topology correction methods will be presentedhapter VIl and chapter VIII.
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(a) Aslice of an MR image (b) 7,,=0.68,1.4,=0.7

(¢) T4w=0.93,1:4=0.7 (d) 7,,=0.86,T.,=0.7

FIGURE 3.2: Analysis of relative thresholding with different relatithresholds applied
on a phantom image. Optim@},, = 0.86 and optimall’;, = 0.7. The relative threshold
Ty in (b) is over-low. The one in (c) is over-high. The one in @pptimal.



(a) A slice of a MR image (b) RT result

(c) A slice of another MR image (d) RT result

FIGURE 3.3: Relative thresholding results on real MR scans

a7
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CHAPTER IV

Digital Point Classification

Like most other pixel classification methods, relative shi@ding will inevitably intro-
duce classification errors in both geometry and topologycdioect classification errors,
we rely on a set of morphological image analysis tools, whiehdescribed in the follow-
ing chapters. In this chapter, we give a set of definitionshenctassification of 3D digital
points, which forms the basis for the morphological imagaysis tools. We start with the
introduction of fundamental digital topology theory.

4.1 Digital Topology

A 3D binary image is defined as the quadru@fen, m, 7)[98]. V C Z3is the 3D cubic
grid representing all elements in the image. Each elemethieir8D image is a cubic grid
point and called a voxelF C V represents the set of foreground voxels éncepresents
the complement ofF. n andn respectively represent the adjacencyfrand F defined
below.

The topology of a digital image depends on a pair of digitghegincies, one for the
foreground and one for the background. Three types of ad¢gcare commonly used in
3D: 6-, 18-, and26-adjacency. Two voxels afkadjacent if they share a face, 18-adjacent
if they share a face or an edge, atdadjacent if they share a face, an edge, or a corner.
In the rest of this thesis, we use “voxel” and “point” withalistinction if not particularly
noted. Ann-neighborof a pointp is a point that is:-adjacent tg. The set ofz-neighbors
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of a pointp is denoted asV,,(p). Note that hereV,,(p) includesp since a voxelp can
be seen as sharing six faces with itself. We g p) to denoteN,,(p) \ {p} and N (p)

to denoteNys(p). Topologically compatible adjacencies/connectivitiésFoand F are
(6,26), (6,18), (18,6) and(26, 6). For any adjacency € {6, 18,26}, we usen to denote
its compatible adjacency.

An n-path ofl > 0 from pointpto ¢ in X C Z3 represents a sequence of distinct points
p = po, P1, ..., ;1 = q in X such thap; isn-adjacent te, ., for: =0,1,...,—1. Ann-path
is closedif and only if p, is n-adjacent tqy,. Two pointsp, g € X aren-connectedvith
respect tot’ if and only if there exists an-path fromp to ¢ in X'. The setY is n-connected
if every two points inX aren-connected with respect t§. An n-connected componeat
X is a non-empty:-connected subset df that is notn-adjacent to any other point ift'.
The set of alln-connected components afis denoted by, (X).

For any set¥ C V, we useX to denote the complement 4f in the image. The point
setX is also referred to as an object since it corresponds to ayboigect in the image.
An objectX’ in n-adjacency has eavityif and only if there exits a connected component
in X in m-adjacency that ig-connected to onlyt’.

An objectX has ahandlewhenever there is a closed pathinthat cannot be deformed
through connected deformationsAnto a single point. A solid torus is an example of an
object that has exactly one handle. The number of handles obpect is the maximum
number of cutting along embedded disks without renderimgrésultant object discon-
nected. A handle in the objed is referred to as @unnelin its complementt. The
number of handles in a digital objet is also called geausof the object.

A central concept in digital topology is the definition simple point[99], which is
characterized by itgeodesic neighborhoaghdtopological numbers

Definition 4.1.1. Simple pointsA pointin a binary imagéV, n,n, F) is simpleif it can be
added to or removed froff without changing the topology of both and.F, i.e. without
changing the number of connected components, cavitiesamdiés of bott and F.
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Definition 4.1.2. Geodesic neighborhood he geodesic neighborhood of a poine V
with respect to¥' C V of orderk is the set\V*(p, X) defined recursively by :

Na(p, X) = Ni(p)n X
Ni(p, &) = U{NL(9) N N5s(p) N X, g € N H(p, X)}

Definition 4.1.3. Topological numbersThe topological numbers of the pointelative to
the setX are:
To(p, X) = #Cs(NG (p, X))
To+(p, X) = #Cs (NG (p, X))
Tis(p, X) = #Cis(Nix(p, X))
Tos(p, X) = #Ca6(Nog(p, X)),

where # denotes set cardinality aéid denotess-adjacency whose dual adjacencylis
while 6 denoteg-adjacency whose dual adjacencyis

It is proven in [99] that a simple point can be characterizgdblbal computation of its
topological numbers within the x 3 x 3 neighborhood of the point:

Theorem 4.1.4. A pointp in a 3D binary image(V, n,n, F) is simpleif and only if
T,(p, F) = 1and Ty (p, F) = 1.

Given a sett C F, a pointp is simple relative toY if and only if 7,,(p, X) = 1 and
T(p, X) = 1.

Another concept critical to our topology correction metlpodsented in chapter VIl is
the definition ofmultisimple poin{100].

Definition 4.1.5. Multisimple points A point p is multisimplerelative to the se&’ if and
only if it can be added to or removed frof without changing the number of handles and
cavities of X’ while splitting and merging connected component&’iare allowed.

Characterization of multisimple points is given as thedwaiing theorem [100].

Theorem 4.1.6.LetT.f (p, F) andT (x, F) respectively denote the number of foreground
and background components in tHi& p that are adjacent to a point, thenp is multisimple
relative to.F iff Ti:(p, F) = 1 and T (p, F) = T,.(p, F); p is multisimple relative toF iff

T, (p, F) = 1 and T (p, F) = Tu(p, F).
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4.2 Point Classification

We can classify all points in the sét into border pointsandinterior points

Definition 4.2.1. Border pointsA pointp € X is a border point relative t& if 75 (p, X') >
0, wheren is the adjacency ok .

Definition 4.2.2. Interior points A point p € X is an interior point relative tot if

T=(p, X) = 0, wheren is the adjacency ok .

By the definition of simple points and border points, it is mws that a simple point
relative toX must be a border point relative £8. Therefore, the set of all border poiris
relative toX’ can be classified into the set of simple points and the setrekimaple points.

Corollary 4.2.3. Let B € X be the set of all border points relative 6 and S be the set
of all simple points relative t&’, we haveS C B.

Simple points can be further classified inban-simple point@ndthick-simple points

Definition 4.2.4. Thick-simple pointsA pointp € X is a thick-simple point relative t&
if itis simple relative tat’ and its removal fronX” does not increase the number of tunnels
and number of connected componentding) N X' \ {p}, forall ¢ in N55(p) N X, i.e.:

p is a simple point relative t&’, and
Vg € Nos(p) N X, T(q, X\ {p}) < T,(g,X), and

wheren denotes the adjacency 4f.

Definition 4.2.5. Thin-simple pointsA pointp € X is a thin-simple point relative t&’ if
p is a simple point relative t&’, butp is not a thick-simple point relative t&'.

Now, let’s turn to non-simple points and perform furthersslidication on them.

Definition 4.2.6. Thin-surface pointsA pointp € X is a thin-surface point relative t&

if T=(p, X) > 1, wheren denotes the adjacency af.
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If a pointp € X is a thin-surface point relative t&, it implies that the number of
tunnels in the neighborhool’*(p) N X is greater than 0.

Definition 4.2.7. Thin-curve pointsA pointp € X' is a thin-curve point relative t&’ if

Tw(p, X) = 1andT,(p, X) > 1.

If a pointp € X is a thin-curve point relative t&’, it implies that the number of
components in the neighborhodd; (p) N X is greater than 1.

Definition 4.2.8. Isolated pointsA point p € X is an isolated point relative t&’ if

Tﬁ(pv X) =1 andTn(pv X) = 0.

In terms of the definition of multisimple points, we can fugtlelassify thin-curve points
into finger points and handle points, which are involved intopology correction method.

Definition 4.2.9. Finger pointsA point p € X is a finger point relative tot if p is a
thin-curve point relative t&t” and a multisimple point relative t&'.

Definition 4.2.10. Handle pointsA pointp € X is a handle point relative t& if p is a
thincurve point relative ta but not a multisimple point relative t&'.

Next, we further classify thin-simple points into thickeiace points and thick-curve
points.

Definition 4.2.11. Thick-surface pointsA pointp € X is a thick-surface point relative
to X' if p is a simple point relative t& and there exits a point € Ns;(p) N X such that
Tr(g, X U {p}) > Tr(g, X) andTx(g, X) > 0.

If a pointp € X is a thick-surface point relative t& implies that removal op from X
increases the number of tunnels in the neighborh®pd;) N (X \ {p}).

Definition 4.2.12. Thick-curve pointsA pointp € X is a thick-curve point relative t&
if p is a simple point relative t&’, is not a thick-surface point relative 8, and there exits
a pointg € Ny;(p) N & such thatl’, (¢, & \ {p}) > T.(q, X).

If a pointp € X is a thick-curve point relative t&’, it implies that removal op from
X increases the number of components in the neighbori\gdd) N (X \ {p}).

Thick-simple points can also be further classified into svigpes according to their
geometrical characterization.



53

Definition 4.2.13. Volume-boundary pointsA point p € X is a volume-boundary point
relative toX if it is a thick-simple point and ig-adjacent to an interior point relative £,
wheren is the adjacency ot’.

Definition 4.2.14. Surface-edge pointé\ pointp € X is a surface-edge point relative
to X if it is a thick-simple point, is not a volume-boundary pgiand isn-adjacent to a
thin-surface point or a thick-surface point relativefpwheren is the adjacency ot’.

Definition 4.2.15. Curve-end pointsA pointp € X is a curve-end point relative t if it

is a thick-simple point, is neither a volume-boundary poinit a surface-edge point, and is
n-adjacent to a thin-curve point or thick-curve point relatio X', wheren is the adjacency
of X.

Definition 4.2.16. Very-thick-curve points A point p € X' is a very-thick-curve point
relative to X if it is a thick-simple point, not a volume-boundary pointsarface-edge
point, nor a curve-end point.

In some situations, what form the end of a curve may includeertttan one point. We
definethick curveend pointandthin curveend point$o differentiate two types of curve
ends.

Definition 4.2.17. Thick curve-end pointsA point p € X' is a thick curve-end point
relative toX if it is a curve-end point relative t& andn-adjacent to another curve-end
point relative toX', wheren is the adjacency aohathcal X .

Definition 4.2.18. Thin curve-end pointsA pointp € X is a thin curve-end point relative
to X ifitis a curve-end point relative t& but not a thick curve-end point relative £0.

We can also differentiate surface-edge points into tygi@sk surface-edge poinend
thin surface-edge pointg-or simplicity, we define these two types of surface-edgatpo
only for surface-edge points that are adjacent to thinaserpoints.

Definition 4.2.19. Thick surface-edge points of thin surfae A point p € X' is a thick

surface-edge point of thin surface relativeXoif it is a surface-edge point adjacent to at

least one thin-surface point but no thick-surface point f@m all thinsurface point €
5(p) N X, Ta(q, X) = Tu(q, X U {p}), wheren is the adjacency ok’
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If a pointp € X is a thick surface-edge point of thin surface relativettpit implies
that its removal fromX” does not change the number of tunnels in the neighborhoaayof a
thinsurface point adjacent {0

Definition 4.2.20. Thin surface-edge points of thin surfacé\ point p € X' is a thin
surface-edge point of thin surface relative Xoif it is a surface-edge point adjacent to
at least one thin-surface point but no thick-surface paamis is not a thick surface-edge
points of thin surface relative t&'.

Examples of some of the major definitions given above arstiited in figure 4.1. The
classification of 3D digital points forms a tree structureshown in figure 4.2.

Thin—curve & Handle Surface—edge

Thin—surface

Thin curve—end

Thick—surface/~1" Thin—curve & Finger
-
— Very—thick—curve
[ V4
] 7 Thick—curve
] (]
| [

X

(TT T 1111 Thick curve—end
Volume—boundary
Thick—curve Surface—edge

FIGURE 4.1: 3D digital point types. The object is in 26-adjacency.

4.3 Related Work

In [101], 3D digital points are classified into the followitygpes: interior point, isolated
point, border point, curve point, curves junctions, swfpoint, surface-curve(s) junction,
surface junction, and surfaces-curve(s) junction. In 18D digital points in a surface
skeleton are classified into the following types: edge paiisurface, inner point of surface,
junction point of surfaces, junction point of surface andves, curve end point, inner
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— Border—— Simple — Thick—simple—7— Volume—boundary
— Thick—surface [~ Surface—edge
3D Digital Point —
— Thick—curve — Curve—end
— Non-simple—7— Thin—surfce — Very—thick—curve
— Interior — Thin—curve
— Isolated

FIGURE 4.2: 3D digital point classification into a tree structure.

point of curve, junction point of curves, isolated point. dath works, surface and curve
correspond to the thin surface and thin curve in our work. gtiat classification in [101]
and [102] assumes the object is either originally a discsatéace or the surface skeleton
of a 3D object. Based on the point classification, the dis@gatface or the surface skeleton
can be segmented into meaningful parts.

The major distinction between our work and the research almthat we proposed
the notion of thick-simple point. Based on this notion, wa ctassify discrete surfaces
into thin surface and thick surfaces, and curves into thivesiand thick curves. Here
thick surface and thick curves refer to surfaces and cuhagsare at most two-point thick.
The notion of thick-simple point is relevant to the fact ttieg very central discrete surface
skeleton of a 3D object may be two-point thick at some plakiedso helps to identify other
geometrical features such as volume boundary, surfacesesgecurve ends. Based on the
notion of thick-simple points, we can conveniently desigriace and curve skeletonization
algorithms that not only guarantee homotopy and thinnegsalbo ensure medialness and
high level of shape preservation. In addition, the notiothafk-simple point also plays a
critical role in our topology correction algorithm.
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CHAPTER V

3D Skeletonization

Skeletonization is a process that reduces foreground megio a binary image to a
skeletal remnant while eliminating significant amount akefground pixels (voxels). The
skeleton of a 2D binary object is a set of 2D discrete curvest &3D binary image,
surface skeletonizatioresults in a discrete surface andrve skeletonizationesults in
discrete curves. Skeletons have been widely used in comyisten, pattern recognition,
image segmentation, computer graphics and image compnessi

Although there is not a standard and precise definition destmization, the following
properties of skeletonization are commonly desired:

e homotopy the skeleton should be homotopic (i.e. topologically eglgnt) to the
original object;

¢ thinnessthe surface skeleton should be one point thick and the akeieton should
be one point wide; and

e medialnessthe skeleton should be centrally located within the object

In this chapter, we propose a 3D surface skeletonizatiaridiign and a 3D curve skele-
tonization algorithm. In our neuroanatomical segmentatiork, surface skeletonization
results in data that plays a critical role in white mattemlaation and extraction. Variants
of curve skeletonization are used for topology correctibwbite matter and other mor-
phological image analysis tasks. Both surface skelettinizand curve skeletonization are
based extensively upon the 3D digital point classificati@spnted in the previous chapter.
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There are two steps for surface skeletonization: thickaserskeletonization and thin-
surface skeletonization. The former results in a discratéase of at most two voxels
thick and the latter results a final thin surface skeletonna woxel thick. We will present
skeletonzation algorithm in the order of thick-surfacelstanization, thin-surface skele-
tonization, and curve skeletonization.

5.1 Thick-surface Skeletonization

Thick-surface skeletonization of the s€is a process that iteratively eliminates volume-
boundary points relative t& until no additional points can be eliminated. In each iierat
border points are first identified. Then simple points areaex¢d from border points and
non-simple points are marked to prohibit elimination. Nestinple points are classified
into thick-simple points and thin-simple points. Like nsimple points, thin-simple points
are also prohibited from elimination. Among thick-simpl@mqts, volume-boundary points
are recognized and are eliminated if they are still simplatiree to X' at the moment of
elimination. Whenever a point is eliminated, new bordempin its neighborhood are
identified as candidates for erosion in the next iteration.

