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Neuroanatomical segmentation is a problem of extraction ofa description of

particular neuroanatomical structures of interest that reflects the morphometry (shape

measurements) of the subject’s neuroanatomy from any imagerendering the

neuroanatomical structures of the subject. This dissertation presents a set of algorithms

for automatic extraction of cerebral white mater (WM) and gray matter (GM) as well as

reconstruction of cortical surfaces from T1-weighted MR images.

Neuroanatomical segmentation presented in this dissertation is performed by an

image analysis pipeline that steps through five major procedures: 1) the original MR image

is processed by a newrelative thresholdingprocedure and a newterrain analysisprocedure

such that all voxels are classified into one of the three types: WM, GM, and background;

2) the topology defects of the WM are eliminated by a newmultiscale morphological

topology correctionalgorithm; 3) cerebral WM is extracted from its superset with a new
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procedure calledcell-complex-based morphometric analysis; 4) cerebral GM is extracted

based on the prior cerebral WM extraction with a set of morphological image analysis

procedures; and 5) cortical surfaces are finally reconstructed preserving correct topology

with an existing marching cube isosurface algorithm.

In this dissertation, we evaluated our neuroanatomical segmentation tool both

quantitatively and qualitatively on a set of MR images with groundtruth or manual

segmentation, compared the results of our tool with those offour other tools, and demon-

strated that the performance of our tool is highly accurate,robust, automatic and computa-

tionally efficient.

The advantages of our tool are mainly attributed to extensive exploration of various

structural, geometrical, morphological, and radiological a priori knowledge, which per-

sists despite of image artifacts and inter-subject

anatomical variations. By exploitinga priroi knowledge, we also demonstrated that per-

forming voxel classification prior to brain extraction is a promising research direction, con-

trary to the traditional procedure of brain extraction followed by voxel classification.

Finally, it’s worth noting that the algorithms of voxel classification and morphological

image analysis presented in this dissertation for neuroanatomical segmentation can be

potentially applied in wider areas in computer vision.
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CHAPTER I

Introduction

1.1 Problem Statement

Image segmentionis the problem of extracting the figure (object of interest) from an ar-

bitrary image [1]. It can also be defined as the subdivision ofan image into its constituent

parts or objects [2]. Byneuroanatomical segmentation, we mean the extraction of a de-

scription of particular neuroanatomical structures of interest that reflects the morphometry

(shape measurements) of the subjects’s neuroanatomy [3]. Neuroanatomical segmentation

is usually conducted on T1-weighted magnetic resonance images (MRI) due to their rel-

atively good image quality in tissue contrast and signal-to-noise ratio. Neuroanatomical

structures of interest include cerebral cortex, cerebral white matter, brainstem, ventrical

systems, cerebellum, and so on. The morphometric description usually takes the form of

a surface representation. For example, we can represent thecerebral cortex by the inner

cortical surface (the interface between the cortex and the white matter), the outer corti-

cal surface (the interface between the cortex and the cerebrospinal fluid), or the middle

cortical surface running midway through the cortical thickness. Morphometric analysis of

neuroanatomical structures in conjuction with neuropsychological, neurological, and psy-

chiatric observations, and coupled with functional neuroimaging, has found broad appli-

cations such as precisely locating active brain regions in functional neuroimaging studies,

planning treatments for brain damage, and various neuropathological studies [3].
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Magnetic resonance imaging (MRI)is a non-invasive method for rendering images of

the inside of an object mainly based on the relaxation properties of excited hydrogen nuclei

in water and lipids. Each image element (i.e.voxel in 3D image volumes) has a bright-

ness, commonly referred to as intensity, that corresponds to a measurement of the tissue

weighted by certain MR parameters averaged over a small 3D region. In T1-weighted MRI,

spin-lattice relaxation time is selected as the image acquisition parameter. Other MRI tech-

niques include T2-weighted and Proton-density(PD), wherespin-spin relaxation time and

no relaxation time is used respectively in image acquisition.

Neuroanatomical segmentation should be precise, robust, efficient and automatic in or-

der to be pratically applied for morphometric analysis [3].Most existing neuroanatomical

segmentation methods classify image voxels as belonging tothree types: gray matter, white

matter, and cerebrospinal fluid.Preciseneuroanatomical segmentation requires high geo-

metrical accuracy and topology correctness of neuroanatomical structures. It also requires

morphometric description at a finer level. For example, the precise morphometric descrip-

tion of cerebral cortex requires further segmentation of the gray matter into the cerebral

cortex and the telencephalic nuclei. The cortical surfacesshould be topologically equiva-

lent to a sphere if the opening at the brainstem is artificially closed. Byrobust, we mean that

the neuroanatomical segmentation should be able to produceacceptable results for a vari-

ety of subjects and for an appropriate range of the quality ofavailable data . Furthermore,

neuroanatomical segmentation should beefficientandautomaticsuch that the computa-

tion can be accomplished in a reasonable amount of time and requires no or limited user

intervention.

Despite vigorous research for many years, precise, robust,efficient and automatic neu-

roanatomical segmentation remains as an unsolved problem.There are several challenges

that make the problem difficult.

1. The exact intensity a given location is determined not only by the tissue type at the

location but also by the neighboring tissues. This may produce an effect of blurring

borders of different tissues.

2. Spatial inhomogeneities in the radio frequency (RF) gainin the RF coil [4] lead to

intensity homogeneities(IIH), or bias field, in the single tissue. The presence of IIH
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as a shading effect over the image causes significant overlaps between histograms of

different tissues.

3. Mainly due to insufficient resolution, thepartial volumeeffect [4] when the volume

sampled by a single voxel contains more than one kind of tissue type blurs the tissue

border and very thin structures.

4. There are significant variations in the intrinsic tissue parameters. For example, frontal

cortex has been found to have an averageT1 that is 20% longer than that found in

motor and somatosensory cortex [5]. It has been reported that different regions of

white matter also have significantly differentT1 properties [6].

5. There are normal anatomical variations among different subjects [7]. This inter-

subject variation plus the highly convoluted shape of the cerebral cortex brings fur-

ther difficulties, particularly to those model and templatebased methods

6. Noise is inevitable in MRI, as in almost all image acquisition methods.

7. There may be other image artifacts such as motion, blood flow, echo, and so on.

As a summary, the main difficulty in neuroantomical segmentation come from intensity

variations in a single tissue, the complex anatomical structure, and the inter-subject anatom-

ical variations.

1.2 Overview Of The Methodology

There are three key components in the work flow of most existing neuroanatomical MR

image segmentation tools: 1) a brain extraction component that generates a brain mask

for subsequent brain tissue classification, 2) a bias field correction component for intensity

inhomogeneity elimination such that the subsequent tissueclassification is simplified, and

3) a brain tissue classification component that recognizes the tissue type for each voxel in

the brain. Brain tissue classification is commonly performed with statistical modeling on
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the image intensities and is sometimes combined with certain a priori knowledge such as

tissue probability maps where each location in a standard brain space is given a probability

for each tissue being present. In different segmentation methods, these components may be

conducted sequentially or in an iterative loop that alternates running the three components

until a conversion point is reached.

The present work on neuroanatomical MR image segmentation differs from the tra-

ditional workflow in several aspects and attempts to overcome the relevant segmentation

problems or limitations. First, bias field correction, no matter if it is performed prior to

or simultaneously with tissue classification, is a procedure that attempts to explicitly re-

construct the image without bias field. However, there has been no guarantee for ideal

correction under all circumstances [8]. The present method, on the other hand, performs

robust segmentation against IIH without explicit bias fieldcorrection. This is due to a new

tissue classification algorithm referred to asrelative thresholding, which regards IIH as

transparent in the segmentation.

Second, good brain extraction is a prerequisite for brain tissue classification in most

segmentation work flows. However, brain extraction itself is a difficult problem and poor

brain extraction usually leads to poor brain tissue classification. In the present work, rel-

ative thresholding for brain tissue classification is independent of prior brain extraction.

Brain extraction follows as a procedure that eliminates false positives of the relative thresh-

olding result. This new perspective of brain extraction based on tissue classification ex-

ploits morphology properties of the brain structures and isinherently more accurate and

more robust than traditional brain extraction approach.

Third, one of the major difficulties in neuroanatomical segmentation involves the sig-

nificant amount of intensity variations within a single tissue. Our initial tissue classification

algorithm, relative thresholding, is based on an image modeling that is formulated as spa-

tial constraints on intensities of different voxels instead of traditional statistical distributions

such that it allows reasonable yet high extent of intensity variations for a given tissue.

Exploiting variousa priori knowledge is the essential methodology in our approach

to the neuroanatomical MR image segmentation problem. We have exploited structural,

geometrical, and morphologicala priori knowedge with respect to neuroanatomy as well as

radiological properties with respect to MR imaging. Thesea priori knowledge are invariant
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across different subjects and robust against various MR imaging parameters¿ Interestingly,

in contrast, thea priori knowledge used in traditional methods such as the tissue probability

maps, may cause an over-regularization problem where the segmentation may not fully

adapt to inter-subject variations.

1.3 Overview Of The Dissertation

Neuroanatomical segmentation presented in this dissertation is performed by an image

analysis pipeline that steps through five major procedures as follows.

1. The original MR image is processed by an originalrelative thresholdingprocedure

and an originalterrain analysisprocedure such that all voxels are classified into one

of the three types: white matter (WM), gray matter (GM), and background.

2. The topology defects of the WM are eliminated by an original multiscale morpho-

logical topology correctionalgorithm.

3. Cerebral WM is extracted from its superset with an original procedure calledcell-

complex-based morphometric analysis.

4. Cerebral GM is extracted based on the prior cerebral WM extraction with a set of

morphological image analysis procedures.

5. Cortical surfaces are finally reconstructed preserving correct topology with an exist-

ing marching cube isosurface algorithm.

Note that step 2 through 4 can be seen as a series segmentationerror correction procedures

after initial brain tissue classification with relative thresholding and terrain analysis. Step

3 and 4 together can be taken as a cerebrum extraction procedure following brain tissue

classification and white matter topology correction.

In this dissertation, we will evaluate our neuroanatomicalsegmentation tool both quan-

titatively and qualitatively on simulated and real MR images with groundtruth and manual
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segmentation respectively, and compare the results of our tool with leading brain segmen-

tation tools (Freesurfer, SPM5, FSL and BrainVisa) using metrics of accuracy, automation,

robustness, and computational efficiency.

1.4 Contributions Of The Dissertation

In this dissertation, we proposed a new work flow for neuroanatomical MR image seg-

mentation in which brain tissue classification is conductedprior to brain extraction and

is independent of explicit bias field correction, designed and implemented a set of origi-

nal algorithms that were applied in different stages in the work flow, and demonstrated by

comparative evaluation that our method is highly accurate,robust, automatic and computa-

tionally efficient.

The major original algorithms presented in this dissertation include arelative thresh-

oldingalgorithm for initial brain tissue classification, amultiscale morphological topology

correctionalgorithm for topology correction of white matter, acell-complex-based mor-

phometric analysisalgorithm and a 3Dcurve skeletonizationalgorithm.

The relative thresholding algorithm is based on a new structure modeling of neuroanatomy

and a new image modeling of the T1-weighted MR images exploiting various structural,

geometrical and radiologicala priori knowledge. Brain tissue classification with relative

thresholding is free from three typical problems that occurin traditional intensity based

segmentation methods. First, it is independent of prior brain extraction and thus avoids

performance instabilities caused by poor brain extractionin many traditional methods. Sec-

ond, relative thresholding is robust against intensity inhomogeneities without explicit bias

field correction. Third, relative thresholding is also ableto adapt to large intensity vari-

ations within a given brain tissue and thus tends to produce more accurate segmentation.

On the other hand, relative thresholding can be seen as a special edge (or intensity differ-

ence) based segmentation method that overcomes several critical disadvantages of edge

based segmentation approaches. First, it produces coherent regions labeled with brain

tissue types. Second, it is able to recognize blurred edges and tissue boundaries where
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intensities vary smoothly. Third, it is able to suppress spurious edges between voxels of

same tissue types. In these respects, we see relative thresholding as a fusion of intensity

based segmentation and edge based segmentation. The idea can be effective in other image

segmentation problems, particularly where there are intensity inhomogeneities and blurred

edges.

The cell complex based morphometric analysis simplifies a 3Dobject into a 1D struc-

ture and gives a quantitative measurement on the wideness and connectivity on every loca-

tion in the 3D object. This is a significant advancement over the fact that traditionally only

a “thickness” metric (i.e. the distance to the boundary) canbe calculated for each point

in the 3D object. This new 3D morphometric instrument will potentially promote more

applications of morphological analysis for various problems in computer vision and image

understanding. By applying this new morphometric analysison the white matter gener-

ated, we are able to eliminate non-brain tissues and divide the entire white matter at the

brain stem based on thea priori knowledge of strong connectivity of cerebral white mat-

ter. Cerebrum extraction using cell-complex-based morphometric analysis provides higher

robustness than other brain extraction such as traditionalmorphological image analysis,

deformable model based methods, and atlas based methods.