Thick-surface skeletonization described above erodeglsax the order of theéi-
distance, where is the adjacency of the séf. In n-distance, the distance between any
n-adjacent voxel is taken as unit distance. A variant of thgo@thm, Chamfer-thick-
surface skeletonization, erodes voxels in the order of ¢ladistance which sets distances
between adjacent voxels as follows. For any two voxels sgaiface, their chamfer dis-
tance is 3; for any two voxels sharing an edge, their chanmaukce is 4; and for any two
voxels sharing only a point, their chamfer disance is 5. raxfistance provides closer
approximation to Euclidean distance. For thick-surfacetknization that erodes voxels
in Chamfer distance, a map of distanceias first calculated for each point it’. The
main distinction of the two algorithms is the definition oktborder points and interior
points. We say a point € X’ C X is a border point relative to (rty’ with respect to (wrt)
X at distancel if p is a border point rft’ andp’s distance fromX is d. If the distance of
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p € X' from X is greater tham, thenp is an interior point rtx’” wrt X at distancel. In
short, we say that is a border point at distanekor an interior point at distaneé The rest
of the algorithm for Chamfer-thick-surface skeletoniaatis the same with regular thick-
surface skeletonization. These two algorithms are preddntalgorithm 3 and algorithm
4 respectively.

Both thick surface skeletonization algorithms remove apiwom the object only when
the point is a simple point, therefore the agorithms preseygology after skeletonization.
Meanwhile, points are removed in the order of eithatistance or Chamfer distance from
the complement of the object, therefore the algorithmsglswantee the medialness of the
skeleton. Since the algorithms keep the thick-surfacetpa@nd very-thick-curve points,
the resultant skeleton may be of two voxels thick at somegslacThe resulted surface
skeleton is hence referred to @sck-surface skeletoand can be further thinned into the
thin-surface skeletonization algorithm described in tbgtrsection. Figure 5.1(b) shows
the thick surface skeleton of a cerebral white matter objetstrms of Chamfer distance.

5.2 Thin-surface Skeletonization

Thin-surface skeletonization further thins thick-sueakeleton by sequentially erod-
ing thick-surface points, thick surface-edge points amcktburv-end points. First, it clas-
sifies all points in the thick-surface skeleton géinto border points and interior points.
Second, border points are classified into simple points amdsimple points. Third, sim-
ple points are classified into various types of thick-singmets and various types of thin-
simple points. Thick-simple points include volume-bounydaoints (should be an empty
set), surface-edge points, and very-thick-curve pointsin-Bimple points include thick-
surface points and thick-curve points.

After the point classification, thick-surface points andyvihick-curve points are first
removed if they are still so at the moment of removal. Aftehigk-surface point is re-
moved, points in its neighbor should be reclassified. Thesrona which thick-surface
points are removed has a significant influence on the resshape of the surface skeleton.
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Algorithm 3: Thick-surface skeletonization

Data: A setX in n-adjacency

X — x° /+ X denotes the eroded set in the process =*/
Classify all points inX" into border points and interior points;

terminate <— false;

repeat
termainate <« true,

Classify border points into simple points and non-simple{s
Classify simple points into thick-simple points and thimple points;
Classify thick-simple points into volume-boundary poiatsl
non-volume-boundary points;

Let )V be the set of all volume-boundary points;

continue < true,

repeat
continue < false;

foreach pointp in the set) do

if p is simple relative toY then
Removep from X;

Classify interior points ip’s neighbor\/ (p) into border points and
interior points;

continue «— true,

terminate «— false

until continue = false
Reset all non-interior points as border points;
until terminate = true;
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Algorithm 4 : Chamfer-thick-surface skeletonization

Data: A setX? in n-adjacency

X — x° /= X denotes the eroded set in the process =*/
Calculate the Chamfer distance map;
d«— 3;

Classify all points inX into border points and interior points at distarnce
terminate <— false;

repeat
termainate <« true,

Classify border points at distandento simple points and non-simple points;
Classify simple points into thick-simple points and thimple points;

Classify thick-simple points into volume-boundary poiatsl
non-volume-boundary points;

Let )V be the set of all volume-boundary points;

continue <« true,

repeat
continue < false;

foreach pointp in the set) do

if p is simple relative toY’ then
Removep from X;

Classify interior points at distanc&in p's neighbor\ (p) into border
points at distancé + 1 and interior points at distanee+ 1;
continue <« true,

terminate «— false

until continue = false

d—d+1;

Reset all non-interior points as border points;
until terminate = true;
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Whenever a thick-suface point is removed, we put its neightiat are still thick-surface
points in the highest priority for removal. Such an breatstfsearch order of removal has
a benefit in that it alleviates the jitter effect of the resdlsurface skeleton. After removal
of thick-surface points, thick surface-edge points of $unfaces are thinned in the similar
breath-first-search order. Finally, thick curve-end poete thinned. Thin-surface skele-
tonization is presented in algorithm 5. Figure 5.1(c) shtvesthin surface skeleton of a
cerebral white matter object.

Algorithm 5: Thin-surface skeletonization
Data: A thick surface skeletoi™®
X — Xx°; /* X is the eroded skeleton in the process */
/* Point classification */
Classify all points inX into border points and interior points;
Classify all border points into simple points and non-sienpbints;
Classify all simple points into volume-boundary points ¢shl be empty),
thick-surface points, surface-edge points, very-thigkse points, thick-curve points,
and curve-end points. L&t be the set of thick-surface points and very-thick-curve
points,£ be the set of surface-edge points, @lde the set of the curve-end points;
[+ Thin thick surfaces and very thick curves * [
foreach pointp in the set7 do
Putp in an empty queué);
while @ is not emptydo
Pop up a poing from the queue;
if ¢ is still a thick-surface point or a very-thick-curve pothen
Removeg from X'. Reclassifyy’s neighbors that are iA” and enqueue
L new thick-surface points and very-thic-kcurve points;

[+ Thin thick surface edge points of thin surfaces * [
foreach pointp in the set€ do
Putp in an empty queué;
while @ is not emptydo
Pop up a poing from the queue;
L if ¢ is now actually a thick surface-edge points of thin surfabes
| Removeg from X’;

~

B Thin thickcurveend points */
oreach pointp in the setC do

if pis now actually a thick curve-end poititen
| Removep from X,

—h




(a) Cerebral white matter

(b) Thick surface skeleton

(c) Thin surface skeleton

FIGURE 5.1: Surface skeletonization results
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5.3 Curve Skeletonization

Curve skeletonization of a sét iteratively removes thick-simple points except for
curve-end points fromX’ resulting in discrete curves of one voxel wide. In each tteraall
border points oft’ are first classified into simple points and non-simple poiNtn-simple
points are forbidden to be removed at the current iteratample points are classified into
thick-simple points and thin-simple points (thick-sudagoints and thick-curve points).
Curve-end points are identified among thick-simple poiiisen only thick-curve points
and thick-simple that are not curve-end points are alloveedet removed at the current
iteration. Whenever a point is removed, new border poinitsineighbor are identified for
processing in the next iteration. At the end of each itertagmy points that have not been
removed and are not interior points are reset to be bordetgpfur processing in the next
iteration. Curve skeletonization is presented in algarnith

Unlike many other curve skeletonization algorithms, ogoathm does not require a
preprocessing step of surface skeletonization beforeecskeletonzation. In other words,
our curve skeletonization can be directly performed on tiggreal 3D object. The resultant
discrete curve is topologically equivalent to the origiolaject and highly central within the
original object.

When we limit the number of iterations that the curve skeie&ion algorithm can
perform with a scale, the partial curve skeletonzation produces output thabesseen as
the erosion of the original object with topology and shapesprvation at scale We will
see that such topology-and-shape-preserving erosion (TSBR)ys an important role for
topology correction of white matter. It can also be used forphological smoothing of
surface-like objects. Let be 3D object with thin protrusions that we want to eliminaée
can first apply TSPE at scateon X’ ending up withX”. Then we can obtain the smoothed
result by dilatingX” such that the voxels i’ \ X" whose distances fromt” are less than
or equal tos are added intat”’. The advantage of this smoothing approach over traditional
morphological smoothing is that the shape noise can be redhewile thin surface parts
of the original object are preserved. Figure 5.2 and 5.3a@sgely demonstrate the results
of curve skeletonization and partial curve skeletonizatiba cerebral WM object.
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There are exceptions to the assertion that a thin surfadetskes one voxel thick and
a curve skeleton is one voxel wide. In these situations,uhfase skeleton may be thicker
than one voxel and the curve skeleton may be wide than oné.vidxe skeleton cannot be
further thinned, otherwise either the topology of the obyeii be changed or the shape of
the skeleton will be significantly modied from the originaiject.

Algorithm 6 : Curve skeletonization
Data: A set of pointst® in n-adjacency
X — x° /+ X denotes the eroded set in the process =*/
Classify all points inX into border points and interior points;
terminate <— false;

repeat
termainate <« true,

Classify border points into simple points and non-simple{sp

Classify simple points into thick-simple points and thimple points;
Identify curve-end points among thick-simple points arakslfy thin-simple
points into thick-surface points and thick-curve points;

Let 7 be the set of all thick-curve points and thick-simple poexsept for
curve-end points;

continue < true;

repeat
continue < false;

foreach pointp in the set7 do

if p is still simple relative toY’ then
Removep from X;

Classify interior points in's neighbor\/ (p) into border points and
interior points;

continue < true,

terminate «— false

until continue = false
Reset all non-interior points as border points;
until terminate = true;
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(a) Curve skeleton at scale 0 (b) Curve skeleton at scale 15

(c) Curve skeleton at scale 30 (d) Curve skeleton at scale 45

FIGURE 5.2: Curve skeletonization results. For a curve skeleton shaigtales, all
curve skeleton points at scale less tlkam not shown. All curve skeletons are dilated for
visual inspection.

5.4 Related Work

Several other works [103, 104, 105] also apply distanceradihomotopic thinning for
surface skeletonization of 3D objects. The difference ketwtheir work and ours is that
our skeletonization is based on a more systematic poirgi@ilzsion in which a new notion
called thick-simple points are introduced. Based on suchradwork of point classifica-
tion, we perform thinning of thick-surface skeleton in adirefirst-searching order such
that the resultant surface skeleton adheres to the shape @friginal object to a higher
extent and jitter effect is largely alleviated. For curvelstonization, our algorithm works
directly on the original 3D object intead of a two-stage mamwf surface skeletonization
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(a) Cerebral WM matter (b) Partial curve skeleton at scale 15. Curve
skeleton points at scale less than 15 is not
shown

FIGURE 5.3: Partial curve skeletonization results.

followed by curve skeletonization [105, 106]. Based on qstesmatic point classification,
this one-stage curve skeletonzation results in curve skedethat are central within the
original object to a higher extent than the two-stage methbdaddition, partially running
the one-stage curve skeletonization algorithm gives dgepology-and-shape-preversing
erosion that can be applied for other morphological imageyais tasks such as topology
correction and smoothing of surface-like objects.



67

CHAPTER VI

Cell Complex Based Morphometric Analysis

In this chapter, we present a cell complex based morphormatralysis (CCBMA)
method. Cell complex is a set of interconnected polyhedtggons, segments, and points.
CCBMA first transforms a 3D binary object into a cell complexdahen simplifies the
complex such that it only consists of segments and pointsowitremoving any points
in the complex. Meanwhile, meaningful metrics on each segroan be calculated that
provide various geometrical information on the segment waspect to the original object.
In our work on neuroanatomical segmentation, CCBMA playsitical role for white
matter localization and extraction. It may also be appl@diany other problem solving
in computer vision and image understanding.

This chapter starts with the motivation of CCBMA. Then thgaaithm of CCBMA
is presented in the subsequent sections. The input for geiptex analysis can be any
3D object but we use the thin-surface skeleton of the whitdanabject as input in our
work for white matter localization and extraction. The apgtion of CCBMA in our neu-
roanatomical segmentation will be presented in the nextteina

6.1 Motivation

Since the 1960's, skeletonization of 2D object has beenlwigsed for various tasks in
computer vision, pattern recognition, image segmentaéind image compression. This is
due to the capability of skeletonization to reduce the disiemality of the original object
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while maintaining the information on the extent and connégtof the object. To be more
specific, after skeletonization on 2D regions, we obtaivewskeletons in which for each
point we have a metric that measures the shortest distartbe pbint from the boundary
of original regions.

In 3D, however, things become much more complicated. Aftghlsurface skele-
tonization and curve skeletonization, we can also obtairerilmthat measures for each
point in the skeleton the shortest distance of the point fiteerboundary of the original 3D
object. This metric is very useful when we are working witlhface skeletons. In many
cases, however, what we really need is further skeletaaiz@tto curve skeletons, since
the metricdistance-from-boundang only marginally useful unless the original object is a
tubular structure. The reason is that the metric providds Information on the wideness
and connectivity of the original object. Cell complex arsdyis hence motivated by pur-
suit of metrics that provides meaningful information of etegkss and connectivity of the
3D object while reducing the dimensionality of the object.

6.2 Cell Complex

CCBMA is essentially a series of transformation on a spaltecteell complex A cell
complex is a topological space composed of points, segmeauitggons, polyhedrons and
the generation to any dimension of polygons in two dimerssidine generation of polygon
to any dimension is termgublytope Here, we are following the definition of cell complex
given in [107]. A more abstract definition is given in [108].

An n-dimensional polytope is bounded by a numbefrof 1)-dimensional faces. Each
pair of (n — 2)-faces meet at afn — 2)-dimensional face, and so on.7/Adimensional face
is also an-dimensional polytope. A 3-dimensional face is calleded, a 1-dimensional
face is called amrdge a O-dimensional face is calledvartex and a 2-dimensional face is
just called &ace Note thatcell can also generally denote a polytope at any dimension. A
precise definition is omitted here for simplicity. In this#is, we only deal with polytopes
up to 3-dimension (i.e. we only deal with polyhedrons, polyg, segments, and points).
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Given the definition of polytopes (cells) and faces, we giferenal definition ofcell
compleX107].

Definition 6.2.1. Cell complexA cell complex or simply complex ik? is a setC of
polytopes(called cells) ifk? satisfying two condition: (1) Every face of a cell is a cell in
C, and (2) two cells irC either do not intersect, or their intersection is a cell ober
dimension which is their common face of maximal dimension.

One special kind of polytope is@nvex polytopewhich is the convex hull of a finite
set of points. In the rest of thesis, we mean convex polytdpenever we refer to polytope.
If the maximal dimension of the constituting cells in a celhtplex isk then the complex
is called ak-complex. Our cell complex analysis can be seen as a protésssforming
a 3-complex to a 1-complex. First, we need to construct ar8ptex from a 3D object.

6.3 Cell Complex Construction

In this section, we describe the procedure for construdingll complex from a 3D
object X in 26-adjacency. Cell complex construction for other aeljgxtes is a similar
procedure to that for 26-adjacency and the cell complexfaamation algorithms are same
for all adjacencyies. We only deal with 26-adjacency in thesis.

Given a set of voxelsX’ in 26-adjacency, we first create a set of vertitesach corre-
sponding to a voxel iX’. In the following, whenever we say a point, a vertex or a vpxel
we refer to the same thing without distinction. Second, veat an edge connecting every
two vertices if they are 26-adjacent. Third, we create anglie for every three distinct
edges if they share three distinct vertices. Fourth, weteradetrahedron for every four
distinct triangles if they share four distinct edges.

By now, we have a set of polytopes up to 3-dimension. EvereiirtputX’ is a surface
skeleton, we may still have 3-dimensional polytope. At dént, the set of polytope is
probably not a cell complex yet and what we do next is to perffmilowing operations on
the set to create a cell complex.
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In a 3D lattice where each voxel is a grid point, we can idgregdich cube bounded
by 8 voxels. All tetrahedra that locate within the same cutgecantracted to a single
polyhedron. All triangles that are in the same cube and withe same plane are also
contracted into a single polygon. This simple proceduré&fimélly result in a cell complex.

6.4 Generating 2-complex

Given a 3-complex’, we perform cell complex analysis by first transforming the 3
complex to a 2-complex, as presented in algorithm 7. Thissfamation can be seen
as a “surface skeletonization” procedure in the contextetif @omplex. The result is a
2-complex that only consists of polygons, segments, andtpavhile all polyhedra are
eliminated. A central rule for polydedron elimination istlonly a border polydedron can
be removed at any time. BAorder polyhedrorhas one 2-face that is shared by no other
polyhedron. To eliminate a polyhedron, we can simply remave of its 2-faces that is
incident with only one polyhedron. Note that removal of aa2d from the complex does
not involve removal of any 1-face or O-face of the complexother words, all segments
and points remain in the complex after polyhedra elimimatid\ 2-face that is incident
with only one polyhedron is callesimple facdecause removal of the face and the incident
polyhedron does not change the topology of the complex.

Algorithm 7 : 3-complex to 2-complex transformation
Data: A 3-complexC
Initialize the depth of all 2-faces to be 0;
Insert simple faces into an empty min-priority quepe
while @ is not emptydo
Pop up a 2-facg from Q);
if fis still a simple facehen
Removef and its associated polyhedrefrom the complex;
foreach 2-facef’ # f that was bounding do
L depth(f') < depth(f) +d(f, f");

Insertf’ into @ usingdepth(f') as the key if it is a simple face;
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Similar to the distance-ordered thinning for 3D surfacdetkmization described in the
previous chapter, we also iteratively eliminate polyheaird simple faces in an ascending
order of distance from the outside of the complex. This tieezelimination is implemented
utilizing a min-priority queue) in which each element is a simple face to be removed with
the key being thelepthof simple faces from the outside of the complex. Initiallly,2x
faces have their depth reset as 0 and simple faces are mhgaite). Then the algorithm
iteratively pops up a 2-facg from the queue and performs polyhedron eliminatiofi i§
still a simple face. Whenever a simple 2-fgtand its associated polyhedroare removed
from the complex, the metric depth of remaining 2-faces loinanc are updated and new
simple faces are inserted into the queue. For any remainfage2f’ that was originally
boundingc, its depth is updated ag&pth(f’') = depth(f) + d(f, f'), wheredepth(f)
denotes the depth gf from the outside of the original complex addf, /') denotes the
distance between the center of the 2-fatesd /. When the queue is empty, all polyhedra
have been eliminated and there is no simple 2-faces anymdhe inew complex. At the
end of the algorithm, each remaining 2-fgtlas been assigned with a depth metric.

6.5 Generating 1-complex

Given a 2-complex generated in the above procedure, wesiurddluce the dimension
of the complex generating a new 1-complex composed of orgynsats and points, as
presented in algorithm 8. This procedure is similar to thevatone except that here we
recognize and removmrder polygonandsimple edgesA border polygon is a polygon in
the complex that has a 1-face (an edge) that is shared wittheomolygons; an edge that is
incident with only one polygon is called a simple edge. Weehg transform a 2-complex
to a new 1-complex by iteratively removing simple edges dmair tassociated polygons.
Apparently, this procedure also preserves the topologhebtiginal 2-complex.

Like the procedure for transforming a 3-complex to a 2-carpa min-priority queue
is also used for ordered elimination of border polygons ampke edges. Here, each el-
ement in the queu@ is a 1-face and has to be a simple edge when it is inserted into
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the queue. Whenever a 1-face is popped up from the queue rfaved, it has to be
still a simple edge. We propose two elimination order eméddin the definition of the
key of the min-priority queue. We define three metrics forheddace in the complex:
radius widenessandconnectivity Initially, all 1-faces in the 2-complex have their ra-
dius and connectivity reset to be 0. Whenever a simple edw&d its associated border
polygon f are removed, the metric radius and connectivity of remgirdirfaces bound-
ing f are updated and new simple edges are inserted into the quereany remain-
ing 1-facee’ that was originally bounding, the radius and connectivity af are up-
dated asradius(¢’) = max(radius(e’), radius(e) + d(e,€e')) and connectivity(e') =
connectivity(e') + connectivity(e) + d(e, ¢’), whereradius(e) andconnectivity(e) de-
note the radius and connectivity ofespectively and(e, ¢') denotes the distance between
the centers of two 1-faces. We can use the radius or the ctvibyeas the key for the min-
priority queue and end up with two different orders of simgdigge removal. At the end of
the algorithm, all polygons have been removed and there@sénmple edges anymore in
the new 1-complex. The algorithm also preserves the togatbthe complex.

Whenever a simple edgeand the associated border polygprare removed, we also
record a “parent-child” relationship between any remajninfacee’ that was bounding
f and the newly removed 1-fagce When the connectivity is used for the key of the min-
priority queue, we need to adjust the radius of 1-faces imgkeltant 1-complex as follows.
For any 1-face: in the 1-complex, ife has two or more child 1-faces in the intermediate
2-complex, then the widenessois wideness(e) = (radius(er)+d(e, e1)+radius(es) +
d(e,e2))/2, wheree; ande, are the two child 1-faces efthat have greatest radii; otherwise
wideness(e) = radius(e).

With the above two algorithms, we can transform a 3-comphéa a 1-complex that
significantly reduces the complexity of the representabiosm 3D object. Meanwhile, each
remaining 1-face (segment) has been assigned three metiisis, wideness, and con-
nectivity. They give information on how wide and how strongbnnected the original 3D
object is at the place wherelocates. If desired, we can also transmit the depth of a poly-
gon in the intermediate 2-complex to the bounding segméuatisstill remain in the final
1-complex. Therefore, we end up with a simple form of repnést@on of the original 3D
object while largely preserving structural, geometriagad anorphometrical information of
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the original object. Itis demonstrated in the next chagtat this technique of cell complex

analysis can be applied for robust neuroanatomical segtiemt

Algorithm 8: 2-complex to 1-complex transformation
Data: A 2-complexC and aroption on whether using radius or connectivity as the
key of the min-priority queue
Initialize the radius and connectivity of all 1-faces to he O
Insert simple edges into an empty min-priority quéue
while @ is not emptydo
Pop up a 1-face from Q;
if e is still a simple edgéhen
Removee and its associated polygginfrom the complex;
foreach 1-facee’ # e that was bounding do
radius(e’) < max(radius(e’), radius(e) + d(e, e');
connectivity(e') «— connectivity(e’) + connectivity(e) + d(e, €');
Sete as the child o#’;
if ¢/ is a simple edgéhen
if the option is using radius as the kien
Inserte’ into @ usingradius(e’) or connectivity(e’) according to
L the algorithm option;

—h

oreach 1-facee in the new 1-compledo
if e has two or more childrethen
Find the two children oé that have the largest radius; ande;
L wideness(e) <« (radius(ey) + d(e, e1) + radius(es) + d(e, e3))/2;
else
| wideness(e) < radius(e);
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CHAPTER VII

Topology Correction

Although human cortices are highly convoluted and fold iffiedént ways, the cortical
surface should be topologically equivalent to a spheredafdpening at the brain stem is
artificially closed. Topology correctness is an importaguirement in the cortical surface
reconstruction process while topology defects or errorginiy in the form of handles,
may arise in MR image segmentation due to various imageaetsif In this chapter, we
present a volume-based and multiscale morphological apprfor topology correction of
white matter [109], based on which topologically correa@ygmatter can be produced and
the topologically correct cortical surfaces can be geeeératith the existing isosurfaces
algorithm [110]. Extraction of topologically correct cextand reconstruction of cortical
surfaces will be presented in the next chapter.

7.1 Topology Correction Preserving Surface-likeness

Our method for topology correction is mainly motivated bg thbservation about the
surface-likeness of white matter (WM) and gray matter (GMhe surface-likeness of cere-
bra WM is apparent by comparing the cerebral WM and its sarfkeleton, as shown in
figure 7.1. To preserve the shape of surface-like objectsctist of handle cut in blue in
figure 7.2 should be greater than that of a cut in red becaesebject is “wider”, in other
words more like a surface, at the blue part than at the red génbugh the object is thin-
ner at the blue part. Similarly, we should fill the tunnel.(icait the associate background
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handle) in the right object in figure 7.2 instead of cutting foreground handle. In this
chapter, we describe a morphological topology correctn() filter that cuts all handles
at a specific scale of cost evaluated in terms of the widerfdbg @bject.

(a) Cerebral WM (b) Thin surface skeleton

FIGURE 7.1: Surface-likeness of cerebral white matter

Gea

I // /I/|;|||//////

FIGURE 7.2: Topology correction adapted to the surface-likeness pHaib

7.2 Three-fold Topology Correction

Traditionally, volume-based methods of topology cor@cttof the white matter are
two-fold in that there are two basic types of tunnel fillingtiig the tunnels of the white
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matter or filling the tunnels of the complement of the whitetera Note that the second is
equivalent to cutting the handles of the white matter. Whkiena tunnel of an object (the
white matter or its complement) is filled, the points usedItdaHe tunnel are always from

the complement of the object.

Brain MRI segmentation, however, is usually able to sepats grey matter from the
rest of the complement of the white matter and there is ecemé&rmation provided by the
prior segmentation that is not used by the traditional telo-fnethods. Let three seW,

G andBG respectively represent WM, GM, and background(includiigFCproduced by
the prior brain tissue segmetnation. When a tunnel of theewhatter is filled in the two-
fold method, there are generally three possibilities oncttraposition of the points used
to fill the tunnel: the points are only fro; the points are only fron8G; or the points
are from bothg andBG. Considering the radiological property of T1-weightedibidRI
(the average gray level of air, cerebrospinal fluid, greytemaand white matter are in the
ascending order) and the layered organization of WM, GM, laackground regions, it is
reasonable to assume that the points fi8éhhave less credibility of actually belonging
to the white matter than points frog. In other words, it is reasonable to prefer to use
exclusively the points frong to fill the tunnels inW. Points inBG are used to fill a tunnel
in W only when necessary (i.e. when the tunnel is passed thropghdor more handles
in BG). Based on this rationale, a three-fold topology correctreethod has been invented
that involves three types of tunnel filling: filling the tunsef the union oG andBG using
points fromW (i.e. cutting the handles in); filling tunnels of VW using points frong;
and filling tunnels of the union @§ and»V using points fron3G. Note that the third type
creates more chances for the second type tunnel filling.

7.3 Multiscale Topology Correction

Our algorithm gradually eliminates topology handles witlcreasing scales of cost.
The core algorithm is a morphological topology correctidiTC) filter that fills tunnels
in an object (i.e, cuts handles in the complement of the dppcthe specific scale of
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cost. At each of a sequence of increasing scales (e.g.,sscald, 1, 2, etc.), MTC is
successively applied for correcting topology of WM. MTC @sates a larger correction
cost to topology corrections (e.g., cuts) at locations mga larger surface-like property
(i.e. wider regions).

The input to the topology correction algorithm is the prgrmentation result in three
setsW, G andBG representing WM, GM, and background (including CSF) respely.
Necessary preprocessing operations are performed tocertfuat)V forms only one con-
nected component and contains no cavities @hdhould not be connected #8G. Algo-
rithm 9 illustrates the topology correction of the white teai)V) in a multiscale manner
starting from scales of 0. At the end,V should be homotopic to a ball. An object is
homotopic to a ball if we can keep removing simple points ftbobject ending up with
a single point. The details of MTC is described in the follog/section and presented in

algorithm 10.

Algorithm 9: Topology correction of white matter
Data: presegmentation result in three sg¥s G andBG
Result Topologically corrected white matter set
s «— 0;

while true do
Perform MTC at scale to fill tunnels ofG U B¢ (i.e. the complement of))

using points fromV. The points used to fill the tunnels are moved frivito G.
Put it in other way, this step cuts the handle$/fat scales;

if W is homotopic to a balthen
| Terminate the loop;

Perform MTC at scale to fill the tunnels ofg U W (i.e. the complement d8G)
using points fromBG. The points used to fill the tunnel are moved fr&@ to G.
In other words, this step cuts the handle#3¢f at scales;

Perform MTC at scals to fill the tunnels ofYV using points frony;. The points
used to fill the tunnels are moved fragnto W;

Fill cavities (if any) inW. In rare situations new cavities may be create#\in
by the above step;

if YW is homotopic to a balthen
| Terminate the loop;

| s« s+1,;
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7.4 Morphological Topology Correction (MTC) Filter

A typical application of the MTC filter is to fill the tunnels @bject X’ using points
from a setM C X at a specific scale. Put it in another way, the MTC filter cuts the
handles of the complement &f by moving a subset of points froriv to X'.

A minimal set of connected points C M used to fill a tunnel (or multiple tunnels
simultaneously) is referred to adik of X. It can be also referred to ascat of X in the
handle-cutting perspective. In other words, a fill of tusnalX’ is a cut of handles in the
complement oft'. A characteristic of a filF of X is that it contains no multisimple points
relative toX' \ F, that is, adding any point ifi into X' \ F will create at least a new handle
in X \ F. This implies that a fill must be minimal in that removal of gmpper subset of
the fill will lead to filling fewer or no tunnels.

Locating fills at a specific scale depends a morphologicataijma called iterative
shape-and-topology-preserving geodesic dilation (ISDP Gerative shape-and-topology
preserving dilation (ISTPD) ot at scales corresponds to iterative shape-and-topology
preserving erosion (ISTPE) of its complemetitat the same scale while the latter can
be seen as the partial curve skeletonization in which therdobp is performed only /2
iterations (see algorithm 6 in chapter VI). To fill tunnelsAfat scales using points in
M, MTC first performs ISTPGD orX’ with respect toM at scales. ISTPGD behaves as
the same way as ISTPD except for an additional conditionahgtpoint added tar (i.e.
eroded fromX) must be in the seM. Let X’ be the dilated set ot and) = X” be the
eroded set oft’. We then recognize all thin-curve points relative)to Among all thin-
curve points, there may be some handle points relatiyé tBemoval of any handle point
relative to) breaks one or more handlesyh Since) is topologically equivalent t&’, we
can trace a cut at’ from each handle point relative 8. Furthermore, the mechanism of
ISTPGD determines thaX is approximatelys-voxels wide at the place where each handle
point locates. Therefore, we can trace a cubofi.e. a fill of X) approximatelys voxels
wide, from each handle point. In the next section, we descailprocedure of geodesic
dilation for extracting all fills ofY" at scales starting from handle points relative 3.
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7.5 Geodesic Dilation With Topology Control

After ISTPGD is applied ok’ with respect toM at a specific scale resulting in eroded
object), where) C X, the set of all thin-curve points relative 3 are recognized and
denoted a®k and referred to as thesidual setLet thebody sebe 53 = )\ R. In order to
extract fills of tunnels inY’ at scales (i.e. cuts of handles i at scales), we first extract
cuts of handles i) at scales, based on which the final fills at scal@re extracted.

Although removal of one handle point iR from )’ breaks one or more handlesjh
at scales, simultaneous removal of all handle pointsifrom ) may be not necessary
to break all handles iy at scales, may break) into several connected components, and
even may create new handles. For example, in the object éidj@:ency) in figure 7.3,
points 7 to point 30 are all identified as residual point at.fiBut removal of the residual
point 7 and 30 simultaneously creates a new tunnel in thecbbj®ur solution to this
exception is that any thin-curve point is taken as a residaait only if T;;(p, B) = 1. In
this way, it is guaranteed that removal of all residual pointll not create new handles.
To find the minimal set of handle points for cutting handle®’iand the final fills ofY” at
scales, we propose a procedure including three stages of geodieions with topology
control. These three stage of dilations together with tha& popology correction steps are
illustrated in figure 7.4.

1 7
8 9 10
2 3
27 5 12 11
26 13
28 | 29| 30 | 4
25 14
24 /| 15
23 22 | 21| 20| 19| 18| 17| 16

FIGURE 7.3: An example of residual points.

The following three dilation stages iterate in the same reaniihe dilation in every
stage involves a seed sefand a condition s&l. In each iteration of every stage, any points
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(a) Original objectt’ with (b) Eroded at a certain (c) Residual points re-
a handle scale moved

(d) Result of first stage (e) Result of second (f) Result of third stage
dilation stage dilation dilation

FIGURE 7.4: Illustration of all stages of topology correction

in C that are adjacent t8 are marked first and then are moved frénto S if they satisfy
some additional conditions. The iteration terminates thestage if no more points can be
moved.

In stage 15 is the seed set ard is the condition set. The task of dilation in this stage
is to recognize and recover the finger points from the resisktato the body set. In each
iteration, a marked point is identified as a finger point and recoveredijf(p, R*) < 1,
andp is m-adjacent to a body componeBt with degree(3;) = 1 and is multisimple
relative toB at the moment of recovery. Herkgree(B;) denotes thaelegreeof a body
componentB; and is defined adegree(B;) = ZNR T,.(r;, B;), wherer; represents a
thin-curve point inR and N represents the total number of pointsin degree(B3;) can
be seen as the number of ports at whit;hs connected t&R. R* refers to the union gR
and all body components with degree greater than 1. Wheiepemt is recovered, it is
moved out ofR to B.