The white matter topology correction algorithm is based on thea priori observation that

human white matter, particularly cerebral white matter, isa surface-like object. Preserva-

tion of this morphological property is taken as the major criterion for eliminating topology

defects. In addition, our topology correction algorithm involves WM, GM and background

in the procedure, in contrast to the traditional procedure where only the foreground and

background are involved. Our three-fold procedure exploiting the surface-likeness morpho-

logicala priori knowledge tends to more robustly produce reasonable solutions to topology

defect elimination than other methods.

The 3D curve skeletonization algorithm is performed directly on a 3D object in contrast

to the traditional methods that depend on prior surface skeletonization and tend to gener-

ate skeletons with better “medialness”. A variant of our curve skeletonization is referred

to as “shape and topology preserving erosion” in which the skeletonization procedure is

conducted in certain iterations instead of until conversion. This variant algorithm is used

as an important component in the white matter topology correction algorithm as well as for
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generating topology correct gray matter in our neuroanatomical pipeline. A similar proce-

dure can also used in 3D object smoothing to eliminate noisy protrusions on the 3D object.

This framework of 3D curve skeletonization is based on a systematic point classification

of discrete 3D objects. In this classification approach, we proposed the central notion of a

thick-simple point. This notion enables deeper and wider topology and geometrycharac-

terization of any points in a 3D digital object.

1.5 Organization Of The Dissertation

The segmentation pipeline is described step by step in chapter VIII, but the key al-

gorithms are separately presented in previous chapters. Chapter III describes the relative

thresholding algorithm (summarized in section 8.1). Terrain analysis as a complemental

technique to relative thresholding for brain tissue classification is described in section 8.2.

The multiscale morphological topology correction of WM is described in chapter VII (sum-

marized in section 8.3). Cell complex based morphometric analysis is presented in chapter

6 and its application for cerebral WM extraction is discussed in section 8.4. Cerebral GM

extraction is described in section 8.5 and cortical surfacereconstruction is presented in sec-

tion 8.6. The segmentation pipeline also depends on several3D skeletonization routines

as described in chapter V. Chapter IV is a set of definitions oncharacterization of differ-

ent points in 3D discrete object, which forms the basis for the 3D skeletonization and the

topology correction algorithms. The comparative evaluation of the segmentation pipeline

is presented in chapter IX. Chapter II of the dissertation contains a survey on the existing

neuroanatomical MR image segmentation methods.
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CHAPTER II

Neuroanatomical Segmentation In MRI

In this chapter we give a survey on the existing neuroanatomical segmentation methods.

There are mainly two types of segmentation methods: intensity-based methods and edge-

based methods. Intensity-based methods classify image voxels based on the voxel intensi-

ties while edge-based methods extract anatomical contoursbased on a gradient or edge map

of the original image. A variety of widely applied intensity-based automatic segmentation

methods are also often referred to as clustering methods. These methods, such as k-means

clustering and finite mixture resolving assume there is no intensity inhomogeneities and are

supposed to be performed on the brain region extracted in a prior procedure. Basic cluster-

ing methods are often extended with atlas or Markov random field to improve performance.

Intensity inhomogeneity correction has been researched byextending the exiting segmen-

tation methods or by proposing a separate preprocessing procedure. There are mainly two

types of edge-based segmentation methods: those use plain edge detection or fuse edge

detection with other segmentation techniques such as morphological operations and region

growing, and those based on deformable models, in which a surface model is deformed

such that it is attached to the salient edges while maintaining the smoothness of the model.

In the first section of this chapter, we present several basicclustering segmentation

methods. In section 2 and section 3, we describe segmentation methods using Markov

random field and brain atlas respectively that extend the basic intensity-based segmenta-

tion methods. Edge-detection based segmentation methods are reviewed in section 4 and

segmentation based on deformable models is described in section 5. Intensity inhomo-

geneity correction and brain extraction methods are reviewed in section 6 and section 7

respectively.
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2.1 Clustering

Clustering can be loosely defined as the unsupervised classification that groups similar

objects from a collection of unlabeled data, in which each object is associated with a vector

of feature values. The similarity is determined based on thefeature vectors, which could

be simply the pixel intensities in image segmentation. There are two basic clustering meth-

ods for image segmentation: partitional clustering and hierarchical clustering. Partitional

clustering generates a flat group structure in that all data groups form disjoint cluster sets.

Hierarchical clustering generates pattern groups in a hierarchical structure (i.e. dendro-

gram) which can be cut at a dissimilarity level forming a partition. In neuroanatomical MR

image segmentation, many methods either extend traditional partitional clustering and use

them to generate initial results for further processing. This section describes some common

partitional clustering methods used in neuroantomical MR image segmentation.

2.1.1 K-means Clustering And Fuzzy C-means Clustering

k-means clustering and fuzzyc-means clustering are two widely used clustering meth-

ods.k-means clustering partitions samples with the sum-of-squared-error criterion. Start-

ing from an initial partition, it iteratively classifies allsamples intok clusters according to

nearest mean and then recompute the means in each iteration.The iteration stops when

there is no change in the means.

Fuzzyc-means clustering is an extension of thek-means clustering with fuzzy set the-

ory. We assume that each sampleyj has some graded or “fuzzy” membership in a cluster.

At root, the “membership”µij is equivalent to the posterior probabilityP (ωi|yj). The

fuzzy c-means clustering seeks a minimum of a heuristic global criterion functionJfuz =
c

∑

i=1

N
∑

j=1

(µij)
b‖yj −mi‖

2, whereb is a parameter chosen to adjust the “blending” of differ-

ent clusters. It can be shown that whenJfuz arrives at a minimum,mi =

∑n
j=1(µij)

byj
∑n

j=1(µij)b

andµij =
(1/dij)

1/(b−1)

∑c
r=1(1/drj)1/(b−1)

, wheredij = ‖yj −mi‖2. The fuzzyc-means clustering al-



11

gorithm proceeds iteratively recomputingmj andµij according to the above two equations

until they reach stable values.

K-means [9] and fuzzy c-means [10, 11, 12] clustering are commonly applied for image

segmentation. The main issue of the two methods is to determine the feature composition of

each pattern. Generally speaking, the measurements/features could be point multispectral

values, point color components and derived color components, or derived statistics such as

mean, standard deviation, and modes, in a certain neighborhood of the pixel [13].

It has been shown that thek-means algorithm converges to a locally optimal solution.

Generally the fuzzyc-means algorithm is better than the hardk-means algorithm, but it

may still converge to local minima of the squared error criterion [14]. Note that little or

no spatial information is considered in the feature space based clustering methods. Usually

only the spatial coordinates of a pixel are considered as additional features. This tends

to result in poor segmentation, particularly when the desired regions do not form simple

regions with similar coordinates.

2.1.2 Finite Mixture Resolving

This is a parametric clustering method in that the intensitylevels of pixels in the image

are assumed to be a mixture of finite number of certain probability distributions, usually

Gaussian, with a parameter vectorθ. Formally, letω = {ωi, 1 ≤ i ≤ N} be the pixel types

andP (yj|ωi, θωi
) be the probability of the intensity levelyj of pixel j conditional on the

pixel classωi and the given parametersθωi
. Then the marginal probability of the intensity

level yj over all labels isP (yj|θ) =
∑

i

P (yj|ωi, θωi
)P (ωi). After the parameters are

estimated, usually by the Expectation-maximization (EM) method [15], the region type of

a pixel is determined by maximization of the posterior probability P (ωi|yj). A commonly

used parameter estimation method is to take the labels as hidden or missing data and to use

the expectation-maximization method to maximize the likelihoodP (y, ω|θ).

The expectation-maximization (EM) algorithm is often usedto estimate the parameters

of the probability distributionP (y, ω|θ) that models some incomplete data, wherey denotes

the observed variables andω denotes the missing or hidden variables. Note that herey is

a vector representing all samples(y1, y2, ..., yn)
T . Then the log-likelihood of the observed
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variablesl(θ) = log P (y|θ) = log
∑

ω

P (y, ω|θ). The EM algorithm attempts to find the

values ofθ such that the likelihoodl(θ) is maximized. The EM algorithm proceeds in

rounds starting from an initial guess of the parametersθ. In each round, let theθt be the

current parameter setting, we want to find a new parameter setting, θt+1 that increase the

log-likelihood. Whenl(θ) converges, we obtained an local maximum value of the log-

likelihood l(θ).

In each round, the EM algorithm finds a lower boundB(θ|θt) of l(θ) that touches

l(θ) at θt (i.e. ∀θ, B(θ|θt) ≤ l(θ), andL(θt|θt) = l(θt)). Intuitively, when we locally

maximize the bound with respect toθ in each iteration, it will guarantee that we obtain

an improved estimateθt+1. The bound can be derived by Jensen’s inequality as follows:

l(θ) = log
∑

ω

P (y, ω|θ) = log
∑

ω

P (ω|y, θt)
P (y, ω|θ)

P (ω|y, θt)
≥

∑

ω

P (ω|y, θt) log
P (y, ω|θ)

P (ω|y, θt)

= B(θ|θt). SinceP (ω|y, θt) =
P (y, ω|θt)

∑

ω′ P (y, ω′|θt)
=

P (y, ω|θt)

P (y|θt)
, we can show thatB(θt|θt)

=
∑

ω

P (ω|y, θt) log
P (y, ω|θt)

P (y, ω|θt)/P (y|θt)
= log P (y|θt)

∑

ω

P (ω|y, θt) = log P (y|θt) =

l(θt). Note that maximizingB(θ|θt) with respect toθ does not involve the nominator of

the log term. Therefore maximizingB(θ|θt) is equivalent to maximizing

Q(θ|θt) =
∑

ω

P (ω|y, θt) log P (y, ω|θ).

An interpretation ofQ is that it calculates the expectationEω[P (y, ω|θ)] of the likelihood

of the complete data over the hidden data space (hence the name of the algorithm).

Note that only statistical information are considered in the segmentation with mixture

resolving and this often results in poor segmentation. The finite mixture model can be

extended with the Markov random field model and probability tissue maps to incorporate

spatial information into the segmentation and even bias field correction, as described later

in this chapter.

2.1.3 Clustering With Artificial Neural Networks

Clustering methods based on artificial neural networks havealso been applied in med-

ical image segmentation. Many of these methods attempt to resolve the standard finite
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normal mixture model based on competitive learning [16, 17]. Some others incorporate

spatial dependence of labels with statistical neural networks [18, 19]. One of the critical

drawbacks of these methods is that most of them can only be applied to small data sets

because obtaining suitable learning/control parameters for the network is difficult and their

execution times are very high for large data sets [14]. For brain MR image segmentation,

only results for individual slices were shown. The only network that have been applied

to large data set is the Kohonen net and the results are equivalent to thek-means algo-

rithm [20].

2.2 Markov Random Field

2.2.1 Markov Random Field Theory

In probability theory, astochastic processis a random function defined over a time

interval or a region of space. In the former case, the stochastic process is called atime

series; in the latter case, it is called arandom field. Mathematically, a stochastic process is

usually defined as an indexed collection of random variablesXi with indexi running over

an index setS = {1, 2, ..., N} and with the valuesωi of the variables chosen from range

R. For random fields,S represents a set of sites in space and particularly the coordinates

of pixels for an image. A configurationω = {ωi ∈ R, i ∈ S} of a random fieldX is the set

of realization values of the random variables inX. Let Ω be the all possible configurations

so thatΩ = {ω = (ω1, ..., ωN)|ωi ∈ R, i ∈ S}.

For a random fieldx defined on the sitesS, define aneighborhood systemN = {Ni, i ∈

S}, whereNi is the set of sites neighboringi, i /∈ Ni andi ∈ Nj ⇔ j ∈ Ni. A random

field X is said to be aMarkov Random Field(MRF) onS with respect to a neighborhood

systemN if and only if for ∀ω ∈ Ω, P (ω) > 0 andP (ωi|ωS−{i}) = P (ωi|ωNi
). The last

condition is referred to as the local characteristic of MRF.From the local characteristic of

MRF, we see that it is a natural facility to model the spatial dependence of region/tissue

types in an image.