In stage 2, a minimal set of handle poiR$ € R is identified andR \ R* is recovered
from R to B. When multiple handle points relative 30exist whose removal frory break
the same handle i, the dilation procedure only choses the handle point in tidella and
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recover others. In this stage, the condition séRiand the seed set I$. In each iteration
of stage 2, a marked point is recovered if it is multisimplatiee to B at the moment of
recovery.

In stage 3, the seed set3svhile the condition setig’\ B. A marked point is recovered
if it is multisimple relative toB at the moment of recovery. Eventually, the objatts
recovered as the newest body Betxcept for the points in the cuts that cut the handles of
X (i.e. the fills that fill the tunnels o).

Since a recovered point has to be multisimple relativ8,tthe number of handles in
B is not changed. Merging of body components may happen andsisatble. In rare
situations, however, there might be more than one connettegbonent in the resultant
body set and we only keep the largest component in the casargf points from WM to
fill tunnels of the union of GM and background (i.e. cuttinghtiees in WM).

7.6 Related Work

In order to generate topolocially correct cortical surta¢bere have been two basic ap-
proaches proposed in the literature. The first approachsegptopology constraints in the
procedure of segmentation [111, 112], typically in defdoleanodel based methods, start-
ing with a model of the cortical surface with correct topaloghe topology of the model
is preserved in the deformation procedure of the segmentalihese methods share the
disadvantages of the original segmentation methods andleaayto unpredictable mor-
phometrical states. Retrospective topology correcticthésmainstream approach in the
literature for extracting topologically correct corticalrfaces. They take as input the re-
sult of the pre-segmentation and eliminate all topologedefresulting in cortical surfaces

homotopic to a sphere.

Topology correction methods can be classified into two typegace-based and volume-
based methods. Surface-based methods first extract theatsrrfaces represented as a
triangle mesh and perform topology correction on the setfsolume-based methods first
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Algorithm 10: Morphological topology correction

Data: Two setst and M < X in m-adjacency and a specific scale

Result A new setX”’ with tunnels at scale eliminated.

[+ The task of the algorithmis to fill tunnels in X
using points from M at scale s * [

Perform shape-and-topology-preserving geodesic dilatfot’ with respect toM.

Let ) be the complement of the dilated set;

Recognize thin-curve poin®® € ). Let the body seB = )Y \ R;

foreach pointp in R do

if Ti:(p, B) > 1 (m is the adjacency @) then
| Movep from R into B;

/* First stage dilation */
terminate <— false;

while terminate = false do
terminate < true;

Mark all points inR that arem-adjacent tads;

foreach marked poinp do
if p is m-adjacent to a body componefit with degree(B;) = 1, pis
multisimple relative td3, and7,,,(p, R") < 1 then
L Move p from R to B;

terminate <— false;

/* Second stage dilation * [
terminate — false;

while terminate = false do
terminate < true;

Mark all points inR that arem-adjacent ta3;
foreach marked poinp do

if p is multisimple relative t& then
L Movep from R to B;

terminate «— false;

/+* Third stage dilation * [
terminate «— false;

while terminate = false do
terminate < true;

Mark all points inC = X' \ B that arem-adjacent td3;
foreach marked poinp do

if p is multisimple relative t& then
Move p from C to B;

terminate «— false;

X' — B;
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perform topology correction on the image volume and thenaekthe isosurface of the
topologically correct volume.

Surface-based methods include the methods of Guskov [Wi&}d [114], and Jaume
[115, 116]. Guskov’s method is based on wavefront propagaflhe topology handle, or
equivalently hole, is detected by tracking the splittingl amerging of the front. Wood’s
method is based on the extended Reeb graph, a graphicateepagon of the topology
of the surface. Topology handles are eliminated by remoailapp in the surface and the
cost of the removal is measured in terms of the length of thp.ldcach topology handle
has to be detected and corrected separately, which mednker@mputation complexity
depends on the number of handles in the surface. Jaume &ll@&uskov’'s and Wood'’s
method with improved computation efficiency and topologgrection accuracy.

Volume-based methods include the methods of Shattuck [H&h [118], Segonne
[119, 120], and Kriegeskorte [121]. Shattuck’s methods®dlased on Reeb graph. Topol-
ogy correction is performed in a multiscale manner on theevmatter. Starting from the
smallest scale, the handles whose elimination cost is entaln the scale are eliminated at
each scale. The volume are then updated and topology dorr@cintinues with increased
scale if the task hasn’t been completed. Handle eliminatast is measured in terms of
the number of removed voxels. One of the major limitationSléttuck’s method is that
the cut of the handle can only be oriented along cartesias dk&n also took a multiscale
approach and broke the above limitation. Candidate handkare localized by succes-
sive morphological opening. Therefore, the cost of hanlitheieation is mainly measured
by the distance-to-surface metric. A graph-based methtteis used to determine the fi-
nal handle cuts attempting to minimize the number of remaxeetls at a specific scale.
Segonne and Kriegeskorte’s methods also evaluate the fthahdle elimination in terms
of the distance-to-surface metric and topology correasaronducted in a region growing
form. Using the distance-to-surface metric as the cost areasent ends up with cutting
handles along thin regions of the object. Due to the surfitegess of the white matter,
these methods may incur significant modification to the slofpige white matter.

The major novelty of the present method lies in the way thedlgalimination cost
is measured. The present method considers the speciahtsditke” shape of the white
matter and assigns higher cost to the handle cuts that wealtl to more modification
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to the “surface-likeness” of the white matter. The “surféikeness” of an object can be
guantitively measured in terms of the similarity betweendbject and its surface skeleton.

To our knowledge, all exiting methods correct topology defdy elimination of han-
dles either in the foreground or the background. The pres®thod conducts handle
elimination on three associated objects: the white matigra, the gray matter object, and
the background object. It is reasonable to believe thattBespgmentation provides credi-
ble information that voxels labeled as “background” haws lgossibility of actually being
white matter than those labeled as “gray matter”. Topologfedts in the white matter
volume can be corrected in three ways: cutting handles iwthte matter volume, cutting
handles in the gray matter volume, or cutting handles in theruof the gray matter and the
background. The third way is assigned a lower priority thendther two. In other words,
the topology correction solution without modification tethackground is preferred.
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CHAPTER VIII

Segmentation Pipeline

In this chapter, we present a neuroanatomical segmentapefine integrating various
techniques presented in previous chapters for extractioerebral white matter and gray
matter as well as reconstruction of cortical surfaces. Bgenentation pipeline starts with
relative thresholding to obtain an initial voxel classifioa. The following steps can be
regarded a series of correction procedures on the claswifiearors produced in the initial
step. We propose an technique called “terrain analysisgg¢ognize thin parts of WM and
CSF that are missed by relative thresholding. The entireoSgbxels labeled as WM
is then processed by the multiscale morphological topologyection procedure. The
topology correct WM set contains the cerebral white matterte matter in other parts of
the brain, as well as some positive errors. Cerebral whititemis then extracted from its
superset based on the cell complex analysis while preggtivencorrect topology. Cerebral
gray matter extraction benefits from the prior segmentadiocerebral white matter and
exploits the layered structure of GM/WM and the nearly umifahickness of cerebral
cortex. Finally, we use a topologically consistent marghamibes isosurface algorithm
[110] to generate the triangulated surface representafioartical surfaces.

8.1 Relative Thresholding

Relative thresholding serves as the initial voxel classiftsn procedure in the entire
segmentation pipeline. It classifies all voxels in the geasel T1-weighted MR image into
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three types: white matter, gray matter and backgroundydicy CSF). It is essentially a
procedure of intensity comparison between near voxelgalmngradient flow with respect
to two relative thresholds. First, a relative thresholdwsstn GM and WM is used to
classify all voxels into WM and non-WM. Then, the non-WM véxare further classified
into GM and background with a relative thresholding betw€&# and GM.

Relative thresholding is effective because it is based druatsre and image modeling
approach that exploits varioaspriori knowledge. First, we know priori that CSF, GM
and WM form a layered structure. Second, we kreowviori that the gray level of CSF, GM
and WM is in ascending order in any local regions in T1-wesgh¥IR images. Third, the
intensity inhomogeneity that complicates image segmiemtats a beneficial property that
it can be seen as a signal field with very low frequency. Fouht thickness of cerebral
cortex is nearly uniform. The detailed formulation of ratatthresholding exploiting these
a priori knowledge is presented in chapter lll.

The major advantage of relative thresholding is that it isusi to intensity inhomo-
geneity without needing to treat the image artifact explici In other words, intensity
inhomogeneity is transparent to relative thresholdindigbat the procedure is performed
as if there was no intensity inhomogeneity in the image aRalative thresholding is also
able to adapt to large intensity variations within a giveaibtissue and thus tends to pro-
duce more accurate segmentation. It can also be seen as ageweatection method that
avoids shortcomings of the traditional methods. Firstraidoaces coherent regions labeled
with brain tissue types. Second, it is able to recognizerbtluedges and tissue boundaries
where intensities vary smoothly. Third, itis able to suggrepurious edges between voxels
of same tissue types.

Relative thresholding is a very efficient procedure. The naa select different relative
thresholds and see the result in real-time. When automegjmentation achieves a less
than acceptable results, user intervention with a few dlpaemeters actually provides a
simple and effective mechanism to steer the segmentatiotarAatic selection of relative
thresholds is under study.
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For convenience of description in the following section,demote the set of WM, GM
and background voxels generated by relative thresholdisgeactively a3V°, G°, and5°.
The initial tissue segmentation result using relativeghading is illustrated in figure 8.1.

(a) Aslice of MR image (b) Relative thresholding result

FIGURE 8.1: Relative thresholding result

8.2 Terrain Analysis

Due to limited resolution in image acquisition, there argaf white matter and CSF
blurred by partial volume effect plus smoothing filteringdaimereby missed by relative
thresholding. These misclassifications are mainly refteatepositive errors of gray mat-
ter. In this section, we present a technique calrdain analysisto recover these missed
structures.

Terrain analysis borrows some notions in terrain classifinafor further and more
reliable classification of voxels ig° into thin WM, thin background, and GM. Here we
are interested in three terrain types: ridge, valley, aongdesl A point in the terrain surface
is intuitively taken as a ridge if the altitudes of its two giebor points along the pair of
principle directions are both lower than that of the ridgéenpoBy the pair of principle
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directionswe mean two nearly opposite directions that are steepesthosde projections
onto the sea-level plane form an angle closé&0°. Similarly, a point in in the terrain
surface is avalley pointif the altitudes of its two neighbor points along the pair ahpiple
directions are both higher than that of the valley point. &slope pointthe altitude of one
of its neighbors along the pair of principle directions iglmer than that of the slope point
while the altitude of the other is lower.

We can perform terrain analysis in a 2D image taking the geagllas the altitude
and the image plane as the sea-level plane. Terrain anabysialso be generalized in 3D
images with additional computation. Given a T1-weighted MRage that is Gaussian-
smoothed at a small scale, we can make an informal obsemvhtid thin WM parts corre-
spond to ridges, thin CSF parts correspond to valleys, ando@ité correspond to slopes.
This observation is reasonable in terms of the order of aeegaay levels of CSF, GM, and
WM in T1-weighted MR images and the layered structure of lined brain tissues. Figure
8.2 gives an example on how terrain analysis can improvertitialitissue segmentation

using relative thresholding.

(a) Partof a MR image slice (b) Relative thresholding result  (c) Terrain analysis result

FIGURE 8.2: Terrain analysis result. New valley and ridge points argealdand shown
with blue and red respectively.

There are two options in terrain analysis: the scale, andhenaet is performed in
2D or 3D. The scale represents the size of the neighborhowdhich terrain analysis is
performed. If terrain analysis is performed in 2D, then the& pf principle directions can
only be in thex, y, or z plane that intersect with the point in question. In 3D, thi& pa
principle directions can be in the 3D space. k&t the scale of terrain analysis. Then the
size of the neighborhoad/*(p) at scales of a pointp is (2s + 1) x (2s + 1) in 2D and
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(2s+1) x (2s+1) x (2s+1) in 3D. A constraint on a candidate pair of principle dirento
is that the two directions must form an angle= [135°, 180°].

Given a pointp and a candidate pair of principle directiofi, d,), we can determine
the two sets of point®; andD, at scales. Each point irD; is in the neighborhood/* (p)
and along the direction;, for i = 1,2. We then calculate the average gray levels (or
weighted average with weights set according to how the timepass through the points),
my andma, for points inD; and D, respectively. Lety, be the gray level of poinp.

We can calculate a metrsteepnes$or p at scales with respect to the candidate pair of
principle directiongd,, d») assteepness(p, s, dy,ds) = ymy — yp| + |mae — y,|. We can
then determine the terrain type fpat scales with respect tdd,, d,) as:

terrainType(p, s,dy, dy) < ridge, ifmy > i, A mg > yp;
terrainType(p, s,dy, dy) < valley, if my < y, Ama < y,;
terrainType(p, s,dy,dy) < slope, otherwise.

To perform terrain analysis for poiptat scales, we calculate the steepness and determine
the terrain type fop with respect to each candidate pair of principle directiahscale

s, for s’ = 1,2,...,s, and select the terrain type with the greatest steepnesgedmal
result. Note that the gray level image is Gaussian-smoah#te same scale as that used
in relative thresholding for intensity comparison.

In practice, we first perform terrain analysis at scale 2 foints inG°, which is divided
into three sets: the set of ridge poirkeé, the set of the valley points?, and the set of
slope pointsS2. Then we perform terramin analysis at scale 1 for pointg?in S2, which
is divided intoR!, V!, andS*. Eventually we update the set of WM, GM, and background
asW! = WO UR? B =B UV andG! = ST URL

8.3 Topology Correction Of White Matter

Topology correct white matter should contain only one haridat is formed by two
cerebral hemispheres and the brainstem, while cerebraéewmatter should contain no
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handle. However, topology defects usually arise in theltegenerated by relative thresh-
olding and terrain analysis. We use a multiscale morpholigipproach to eliminate the
topology defects in the white mattey’. The method is multiscale in that handles/tunnels
of smaller size are eliminated in prior to those of largeesizZThe cost to eliminate a
handle/tunnel (i.e. the size of the handle/tunnel), isrdeiteed by the wideness of the han-
dle/tunnel so that the topology correction procedure lgrgeeserves the surface-likeness
of the white matter. Unlike two-fold topology correction theds that involve a foreground
object and its complement, our method performs in a thréerf@nner in that it involves
three disjoint objects, WM, GM and background, so that mafermation provided by
the prior voxel classification step is utilized in the toppjaorrection step. Such a three-
fold mechanism and consideration of surface-likenesseWihite matter in the multiscale
framework gives rise to robust topology correction thatdues reasonable topology cor-
rection solutions.

Topology defects, particularly tunnels in core regions diiter matter, may severely
affect the connectivity of the white matter. Thereforepatiating such topology defects
provides more reliable data for subsequent processing sit@p analyze the connectivity
of the white matter for cerebral white matter extractionb&quent processing of cerebral
white matter preserves the correct topology and cerebegl gratter processing is depen-
dent on the topology correct cerebral white matter. In alhology correction of white
matter is meaningful not only in the sense of the correctltmppoof the final result but also
in the sense of feeding more reliable intermediate restibsequent processing steps.

For the convenience of description, we denote the set of Wiké&lgoafter topology
correction agV?. It contains three parts: cerebral white matter, non-gatathite matter,
and voxels that are mislabeled as white matter. In the netiose we describe how to
extract cerebral white matter froby?.

Figure 8.3 demonstrates the behavior of the method on etmighandles in the white
matter and the resultant cortical surface after topologgeotion. The handles in the white
matter are removed by filling the associated tunnels (iegthy matter handles). After ini-
tial tissue classification, there is usually a handle forimgthe two cerebral hemispheres,
the corpus callosum and the brainstem. Although the hasdieuich thicker at brainstem
than at corpus callosum, our method is able to break thisleatdhe brainstem where it
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is more narrow than other places along the handle. This mshio figure 8.4. Finally,
note that topology correction is performed on the superfsistectirue white matter. This is
illustrated in figure 8.5, where a handle in the non-braisutsis cut.