14

A MRF is usually constructed with aGibbs distribution. Before the definition of the

Gibbs distribution, we remark that the site setS together with the neighborhood system

N define a graph in the usual way. LetC be all the cliques in the graph represented by

G = {S,N}. A clique in a graphG is subgraph ofG and is a complete graph by itself. A

Gibbs distribution with respect toG = {S,N} is a probability measureπ on Ω with the

form π(ω) =
1

Z
e−U(ω)/T , whereZ andT are constants and theenergy functionU is of

the formU(ω) =
∑

c∈C

Vc(ω). EachVc is a potential function onΩ with the property that

Vc(ω) depends only on those variables on the sitess ∈ c. Z is the normalizing constant:

Z =
∑

ω

e−U(ω)/T and is called thepartition function. The equivalence between MRF and

Gibbs distribution states that given a site setS and a neighborhood systemN , X is an MRF

with respect toN if and only if π(ω) = P (X = ω) is a Gibbs distribution with respect to

N . For image segmentation, a typical form ofVc is as follows. Ifc is a clique with two

neighboring sites{r, s}, thenVc(ω) = β in the case ofωs = ωr, orVc(ω) = −β in the case

of ωs 6= ωr, whereβ is a parameter of the model. Ifc is a clique with only one sites, then

Vc(ω) = −αωs
, whereαωs

is another tissue dependent parameter. For all the other cliques

in the graph,Vc(ω) = 0. This model is the well-knownIsing model.

2.2.2 Hidden Markov Random Field Model

The hidden Markov random field(HMRF) model for image segmentation is derived

fromhidden Markov models(HMM), in which a stochastic process is generated by a Markov

chain, which can be taken as a 1D Markov random field, with hidden state sequence. In

HMM, each observation is assumed to be a stochastic functionof the state sequence. The

underlying Markov chain changes its state according to al× l transition probability matrix,

wherel is the number of states. HMMs have been successfully appliedin applications such

as speech recognition and handwritten script recognition.

The hidden Markov random field model consists of a hidden Markov random field

X = {Xi, i ∈ S} with its values in a finite state spaceR with probabilityP (X = ω) =

π(ω) and an observable random fieldY = {Yi, i ∈ S} with its value in a finite state

spaceI. For image segmentation, each hidden state represents a region type and each

observable state represent an intensity level. Given any particular configurationω ∈ Ω
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of the random fieldX, every observed stateyi follows a certain conditional probability

distributionP (yi|ωi). This distribution is called theemission probability functionandY

is also called theemitted random field. In HMRF, the observationsy are conditionally

independent givenω: P (y|ω) =
∏

i

P (yi|ωi).

Hidden Markov random field model have been applied for both supervised [21] and

unsupervised [22, 23, 24, 25] image segmentation. For supervised segmentation, the emis-

sion probability function can be estimated with nonparametric methods such as the Parzen-

window method given a training set. For unsupervised segmentation, they usually assume

the same functional formf(yi; θωi
), whereθωi

is the involved parameters. Gaussian distri-

bution is a typical choice for the emission probability function. We useθ to denote all the

parameters involved in all emission probability functionsand those involved in the prior

distributionP (ω) (the latter are usually assumed known in prior).

2.2.3 Image Segmentation With Hidden Markov Random Field Model

With the hidden Markov random field model defined above, supervised image segmen-

tation can be posed as an optimization problem of finding the optimal estimates ofω∗ by

maximization of the posterior probabilityP (ω|y) ∝ P (y|ω)P (ω); for unsupervised image

segmentation, the involved parametersθ∗ as well as the optimalω∗ are estimated concur-

rently by maximization of the posterior probabilityP (ω, θ|y) ∝ P (y|ω, θ)P (ω) given the

observed intensityy. However, direct solution of the problem is both analytically and com-

putationally intractable due to the exponential complexity of Ω and the multimodal (i.e.

multiple local minima) nature of the posterior distribution. Most practical solutions are

performed by iterations of segmentation steps, each which only updates the configuration

of ω at local sites. For unsupervised segmentation, the segmentation is interrupted by a step

of parameter estimation at regular intervals. The segmentation step finds the optimal solu-

tion of ω given the current estimation of the parametersθ, while the parameter estimation

step finds the optimal estimation of the parametersθ given the current segmentationω.

Simulated annealing (SA) [26] and iterated conditional mode (ICM) [27] are two com-

monly used methods in the segmentation step. The SA algorithm scans all sites (pixels),

randomly drawing a tentative region typeωs for each sites. If the selection ofωs increases



16

the posterior probability conditional on the labels ofs’ neighborsωNs
, P (ωs|ωNs

, y) in

supervised case orP (ωs|ωNs
, y, θ) in unsupervised case, thenωs is chosen for sites, oth-

erwise, it is chosen according to a certain probability based on a temperature parameterT ,

which is decreased according to a certain schedule as the algorithm proceeds. The ICM

algorithm is deterministic and can be taken as an extreme case of the SA algorithm with

the temperature parameter always being zero so that in each site s, ωs is chosen by local

maximization of the conditional posterior probability. The SA algorithm provides better

approximation of the optimal segmentation, but it is very slow. The ICA algorithm is fast,

but may be trapped into a local minimum. A typical example application of HMRF model

in neuroanatomical segmentation is in FSL [28] in which HMDFmodel is used to enforce

spatial regularization in order to improve the segmentation robustness against image noise.

It is also demonstrated in FSL that implementation of HMRF using ICM can be integrated

with the finite mixiture resolving and bias field correction in the iterative Expectation-

Maximization method. Other work on using MRF for brain MR image segmentation are

[29, 30, 31, 21, 22, 23].

The commonly used Ising-like model was criticized for that it tends to minimize the

boundary length between tissues [32], which discourages classifications from accurately

following the highly convoluted shape of the complex human cortex [33]. This effect is

particularly amplified in brain images where the presence oflarge uniform regions of single

tissue types results in high estimates of the transition parameterβ and strong favor for

smooth boundaries. As a possible solution and research direction, it was suggested in [33]

to use a nonstationary Ising model with different parameters in uniform regions of pure

tissue from those used at places where tissues mix.

2.3 Atlas-Based Segmentation

The main idea here is to use a template of the target object to find an ideal match be-

tween the template and the image. The template in the case of neuroimaging is usually re-

ferred to as a brain altlas and the relevant segmentation methods are called atlas-guided seg-
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mentation methods. A brain atlas is a detailed representation of a single subject’s anatomy

(i.e. anatomical atlas) in a standardized three-dimensional coordinate system [34] or proba-

bility tissue maps (i.e. probabilistic atlas) learned froma training set. The most commonly

used coordinate system is the Talairach reference system [35], in which the anterior com-

missure is the origin and the plane containing the line connecting the anterior commissure

and the posterior commissure, perpendicular to the sagittal midplane, is taken as the hori-

zontal plane. While a probabilistic atlas is usually used together with traditional clustering

methods, an anatomical atlas is matched to a new scan in a procedure called brain warp-

ing so that any information in the atlas including the tissuetypes are transferred into the

new scan. Because of the complex structural variability of brains between individuals, it is

generally impossible to obtain an exact matching with rigid(translation, rotation) or linear

(translation, rotation, scaling, shearing) transformations and research on brain warping has

been focusing on deformable atlases, which can be adapted tothe anatomy of new subjects

with nonlinear transformation.

There are two brain warping approaches based on deformable atlases: volumetric warp-

ing and nonvolumetric (or model-driven) warping. Model-driven warping is an image reg-

istration method which requires a segmentation preprocessing step to obtain good perfor-

mance. Key surfaces in the brain are first extracted with deformable model based methods

and matched to the surfaces in the atlas [36, 37]. Volumetricwarping [38, 39, 40, 41] aims

to match the atlas and the target scan according to a regularized criterion. The most com-

monly used criterion is the sum of cross-correlation [38, 39, 40, 41] locally calculated on

the intensity or/and the edge maps between the atlas and the target scan. Other criteria

include the sum of squared differences [40], and mutual information which is more effec-

tive for matching images with different modalities. The brain warping is thus to find the

optimal deformation field such that the criterion is maximized (or minimized), which is

an ill-posed problem in that there are many possible solutions. Usually some constraints

are used to regularize the solution. These constraints range from the simple maximum

deformation limit [41] to the widely-used physically-based elastic model [38, 39] and the

viscous model [40] that enforces topological properties onthe deformation. To save time

and to obtain better performance, volumetric warping usually follow a preliminary global

linear transformation and a multi-resolution scheme is used to in the implementation.
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In SPM5[42], probability maps for different tissues are used as spatial priors in the fi-

nite mixture model and atlas registration is performed together with finite mixture resolving

and bias field correction in a circular procedure. The atlas registration is implemented with

a linear combination of about a thousand cosine transform bases. In Freesurfer[43], the at-

las includes not only prior probabilities for each tissue class at each atlas location, but also

a Gaussian distribution of the intensities for each class ateach atlas location and a neigh-

borhood function representing the probability that a givenpoint belongs to a label given

the classification of its neighboring points based on an anisotropic nonstationary Markov

radom field. The atlas is first registered with the image in a linear affine transformation and

then voxels are labeled with the maximum a posteriori (MAP) method and the segmenta-

tion is then sequentially updated using the iterated conditional mode (ICM) algorithm in

which the a posteriori probability of a class at each point iscomputed as the probability that

the given class appeared at that location in the training settimes the likelihood of getting

the subject-specific measured value from that class. The latter is computed from the PDF

for that label as estimated from the training set. The probability of each class at each point

is computed. An initial segmentation is generated by assigning each point to the class for

which the probability is greatest. Given this segmentation, the neighborhood function is

used to recompute the class probabilities in the second step. The new class probabilities

are then used for resegmentation in the next round.

2.4 Edge Detection Based Segmentation

Edge detection algorithms produce a map of edge points with associate magnitudes and

directions. The edge detection results are in the form of edge segments, which are usually

short and disconnected. The edge-based segmentation algorithms mainly involve aggregat-

ing these short edge segments into extended edges that correspond to object boundaries,

a procedure often referred to asedge linkingor edge following. Edge-based segmentation

methods are effective when there are good contrast between regions in the image. The

most common problems are due to the presence of edges in locations where there is no
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object boundary, as well as the absence of edges where a real boundary exists. In this

section, we describe two well-known edge-based 2D image segmentation methods: edge

relaxation as a local edge linking method and heuristic graph search as a global edge link-

ing method. Another well-known edge linking method, usually for line segmentation, is

the Hough transform [44, 45, 13], which is not presented here. Note that deformable model

based segmentation methods (see section 2.5) that utilize edge formation are also generally

referred to as edge-based segmentation methods. They work for 2D images as well as 3D

images, and provide additional robustness against noise and spurious edges.

This section first gives an overview of edge detection methods followed by two 2D

edge linking methods: edge relaxation and heuristic graph search. Next, a 3D boundary

following method using 2D graph search is described. Cortical surface reconstruction based

on edge detection are then described in the next two subsections followed by integration of

edge detection and region-growing for improved performance. Finally, the pros and cons

of the methods based on edge detection are summarized in the last subsection.

2.4.1 Edge Detection

In computer vision, edge detection is a process that attempts to capture the disconti-

nuities in the photometrical, geometrical and physical characteristics of objects [46]. The

basic method of edge detection is to first calculate the gradient at each image pixel and

then threshold the gradient threshold to label edges. Gradient calculation masks, as shown

below for∆x and∆y, are used for this purpose. Well-known gradient calculation masks

are Prewitt’s masks [47] and Sobel’s masks [48],

∆x =









−1 0 1

−a 0 a

−1 0 1









and ∆y =









−1 −a −1

0 0 0

1 a 1









wherea is a positive real number (1 in the case of Prewitts’ masks and2 in the case of

Sobel’s masks). The performance of these operators deteriorates when the image is noisy.

Rosenfeld and Thurston [49] proposed a smoothing operationto reduce the noise image by

replacing the value of a pixel by the average computed on a squared window.
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Two commonly-used edge detection algorithm are the Canny edge detection algo-

rithm [50] and the zero-crossing edge detection algorithm [51]. In the zero-crossing method,

the image is convolved with the Laplacian of the Gaussian (LOG) and the zero-crossings

are labeled. For efficient computation, LOG can be approximated by the Difference of

Gaussians (DOG) that subtracts a wide Gaussian from a narrowGaussian. In the Canny’s

method, the image is first convolved with the first-order derivatives of the Gaussian, and

then the edges are located at the maxima of the gradient modulus taken in the direction of

the gradient. Canny’s scheme of edge detection inspired significant research in the field. A

survey of edge detection methods is given in [46].

2.4.2 Edge Relaxation

Edge relaxation is a procedure performed on the crack edges.If one think of a 2D image

as a city map with each pixel corresponding to a block, then a crack edge is a street segment

between two blocks. The edge detection algorithm provides an initial confidence for each

crack edge with normalized values ranging from0 to 1. The relaxation procedure then

iteratively updates the confidence of each crack edge considering the edge properties in the

context of their mutual neighbors until the confidence converges to either0 or1. Eventually

crack edges with confidence1 are taken as object boundaries and others are discarded.

Edge relaxation can effectively improve segmentation results when region contrast is good

at boundaries, but may be corrupted by noises.