(a) Before tunnel filling (b) After tunnel filling

FIGURE 8.3: Tunnel filling in topology correction

(a) Before tunnelfilling  (b) After tunnelfiling (c) After tunnel filing and cerebral
WM extraction

FIGURE 8.4: Brainstem breaking in topology correction

8.4 Cerebral White Matter Segmentation

After topology correction of white matter, the s8t* is composed of the following
subsets: cerebral white matter, brainstem, cerebellaewimtter, and voxels misclassified
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(a) Before handle elimination (b) After handle elimination

FIGURE 8.5: Handle elimination in topology correction

as white matter. Furthermore, cerebral white matter canviged into two cerebral hemi-
spheres and the corpus callosum. Locating and extractietyad white matter is based on
the assumption that there are three scales of connedibiéieveen those subsets)we:

¢ the low scale of connectivity is at the brainstem and betwaenponents of WM
voxels and those of misclassified WM voxels;

e the medium scale of connectivity is at the corpus callosutwéen two hemispheres;
¢ the high scale of connectivity is within each cerebral hgimée itself.

We will utilize the high scale of connectivity within cerebrhemispheres to locate the
cerebral white matter and the low scale of connectivity twaet the cerebral white matter,
while the connectivity is measured with the algorithm of ceimplex based morphometric
analysis (CCBMA) .

The entire procedure of cerebral white matter extractiorsists of the following steps:

1. Thick-surface skeletonization ®9? resulting in thick surface skeleta;
2. Thin-surface skeletonization &% resulting in thin surface skeletd;

3. CCBMA of §; ending up with a 1-comple in which each edge is assigned three
metrics: connectivity, radius and wideness;
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4. Locate the center of each cerebral hemisphere;

5. Dilate the center of both cerebral hemispheres to obtaor@cerebral white matter
K,

6. Dilate to reconstruct the thin surface skeleton of cerebral wha#enS;’;
7. DilateS; to reconstruct the thick surface skeleton of cerebral whigtterSs;’;
8. DilateSy to reconstruct cerebral white matter and restore its tapolo

The final result of cerebral white matter is denoted/\as

We have presented surface skeletonization in chapter V &@BMA in chapter VI. In
the rest of this section, we will describe step 4 in subsaddd.1, step 5 and step 6 in
subsection 8.4.2, step 7 and step 8 in subsection 8.4.3reF&)6 gives an illustration of
step 5 through step 8. Localization of the cerebral hemispbenters is demonstrated in
figure 8.7.

8.4.1 Locating Cerebral White Matter

SinceW? contains no handles and surface skeletonization and CCBidAoaology-
preserving, we are guaranteed that the 1-comg@lerntains no loops and can be seen as
a tree7 consisting of a vertex séf and an edge s&. Letv; € V andvy, € V be any
two distinct vertices in the tree, then there must be a path,, vo) = {v§, v§,...,v5} in
7 connectingy; andv,, wherev§ = v, andv’, = vy. The pathP¢(vy, v9) is referred to as
the corpus callosum patbecause it should pass through the corpus callosumahdwv,
are the centers of the two cerebral hemispher¢ss referred to as theorpus callosum
neighborof v, in P¢(vy,v9) andv’_, is referred to as theorpus callosum neighbaf v,
in P<(vy,v9). The following formulation defines a weight for each vertexin the tree so
that we can select the pair of vertices with the greatesthteig the centers of the cerebral
hemispheres.

Given a pair of verticegv;, vy) and its corpus callosum path(vy, v2), we define a
hemisphere patbf vertexv € {v, v9} with respect ta’s corpus callosum neighber in



(a) Cerebral WM core (b) Reconstructed thin surface skeleton of
cerebreal WM

(c) Reconstructed thick surface skeleton of (d) Reconstructed cerebreal WM
cerebreal WM

FIGURE 8.6: Cerebral WM segmentation
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FIGURE 8.7: Maximum hemisphere paths( in red) and corpus callosum (patreen)
and their enbedding in cerebral WM

P<(vy,v9) as a path iff” of length less thad; (empirically 200mm) that passes through
but notv¢ and denote it a®" (v, v°).

For a hemisphere path”(v,v¢) = {vf, v, ..., vl = v, vl ..., 0!} of vertexv with
respect ta’s corpus callosum neighbef in P¢(vy, v,), we define its weight as

m—1
weight(P"(v,v°)) = Z weight(e(vj, vj11),v),
§=0
whereweight(e(v;, vj41), v) refers to the weight of edg€v;, v,,1) with respect to vertex
v. Let P = {vy = vy, v4, ..., v, = v, } be a path ifl” connecting vertex, andv,, then we

define the weight of edggv,, v,) with respect ta, as

weight(e(vy,v,),v,) = min(connectivity(e(vy, v1)), connectivity (v, v2),

..., connectivity (v,_1, v,)), connectivity(vy, v,))).
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We further define the weight of a vertexc {v;, v2} with respect to its corpus callosum
neighborv® in P¢(vq, v,) as the greatest weight of the hemisphere pathswith respect
to P°(vq,v2) and denote it aweight(v,v°). Here, the hemisphere path with the greatest
weight is referred to thenaximum hemisphere pati vertexv with respect taP¢(vy, vs).
Finally, we define the weight of a pair of vertéx, v5) as the weight of the one of them
with lower weight. The criterion of finding the hemispherats is that the pair of ver-
tices (v}, v3) with the greatest weight is taken as the centers of the carBbmispheres.
Exhaustive searching for the center vertices are impmctioe to its time complexity.
Next, we will present an efficient and effective searchirgpathm, which depends on an
ordering of the strength of the branches connected to eatéxva the tree.

For any vertexv in the tree7, let A/(v) be the set of vertices connectedutavith a
single edge. Each incident vertexe N (v) corresponds to a branch of the tree if we take
the current vertex as the root of the tree. We consider the p&th= {vy = v,v; =
Vi, Vg, ..., U } OF length less thanadius(e(v, v;)) and define thetrengthof the pathP? as:

n—1

strength(P®) = Z weight(e(vj, vj11),v),

=0

whereweight(e(v;, vj11),v) refers to the weight of edg€v;, v;1) with respect ta.

We further define the strength of the directed edje v;) as the maximum strength
of all paths headed byv; whose length are less thandius(e(v,v;)). For each vertex
v, we can compute and order the strengths of all directed eelgesated from. The
directed edge with the greatest strength is referred to eptimary edge ot and the
corresponding neighbor vertex is referred to as the primarghbor ofv and denoted as
N'st(v). Similarly, we can define second and tertiary edge and neigbw, if any. The
secondary neighbor and tertiary neighborvoére respectively denoted a6**¢(v) and
Ngrd(v).

Having computed the strengths of edges emanated from eaigxvwe 7, we reduce
the searching space of hemisphere paths ef {v;,v,} with respect tov’s corpus cal-
losum neighbor® in P¢(vy,v,) by only considering path®”(v) = {vg,v1,...,v; =
U, Vi1, -, Uy } SUCH that:
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vi_1 = N (v) andv;; = N?4(v) if v¢ = N39(v)
vi_1 = N (v) andu; ., = N34(v)  if v¢ = N2(y)
vi_p = N?(y) andu;, = N¥4(v) if v¢ = N5 (v)
Vi1 = let(vj) if Vit 7& let(
vy = N2M(y;) i vy, = Nt
Vjg1 = let(vj) if Vi1 7& let(

(

— 2nd i _ 1st
Vj41 = N (’Uj) if Vj—1 = N Vj

Uj . :
forj=1,...,i—1
Uj

U.
forj=i+1,1,..,m—1

)
)
)
)
This is essentially an act of searching for hemisphere pdth®nly along strongest avail-
able edges starting from It is an effective heuristic and dramatically reduces @arsh-
ing space. In this efficient algorithm, the weight of a vertex {v;,v,} with respect to
its corpus callosum neighbof in P¢(vy, v,) is also determined at the same time while its
maximum hemisphere path is found.

To find the centers of cerebral hemispheres, we start fromeatexv in 7 with degree
greater than 1 and assume it is in the target corpus callostim ghen we initialize the
corpus callosum path ag'*!(v)vN2"?(v) and have two sides to search for the hemisphere
centers respectively. At each side, we further reduce cachang space by marching
along the strongest available edges (a similar procedutieatdfor finding the maximum
hemisphere path of a vertex). At one side, we can find a vesteith greatest weight with
respect to its corpus callosum neighboiif(v,, v); at the other side, we can find another
such vertex,. (v,,v,) form a candidate pair of hemisphere centers with weightdtir
minimum of their weights. The pair of vertex with greatesigi is selected as the target
cerebral hemisphere centers. This procedure is presengdgarithm 11.

Sometimes there may be large patches of skull structudé’inwvhich possess large
connectivity as well as large wideness. To differentiagséhstructures from cerebral white
matter, which possess large connectivity and limited wedsnwe modify the connectivity
of each edge ifT used in locating cerebral hemisphere centers such that:

connectivity(e) < connectivity(e) ifwideness(e) < 180mm

connectivity(e) < connectivity(e) * 180/wideness(e) ifwideness(e) > 180mm
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Algorithm 11: Finding cerebral hemisphere centers

Data: Atree7 = (V, ) spanning the surface skeleton)of
Result Cerebral hemisphere centgrandv;

weight® «— 0;

foreachvertexv € V such thatlegree(v) > 1 do

weight, «— 0; vy «— N (v); v} — vy v, — v;

while degree(v,) > 1 do

if weight(v,,v,) > weight, then

Uy < Ugs
L weight, — weight(v,, vS);
Vy <= Vg,
if v, #£ N'(v,) then
L Uy — let Um)
else
L Uy — N2nd U;c)

wezghty — 0; v, — N2 (y); vy
while degree(v,) > 1 do
if weight(vy,v,) > weight, then

<_Uy;vz — v,

v, < Uyy
weight, < weight(vy, vy);
Vy = Uy,
if v, # N'**(v,) then
L v, — let Uy)
else
L vy Nan(,Uy)

wezght( vy, vy) < min(weight,, weight,);
if weight(vy, vy) > wezght* then

weight* «— weight (v
v} U vy vy

Ugs y)
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8.4.2 Reconstruction Of Thin-surface Skeleton Of Cerehfaite Matter

Having identified the cerebral hemisphere cent¢rsndv;, we then use a connectivity
thresholdt. to determine the cerebral white matter c&fehat is connected to; andv;
above a certain scale. Formally,is a set of vertices and edges defined as follows:

1. {v,vi} C K;

2. For any vertex € K, its incident edge(v,v’) € C! is in K if connectivity(e) > t.
andradius(e) > t./3;

3. For any edge € K, its child edgec’ € C? is in K if connectivity(e’) > t. and
radius(e’) > t./3 (the "parent-children” relationship between edges istdistiacd
in CCBMA);

4. For any edge(v, v2) € K, its incident vertices; andwv, are also inc.

Given the kernel set of cerebral white matter, we reconsthecthin surface skeleton
S" using the following simple rules:

1. £ cSv;

2. For each edge € K N C!, any edgee’ € C! that has a path of length less than
radius(e) is also inSY;

3. For each edge € S", its child edges are also &";
4. For any edge(v, v2) € §¥, its incident vertices; andwv, are also inS™.

The setS™ contain both vertices and edges. We specially$is¢o denote the voxels
corresponding to the vertices &”. Note thatS;}’ is a subset of the thin surface skeleton
81 of W2, IeS{“ - 81 - 82 - Wz.
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8.4.3 Reconstruction Of Cerebral White Matter

By reconstruction of surface skeleton of cerebral whitetematve have divided the set
S, into two subsetsS}” andSy” = S; \ §. Now we reconstruct the thick surface skeleton
of cerebral white matter, denoted 8. Let Sy = S, \ Sy. First of all, it is obvious
thatSy* C Sy andSy C SY, therefore, the task is essentially to sepagté S; into
two parts: those i85y’ and those inSY". The simple rule that we follow here is that for
each voxelb € S, \ &, if the geodesic distance offrom S}’ with respect taS, is less
then that fromSY, thenv is in Sy’; otherwisep is in §. The geodesic distance between
v andS}” with respect taS, is the length of the shortest pathdh connectingy andS;".
Having determined the thick surface skeleton of cerebraewvhatter S5’), we reconstruct
the cerebral white matter, denoted)ds~ such that:

1. S C W3

2. For each voxel € S¥, any voxelv’ € W? whose distance from is less than or
equal tod(v) is also inWW3~, whered(v) is the distance of from the boundary of
W2,

The procedures described above do not enforce particydatdgy control and the re-
sult W3~ is not necessarily topologically equivalentit?. To restore the correct topology
on W3~, we perform a topology-preserving erosion Wi¥ with respect toV?~. Itis a
process that keeps removing voxels frdf* until no more voxels can be removed. Each
voxel v removed from? must satisfy the following conditions:

e v is a simple point with respect td/? at the moment of removal;

e vis notin the seWW’;

Let W3 denote the result of this conditional topology-preservimgsion. It represents
our final set of cerebral white matter voxels. It is a supedéety®>~ and topologically
equivalent to/V?, i.e. topologically correct.
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8.5 Cerebral Gray Matter Segmentation

Segmentation of cerebral gray matter is based on the prgpgneetation of cerebral
white matter and utilizes the followirg priori knowledge:

e The thickness of cerebral cortex is nearly uniform;

e Cerebral gray matter wraps around cerebral white mattehatatwo tissues form a

layered structure;

e The average gray level of cerebral gray matter is lower thanh af cerebral white

matter at any local region;

Segmentation of cerebral gray matter takes a series of atefmdlows, which are also

illustrated in figure 8.8.

1. Initialization:G? < (. whereG? denotes the set of cerebral gray matter voxels;

2. Gradient flow analysis: For each voxein G° \ W3, if there exists a patt® =
{vo = v, vy, ..., v, } Of length less thad along the gradient flow such that € W3.
Then we update the set of cerebral gray matter voxel§’as— G* U {v}; The
thresholdi is associated with the average thickness of cerebral cadtemsidering
the segmentation of cerebral white matter may be not ideakyrate, we sei. to
be a value greater than the average cortex thickness. Iiqggaee letd. = 15mm.

3. Closing: The seg? generated by the prior step will form a gray matter layer wrap
ping around the cerebral white mattéi®. However, there may be some narrow and
thin regions betweeg? andV? that were labeled as white matteniti®. They may
be real cerebral white matter and may be actually cerebagl matter. Nevertheless,
we take them as cerebral gray matter at this moment. We firistrpemorphological
closing at a small scaleon G? U W? and denote the closed cerebrum maskés
Then we updat€? asG? «— G U (W N M\ (G% UW?)). Morphological closing
at scales first performs morphological dilation at scaleon X resulting inX” and
then performs morphological erosion at scalen X’ resulting inX”. We describe
morphological erosion and dilation below.
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(a) Gradient flow analysis result (b) First closing result

(c) Holes to be closed (d) Holes closed

(e) Geodesic opening result (f) Second closing result. Partial gray matter
is colored in blue

FIGURE 8.8: Cerebral GM segmentation.
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4. Geodesic opening: In this step we use a operation callediegéc opening to remove
certain false positive errors iG*. First, we remove the voxels that were recognized
as valley points i3! from G* such thag? < G2\ B'. Ideally,G? should still form
a thin layer wrapping around’?, but in practice, there may be some thin and narrow
protrusions fromg? that do not wrap around any cerebral white matter regions. To
eliminate these errors, geodesic opening at schist perform geodesic morpholog-
ical erosion at scale on G? U W? with respect toV? resulting inF, then perform
geodesic dilation at scakeon F with respect tqz? resulting in a mask where those
thin protrusions at scale are eliminated. We then updaf@ such that those false
positive voxels are removed. Geodesic erosion and geodesabescribed below.

5. Closing: The prior step removes all valley points frgify which is necessary for
geodesic opening to be effective. However, a valley poistilci may be partially a
cerebral gray matter voxel. To recognize such valley pommgsperform morpholog-
ical closing at a small scale @ U W? resulting in a new cerebrum magk. Then
every valley point inM is taken as a partial cerebral gray matter point and assigned
with a value between 0 and 1 indicating how much of the voxkrmgs to gray mat-
ter. The value is calculated by comparing the intensity efitalley point to that of
a near WM point along the gradient flow emanating from theeygtloint. Formally
speaking, we update the set of cerebral gray mattgfas G2 U ((B' \ B°) N M)
and compute a functiofi : (B' \ B°) " M — [0, 1]. For convenience of the descrip-
tion in the following sections, we denote the valley poimtghe cerebrum mask as
G? = (B'\ BY) n M.