A typical context of a crack edge consists of six other crack edges with three on each

side of the central edge. A central edge is then classified with a pair of numbersa−b, where

a andb representing the number of edges having greater confidence than a threshold. More

sophisticated classification methods are also possible. The meaning of the types and the

related rules to update the confidence are listed below:

• 0− 0 isolated edge: negative influence on the edge confidence

• 0− 2, 0− 3 dead end: negative influence on the edge confidence

• 0− 1 uncertain: weak positive, or no influence on edge confidence

• 1− 1 continuation: strong positive influence on edge confidence
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• 1 − 2, 1 − 3 continuation to boundary intersection: medium positive influence on

edge confidence

• 2 − 2, 2 − 3, 3 − 3 bridge between boundaries: not necessary for segmentation, no

influence on edge confidence

2.4.3 Heuristic Graph Search

In heuristic graph search based methods, a directed (oriented) weighted-graph is first

constructed. In this graph, each vertex corresponds to an edge point in the edge map and

they are linked with directed arcs (the term “arc” is used here to avoid the abuse of the

term “edge”) according to certain heuristics. Commonly used heuristics are based on the

following assumptions: 1) the edge magnitudes along the object boundaries are approxi-

mately constant; 2) the object boundaries are smooth; and 3)the edge magnitudes at object

boundaries are high. With such assumptions, two vertices inthe graph are linked with

an arc only if their magnitude is greater than a threshold, iftheir magnitude difference is

smaller than a second threshold, and if their edge directiondifference is smaller than a third

threshold.

The problem that the heuristic graph search algorithm addresses is how to determine the

optimal path between two given pixelspA andpB such that a cost function is minimized. A

typical cost function isC = −D+αE+βF , whereD is the sum of the magnitudes of edge

points along the path,E is the sum of the difference of magnitude of adjacent edge points

along the path,F is the sum of the difference of directions of adjacent edge points along the

path, andα andβ are two weighting parameters. Dynamic programming is usually used

to implement the algorithm to search for the optimal path based on the observation that the

optimal path frompA to pB can be split into two optimal sub-paths: frompA to pi and from

pi to pB. The details of the implementation are omitted here.

2.4.4 3D Boundary Following

3D boundary following algorithms use prior edge detection results [52, 53, 54, 55].

Here, we will present a typical algorithm proposed by Cappelletti and Rosenfeld [55].
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This algorithm generates a series of 2D boundaries which, when stacked, provided a 3D

boundary of the object of interest. An assumption is that theobject has smooth surfaces

and its sections are all connected and approximately circular. A graph search based method

is proposed for following 2D boundaries in each of the cross section.

The graph search algorithm finds an optimal path with lowest cost in the graph corre-

sponding to each cross section. The cost function is a combination of the mean gradient

magnitude, the circularity of the 2D boundary and the closeness of the neighboring 2D

boundaries. The three cost function components are weightes with scaling factors defined

as program parameters. In this work, the start node in the path is allowed to placed slightly

off the intended boundary. The path found by the algorithm contains a closed subpath that

consitues the detected boundary.

The inital cross section for 2D boundary following is chosento pass near the center of

the object. The 3D boundary following consists of a series of3D passes to generate a 3D

boundary in which 2D boundaries in adjacent cross sections are consistent such that they

are “aligned” with one another. In the first 3D pass, a series of 2D boundaries are extracted

independently of one another. The cost function applied in the first pass is based only on the

mean gradient magnitude and boundary circularity. In subsequent passes, the cost function

for 2D boundary detection in a given cross section is extended to include constraints from

2D boundaries in adjacent cross-sections.

The Cappelletti and Rosenfeld algorithm was tested on some synthetic images for ex-

traction of object with simple and compact shape. However, cortical surface extraction with

3D boundary following is challenging for various reasons. First, the shape of the cortical

surface is convoluted such that the circularity and compactness is not satisfied for many

graph search algorithms for 2D edge linking. Second, in each2D cross section, cortical

surface is not necessarily connected. Third, various imageartifacts may degrade the results

of edge detection. For example, we consistently observed blurring edges between WM and

GM in regions such as superior gyri, border between cerebrumand cerebellum, and border

between temporal lobes and flesh. 3D boundary following for cortical surface reconstruc-

tion may also be disturbed by spurious edges within WM due to noise and undesired edges

between tissues such as flood vessel, dura mater, fat, and flesh.
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2.4.5 MR Brain Segmentation By Edge Detection

Edge detection algorithms have been used for MR brain segmentation. In [56], a two-

stage edge detection scheme is used to segment brain structures in 2D MR images. First, a

location within the desired region, say, white matter, is indicated. A differential intensity

map is then created by calculating the absolute value of the difference of the image intensity

at each pixel with respect to that at the reference location.By picking a differential value,

the initial contour between the desired region and the bordering region is created. This

initial contour is improved in the second edge detection step considering the edge detected

by the Sobel operator. For 3D MR brain segmentation, a 2D slice is first segmented and the

contour is projected into adjacent slices as an initial contour to be improved. The success

of this process requires that the image slices be relativelythin and that the user evaluates

the resulting 2D contour and corrects, when necessary, any errors that occur before they

propagate through the data set.

MR brain extraction with edge detection described in [57] uses DOG for edge detection

followed by region binarization into brain and non-brain regions. Region classification is

conducted on four slices at a time a time instead of the whole 3D image in order to prevent

local errors from corrupting the entire data set. The classification assumes that there is

a large brain region in every 4 slices, whose mean intensity together with those of other

regions such as fat and CSF are used to compute thresholds forclassification of smaller

regions. Heuristic rules as well as user interaction are applied for correction of segmenta-

tion errors. DOG edge detection followed by morphological operations is applied in [58]

for segmentation of more anatomical contours in the head such as skin, bone, brain and the

ventricular systems, but the labeling of these structures is done interactively. DOG edge

detection together with pixel classification is also used in[59] for brain tissue classifica-

tion. Here, significant amount of user interaction is also required for accurate performance

of the segmentation.

2.4.6 Integrating Edge Detection And Region Growing

Region-based segmentation methods directly find coherent regions assuming the re-

gions have homogeneous intensities [44, 45]. Unlike edge-based segmentation methods,
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region-based methods are guaranteed to produce coherent regions without linking edges.

However, decisions about region membership are usually more difficult than applying edge

detectors. A commonly used region-based method, region growing, is described below,

followed by presentation of techniques integrating regiongrowing and edge detection for

image segmentation.

The basic idea of region growing is to start from a seed point as the initial region

and grow the region by iteratively adding neighboring pixels if some similarity measure

between the region and the neighboring pixel is high enough (i.e. greater than a certain

threshold). So region growing mainly involves the selection of the similarity measure.

Two possible similarity measures compare the candidate pixel with the original seed or its

neighbors in the region. However, the former is sensitive tothe selection of the seed pixel

and the latter causes significant drift as the region grows farther away from the original seed

pixel. A compromise is to compare the candidate pixel with certain region statistics, usually

the mean. By initializing the region with multiple seeds, the candidate pixel can also be

compared with the mean with respect to the variance of the region. Another approach is to

use the cumulative difference as one follows a path from the seed to the candidate pixel.

Yet another approach is to provide not only the seeds that should be in the region but also

the seeds that should not be in the region.

Three types of errors may occur in the region boundaries produced by any region grow-

ing process : a) false positive boundaries: a region boundary is not an edge and there are

no edges nearby; b) false negative boundaries: there exit edges with no boundaries near

them; and c) false localization: a region boundary corresponds to an edge but it does not

coincide with it. By boundary we refer to border of regions and by edge we refer to low-

level image feature produced by edge detection. Usually thefalse negative boundaries can

be significantly reduced by proper selection of parameters in region growing, which results

in an over-segmented image and increase of the false positive boundary errors. A bound-

ary elimination technique and a boundary modification technique are proposed in [60] for

correction of the false positive boundaries and false boundary localization integrating edge

detection results. Following the method in [60], boundary elimination is performed con-

sidering the contrast along the boundary and the length of the boundary penalizing for long

boundaries with low contrast in [61] for MR brain image segmentation. Boundary modifi-
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cation is performed using deformable model based methods tobring boundaries to nearby

edges with locally maximum contrast. The integration of region growing and edge detec-

tion may improve the results of plain region growing and plain edge detection. The method

proposed in [60] and applied in [61] is conducted in 2D images. In 3D, the criterion for

boundary elimination is more difficult to define.

2.4.7 Pros And Cons

The main advantage of edge detection based techniques is that it may generate accurate

results when the contrast between two regions is high. Edge detection is also more robust

against intensity inhomogeneity than intensity based methods and the computation is usu-

ally efficient. The weaknesses of segmentation based on edgedetection are as follows[62].

First, edge gaps often occur due to variation in the gradientstrengths of the tissue charac-

teristics. For example, we consistently observed no local maximum of gradient strength

between WM and GM in regions such as superior gyri, the borderbetween cerebrum and

cerebellum, and the border between temporal lobes and flesh.Second, variation in edge

strength can bring discontinuities in the boundaries. For example, the strength of edge

between GM and WM at many gyri areas are significantly less than those in some sulci

areas. Third, spurious edge may occur due to noise and texture. Fourth, cortical surface

reconstruction by stacking contours in 2D slices is highly dependent on the accuracy of the

segmentation process in the 2D slices and problematic in both geometry and topology due

to the highly convoluted shape of the brain, limited image resolution, and various image

artifacts. In conclusion, these methods based on plain edgedetection are not reliable or

robust and require significant amount of user intervention for acceptable results.

2.5 Deformable Models

Medical image segmentation methods based on deformable models attempt to track

anatomic structures in the image by exploiting (bottom-up)constraints derived from the

image data together with (top-down)a priori knowledge about the location, geometry, and
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shape of these structures [63]. This is a vigorously researched area and numerous methods

have been proposed that vary in the representation of the model, the constraints imposed

on the model, the optimal approximation methods that fit the models to the measured data,

and the degree of freedom of the model. Deformable models arealso called active contours

by some researchers. Those models with preferably fewer degrees of freedom are usually

called deformable templates or active shapes (still regarded as deformable models) will

also be discussed briefly in this section.

2.5.1 Snakes

The groundbreaking work on deformable models is the conceptof snakes [64]. A snake

is a 2D parametric curvec(s) = (x(s), y(s))T embedded in the image plane(x, y) ∈ IR2,

wherex andy are the coordinate functions ands ∈ [0, 1] is the parametric domain. The

curve is usually closed such thatx(0) = x(1) and y(0) = y(1). An optimal snake is

the one that is attached to salient image features, typically edges, and maintains internal

smoothness. This is expressed by minimization of the functional E(c) = S(c) + P(c),

whereS(c) =

∫ 1

0
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ds, andP(c) =

∫ 1

0

P (c(s))ds. In physics

terminology,E is referred to as an energy functional which consists of an internal energy

S of the snake that characterizes its smoothness and an image energyP which is derived

from an external image constraint that pushes the snake toward salient image features. The

first-order term inS makes the snake act like a membrane and the second-order termmakes

it act like a thin plate.P (c) denotes a scalar potential function on the image plane and is

typically defined as the scaled magnitude of the gradient of the Gaussian smoothed image:

P (x, y) = −|∇[G∗ I(x, y)]|. The weightsα(s) andβ(s) control the relative importance of

the first-order smoothness and the second-order smoothness. Generally, they can vary both

along the length of the snake and over time. In practice,α is usually a positive constant, and

β is usually zero. (We’ll see later on that the second-order smoothness is not necessary.)

According to the calculus of variations, the snake that minimizes the energy functional

E must satisfy the Euler-Lagrange equation:−
∂

∂s
(α

∂c

∂s
) +

∂2

∂s2
(β

∂2
c

∂s2
) + ∇P (c) = 0.

Taking the snake as a dynamic system in terms of Lagrangian mechanics, the minima of the

energy functional can be computed by solving the Lagrangianequation
∂c

∂t
=

∂

∂s
(α

∂c

∂s
)−
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∂2

∂s2
(β

∂2
c

∂s2
) − ∇P (c). An intuitive interpretation is that the shape of the snake changes

over time driven by the internal stretching and bending forces (the first two terms in the

right side of the above equation) and external image forces (the third term in the right

side) starting from an initial shape. The term in the left side is referred to as the damping

force and when it stabilizes (i.e. when it tends to zero), theenergy functional goes to

a local minimum. Finite difference methods [64] and finite element methods [65] have

been used to discretize the snake and numerical time integration methods are applied to

iteratively update the coordinates of the snakes over time steps until the difference of the

snake between two successive iterations is sufficiently small. In the same spirit, snakes

have been extended for 3D surfaces. The formulation is omitted here.

The main advantage of image segmentation using snakes is that it provides robust-

ness to noise and spurious edges since the shapes of the curves or surfaces are regulated

by their smoothness [66]. The limitations of the traditional deformable models including

snakes are: 1) The snake must be initialized close to the structure of interest to guarantee

good performance [63]; 2) The performance of the deformablemodel is also sensitive to

the weighting parametersα andβ; 3) The snakes cannot extrude through any significant

protrusions that a shape may possess without resorting to cumbersome resampling tech-

niques [67]; 4) The topology of the object to be segmented must be known beforehand, that

is, the snakes cannot adapt to the topology of the objects in the image without additional

machinery; and 5) Thea priori knowledge is limited to the smoothness of the contour.

Various methods have been developed to address these disadvantages, as described below.

2.5.2 Level set based deformable models

Another type of deformable models that saves the parameter resampling and has the

advantage of topology adaptability is the level set based models [68, 67]. Letφ(x) be a

function fromIRn to IR. Then the deformable modelc in IRn is defined as a specific level

set ofφ, typically zero level setφ(c) = 0. The model is one or more closed curves in

IR2 or one or more closed surfaces inIR3. A typical way to define the level set function

is φ(x) = d, where|d| is the shortest distance fromx to the zero level set with the sign

chosen depending on ifx is outside or inside of the zero level set. The level set function
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was originally proposed to solve front propagations problems such as flame propagation

and crystal growth in [69], where it was shown that the motionequation of the front (i.e.

the zero level set)
∂c

∂t
= F (c(t)) can be solved by solving instead the evolution equation of

the level set function
∂φ

∂t
= −F |∇φ|. HereF (c(t)) is the speed function of the front andt

is the time domain[0,∞).

The local optimal front can be found by numerically updatingφ over iterations until the

changes ofφ in zero level set are sufficiently small. When the level set function is defined

over an 2D or 3D image, it should be updated for each pixel in the image and the speed

functionF has to been extended to have values over all pixels. For a pixel p that is not in the

zero level set, its speed can be set to the speed of the pointq in the zero level set which is of

the shortest distance fromp. One way to improve the efficiency is to only updateφ within a

narrow band around the zero level set while keeping all the others stationary until the zero

level set collides with the bounds of the band, when the narrow band is reconstructed.

For image segmentation, a basic criterion of setting the speed functionF is that it

should be closer to zero in regions of high image gradient andcloser to unity in regions

with relatively homogeneous intensity. For example, [68, 67] shows thatF (x) = g(|∇G ∗

I(x)|)(c + κ)~n, wherec is a constant,κ is the curvature at pointx, ~n is the unity normal

vector atx, andg(|∇G ∗ I(x)|) is a decreasing function of the gradient of the Gaussian

smoothed image such thatg(|∇G ∗ I(x)|) → 0 as|∇G ∗ I(x)| → ∞. Two examples of

a reasonableg areg(|∇G ∗ I(x)|) =
1

1 + |∇G ∗ I(x)|
andg(|∇G ∗ I(x)|) = e−|∇G∗I(x)|.

Hereκ~n acts as a smoothing force. The greater the curvature atx, the greater the speed at

x; positive curvature of a pointp in the zero level set makes it deform inward and negative

curvature make it go outward. The constant termc is referred to as the advection speed term

and acts similarly as the pressure force or the weight force introduced in the parametric

balloon model [70, 65], which is a extension of the traditional snake model. The pressure

force inflates the model and the weight force deflates the model independent of the object

geometry so that the boundary of the object can pass spuriousedges when the initial model

is not near the target model. The advection speed also helps form concave shapes if the

model is not initialized properly.
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In the geodesic active contours proposed in [71], the selection of the speed functionF

is formulated in terms of minimization of the energy functionalE in the traditional snakes.

It is shown first that the smoothness of the contour can be sufficiently regularized by the

first order term inE . Generalizing the image potential termP (c) = −|∇G ∗ I(x)| with a

decreasing functiong(|∇G ∗ I(x)|), it is then proved that the minimization of the rewritten

energy functional is equivalent to finding the geodesic contour in the Riemannian space

with the Riemannian metricgij = g(|∇G ∗ I|)2δij . This can be intuitively interpreted as

the minimization of the length of the contour weighted by themeasure of the edge salience

(g(|∇G ∗ I|)) of each point in the contour so that the Riemannian length ofthe contour is

minimal when it is attached to salient edges. In order to minimize the Riemannian length

of the contour, the gradient descent method (steepest descent method) is used to evolve

the contour according to the equation
∂c

∂t
= gκ~n − (∇g · ~n)~n. Compared to the speed

term in the previous paragraph, here the additional speed term −(∇g · ~n)~n increases the

attraction of the deformation contour toward the boundary.It works like a doublet in that

when the contour is approaching the boundary, the speed toward the boundary is increased

and when the contour is leaving the boundary, the speed outofthe boundary is decreased.

The advection termc~n can also be added to make the performance less dependent on the

initialization of the contour.

All the discussions on the selection of the speedF can be extended easily for sur-

faces inIR3. The changes mainly involve the computation of the 3D gradients of Gaussian

smoothed image and the curvature speed term can be derived from the mean surface curva-

ture or the minimum surface curvature.

2.5.3 Image Influences

To address the initialization problem of traditional deformable models, much research

have been done to impose global image influences on the contour in addition to or replacing

the traditional image influence based on local gradients. Deformable models using global

image influences include the balloon model [70, 65] that usesthe pressure force and the

weight force as described above, the gradient vector flow model [72, 73], and many models

that incorporate region information [74, 75, 76, 77, 78].
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The initialization problem of traditional deformable models with local gradient influ-

ences is mainly due to the fact that in homogeneous regions the gradients are nearly zero

and the contour is mainly driven by the internal smoothness influences. Letf be the

image intensity which may be Gaussian smoothed and∇f be its gradient vector field.

The main idea of the gradient vector flow is to construct a new gradient vector fieldu

in the image domain such that the vectors vary slowly in homogeneous regions and keep

nearly equal values to∇f at salient edges. This is achieved by solving diffusion equation
∂u

∂t
= λ(|∇f |)∇2

u − µ(|∇f |)(u− ∇f) starting from the initial fieldu = ∇f . The first

term on the right side of the equation is referred to as the smoothing term since it dif-

fuses the gradient field∇f . The second term encourages the vector fieldu to be close to

∇f . λ andµ are two weighting functions that control the relative importance of these two

terms. When the equilibrium solution is computed, the traditional image potential term∇f

is replaced withu in the traditional deformable model. The gradient vector field u has a

larger capture range than the original gradient field∇f and also helps move contours into

boundary concavities.

2.6 Structural And GeometricA Priori Knowledge

A significant characteristic of the brain anatomy is that keyanatomic surfaces in the

human head are organized in a layered manner. These surfacesinclude the skin surface, the

outer cortical surface, the inner cortical surface, and theventricle surface. In particular, the

thickness of the cortical layer (the shortest distances between points in the outer cortical

surface and points in the inner cortical surface) is nearly constant. This characteristic has

been used as structural and geometrica priori knowledge in both deformable models and

statistical segmentation methods.

In [79], distances of each white matter voxelxi to the skin surface and the ventricle

surface are taken as a vector of two random variables(dsi, dvi). The skin surface and

the ventricle surface are believed to be much easier to segment and their segmentation is

performed before that of the white matter. From segmented images, the joint probability
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density of a random distance pairP (dsi, dvi|xi ∈ WM) is estimated with non-parametric

methods such as histogramming or Parzen Windowing. The optimal segmentation is ob-

tained by maximization of the posterior probabilityP (xi ∈ WM |dsi, dvi, Ii) ∝ P (Ii|xi ∈

WM)P (dsi, dvi|xi ∈ WM)P (xi ∈ WM), whereIi denotes the intensity of the voxelxi.

The first term at the rightside is a Gaussian intensity model for the white matter voxels and

the third term is the prior probability that a pixel belongs to the white matter. The geometric

prior knowledge can be used together with the MRF spatial prior model or by itself with

stationary spatial prior.

In [80], the outer and inner cortical surface are represented as two polyhedral meshes.

The deformation was formulated as a cost function minimization problem. The cost func-

tion is a weighted summation of several types of terms, including the image terms that

push the deforming surface to tissue boundaries, internal stretching and bending terms that

impose surface smoothness, and three additional proximityterms that prevent deformation

from forming a self-intersecting surface and impose constraint on the thickness of the corti-

cal layer. The self-proximity termTself−proximity is defined for every pair of polygons in the

mesh. If the minimum distance between two polygonsPi andPj is smaller than a threshold

dij, Tself−proximity(Pi, Pj) = (d(Pi, Pj)− dij)
2. Otherwise,Tself−proximity is zero. The in-

tersurface proximity term is defined in a similar manner. Theweighting parameters of these

two terms are set such that as the distanced(Pi, Pj) approaches zero, the weighting param-

eters approach infinity. In this way, both self-intersection and intersurface intersection are

prevented. The third term governs the thickness of the cortical layer and is defined for each

pair of corresponding vertices in the two surfacesTvertex−vertex = (d(xi, xo)− dB)2, where

xi andxo are corresponding vertices in the inner cortical surface and outer cortical surface

respectively anddB is the preferred distance between the two vertices. The maindisadvan-

tage of this method is that the deformation involves the calculation of a huge number of

distances between pairs of polygons and hence the algorithmis extremely slow.

Another coupled-surface deformation is proposed in [81] within the framework of level

set formulation. Both the inner cortical surface and the outer cortical surface are embedded

as zero-level sets in their level set functionφin andφout respectively. The two evolution

equations are given as
∂φin

∂t
+ Fin|∇φin| = 0 and

∂φout

∂t
+ Fout|∇φout| = 0 respectively.

Since the value of the level set function of a front at any point is simply the distance from
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this point to the current front, there is a natural way to establish a correspondence between

the points on the two evolving surfaces through distance without adding much computa-

tional expense. For any point on the inner moving surface, the distance to the outer moving

surface is the valueφout at this point and vice versa for the point on the outer moving sur-

face. The constraint on the thickness of the cortical layer is imposed by formulating the

speeds asFin = F̄inh(φout) andFout = F̄outh(φin), whereF̄in and F̄out are the speeds

formulated without consideration of the thickness constraint of the cortical layer andh(x)

regularizes the speeds such that when the distance is too small or too large, the speed is

reduced to zero.

2.7 Intensity Inhomogeneity Correction

There are two general ideas regarding how to overcome the intensity inhomogeneity

problem in MR image segmentation. One is to correct the intensity inhomogeneity prior

to brain tissue segmentation and the other is perform intensity inhomogeneity correction

simultaneously with brain tissue segmentation. There are numerous methods to correct

intensity inhomogeneity as a preprocessing step prior to image segmentation [82, 83, 84].

These methods is generally based on the assumption that intensity inhomogeneity is a low-

frequency spatial variation that can be distinguished fromhigher-frequency components

representing anatomic information [85]. It is believed by some researchers that the latter

approach has the advantage of being able to use intermediateinformation from the segmen-

tation while performing the correction.

There are two prevailing approaches for modeling inhomogeneities in methods that

perform simultaneous segmentation [66]. The first approachassumes that each tissue class

spatially varies independently; the second approach models the inhomogeneities as mul-

tiplicative gain field or additive bias field of the image logarithm. As a typical example

of the first approach, [23] extends the standard mixture model resolving method with the

MRF spatial prior model and the mean and variance of each tissue is allowed to vary over

the spatial domain instead of using spatially invariant parameters. The main difference in
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the implementation from the standard mixture resolving is that the spatially varying param-

eters in each voxel are estimated within a certain neighborhood of the voxel. The second

approach is described in more detail in the following two subsections.

2.7.1 Adaptive Fuzzy C-Means

The standard fuzzy c-means objective function for partitioning an image represented

as an voxle set{yj|1 ≤ j ≤ N} into c clusters isJ =

c
∑

i=1

N
∑

j=1

(uij)
p‖yj − mi‖

2, where

{mi|1 ≤ i ≤ c} are the prototypes (means) of the clusters,uij represents the fuzzy mem-

bership of the voxelyj in thei-th cluster, andp is a weighting exponent and determines the

amount of fuzziness of the resulting classification. Here,yj represents the feature vector

of each voxel and may simply contain the intensity of the voxel. The objective function is

minimized when high membership values are assigned to voxels whose intensities are close

to the centroid (means) of its particular class and low membership values are assigned when

the voxel data is far from the centroid.

In [86], the observed intensities of the image{yj|1 ≤ j ≤ N} are assumed to be

multiplications of the anatomy field and the gain field{gj|1 ≤ j ≤ N} and the objective

function is modified to allow smooth intensity variation in atissue:J =
c

∑

i=1

N
∑

j=1

up
ij‖yj −

migj‖
2 + λ1R1 + λ2R2, whereR1 andR2 are two regularization terms that enforce the

smoothness of the gain field andλ1 andλ2 are their controlling parameters. HereR1 is

the sum of the first-order finite differences at each pixel along rows and columns;R2 is the

sum of the second-order finite differences. One of the problems of this method is that it is

sensitive to noise in the image. In [87], the intensitiesyj are logarithmic converted tozj

and the multiplicative gain field is hence converted to an additive bias fieldβj. A spatial

regularizer is used to segment images corrupted by salt-and-pepper noise. The modified

objective function is given byJ =

c
∑

i=1

N
∑

j=1

up
ij‖zj−βj−mi‖

2+
α

NR

c
∑

i=1

N
∑

j=1

up
ij(

∑

zr∈Nj

‖zr−

βr−mi‖
2), whereNj represents the neighbors ofyj andNR is the cardinality ofNj andα

is a parameter that controls the importance of the regularization and depends on the signal-

to-noise ratio of the image. The key reason why this objective function works is that the
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regularization encourages the smoothness of both the membership values and the bias field

at each voxel.