Morphological erosion o’ at scales can be seen as a procedure of subtracting voxels
from X whose distances from the boundary¥tire less than or equal to Morphological
dilation on X" at scales can be seen as a procedure of adding voxels in the complement
of X to X whose distances t&" are less than or equal to Geodesic erosion o&’ with
respect toM at scales can be seen as a procedure of subtracting voxels\nM from X
whose distances from the boundaryXfare less than or equal to Geodesic dilation of
X with respect toM at scales can be seen as a procedure of adding voxel§fin X to
X whose geodesic distance frothare less than or equal to
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8.6 Cortical Surface Extraction

Extraction of inner cortical surface and outer corticaface requires the set of topology-
correct cerebral white matter voxels and the set of topelomyect cerebral gray matter
voxels. When they are available, we use a topologically iste&rst marching cubes iso-
surface algorithm [110] to generate the triangulated serf@presentation of the cortical
surfaces. It is demonstrated in [110] that fa6, 6) adjacency, an isovalue less tha5
should be used to avoid topological paradoxes.

Prior processing steps have generated topology-corresibice white matter, denoted
asW?, and a mask of cerebral gray matter, denote@’asNote thatG? is not guaranteed
to possess correct topology. Computation of topologyestrcerebral gray matter consists
of following steps, whose effect is demonstrated in figuge 8.

1. Initialization: We initialize a new set of background etx as the complement of
the cerebral white matter set; i.8> — W3, Let B> denote the background voxel
set before topology correction of cerebral gray matter fiesvalley points in the
cerebrum mask; i.e3> = W3 U G2 U G2,

2. Erosion: We then perform topology-and-shape-presegaagesic erosion ofs®
with respect ta3? at scales, which is a partial curve skeletonization procedure (see
chapter V) with additional condition that any voxels remd¥em 53 cannot be in
B2. Next, thicksurface points in the eroded background andide3? are thinned
in a procedure similar to the thin-surface skeletonizasitgorithm. Eroded voxels
connected tdV? are taken as the cerebral gray matter in th&deSince the erosion
preserves topology, the topologydf® U G? is equivalent to that ofV3. The scales
is associated with the average cortex thickness we knowoa .pin practice we set
to be6mm.

3. Verification: We verify that the cerebral white matter isapped around by the cere-
bral gray matte at any places and perform necessary moadfidatenforce the con-
straint. Update3® with the new set o/ andG? asB? «— W3 U G3.
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4. Smoothing: We finally perform morphological smoothinggschapter V) on3?
and update;® accordingly. This step will remove the curve-like protarss of the
background and has the effect of smoothing the outer cosicéace.

(a) Cerebral GM segmentation

(b) Outer cortical surface

FIGURE 8.9: Reconstruction of outer cortical surface from cerebral &#gmentation.
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CHAPTER IX

Evaluation

This chapter evaluates our neuroanatomical segmentalgmmitams both quantita-
tively and qualitatively on a variety of MRI data sets wittspect to the accuracy, auto-
maticity, robustness and computational efficiency of ootd@ompared with those of four
four leading segmentation tools: Freesurfer, SPM5, FSH,BrainVisa. We refer to our
segmentation tool as TAS (Topological Approach to Segntiemigin the following sec-
tions.

9.1 Comparative Packages

Below is a brief description of the four tools used for our @arative performance eval-
uation. Their segmentation methods are presented in ahaptdthough these tools pro-
vide various amount of functionality with respect to nearage analysis, they all support
automatic T1-weighted human brain MR image segmentatiom cOmparative evaluation
is thus focused on this functionality.

9.1.1 Freesurfer

FreeSurfer [122, 43] is a set of tools for reconstructionastical surfaces from struc-
tural MRI data and for the overlay of functional data ontortbeonstructed surface. Freesurfer
is developed in the Nuclear Magnetic Resonance (NMR) Celassachusetts General
Hospital .
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The cortical surface reconstruction pipeline in Freesurfainly consists of three steps.
First, a brainmask is extracted with alignment of the stirteMR image to the Talairach
atlas and the bias field is corrected. Then the brain voluntebisled as various cortical
or subcortical structures in a procedure based on both @duindependent probabilistic
atlas and subject-specific measured values. Finally, thecabsurfaces are constructed
from the prior segmentation, which involves a topology eotion procedure.

9.1.2 SPM5

SPM (Statistical Parametric Mapping) is a statistical teghe for testing hypotheses
about functional imaging data [123]. SPM also refers to thitwsare developed by the
Wellcome Department of Imaging Neuroscience , Universiilége London, to carry out
such analysis. SPM5 is the latest version of SPM. SPM5 featstructural MRI segmen-
tation as well as a series of functional neurocimage analysis

Structural MRI segmentation in SPM5 can be characterizedcasular procedure that
involves alternating three processing steps [42]: a biagecton step that corrects the
intensity inhomogeneity, a registration step that noreeaithe image to standard tissue
probability maps, and a segmentation step that classifiagemoxels into different tissue
types. As the segmentation result, SPM5 assigns each inoxgétiaree probabilities with
respect to three tissue types: CSF, GM and WM.

9.1.3 FSL

FSL (the FMRIB Software Library) is a collection of functianand structural neu-
roimage analysis tools [124]. For structural segmentat@L mainly contains the Brain
Extraction Tool (BET) for segmenting brain from non-bramstructural and functional
data, and FAST (FMRIB’s Automated Segmentation Tool) fastield correcton and brain
segmentation into three tissue types: CSF, GM and WM.

Structural MRI segmentation in FSL consists of two stepsn@u8ET to extract the
brain and using FAST to classify tissue types. BET perforkodl stripping with a surface
model [96]. The underlying method of FAST is based on an Etgien-Maximization
algorithm combined with a hidden Markov random field (MRF)dab[28]. Due to the
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regularization of the MRF model, FAST is supposed to be mobest to noise than stan-
dard finite mixture model based methods.

9.1.4 BrainVisa

BrainVisa [125, 126] is software developed at Service Hadipr Frdric Joliot (SHFJ)
that embodies an image processing factory and is distdbwith a toolbox of building
blocks dedicated to the segmentation of T1-weighted MR &nag

Structural MRI segmentation in BrainVisa consists of fouaimsteps. First, the user
prepares the data for segmentation by specifying seveydakemark points including the
Anterior Commissure (AC), the Posterior Commisure (PCingrhemispheric point, and
a left hemisphere point. A brain mask is then extracted halgionly white matter and gray
matter integrating bias field correction [127] and histogenalysis [93]. This is followed
by a hemisphere partition and removal of cerebellum withphological image analysis
[128]. Finally, cerebral gray matter and white matter aréedentiated with histogram
analysis [93].

9.2 Data Sets

The evaluation is performed on three group of data sets: af$tainWeb data with
groundtruth segmentation, a set of IBSR data with manugliged expert segmentation,
and a set of real scans of subjects with mild cognitive immpaiit or Alzheimers disease.

9.2.1 BrainWeb Data Sets

This is a group of 8 realistic T1-weighted MR simulated im&ageéth grountruth seg-
mentation provided by BrainWeb, a simulated brain datafiE2@]. All 8 MR images are
simulated on a normal anatomical model. The resolution @fitages arémm?. In the
groundtruth image, all voxels in the image are segmentexdtire following tissue types:
Background, CSF, GM, WM, Fat, Muscle/Skin, Skin, Skull,&Matter, and Connective.
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A variety of noise levels and levels of intensity inhomoggné.e. intensity non-
uniformity(INU)) are artificially introduced in the simuled images, as listed in table
9.1. As stated in BrainWeb documentation [130], “The noiséhe simulated images
has Rayleigh statistics in the background and Rician sitig the signal regions. The
‘percent noise’ number represents the percent ratio oftdmedard deviation of the white
Gaussian noise versus the signal for a reference tissue.h@ise reference tissue used in
our data set is white matter. The meaning of the intensitgimbgeneity level is as follows.
“For a 20% level, the multiplicative INU field has a range ofues 0f0.90...1.10 over the
brain area. For other INU levels, the field is linearly scadedordingly (for example, to a
range 0f0.80...1.20 for a 40% level).” According to BrainWeb, the INU fields arelistic
in that they are slowly-varying fields of a complex shape ardevestimated from real MRI
scans.

TABLE 9.1: Noise levels and IIH levels of the BrainWeb data set

Data set 1 2 3 4 5 6 7 8
Noiselevel| 3% | 3% | 5% | 5% | 7% | 7% | 9% | 9%
[IH level | 20% | 40% | 20% | 40% | 20% | 40% | 20% | 40%

9.2.2 IBSR Data Sets

This is a group of 18 T1-weighted real MR brain data sets aatt thanually-guided
expert segmentations in the Internet Brain Segmentatigro$tory (IBSR) supported by
the Center for Morphometric Analysis (CMA) at Massachus&eneral Hospital [131]).
The slice resolution of all datasetsli$mm and the XY resolution varies frormm? at
low end t00.837mm? at high end. The MR images have been “positionally normdfize
into the Talairach orientation, but all five tools perfornoetthis group of data assumed that
the brain were not normalized. The MR images were also psecklsy the CMA biasfield
correction routines, but it is not guaranteed that the sitginhomogeneity is completely
corrected and all five tools also treated the data sets ashfasfield correction had ever
been performed on them.

Each MR image was manually segmented into 44 individuakttiras including 3rd
Ventricle, 4th Ventricle, Brain Stem, and Left and Right: clsmbens area , Amygdala,
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Amygdala Anterior, Caudate, Cerebellum Cortex, CerebeHlixterior, Cerebellum White
Matter, Cerebral Cortex, Cerebral Exterior, Cerebral WMratter, Hippocampus, Inf Lat
Vent, Lateral Ventricle, Pallidum, Putamen, Thalamus BrpgentralDC, and Vessel.
The 18 MR images are in various levels of quality. For consroe of the following

evaluation, we divided the group into two subgroups: the fiBsBMR images with good
quality and 5 more MR image with bad quality. Note that theeoirty of the IBSR data
sets is different from the original order. A map of the orderwsed to the original order is
1,2,5,6,7,8,9,10,11, 12, 14, 15, 16, 17, 18, 3, 4, 13). kample, when we refer the
3rd data set, it is actually the 5th in the original order.

9.2.3 Pathological Data Sets

In addition to the BrainWeb and the IBSR data sets, which wsesl for both quantita-
tive and qualitative evaluation, we also tested fives tonlammauxiliary group of 8 real MR
images scanned from subjects with minor recognitive inmpairt or Alzheimers disease for
qualitative evaluation only. The resolution of these data &1.139 x 1.211 x 1.211mm?3.
The source of these data sets is the Neurobiology Researitj138] in the University
Hospital Rigshospitalet in Denark. No groundtruth or marsegmentation are provided
for these data sets.

9.3 Quantitative Evaluation

In this section, we present a quantitative evaluation orséggmentation accuracy, ro-
bustness and computational efficiency of TAS with compartsmther four packages. We
use the widely-used Dice metric [42, 43, 133, 134] as the nreasent for segmentation
accuracy and the standard deviation of the Dice metric owat ®f data as the measure-
ment for segmentation robustness. Computational effigiesimply measured with the
running time of each package.
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9.3.1 Dice Metric

Let TP refers to the number of true positives, FP to falsetpesi and FN to false
negatives, then the Dice metric is given by

. . 2x TP
Dice metric= < TPLEPLFN (9.1)

Note that when the segmentation is given as a probabilitydet 0 and 1 for each image
voxel for each tissue class, such as in the case of SPM5, Tané&FN are calculated as
the sum of the probabilities instead of discrete counting.

For quantitative evaluation using Dice metric, we have toidke the tissue type on
which the metric is measured. Currently TAS, like BrainVisaly perform cerebrum seg-
mentation while FSL and SPM5 segment the entire brain inte, G341 and WM without
extraction of the cerebrum. Freesurfer also performs satatien on the whole brain but
segments the brain into a greater number of tissue typesdimg) cerebral white matter
and cerebral cortex. In our quantitative evaluation, we tncaibrate the segmentation
of the five package into a standard behavior so that commsuetig/pes can be used for
guantitative metric measurements.

For the BrainWeb data sets, we calibrated the segmentdtitvedools to the segmen-
tation of cerebral WM and cerebral GM, and measured the Diegics with respect to
these two tissue types. To enable this, we manually parétidhe groundtruth whole brain
(WM plus GM) at the brainstem to extract the cerebral WM areddérebral GM. Cerebral
WM and cerebral GM also have be extracted for the SPM5 and E§inentation results.
We use a procedure (described in the next paragraph) thasatperfectly” partitions the
segmentation results based on the groundtruth partitionBFainVisa and TAS, no trans-
formation in the calibration is required. For Freesurfeg, jwst simply need to relabel all
ceberal cortex voxels and all subcortical voxels excludiagebral WM as cerebral gray
matter.

Let TP-Cerebrum and TP-Cerebellum respectively denote¢hef true positives of
cerebrum and cerebellum in the segmentation of SPM5 and IESIEP-Brain denote the
entire false positives including those in cerebrum andmthem. The partition of the brain
segmented by FSL and SPM5 is essentially the partition oBf into false positives in
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cerebrum and those in cerebellum, which is described aswsll For each voxed in
FP-Brain, if it has a shorter path in FP-Brain to TP-Cerebthan any paths in FP-Brain
from v to TP-Cerebellum, then is taken as a false positive (of WM or GM) in cerebrum;
otherwise it is taken as a false positive (of GM or WM) in cexi&im.

For the IBSR data, we calibrated the segmentation of fivestamlthe segmentation
of cerebral cortex and cerebral white matter, and measte®ice metrics with respect
to these two tissue types. These quantitative metrics givevaluation on the accuracy
of the cortical surface reconstruction that depend on satatien of cerebral cortex and
cerebral WM and are irrelevant to segmentation of subargjray matter tissues. Since
Freesurfer explicitly labels cerebral cortex and ceretuisite matter, we do not need to
do any transformation in the calibration. The calibratidf-8L and SPM5 first conducts
the brain partition to extract the cerebral WM and cerebiisll. Given the set of cerebral
WM and cerebral GM segmented by FSL, SPM5, BrainVisa or TA8,measured the
Dice metrics with respect to cerebral cortex and cerebral Wile same way as described
below.

In the measurement of the Dice metric with respect to cetebrtex, the true positives
are the voxels labeled as cerebral cortex in the manual sggtren and cerebral GM in
the automatic segmentation, the false positives are thelsdabeled as cerebral GM in
the automatic segmentation but not cerebral GM (i.e. catadartex or other subcortical
GM) in the manual segmentation, and the false negativeshareoixels labeled as cerebral
cortex in the manual segmentation but not cerebral GM in tite@raatic segmentation.

In the measurement of the Dice metric with respect to cet&liM, the true positives
are the voxels labeled as cerebral WM in both the manual seigtien and the automatic
segmentation, the false positives are the voxels labelegr@bral WM in the automatic
segmentation but neither cerebral WM nor subcortical GMhm thanual segmentation,
and the false negatives are the voxels labeled as cerebraiitid manual segmentation
but not cerebral WM in the automatic segmentation.
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9.3.2 Experiments

Freesurfer

We tested Freesurfer on both the BrainWeb and the IBSR detansa fully automatic
mode without any user intervention. An issue in collectingdsurfer segmentation results
is the production of the cerebral cortex mask. There is aafled “aseg” image and a
“ribbon” image both recording voxels labeled as cerebraieo The “ribbon” data is what
Freesurfer suggested [135] to use, but has more false negdian the “aseg” data, while
the latter is an intermediate result and has more falseipesithan the “ribbon” data. We
applied a simple morphological closing operation on theonrof the cortex ribbon and
the subcortical structures so that certain true cerebraéxwooxels labeled in “aseg” but
missed in “ribbon” are covered. This procedure apparemtigroved the performance of
the cerebral cortex segmentation, as shown in table 9.2. 3&6d the “closed” mask of
cerebral cortex for our comparative evaluation.

FSL

In our first batch of experiments with FSL, we let FSL autowelty extract the brain
and perform brain tissue classification on both the Brain@febthe IBSR data sets. How-
ever, FSL generated poor results on the brain extractioeaid tissue classification on 6
IBSR data sets ( data set 5 to data set 10). In our second Haggperiments, we used dif-
ferent parameters in FSL, obtained better brain masks ésetdata, and repeated the brain
tissue classification subsequently. Since the brain masksrgted in the second batch
of experiemnts are still not good enough, we turned to usdthim masks generated by
Freesurfer for the brain tissue classification in FSL. Tlvegrise to best performance on
the 6 IBSR data sets. The three batch of experiments on FSi. thiad the brain extraction
algorithm of FSL is not robust on the IBSR data sets, but tlaénbiissue segmentation
performed well given good brain masks. The performance &f ¢isthe 6 IBSR data set
with respect to the three batch of experiments are showrbla &3.