2.7.2 Adaptive Expectation-Maximization

In [88], intensity data is logarithmically transformed so that the multiplicative gain arti-

fact is converted to an additive bias field. Observed log-intensityyi at ith voxel is modeled

as a normal distribution, independent of other voxels:P (yi|ωi = k, βi) = Gσ2
k
(yi−µk−βi),

whereGσ2
k
(µk) is the normal distribution with meanµk and varianceσ2

k, ωi = k repre-

sents the tissue type of the voxel, andβi denotes the bias field atith voxel. In terms of

the independence of probability between voxels, the probability density for the entire im-

age isP (y|β) =
∏

i

P (yi|βi). The bias fieldβ is modeled with aN-dimensional zero

mean Gaussian prior probability density, whereN is the total number of the voxels in

the image. The posterior probability of the bias field, givenobserved intensity data, is

P (β|y) ∝ P (y|β)P (β). Use themaximum-a-posterioriprinciple, the optimal estimate of

β is determined by maximization of the posterior probability: β̂ = arg max
β

P (β|y). The

equation to calculate the optimalβ is derived using the zero gradient condition and is solved

with the EM method in [88]. The model proposed in [88] is foundto be problematic when

there are tissues in an image that do not follow a Gaussian distribution. In [89], these tis-

sues are unified into an outlier class with uniform distribution. Another extension is to use

the MRF to incorporate spatial dependences of tissue types [21, 79, 90]. In the EM method

that considers both bias field estimation and MRF spatial model, each iteration consists of

following main steps: 1) estimate the bias field by maximization of its posterior probability,

given the current estimation of the tissue types and the likelihood parameters; 2) update the

likelihood distribution with the new estimation of the biasfield; 3) estimate the tissue types

by maximization of the posterior probability of the MRF; and4) estimate the likelihood

parameters by maximization of the expectation of the complete data log likelihood.



35

2.8 Brain Extraction

There are mainly four basic type of methods that have been proposed for brain extrac-

tion on MR images: the thresholding-with-morphology method, the watershed method, the

deformable-model based method, and the atlas registrationbased method in which the im-

age is normalized to a standard space. There are also hybrid methods that combine these

basic methods for more accurate and robust results.

The thresholding-with-morphology [91] method essentially is conducted as following

procedures. First, lower and upper thresholds are determined in order to separate the entire

image into three parts: very bright parts such as eyeballs and fats, bright parts representing

brain tissues, and dark parts including air and skull. The bright part, however, usually

contains non-brain tissue and a morphology filtering is usedto remove the non-brain bright

part. An erosion operation is first performed on the bright part so that the “bridges” between

brain and non-brain tissue are eliminated, the isolated component representing brain tissue

is then determined, and this is then dilated back by the same extent as the erosion resulting

in the final brain mask. There are some variants of this methodin the thresholding part

with more sophisticated methods for threshold selection using Gaussian mixture model

[92] or histogram scale-space analysis [93]. Carefully tuned morphological filtering was

also research in [93], but basically the metric “thickness”(i.e. the distance to boundary)

was used as the measurement on the connectivity between brain and non-brain tissue.

The watershed method [94] obtained its name as the metaphor to the water flowing

from hills to basins. For brain extraction in MRI, the gray level is first inverted so that

white matter has lower intensity than gray matter and CSF andthe intensity at each voxel

is regarded as the “height” in the landscape. Voxels are thenconnected into “basins” in a

way similar to how a watershed separates two adjacent river systems. This transform often

leads to an “over-segmentation” problem where there are more basins in the result than

are desired. This problem is often alleviated by a procedurecalled “preflooding” [94] to

merge over-segmented basins. In brain extraction, a macro basin is finally determined as

the result of brain extraction[94] or as intermediate result for further processing to get a

more accurate result [95].
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A typical deformable-model based brain extraction method is the one used in BET [96]

(a brain extraction tool in the FSL package). In BET, the intensity histogram is processed

to get a rough brain/non-brain threhsold. Then the center-of-gravity of the head image is

found and the rough size of the head in the image is determined. This information is then

used to establish an initial triangular tesselation of a sphere’s surface, which is deformed

towards the brain’s edge while maintaining reasonable sizeand smoothness.

A hybrid brain extraction method for more robust performance is proposed in the

Freesurfer package [95]. An initial brain extraction is performed with the same watershed

method presented in [94]. Then a surface model is established on the intermediate result

and deformed to determine the brain’s edge. In the deformation procedure, an atlas-based

term is integrated so that the model is regularized with respect to both the smoothness and

deviation from the atlas.
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CHAPTER III

Relative Thresholding

Relative thresholding (RT) is characterized as differentiating the labels of near voxels

by comparing their intensities with respect to a relative threshold [97]. RT is based on a

structural model on the human brain anatomy and a model of T1-weighted human brain

MR images. The modeling exploit various structural, geometrical and radiologicala pri-

ori knowledge and is formulated as constraints in terms of first-order logic. This chapter

starts with the structure modeling and the image modeling, and then presents the relative

thresholding algorithm.

3.1 Structure Modeling

Let ~g = ∇g(σ∇) be the gradient vector image ofg(σ∇). Throughout this dissertation,

we useg(σ) to denote the resultant image of performing Gaussian filtering with standard

deviationσ on the input imagey. We construct a directed graphG = (V, E) from ~g such

that each vertexvi ∈ V corresponds to the voxelxi in a region of interestR and each

directed edgeei ∈ E emanates fromvi to vj , wherevj is one ofvi’s 26-neighbors that is in

the direction of the gradient vector~gi. Whenvj is outsideR, ei is forced to be a loop from

vi to itself.

The structural, geometrical and radiologicala priori knowledge that we use in RT is:

• K1: skull, CSF, GM, and WM are organized as a layered structure from outside to

inside;
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• K2: The average intensities of skull, CSF, GM, and WM in local regions are in

ascending order in T1-weighted MR images;

• K3: The cortex thickness is nearly uniform.

Based on thisa priori knowledge we use a gradient graph to model the anatomical

structure of the human brain as the following first-order logic. Let τ be the maximum

cortex thickness of the subject andp is a value slightly greater thanτ , then we can construct

a gradient graphG with a suitable parameterσ∇ such that:

• For each GM voxelvi, there is a path inG of lengthp from vi to a WM voxel;

• For each CSF voxelvi adjacent to GM, there is a path inG of lengthp from vi to a

WM voxel;

• For each CSF voxelvi adjacent to GM, there is a path inG of length≤ p from vi to

a GM voxel;

• There is no path from a WM voxel to a non-WM voxel inG; and

• There is no path from any non-brain voxels to WM inG without passing CSF.

3.2 Image Modeling

A common approach to image segmentation is based on the imagemodeling in which

image intensities are modeled as statistical distributions. While the intensities of WM

voxels in the T1-weithed MR image can be safely modeled with common statistical distri-

butions (e.g. a normal distribution) once the intensity inhomogeneity has been corrected,

the intensities of GM voxels hardly meet any common statistical distributions in practice

even if intensity inhomogeneity has already been corrected. Based on this observation, we

model images in terms of the spatial relationships between voxels instead of as statistical

distributions on the absolute voxel intensities. The basicintuition is that if the segmen-

tation task is not beyond the human recognition capability,near voxels of the same type
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should possess less difference in intensity than near voxels of different types. With this

type of image modeling, we attempt to avoid the limitation imposed by the form of statisti-

cal distributions and provide a framework for introducing variousa priori knowledge into

the segmentation task.

Suppose that there areK voxel types among a total ofN voxels in the space domain

Ω, which represents either the whole image or a region of interest in the image. In brain

MR image segmentation, we assume thatK equals to 3 and the three tissues of interest are

WM, GM, and background and denoted as with the number3, 2 and1 respectively. When

the domainΩ contains exactly the brain volume, the background tissue type corresponds

to CSF; otherwise, it refers to anything excluding WM and GM.In this thesis, we setΩ

to be whoe image space and do not depend on any prior skull stripping or brain extraction

procedure. Let the coordinates of voxels bexi, 1 ≤ i ≤ N , and the variable and true

label of each voxel respectively beωi (or ω(xi))∈ [1, K] andωi ∈ [1, K], 1 ≤ i ≤ N .

Incorporating a multiplicative bias fieldbi and an additive noiseρ, the image intensityyi

(or y(xi)), 1 ≤ i ≤ N , is modeled as:

yi = bi

K
∑

k=1

δk
i y

k
i + ρ, whereδk

i =

{

0 ωi 6= k

1 ωi = k
(3.1)

In equation 3.1,δk
i yk

i represents the component given by tissuek in the ideal image

without influence from noise and IIH and we refer their sum
∑K

k=1 δk
i y

k
i as theideal image.

Here we do not assume any particular statistical form on the noise term. Equation 3.1 is

our initial image model and will be gradually transformed tofacilitate image segmentation.

The termyk
i in equation 3.1 can be seen as an arbitrary function over the space domain

governed by the constraints on the spatial relationship between near voxels. Generally, we

think the constraints should considera priori knowledge about the structure and geometry

of the objects in the image as well as the inherent image properties related to the image

acquisition process. In brain T1-weighted MR images, we considera priori knowledgeK1

andK2 and use the following first-order logic to describe a spatialconstraint:
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∀xi, xj ∈ Ω ∀k ∈ [1, K] ∃T k ∈ [0, 1)d(xi, xj) ≤ p⇒

(ωi = k ∧ ωj = k + 1⇒ r(yk
i , y

k+1
j ) < T k) ∧

(ωi = ωj = (k + 1)⇒ r(yk
i , y

k
j ) ≥ T k),

wherer(a, b) =

{

a/b a < b

b/a a ≥ b
(3.2)

In equation 3.2,T 0 andTK are forced to be 0,d(xi, xj) represents the distance between

voxel xi andxj , andp is the distance threshold (a voxel cube is of unit dimension)and is

in the same value as the one used in the structure modeling in section 3.1. Theoretically,

any form of distance, including Euclidean distance, can be used. However,D6, D18 or D26

distance is preferable because of the computational efficiency.

Spatial constraints expressed in equation 3.2 can also be described informally as fol-

lows. Letrgw represent the ratio between a GM voxelxi and a WM voxelxj nearxi (we

use a distance threshold to express the nearness between twovoxels). Letrbg represent the

ratio between a background voxelxm and a GM voxelxn nearxm. Let rww, rgg andrbb,

respectively, represent the ratio between two near WM voxels, two near GM voxel and two

near background voxels. Then we have the following constraints on the four ratios:

rgw > rww ∧ rbg > rgg (3.3)

Note that inequation 3.3 leaves a great deal of freedom forrgg and rbb so that: 1) the

intensities of two near GM voxels can differ even more than any pair of near voxels of GM

and WM; and 2) the intensities of two near background voxels can differ even more than

those of any pair of near voxels of CSF and GM. In this way, we allow a greater extent of

variations among GM voxels and permit the background to include various type of tissue

types such as CSF, skull, air and so on.

A reasonable assumption about the bias field is that it variesslowly across the space

with respect to the intensity variation between different tissues in the ideal image. We use a

first-order logic to describe this assumption in equation 3.4 without any constraints on the

variation patterns.
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∀xi, xj ∈ Ω ∃ε ∈ (0, 1)

(1− ε� 1−max(T 1, ..., TK−1)) ∧ (d(xi, xj) ≤ p⇒ r(bi, bj) > ε) (3.4)

Based on the low frequency property of the bias field, we can safely let yk
i absorb the

bias field term and the latter can thus be dropped from equation 3.1 while validity of the

constraint in equation 3.2 is maintained. Therefore, the image artifact of IIH is made trans-

parent in our image model.

Next, we apply Gaussian filtering on the original gray level image to counteract the

noise and drop the noise term from equation 3.1. Letz = g(σz) be a specific blurred

image. The new image model onz is:

zi =
K

∑

k=1

δk
i zk

i (3.5)

Here,zk corresponds to the contribution of tissuek to the smoothed image. After Gaus-

sian filtering, we want to maintain the spatial relationships between voxels, as described

below:

∀xi, xj ∈ Ω ∀k ∈ [1, K] ∃T k ∈ [0, 1)d(xi, xj) ≤ p⇒

(ωi = k ∧ ωj = k + 1⇒ r(zk
i , zk+1

j ) < T k) ∧

(ωi = ωj = k + 1⇒ r(zk
i , zk

j ) ≥ T k+1) (3.6)

In terms of the definition of the functionδk
i , we havezk

i = zi whenωi = k and hence

the equation 3.6 can be rewritten as:

∀xi, xj ∈ Ω ∀k ∈ [1, K] ∃T k ∈ [0, 1)d(xi, xj) ≤ p⇒

(ωi = k ∧ ωj = k + 1⇒ r(zi, zj < T k) ∧

(ωi = ωj = k + 1⇒ r(zi, zj) ≥ T k+1) (3.7)

It is well-known that Gaussian filtering blurs both homogeneous regions and edges.

This might lead to main two types of violation to the constraint. First, for a voxel pair
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(xi, xj) of different types on the opposite sides of an edge, if they are too close to each

other,r(zi, zj) may be significantly increased such that they may be identified as the same

type. We think this adverse effect can be minimized by increasing the distance between

voxel pairs for comparison in the relative thresholding procedure. This can be demonstrated

in figure 3.1, where the spatial constraint is maintained in the Gaussian blurred 1D signal

with σz = 2, p = 10, andT 1 = 0.45. The second type of violation may occur when the

dimension of some parts of the structure of interest is too narrow compared to the Gaussian

filter aperture (σz). We found that for current MRI techiques, the usual resolution (around

1mm3) is high enough so that this violation brings very little negative influence.
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FIGURE 3.1: Effect of Gaussian smoothing of a 1D signal. Top: a 1D signal; Middle:
noise added; Bottom: smoothed signal.

3.3 Applying Relative Thresholds

Suppose we are given the two relative thresholdsTgw (between GM and WM) and

Tbg (between background and GM) that govern the constraints in equation 3.7. We can

combine the structure model and the image model and easily obtain the following rule to

differentiate WM, GM and background:
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1. All voxels are initialized as WM.

2. For any voxel pair(xi, xj) both labeled as WM, if there is a path fromxi to xj of

lengthp in the gradient graphG and their intensity ratio(xi/xj < Tgw, thenxi is

relabeled as GM. This rule sets all true GM voxels as GM and will no flip the label

of true WM voxels. In other words, this rule detects borders between WM and GM.

3. For any voxel pair(xi, xj) both labeled as GM, if there is a path fromxi to xj of

length≤ p in G and their intensity ratiozi/zj < Tbg, thenxi is relabeled as back-

ground. This rule detects borders between background (including CSF) and GM.

We designed two algorithms, algorithm 1 and algorithm 2, to implement the above rules

for GM/WM segmentation and background/GM segmentation respectively. The inputs to

both include a comparing imagez from which voxels are compared, a relative threshold,

and a gradient graphG constructed on the entire image domain. Both algorithms mainly

consist of a sequence of voxel comparisons. Each comparisoninvolves an objective voxel

and a reference voxel. The objective voxel is the voxel whosetissue type is to be determined

at the present comparison. The reference voxel is determined as follows.

• In algorithm 1, the reference voxelrefgw(vi) for the object voxelvi is the WM voxel

with the maximum intensity in the path of lengthp that emanates fromvi in G;

• In algorithm 2, the reference voxelrefbg(vi) for the object voxelvi is the GM voxel

with the maximum intensity in the path of lengthp that emanates fromvi in G.

In practice, we found that it gave better results to temporarily substitute the intensity

z(refbg(vi)) with z(refgw(refbg(vi)))(1− (1−Tgw) ∗ 2) for each comparison in algorithm

2. This is based on our observation that 1 minus the optimal thresholdT ∗
gw is roughly half

of 1 minus the ratio between average GM and WM intensities.

The distance thresholdp is a empirical value that we chose based on the average cortex

thickness. In some areas of the brain, such as amygdala and caudate, the gray matter may

be thicker than the average cortex and some gray matter voxels may be recognized as WM

becausep is too short. To work around this issue, we add an additional rule in algorithm
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Algorithm 1 : GW-Thresholding
Data: z, G, Tgw

initialization: ∀xi ∈ R, ωi ←WM;
foreach voxelxi in the imagedo

if ω(refgw(xi)) = GM then
ωi ← GM;

else ifr(zi, z(refgw(xi))) < Tgw then
ωi ← GM;

foreach voxelxi in the imagedo
if ω(refgw(xi)) = GM then

ωi ← GM;

Algorithm 2 : BG-Thresholding
Data: z, G, Tbg

foreach voxelxi in the imagedo
if ωi = GM andr(zi, z(refbg(xi)) < Tbg then

ωi ← background;

1: if the reference voxel of the object voxelxi is relabeled as GM, thenxi should also be

relabeled as GM.

3.4 Finding Optimal Thresholds

Optimal thresholds can be found by user intervention in a trial-and-evaluation scheme.

The user can first try different candidate thresholds between GM and WM, visually evaluate

the result at the same time and finally select the threshold that gives the best result. The

same procedure can be performed to select the best thresholdbetween background and GM.

It is under investigation whether the same two optimal thresholds can be used asa priori

knowledge across different MR images acquired with the sameor similar parameters.

Figure 3.2 gives a demonstration on the effects of choosing different relative thresholds:

figure 3.2(b) shows that over-low thresholdTgw globally makes the white matter too fat

while figure 3.2(c) shows that over-highTgw globally makes it too thin. In either case,
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the GM/WM boundary drifts away the correct situation in different directions while the

optimal relative threshold makes the boundary fit at the right location, as shown in figure

3.2(d).

3.5 Results

Figure 3.3 shows segmentation results of applying relativethresholding on some real

MRI scans. One of the advantages of relative thresholding isthat it is robust to intensity

inhomogeneity without additional correction processing.Another advantage is that it can

adapt to high level intensity variations within a given tissue.

Relative thresholding mainly serves as a initial voxel classification processing step.

Since relative thresholding is performed on the entire image, non-brain voxels can be la-

beled as brain voxels which may nor may not be connected to thetrue brain voxels. This

type of false positive will be eliminated with morphometricanalysis presented in chapter

VI and chapter VIII. Another typical type of error misses certain fine portions of the WM

structure. This type of false negative is mainly due to limited sampling resolution and the

blurring effect of Gaussian filter. A procedure calledterrain analysiswill be presented in

chapter VIII to largely recover these missing portions of the structure. Topology defects

are yet another type of segmentation error, although littlegeometrical deviation may be

involved. Topology correction methods will be presented inchapter VII and chapter VIII.
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(a) A slice of an MR image (b) Tgw=0.68,Tcg=0.7

(c) Tgw=0.93,Tcg=0.7 (d) Tgw=0.86,Tcg=0.7

FIGURE 3.2: Analysis of relative thresholding with different relative thresholds applied
on a phantom image. OptimalT ∗

gw = 0.86 and optimalT ∗
cg = 0.7. The relative threshold

Tgw in (b) is over-low. The one in (c) is over-high. The one in (d) is optimal.
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(a) A slice of a MR image (b) RT result

(c) A slice of another MR image (d) RT result

FIGURE 3.3: Relative thresholding results on real MR scans



48

CHAPTER IV

Digital Point Classification

Like most other pixel classification methods, relative thresholding will inevitably intro-

duce classification errors in both geometry and topology. Tocorrect classification errors,

we rely on a set of morphological image analysis tools, whichare described in the follow-

ing chapters. In this chapter, we give a set of definitions on the classification of 3D digital

points, which forms the basis for the morphological image analysis tools. We start with the

introduction of fundamental digital topology theory.

4.1 Digital Topology

A 3D binary image is defined as the quadruple(V, n, n,F)[98]. V ⊂ Z3 is the 3D cubic

grid representing all elements in the image. Each element inthe 3D image is a cubic grid

point and called a voxel.F ⊂ V represents the set of foreground voxels andF represents

the complement ofF . n andn respectively represent the adjacency inF andF defined

below.

The topology of a digital image depends on a pair of digital adjacencies, one for the

foreground and one for the background. Three types of adjacency are commonly used in

3D: 6-, 18-, and26-adjacency. Two voxels are6-adjacent if they share a face, 18-adjacent

if they share a face or an edge, and26-adjacent if they share a face, an edge, or a corner.

In the rest of this thesis, we use “voxel” and “point” withoutdistinction if not particularly

noted. Ann-neighborof a pointp is a point that isn-adjacent top. The set ofn-neighbors
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of a pointp is denoted asNn(p). Note that hereNn(p) includesp since a voxelp can

be seen as sharing six faces with itself. We useN ∗
n(p) to denoteNn(p) \ {p} andN (p)

to denoteN26(p). Topologically compatible adjacencies/connectivities of F andF are

(6, 26), (6, 18), (18, 6) and(26, 6). For any adjacencyn ∈ {6, 18, 26}, we usen to denote

its compatible adjacency.

An n-path ofl > 0 from pointp to q in X ⊂ Z3 represents a sequence of distinct points

p = p0, p1, ..., pl = q inX such thatpi isn-adjacent topi+1, for i = 0, 1, ..., l−1. An n-path

is closedif and only if p0 is n-adjacent topl. Two pointsp, q ∈ X aren-connectedwith

respect toX if and only if there exists ann-path fromp to q inX . The setX is n-connected

if every two points inX aren-connected with respect toX . An n-connected componentof

X is a non-emptyn-connected subset ofX that is notn-adjacent to any other point inX .

The set of alln-connected components ofX is denoted byCn(X ).

For any setX ⊂ V, we useX to denote the complement ofX in the image. The point

setX is also referred to as an object since it corresponds to a binary object in the image.

An objectX in n-adjacency has acavity if and only if there exits a connected component

in X in n-adjacency that isn-connected to onlyX .

An objectX has ahandlewhenever there is a closed path inX that cannot be deformed

through connected deformations inX to a single point. A solid torus is an example of an

object that has exactly one handle. The number of handles in an object is the maximum

number of cutting along embedded disks without rendering the resultant object discon-

nected. A handle in the objectX is referred to as atunnel in its complementX . The

number of handles in a digital objet is also called thegenusof the object.

A central concept in digital topology is the definition ofsimple point[99], which is

characterized by itsgeodesic neighborhoodandtopological numbers.

Definition 4.1.1. Simple pointsA point in a binary image(V, n, n,F) is simpleif it can be

added to or removed fromF without changing the topology of bothF andF , i.e. without

changing the number of connected components, cavities and handles of bothF andF .
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Definition 4.1.2. Geodesic neighborhoodThe geodesic neighborhood of a pointp ∈ V

with respect toX ⊂ V of orderk is the setN k
n (p,X ) defined recursively by :

N 1
n(p,X ) = N ∗

n(p) ∩ X

N k
n (p,X ) = ∪{Nn(q) ∩ N ∗

26(p) ∩ X , q ∈ N k−1
n (p,X )}

Definition 4.1.3. Topological numbersThe topological numbers of the pointp relative to

the setX are:
T6(p,X ) = #C6(N

2
6 (p,X ))

T6+(p,X ) = #C6(N 3
6 (p,X ))

T18(p,X ) = #C18(N 2
18(p,X ))

T26(p,X ) = #C26(N 1
26(p,X )),

where # denotes set cardinality and6+ denotes6-adjacency whose dual adjacency is18

while 6 denotes6-adjacency whose dual adjacency is26.

It is proven in [99] that a simple point can be characterized by local computation of its

topological numbers within the3× 3× 3 neighborhood of the point:

Theorem 4.1.4.A point p in a 3D binary image(V, n, n,F) is simple if and only if

Tn(p,F) = 1 andTn(p,F) = 1.

Given a setX ⊆ F , a pointp is simple relative toX if and only if Tn(p,X ) = 1 and

Tn(p,X ) = 1.

Another concept critical to our topology correction methodpresented in chapter VII is

the definition ofmultisimple point[100].

Definition 4.1.5. Multisimple points A point p is multisimplerelative to the setX if and

only if it can be added to or removed fromX without changing the number of handles and

cavities ofX while splitting and merging connected components inX are allowed.

Characterization of multisimple points is given as the following theorem [100].

Theorem 4.1.6.LetT+
n (p,F) andT+

n (x,F) respectively denote the number of foreground

and background components in theV\p that are adjacent to a pointp, thenp is multisimple

relative toF iff Tn(p,F) = 1 andT+
n (p,F) = Tn(p,F); p is multisimple relative toF iff

Tn(p,F) = 1 andT+
n (p,F) = Tn(p,F).
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4.2 Point Classification

We can classify all points in the setX into border pointsandinterior points.

Definition 4.2.1. Border pointsA pointp ∈ X is a border point relative toX if Tn(p,X ) >

0, wheren is the adjacency ofX.

Definition 4.2.2. Interior points A point p ∈ X is an interior point relative toX if

Tn(p,X ) = 0, wheren is the adjacency ofX.

By the definition of simple points and border points, it is obvious that a simple point

relative toX must be a border point relative toX . Therefore, the set of all border pointsB

relative toX can be classified into the set of simple points and the set of non-simple points.