TABLE 9.2: Dice metrics collected for Freesurfer over IBSR data sets
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Dice metrics with respect to cerebral cortex
IBSR Data setg “ribbon” data “aseqg” data “closed” data
1 0.6905 0.7916 0.8039
2 0.7115 0.8061 0.8175
3 0.7390 0.7991 0.8362
4 0.8131 0.7838 0.8641
5 0.7361 0.7343 0.7794
6 0.7688 0.7301 0.8068
7 0.7421 0.7462 0.7888
8 0.7291 0.7327 0.7800
9 0.7780 0.7357 0.8128
10 0.7142 0.7336 0.7729
11 0.7839 0.8672 0.8702
12 0.7515 0.8045 0.8458
13 0.7504 0.8841 0.8647
14 0.6830 0.8316 0.8065
15 0.7272 0.8705 0.8487
16 0.7374 0.8514 0.8413
17 0.6626 0.8652 0.8076
18 0.7170 0.8485 0.8337
\ Mean H 0.7353 \ 0.8009 \ 0.8212 \
TABLE 9.3: Dice metrics collected for FSL using different brain masks
Brain masks Tissue Dice metrics over 6 IBSR data sets
types 5 6 7 8 9 10
Default FSL | Cerebral | 0.6591| 0.6806| 0.7268| 0.6887| 0.7713| 0.6762
brainmask | cortex
Cerebral | 0.8845| 0.8928| 0.8891| 0.8335| 0.9095| 0.8792
WM
Customized | Cerebral | 0.7608| 0.7735| 0.7772| 0.7740| 0.7854 | 0.7859
FSL cortex
brainmask | Cerebral | 0.8722| 0.8747| 0.8766| 0.8711| 0.8953| 0.8767
WM
Freesurfer | Cerebral || 0.7312| 0.7559| 0.7898| 0.7587| 0.8277| 0.7471
brainmask | cortex
Cerebral | 0.8862| 0.8953| 0.8912| 0.8914| 0.9146| 0.9009
WM
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SPM5

In our first batch of experiments with SPM5, we used the défsalameters and let
SPM5 automatically perform brain tissue segmentation emBtiainWeb and the IBSR data
sets. In the second batch of experiments, we changed thengtma‘Bias regularization”
from the default “Very light regularization” to “Medium regprization” and reran SPM5
on the IBSR data sets. SPM5 is supposed to be used with gleaseregularization when
it is knowna priori that there is less intensity inhomogeneity in the imagecé&the IBSR
data sets were processed by bias field correction, the udéeafiim regularization” rather
than the default “Very light regularization” improved therformance of SPM5 over almost
all IBSR data sets, as shown in table 9.4. We use the bestrpenfice for each data set in
our comparative evaluation.

TABLE 9.4: SPM5 experiments with different bias regularization

Dice metrics
IBSR Data setg Cerebral cortex Cerebral WM
Very light reg-| Medium regu-| Very light reg- | Medium regu-
ularization larization ularization larization

1 0.7759 0.7705 0.8762 0.8927
2 0.8005 0.8048 0.8777 0.8940
3 0.8043 0.8080 0.8781 0.8936
4 0.8363 0.8356 0.8958 0.9013
5 0.4127 0.4621 0.7088 0.7312
6 0.4162 0.4207 0.7394 0.7422
7 0.7166 0.7065 0.8687 0.8734
8 0.7644 0.7670 0.8914 0.8923
9 0.7663 0.7595 0.9036 0.9059
10 0.6504 0.6868 0.8609 0.8744
11 0.8451 0.8396 0.8896 0.8927
12 0.8415 0.8541 0.8882 0.9014
13 0.8523 0.8588 0.8794 0.8955
14 0.8365 0.8426 0.8491 0.8678
15 0.8512 0.8439 0.8744 0.8880
16 0.8471 0.8263 0.8736 0.8948
17 0.8284 0.8407 0.8293 0.8551
18 0.8508 0.8539 0.8447 0.8764

Mean [0.7609 [0.7656 [0.8572 [0.8707 |
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BrainVisa

We tested BrainVisa on both the BrainWeb and the IBSR dassesgbmatically except
for manually specifying landmark points including the ACiipthe PC point, an inter-
hemipheric point and a left hemisphere point. BrainVisadpaed an empty brain mask in
the 9th IBSR data set and was unable to generate brain maske fb3th and the 18th data
sets. In both cases, we set the Dice metrics to be O.

TAS

TAS is tested on the BrainWeb and the IBSR data sets autcafigtexcept for the
user to select the parameters in relative thresholding. udee only need to determine
the best two relative thresholds (a relative threshold betwGM and WM and another
one between background and GM). Since the BrainWeb datahaetsvarious noise level,
we also use different smoothing scales in addition to the relative thresholds for the
BrainWeb data. Whenever the user changes the parameterddtive thresholding, the
result can be generated in real time, so tuning relativestioieling is an efficient procedure.

9.3.3 Comparison

Segmentation Accuracy Over The IBSR Data Sets

We have collected the Dice metrics with respect to cerelmaéx and cerebral WM of
the five packages on the IBSR data sets and the data is listatllé9.5 and 9.6. Figure
9.1 through figure 9.8 compare the segmentation accuraca®filith SPM5, Freesurfer,
FSL and BrainVisa respectively. Table 9.5 and 9.6 list thégpmance of the five packages
over the 18 IBSR data sets and over the 13 good IBSR data spectasely, which are also
illustrated respectively in Figure 9.9 and figure 9.10 .

On average, TAS performed best on cerebral cortex segnantater all 18 IBSR data
sets, good and bad, and the 13 good data sets exclusivelrtlaysar, TAS’s cerebral cor-
tex performance is consistently better than four other pgek over the 13 good data sets
except for the 4th data set, where TAS’s performance is aliestical to the best, and
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the 12th data set, where TAS’s performance is close to thie bég cerebral cortex per-
formance of the five packages over the five bad data sets allarsaxcept that BrainVisa
generated empty brain mask for the 18th data set.

On average, FSL performed best on cerebral WM segmentaterboth all 18 IBSR
data sets and the 13 good data sets. However, TAS's perfeamaivery close to FSL in
both cases. The performance of the five packages over thedo/eldta sets are similar
except that BrainVisa generated empty brain mask for thie d&ta set and Freesurfer gave
significantly lower performance for the 14th data set.

TABLE 9.5: Dice metrics of five tools with respect to cerebral corterrae IBDR data
sets

IBSR Data Dice metrics with respect to cerebral cortex
sets BrainVisa | SPM5 Freesurfer| FSL TAS

1 0.7461 0.7705 0.8039 0.7803 0.8682
2 0.7953 0.8048 0.8175 0.8121 0.8619
3 0.7674 0.8080 0.8362 0.8361 0.8714
4 0.7233 0.8356 0.8641 0.8028 0.8612
5 0.2875 0.4621 0.7794 0.7312 0.8638
6 0.6610 0.6610 0.8068 0.7559 0.8441
7 0.7108 0.7065 0.7888 0.7898 0.8638
8 0.6982 0.7670 0.7800 0.7587 0.8790
9 0 0.7595 0.8128 0.8277 0.8700
10 0.7707 0.6868 0.7729 0.7471 0.8611
11 0.8688 0.8396 0.8702 0.8833 0.8634
12 0.8596 0.8541 0.8458 0.8582 0.8772
13 0 0.8588 0.8647 0.8554 0.8673
14 0.8406 0.8426 0.8065 0.8429 0.8315
15 0.8441 0.8439 0.8487 0.8381 0.8457
16 0.8260 0.8263 0.8413 0.8426 0.8281
17 0.8445 0.8445 0.8076 0.8275 0.8070
18 0 0.8539 0.8337 0.8278 0.8379
Mean 0.6247 0.7656 0.8212 0.8121 0.8557
Mean over| 0.6068 0.7365 0.8187 0.8030 0.8656
13 good

data sets
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TABLE 9.6: Dice metrics of five tools with respect to cerebral WM ovez tBDR data
sets

IBSR Data Dice metrics with respect to cerebral WM

sets BrainVisa | SPM5 Freesurfer| FSL TAS

1 0.8652 0.8927 0.7964 0.8971 0.8789
2 0.8899 0.8940 0.8208 0.9160 0.8926
3 0.8649 0.8936 0.8138 0.9084 0.8874
4 0.8596 0.9013 0.8489 0.9168 0.9070
5 0.4097 0.7312 0.9240 0.8862 0.9101
6 0.7970 0.7422 0.9115 0.8953 0.8954
7 0.8255 0.8734 0.9147 0.8912 0.9001
8 0.8110 0.8923 0.9203 0.8914 0.9170
9 0 0.9059 0.9179 0.9146 0.9224
10 0.8457 0.8744 0.9069 0.9009 0.8790
11 0.8975 0.8927 0.8711 0.9142 0.8969
12 0.8858 0.9014 0.8099 0.8988 0.9006
13 0 0.8955 0.8647 0.8673 0.8748
14 0.8613 0.8678 0.7824 0.8632 0.8622
15 0.8541 0.8880 0.8746 0.8743 0.8637
16 0.8792 0.8948 0.8479 0.8933 0.8713
17 0.8619 0.8551 0.8592 0.8585 0.8463
18 0 0.8764 0.8124 0.8323 0.8463
Mean 0.6893 0.8707 0.8610 0.8900 0.8862
Mean over| 0.6886 0.8685 0.8708 0.8999 0.8971
13 good

data sets
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FIGURE 9.1: Cerebral cortex Dice metrics of SPM5 and TAS on the IBSRskita
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FIGURE 9.2: Cerebral WM Dice metrics of SPM5 and TAS on the IBSR datasets
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FIGURE 9.3: Cerebral cortex Dice metrics of Freesurfer and TAS on tHeRRBlatasets.
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FIGURE 9.4: Cerebral WM metrics of Freesurfer and TAS on the IBSR dasase
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FIGURE 9.8: Cerebral WM metrics of BrainVisa and TAS on the IBSR datsset
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FIGURE 9.9: Mean Dice metrics of five tools on the IBSR datasets
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FIGURE 9.10: Mean Dice metrics of five tools on the 13 good IBSR datasets
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Segmentation Robustness Over The IBSR Data Sets

We calculated the standard deviations of the Dice metries the IBSR data sets and
use them together with the mean Dice metrics as the measotemiethe segmentation
robustness of the five packages over MR images scanned fifteredi subjects. Greater
mean Dice metric and lower standard deviation indicatetgreabustness with respect to

segmentation accuracy over a set of data.

Two groups of the standard deviations are calculated owetatal 18 IBSR data sets
and over the 13 good IBSR data sets. TAS demonstrated lovaestasd deviation with
respect to cerebral cortex over both the total 18 IBSR dat a®d the 13 good IBSR
data sets, as shown in table 9.7, and figure 9.11 and 9.12.oWest mean and standard
deviation of Dice metric with respect to cerebral cortexa@atk that TAS possesses the best
accuracy robustness with respect to cerebral cortex oealBiBR data sets. For cerebral
WM, TAS and FSL performed neck and neck with respect to baimtban and the standard
deviation of the Dice metric over both the total 18 IBSR dadts and the 13 good IBSR
data sets. TAS and FSL tied for the best accuracy robustnéssespect to cerebral WM
over the IBSR data sets. Considering both cerebral cortéxarebral WM, we think that

TAS performed most robustly on average over the entire IB&R sets.

TABLE 9.7: Standard deviation of Dice metrics of five tools over the FB$ata sets
Sample groups Standard deviations

data sets | tissue type BrainVisa | SPM5 | Freesurfer| FSL TAS

all IBSR | Cerebral cortex | 0.3155 0.1284 | 0.0308 0.0429 | 0.0192

data sets | Cerebral WM 0.3351 0.0505 | 0.0473 0.0230 | 0.0225

13 good | Cerebral cortex | 0.3047 0.1414 | 0.0345 0.0476 | 0.0087

data sets | Cerebral WM 0.3305 0.0593 | 0.0482 0.0143 | 0.0147
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Segmentation Robustness With Respect To Noise And IIH Overfle BrainWeb Data
Sets

As described in subsection 9.2.1, the BrainWeb data seysiwvaroise levels and in-
tensity inhomogeneity (IIH) levels. The performance in ®metrics of the five package
with respect to cerebral GM and cerebral WM is listed in téhkand 9.9 and illustrated
in figure 9.13 and figure 9.14.

TABLE 9.8: Dice metrics of five tools with respect to cerebral GM over BrainWeb data
sets

BrainWeb Data sets Dice metrics with respect to cerebral GM
Noise level | IIH level | BrainVisa | SPM5 | Freesurfer| FSL TAS
3% 20% 0.9292 0.9173 | 0.8333 0.9242 | 0.9084

40% 0.9247 0.9189 | 0.8342 0.9268 | 0.9086
504 20% 0.9197 0.8989 | 0.8323 0.9193 | 0.8908
40% 0.9201 0.8998 | 0.8323 0.9193 | 0.8858
7% 20% 0.8628 0.8673 | 0.8320 0.9113 | 0.8816
40% 0.8740 0.8713 | 0.8312 0.9127 | 0.8827
9% 20% 0.8166 0.8255 | 0.8259 0.8996 | 0.8658
40% 0.7836 0.8301 | 0.8264 0.9019 | 0.8678

TABLE 9.9: Dice metrics of five tools with respect to cerebral WM oves BrainWeb
data sets

BrainWeb Data sets Dice metrics with respect to cerebral GM
Noise level | 1IH level BrainVisa | SPM5 | Freesurfer| FSL TAS
3% 20% 0.9550 0.9471 | 0.8849 0.9672 | 0.9588

40% 0.9599 0.9533 | 0.8889 0.9664 | 0.9593
504 20% 0.9552 0.9314 | 0.8824 0.9567 | 0.9494
40% 0.9534 0.9315 | 0.8863 0.9581 | 0.9476
7% 20% 0.9325 0.8978 | 0.8779 0.9448 | 0.9382
40% 0.9311 0.9008 | 0.8796 0.9467 | 0.9370
9% 20% 0.8926 0.8656 | 0.8757 0.9332 | 0.9296
40% 0.8748 0.8701 | 0.8740 0.9354 | 0.9289

Among the five packages, Freesurfer demonstrated lowefstrpemce variation over
different noise levels; SPM5 and BrainVisa neck and necleltaghest performance vari-
ations over different noise levels; and TAS and FSL have oragierformance variations
over different noise levels, compared to the other threehigh Freesurfer performed
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consistently over different noise levels, it also gave Itsswith lowest accuracy on aver-
age. For each of the four noise levels, we also tested theagaskon images with two
different IIH levels. All five packages gave little variatimver different IIH levels. The
only exception is for BrainVisa to handle with N=9% and 11H324. This is due to a poor
brain mask.

It is worth noting that in real MR scans, the intensity inhayapeity may be in various
and unknown patterns and could occur together with othdicdifies that may be not
present in the simulated BrainWeb data sets. Thereforegemank that our experiments
with the BrainWeb data set do not mean to give a thorough affidisat evaluation on the
five package with respect to the IIH robustness.
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FIGURE 9.13: Cerebral GM Dice metrices of five tools on the BrainWeb datsis

Computational Efficiency

The execution times of the fives package tested on the IBS&ks#a$ and the Brain-
Web data sets are listed in table 9.10. The experiments Wenenaon a single 2.8Ghz
Intel Xeon processor. Among the five packages, BrainVis& teast amount of time but
is also associated with the lowest segmentation accuratyaoustness on the IBSR data
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FIGURE 9.14: Cerebral WM Dice metrics of five tools on the BrainWeb datsise

sets. Freesurfer took much longer execution time than étleebut it should be acknowl-

edged that the longer time span covers segmentation of nu@Hdical structures and

reconstruction of cortical surfaces. TAS took much lesetihan Freesurfer, but required
more than BrainVisa, FSL and SPM5. However, it should bedthat the most of the
TAS time was spent for topology correction, which was notrted in the execution times

of the other three.

TABLE 9.10: Computation times of five packages on the IBSR and the Bramtlatasets

Data sets - Computation times
BrainVisa | SPM5 | Freesurfer| FSL TAS TAS(topology
correction)
IBSR 1.5m 34m 27.2h 5m 17m 14m
BrainWeb | 1.6m 20m 24.5h 9m 21m 18m

9.4 Qualitative Evaluation

In this section, we give a qualitative evaluation of the fiaekages based on the ex-

periments of the packages on the IBSR data sets, Brainwelsdt, and the auxiliary 8
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pathological data sets with mild recognitive impairmentAzheimers disease. We first
summarize and compare the segmentation functionalitidsedive packages followed by
the discussion of their automaticity. Finally, we presearious segmentation abnormalities
of each package that we observed in the experiments. Theesegtion abnormalities are
presented in two groups: those that occurred in packages ththn TAS (i.e. TAS pros)
and those that occurred in TAS (i.e. TAS cons).

9.4.1 Segmentation Functionalities

The folllowing is a summarization and comparison on the nsaigmentation features

of the five packages.

e Bias field correction: Freesurfer, SPM5, FSL, and BrainVaaintegrate a bias
field correction procedure, either prior to tissue clasaifon or combined with the
classification. TAS, on the other hand, does not need ekpilias field correction
and the relative thresholding is robust to bias field in aabjt patterns.

e Brain extraction: FSL, Freesurfer and BrainVisa providessate tools for brain ex-
traction (i.e. skull stripping) prior to brain tissue clégstion while SPM5 combine
brain extraction together with tissue classification. TA&the other hand, performs
cerebrum extraction after tissue classification. Notett@brain mask generated by
BrainVisa is supposed to contain only GM and WM while the braiask generated
by FSL and Freesurfer is supposed to contain CSF as well asr@Mvav.

e Tissue classification: FSL and SPM5 segment the brain volumtoethree tissue
types: CSF, GM, and WM. BrainVisa and TAS extract cerebral \&ihdl cerebral
GM. BrainVisa also provides cerebral hemisphere partitibreesurfer segments a
whole brain into 37 individual structure including cerdbrartex, cerebral WM, a
set of subcortical structures, brainstem and cerebeliactsires.

e Cortical surface reconstruction: BrainVisa, Freesurfed ®AS support cortical sur-
face reconstruction while FSL and SPM5 do not. A core medmaimvolved in the
surface reconstruction is to make sure that topology of tinioal surfaces is correct.
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9.4.2 Segmentation Automaticity And User Intervention

All five packages support highly automatic brain segmeaatvithout or with little
user intervention. Freesurfer allows the user to start trtéical surface reconstruction
without any intervention. In case the segmentation is ntsfsgble, Freesufer supports
interactive tools for the user to modify the brain mask and eohtrol points to improve
the intensity normalization of WM, a procedure extremelypartant for the performance
of Freesurfer's whole brain segmentation. Freesurfer silggports interactive tools for
editing the final results generated by the automatic pratgss

FSL also allows the user to start the segmentation withoytir@ervention. In FSL,
brain extraction and tissue classification are performasgeetively by BET and FAST.
The BET performance substantially influences that of FA$The user is not satisfied
with the brain extraction, FSL allows the user to selecedéht parameters and rerun BET.
However, our experiments with BET on the IBSR data sets aag#thological data sets
show that BET cannot guarantee good brain extraction evdnuser intervention. FAST
has custom options for the user to select whether to use thedns segmentation ar
priori probability maps for initial segmentation and to guide theméans segmentation
with manual intervention.

In SPM5, brain segmentation can also be automaticallyestavith the default param-
eters and SPM5 often generates good results. An importatdrouparameter of SPM5 is
the one that control the extent of bias field regularizatidnen any parameter is changed,
the segmentation procedure has to be started over frontscrat

BrainVisa requires the user to prepare the data by first §pegiseveral landmark
points including the AC point, the PC point, an inter-hentesjc point and a left hemi-
sphere point. When the data is prepared by the user, Bramsomatically performs
segmentation. BrainVisa supports interactive tools fer tiser to edit the segmentation
results.

TAS recommends the user to first determine the two relatirestiolds and occasion-
ally the smoothing scale for relative thresholding, whieim e performed in a real-time
procedure, and starts the subsequent segmentation wehpuser intervention. When the
user want to process a set of data which are apparently adgwith the same or similar
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parameters, the user can determine the relative thresiggbdirameter for only one of the
data sets and use them for the rest. In our experiments, éongbe, we used the same set
of parameters for the 8 pathological data sets.

Compared to the user intervention mechanisms in the othergackages, user inter-
vention in TAS is in the form of global parameter selection &was the following advan-
tages. First, it is straightforward and requires little rve expertise to understand the
meaning of the parameters and the criterion for selectirigna ones. Second, it is very
easy to operate by sliding a value bar. Third, it is very edfitiand the user can obtain
the effect of parameter selection in real time. Fourth, theameters have global effect
for segmentation and the user does not need to repeat sopiéaations for different local
regions.

9.4.3 Segmentation Abnormalities

TAS Pros

First of all, we are interested in why TAS consistently gibester performance with
respect to cerebral cortex segmentation over the 13 good tBfa sets. By examining the
segmentation results, we found that there were a “shririleffgct on the cerebral cortex
segmentation for Freesurfer, FSL, SPM5 and BrainVisa, Wwigives rise to significant
amount of false negatives, while this problem did not ocawvas much milder in TAS.
We think the underlying reason is that TAS uses a new imagestimgdmechanism that
can adapt to wider variations of GM intensities while theistigal methods used in other
packages were misled by such variations and missed a graaifdeM voxels with lower
intensities. This phenomenon is shown in figure 9.15 withpregentative IBSR data set
and the segmentation results of the five packages.

In figure 9.15, pink stands for correct WM, red for false WM atdge, light green for
correct GM, very light green for false WM negative and falsé! Gegative, dark green
for false GM positive, and gray false for GM negative. Notattfor SPM5, light green
represents correct GM segmentation, darker green repseisdse GM negative, and gray
level represents false GM positive. The differences betvtke segmentation of TAS and
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other four packages on the same subject are shown in figue Rdte that the green part
is mainly due to the false positives of TAS, particularly @nd the lateral ventricles. It
can be seen that all the other four packages have signiffcarttte errors (mainly false
negatives), colored in red, than TAS around the cerebraéxor

Another common problem in FSL, BrainVisa and SPMS5 is the goaimn extraction.
Some examples are shown in figure 9.17. Poor brain mask idymasponsible for the
poor performance for SPM5 and BrainVisa over the IBSR dakaiedicated as the valley
points in figure 9.1 and 9.2. Since we used the relativelyebéttain masks generated from
Freesurfer for FSL, there are no deep valleys of performé&rdeSL in figure 9.5 and 9.6.
Freesurfer did not encounter poor skull stripping, but eanlbrain mask may still be gen-
erated, as shown in figure 9.17(b) where some non-brain saxgh high intensities are
taken as brain tissues. TAS on the other hand, does not depeadbrain extraction pre-
processing step and robustly generated clean cerebrunsraagke union of the cerebral
white matter and the cerebral gray matter over all testeal sktts.

We also found some other interesting abnormalities witkesuefer, as shown in figure
9.18. For example, in figure 9.18(c) Freesurfer cut off aifigant amount of cerebral WM
and cortex at the top of the brain. In figure 9.18(d) Freesuvées unable to correctly rec-
ognize the complete lateral ventricle of the subject withh®imers disease. In figure 9.19,
Freesurfer generated poor GM/WM segmentation even for alated image with excel-
lent quality (noise level is 3% and IIH level is 20%) while TASd FSL generated excellent
results. These abnormalities, we believe, are probablgussof the over-regularization
of thea priori probability maps used in Freesurfer.

TAS Cons

We found two types of abnormalities in the TAS segmentatesults. One is the con-
sistently existence of a rim of GM around the lateral vetegcas shown in figure 9.19(d)
and 9.15(f). This is associated with our structure modeth@SF, GM and WM as a
layered structure. This abnormality actually also occumsscstently with SPM5. An-
other abnormality is that sometimes a significant amounbgéls in the amigdala area are
missed in the segmentation, as shown in figure 9.20. This islyndue to the fact that



(&) MR image (b) BrainVisa result

(c) Freesurfer result (d) FSL result

(e) SPMS5 result (f) TAS result

FIGURE 9.15: GM-shrinking phenomenon.
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(a) TAS and Freesurfer (b) TAS and FSL

(c) TAS and SPM5 (d) TAS and BrainVisa

FIGURE 9.16: Segmentation differences between segmentation of TASo#met four
tools. Black: both correct non-GM; gray: both correct GMegn: TAS incorrect while
other correct; red TAS correct while other incorrect; Blheth incorrect.
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(a) BrainVisa brain mask

(c) FSL brain mask (d) SPM5 GM mask

FIGURE 9.17: Poor brain masks
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(b) MR image

(d) Freesurfer result for MRI in (b)

i
.
.,

E
.
.

(e) TAS result for MRI in (a) (f) TAS result for MRI in (b)

FIGURE 9.18: Freesurfer abnormalities in the pathological data sedscamparison with
TAS
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(a) BrainWeb MRI:

(c) FSL result (d) TAS result

FIGURE 9.19: Freesurfer segmentation on the BrainWeb MRI with compari® TAS
and FSL
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the gray matter is usually thicker than average cerebraéx@nd that the white matter
surrounded by the gray matter in the amigdala area is soragtioo thin for TAS to obtain

good segmentation.

(a) BrainWeb MRI: N=7% IIH=40% (b) TAS result

(c) Freesurfer result (d) FSL result

FIGURE 9.20: TAS segmentation missing part of amigdala on the BrainWéRl Mith
comparison to Freesurfer and FSL

Unlike the abnormalities of other packages that often aeclat the cerebral cortex,
the two abnormalities with TAS have little or no adversafjuence to cerebral cortex seg-
mentation and cortical surface reconstruction. Theseramaidies have been well located
and we know why they occur. It is part of our future work to ehiate these abnormalities
in TAS.
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CHAPTER X

Conclusion

10.1 Summary Of The Segmentation Pipeline

In this dissertation, we presented an image analysis pi@édir neuroanatomical MR
image segmentation, which consists of an initial brairugsslassification procedure with
relative thresholding complemented by terrain analyssgraes of segmentation error cor-
rection procedures, and a procedure for cortical surfapensruction. Segmentation er-
ror correction includes a multiscale morphological toggicorrection procedure for white
matter and two non-cerebrum tissue elimination procedoresxtraction of cerebral white
matter and cerebral gray matter respectively. The topotmgyection algorithm and the
cerebrum extraction procedure depend on several generghological and morphomet-
ric analysis algorithms, particularly a 3D curve skeletaration algorithm and its variants,
and a cell-complex-based morphometric analysis algorithm

10.2 Segmentation Performance

We have evaluated our segmentation method quantitativelygaalitatively on vari-
ous MR images including simulated and real, normal and pagfeal. We also compared
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our segmentation results with those of four leading segatiemt tools. The comparison
demonstrated that our method tends to produce more ac@egteentation on cerebral
gray matter segmentation and comparable segmentationrebraéwhite matter to the
leading packages. In addition, our segmentation methotbiat least performance fluc-
tuation across different subjects. Quantitative evatuatif our segmentation method on
different noise levels and different intensity inhomoggnkevels also demonstrated high
segmentation robustness of our method. It also producstidegmentation abnormalities
with respect to cerebral cortex segmentation among the amdpools. Our method took
about 20 minutes on average for cortical surface recortstruand is computationally ef-
ficient compared to other tools. Finally, our segmentatiathod is highly automatic in
that little or no user intervention is required to produceurate and robust segmentation
in limited time.

10.3 Contributions

The main contribution of this dissertation can be charadras the presentation of a
work flow for neuroanatomical MR image segmentation in whicdin tissue classification
is conducted prior to brain extraction and is independergxplicit bias field correction,
design and implementation of a set of original algorithret threre applied in different
stages in the work flow, and a comparative evaluation thabaetnated that our method is
highly accurate, robust, automatic and computationafigiefit.

The relative thresholding algorithm is based on a new sireghodeling of neuroanatomy
and a new image modeling of the T1-weighted MR images exptpitarious structural,
geometrical and radiological priori knowledge. Brain tissue classification with relative
thresholding is free from three typical problems that odoutraditional intensity based
segmentation methods. First, it is independent of priombeatraction and thus avoids
performance instabilities caused by poor brain extragtianany traditional methods. Sec-
ond, relative thresholding is robust against intensityoimigeneities without explicit bias
field correction. Third, relative thresholding is also atbeadapt to large intensity vari-
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ations within a given brain tissue and thus tends to produaesraccurate segmentation.
On the other hand, relative thresholding can be seen as abkpdge (or intensity differ-
ence) based segmentation method that overcomes sevéicd|alisadvantages of edge
based segmentation approaches. First, it produces caheggons labeled with brain
tissue types. Second, it is able to recognize blurred edgégissue boundaries where
intensities vary smoothly. Third, it is able to suppressrgmus edges between voxels of
same tissue types. In these respects, we see relativedhlteghas a fusion of intensity
based segmentation and edge based segmentation. Thendaaefective in other image
segmentation problems, particularly where there are siteimhomogeneities and blurred
edges.

The cell complex based morphometric analysis simplifies @Bject into a 1D struc-
ture and gives a quantitative measurement on the widendssoammectivity on every loca-
tion in the 3D object. This is a significant advancement olrerfact that traditionally only
a “thickness” metric (i.e. the distance to the boundary) lsarcalculated for each point
in the 3D object. This new 3D morphometric instrument wilkgrtially promote more
applications of morphological analysis for various profen computer vision and image
understanding. By applying this new morphometric analgsighe white matter gener-
ated, we are able to eliminate non-brain tissues and divideshtire white matter at the
brain stem based on tleepriori knowledge of strong connectivity of cerebral white mat-
ter. Cerebrum extraction using cell-complex-based margtdac analysis provides higher
robustness than other brain extraction such as traditiormaphological image analysis,
deformable model based methods, and atlas based methods.

The white matter topology correction algorithm is basednaatpriori observation that
human white matter, particularly cerebral white matteg surface-like object. Preserva-
tion of this morphological property is taken as the majotecion for eliminating topology
defects. In addition, our topology correction algorithmdlves WM, GM and background
in the procedure, in contrast to the traditional procedunene only the foreground and
background are involved. Our three-fold procedure exiplgihe surface-likeness morpho-
logicala priori knowledge tends to more robustly produce reasonable sokito topology
defect elimination than other methods.
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The 3D curve skeletonization algorithm is performed diseah a 3D object in contrast
to the traditional methods that depend on prior surfaceestigization and tend to gener-
ate skeletons with better “medialness”. A variant of ounveuskeletonization is referred
to as “shape and topology preserving erosion” in which thedetkinization procedure is
conducted in certain iterations instead of until conversidhis variant algorithm is used
as an important component in the white matter topology ctioe algorithm as well as for
generating topology correct gray matter in our neuroanet@rpipeline. A similar proce-
dure can also used in 3D object smoothing to eliminate naisirysions on the 3D object.
This framework of 3D curve skeletonization is based on aesgatic point classification
of discrete 3D objects. In this classification approach, veppsed the central notion of a
thick-simple point This notion enables deeper and wider topology and geonchtkac-
terization of any points in a 3D digital object.

As a brief summary of our contributions in this dissertatioie essentially opened a
new window on the general methodology for neuroanatomieghnentation in MRI and
proposed new perspectives on particular issues such as déxaaction, bias field cor-
rection, brain tissue classification, image modeling, togy correction, as well as mor-
phological and morphometric analysis. These new thougidstlae practice in the spe-
cific problem solving for neuroantomical MR image segmeatsare also meaningful in a
wider area of computer vision and image understanding.

10.4 Future Work

First, as addressed in our qualitative evaluation (sulmse8t4.3), there is consistently a
rim of gray matter around the lateral ventricles and paatmaigdala areas may be missed in
our cerebrum segmentation. Future work will recognize #gheral ventricles and separate
true gray matters from false in the gray matter rim. In additimore robust segmentationin
the amigdala area or automatic recovery techniques will teefind the missed amigdala
area. Second, future work will extend segmentation of WM @l in the cerebrum to
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segmentation of other anatomical structures in the ent@epsuch as cerebellum and
deep subcortical structures.

Currently typical medical resolution of MRI is abouitnm?, while research models
can have much higher resolutions. An interesting topic otaustudy is the performance
scalability with respect to higher MRI resolution, partexly of the relative thresholding
method. It is also worth verifying whether a fixed pair of tela thresholds can be used
for all MR imags scanned on different subjects with same enacquisition parameters.
Automatic relative threshold selection method for datdwihknown imaging parameters
is under study.
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