Corollary 4.2.3. LetB ∈ X be the set of all border points relative toX andS be the set

of all simple points relative toX , we haveS ⊆ B.

Simple points can be further classified intothin-simple pointsandthick-simple points.

Definition 4.2.4. Thick-simple pointsA point p ∈ X is a thick-simple point relative toX

if it is simple relative toX and its removal fromX does not increase the number of tunnels

and number of connected components inNn(q) ∩ X \ {p}, for all q inN ∗
26(p) ∩ X , i.e.:

p is a simple point relative toX , and

∀q ∈ N ∗
26(p) ∩ X , Tn(q,X \ {p}) ≤ Tn(q,X ), and

∀q ∈ N ∗
26(p) ∩ X , Tn(q,X ∪ {p}) ≤ Tn(q,X ) ∨ Tn(q,X ) = 0,

wheren denotes the adjacency ofX .

Definition 4.2.5. Thin-simple pointsA point p ∈ X is a thin-simple point relative toX if

p is a simple point relative toX , butp is not a thick-simple point relative toX .

Now, let’s turn to non-simple points and perform further classification on them.

Definition 4.2.6. Thin-surface pointsA point p ∈ X is a thin-surface point relative toX

if Tn(p,X ) > 1, wheren denotes the adjacency ofX .
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If a point p ∈ X is a thin-surface point relative toX , it implies that the number of

tunnels in the neighborhoodN ∗
n(p) ∩ X is greater than 0.

Definition 4.2.7. Thin-curve pointsA point p ∈ X is a thin-curve point relative toX if

Tn(p,X ) = 1 andTn(p,X ) > 1.

If a point p ∈ X is a thin-curve point relative toX , it implies that the number of

components in the neighborhoodN ∗
n(p) ∩ X is greater than 1.

Definition 4.2.8. Isolated pointsA point p ∈ X is an isolated point relative toX if

Tn(p,X ) = 1 andTn(p,X ) = 0.

In terms of the definition of multisimple points, we can further classify thin-curve points

into finger points and handle points, which are involved in our topology correction method.

Definition 4.2.9. Finger pointsA point p ∈ X is a finger point relative toX if p is a

thin-curve point relative toX and a multisimple point relative toX .

Definition 4.2.10. Handle pointsA point p ∈ X is a handle point relative toX if p is a

thincurve point relative toX but not a multisimple point relative toX .

Next, we further classify thin-simple points into thick-surface points and thick-curve

points.

Definition 4.2.11. Thick-surface pointsA point p ∈ X is a thick-surface point relative

to X if p is a simple point relative toX and there exits a pointq ∈ N ∗
26(p) ∩ X such that

Tn(q,X ∪ {p}) > Tn(q,X ) andTn(q,X ) > 0.

If a pointp ∈ X is a thick-surface point relative toX implies that removal ofp fromX

increases the number of tunnels in the neighborhoodN ∗
n(q) ∩ (X \ {p}).

Definition 4.2.12. Thick-curve pointsA point p ∈ X is a thick-curve point relative toX

if p is a simple point relative toX , is not a thick-surface point relative toX , and there exits

a pointq ∈ N ∗
26(p) ∩ X such thatTn(q,X \ {p}) > Tn(q,X ).

If a point p ∈ X is a thick-curve point relative toX , it implies that removal ofp from

X increases the number of components in the neighborhoodN ∗
n(q) ∩ (X \ {p}).

Thick-simple points can also be further classified into several types according to their

geometrical characterization.
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Definition 4.2.13. Volume-boundary pointsA point p ∈ X is a volume-boundary point

relative toX if it is a thick-simple point and isn-adjacent to an interior point relative toX ,

wheren is the adjacency ofX .

Definition 4.2.14. Surface-edge pointsA point p ∈ X is a surface-edge point relative

to X if it is a thick-simple point, is not a volume-boundary point, and isn-adjacent to a

thin-surface point or a thick-surface point relative toX , wheren is the adjacency ofX .

Definition 4.2.15. Curve-end pointsA point p ∈ X is a curve-end point relative toX if it

is a thick-simple point, is neither a volume-boundary pointnor a surface-edge point, and is

n-adjacent to a thin-curve point or thick-curve point relative toX , wheren is the adjacency

of X .

Definition 4.2.16. Very-thick-curve points A point p ∈ X is a very-thick-curve point

relative toX if it is a thick-simple point, not a volume-boundary point, asurface-edge

point, nor a curve-end point.

In some situations, what form the end of a curve may include more than one point. We

definethick curveend pointsand thin curveend pointsto differentiate two types of curve

ends.

Definition 4.2.17. Thick curve-end pointsA point p ∈ X is a thick curve-end point

relative toX if it is a curve-end point relative toX andn-adjacent to another curve-end

point relative toX , wheren is the adjacency ofmathcalX.

Definition 4.2.18. Thin curve-end pointsA point p ∈ X is a thin curve-end point relative

toX if it is a curve-end point relative toX but not a thick curve-end point relative toX .

We can also differentiate surface-edge points into types:thick surface-edge pointsand

thin surface-edge points. For simplicity, we define these two types of surface-edge points

only for surface-edge points that are adjacent to thin-surface points.

Definition 4.2.19. Thick surface-edge points of thin surface A point p ∈ X is a thick

surface-edge point of thin surface relative toX if it is a surface-edge point adjacent to at

least one thin-surface point but no thick-surface points and for all thinsurface pointq ∈

N ∗
26(p) ∩ X , Tn(q,X ) = Tn(q,X ∪ {p}), wheren is the adjacency ofX .
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If a point p ∈ X is a thick surface-edge point of thin surface relative toX , it implies

that its removal fromX does not change the number of tunnels in the neighborhood of any

thinsurface point adjacent top.

Definition 4.2.20. Thin surface-edge points of thin surfaceA point p ∈ X is a thin

surface-edge point of thin surface relative toX if it is a surface-edge point adjacent to

at least one thin-surface point but no thick-surface pointsand is not a thick surface-edge

points of thin surface relative toX .

Examples of some of the major definitions given above are illustrated in figure 4.1. The

classification of 3D digital points forms a tree structure, as shown in figure 4.2.

Thin−curve & Finger

Thick−curve

Very−thick−curve

Surface−edge

Volume−boundary

Thin−curve & Handle

Thick−curve

Thick curve−end

Thin curve−end

Thick−surface

Surface−edge

Thin−surface

FIGURE 4.1: 3D digital point types. The object is in 26-adjacency.

4.3 Related Work

In [101], 3D digital points are classified into the followingtypes: interior point, isolated

point, border point, curve point, curves junctions, surface point, surface-curve(s) junction,

surface junction, and surfaces-curve(s) junction. In [102], 3D digital points in a surface

skeleton are classified into the following types: edge pointof surface, inner point of surface,

junction point of surfaces, junction point of surface and curves, curve end point, inner
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Border

Interior

Thick−simple

Thick−surface

Thick−curve

Volume−boundary

Surface−edge

Curve−end

Very−thick−curve

3D Digital Point

Simple

Non−simple

Thin−curve

Isolated

Thin−surfce

FIGURE 4.2: 3D digital point classification into a tree structure.

point of curve, junction point of curves, isolated point. Inboth works, surface and curve

correspond to the thin surface and thin curve in our work. Thepoint classification in [101]

and [102] assumes the object is either originally a discretesurface or the surface skeleton

of a 3D object. Based on the point classification, the discrete surface or the surface skeleton

can be segmented into meaningful parts.

The major distinction between our work and the research above is that we proposed

the notion of thick-simple point. Based on this notion, we can classify discrete surfaces

into thin surface and thick surfaces, and curves into thin curves and thick curves. Here

thick surface and thick curves refer to surfaces and curves that are at most two-point thick.

The notion of thick-simple point is relevant to the fact thatthe very central discrete surface

skeleton of a 3D object may be two-point thick at some places.It also helps to identify other

geometrical features such as volume boundary, surface edges and curve ends. Based on the

notion of thick-simple points, we can conveniently design surface and curve skeletonization

algorithms that not only guarantee homotopy and thinness, but also ensure medialness and

high level of shape preservation. In addition, the notion ofthick-simple point also plays a

critical role in our topology correction algorithm.
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CHAPTER V

3D Skeletonization

Skeletonization is a process that reduces foreground regions in a binary image to a

skeletal remnant while eliminating significant amount of foreground pixels (voxels). The

skeleton of a 2D binary object is a set of 2D discrete curves. For a 3D binary image,

surface skeletonizationresults in a discrete surface andcurve skeletonizationresults in

discrete curves. Skeletons have been widely used in computer vision, pattern recognition,

image segmentation, computer graphics and image compression.

Although there is not a standard and precise definition of skeletonization, the following

properties of skeletonization are commonly desired:

• homotopy: the skeleton should be homotopic ( i.e. topologically equivalent) to the

original object;

• thinness: the surface skeleton should be one point thick and the curveskeleton should

be one point wide; and

• medialness: the skeleton should be centrally located within the object.

In this chapter, we propose a 3D surface skeletonization algorithm and a 3D curve skele-

tonization algorithm. In our neuroanatomical segmentation work, surface skeletonization

results in data that plays a critical role in white matter localization and extraction. Variants

of curve skeletonization are used for topology correction of white matter and other mor-

phological image analysis tasks. Both surface skeletonization and curve skeletonization are

based extensively upon the 3D digital point classification presented in the previous chapter.
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There are two steps for surface skeletonization: thick-surface skeletonization and thin-

surface skeletonization. The former results in a discrete surface of at most two voxels

thick and the latter results a final thin surface skeleton of one voxel thick. We will present

skeletonzation algorithm in the order of thick-surface skeletonization, thin-surface skele-

tonization, and curve skeletonization.

5.1 Thick-surface Skeletonization

Thick-surface skeletonization of the setX is a process that iteratively eliminates volume-

boundary points relative toX until no additional points can be eliminated. In each iteration,

border points are first identified. Then simple points are extracted from border points and

non-simple points are marked to prohibit elimination. Next, simple points are classified

into thick-simple points and thin-simple points. Like non-simple points, thin-simple points

are also prohibited from elimination. Among thick-simple points, volume-boundary points

are recognized and are eliminated if they are still simple relative toX at the moment of

elimination. Whenever a point is eliminated, new border points in its neighborhood are

identified as candidates for erosion in the next iteration.

Thick-surface skeletonization described above erodes voxels in the order of then-

distance, wheren is the adjacency of the setX . In n-distance, the distance between any

n-adjacent voxel is taken as unit distance. A variant of this algorithm, Chamfer-thick-

surface skeletonization, erodes voxels in the order of chamfer distance which sets distances

between adjacent voxels as follows. For any two voxels sharing a face, their chamfer dis-

tance is 3; for any two voxels sharing an edge, their chamfer distance is 4; and for any two

voxels sharing only a point, their chamfer disance is 5. Chamfer distance provides closer

approximation to Euclidean distance. For thick-surface skeletonization that erodes voxels

in Chamfer distance, a map of distance toX is first calculated for each point inX . The

main distinction of the two algorithms is the definition of the border points and interior

points. We say a pointp ∈ X ′ ⊂ X is a border point relative to (rt)X ′ with respect to (wrt)

X at distanced if p is a border point rtX ′ andp’s distance fromX is d. If the distance of
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p ∈ X ′ from X is greater thand, thenp is an interior point rtX ′ wrt X at distanced. In

short, we say thatp is a border point at distanced or an interior point at distanced. The rest

of the algorithm for Chamfer-thick-surface skeletonization is the same with regular thick-

surface skeletonization. These two algorithms are presented in algorithm 3 and algorithm

4 respectively.

Both thick surface skeletonization algorithms remove a point from the object only when

the point is a simple point, therefore the agorithms preserve topology after skeletonization.

Meanwhile, points are removed in the order of eithern-distance or Chamfer distance from

the complement of the object, therefore the algorithms alsoguarantee the medialness of the

skeleton. Since the algorithms keep the thick-surface points and very-thick-curve points,

the resultant skeleton may be of two voxels thick at some places. The resulted surface

skeleton is hence referred to asthick-surface skeletonand can be further thinned into the

thin-surface skeletonization algorithm described in the next section. Figure 5.1(b) shows

the thick surface skeleton of a cerebral white matter objectin terms of Chamfer distance.

5.2 Thin-surface Skeletonization

Thin-surface skeletonization further thins thick-surface skeleton by sequentially erod-

ing thick-surface points, thick surface-edge points and thick curv-end points. First, it clas-

sifies all points in the thick-surface skeleton setX into border points and interior points.

Second, border points are classified into simple points and non-simple points. Third, sim-

ple points are classified into various types of thick-simplepoints and various types of thin-

simple points. Thick-simple points include volume-boundary points (should be an empty

set), surface-edge points, and very-thick-curve points. Thin-simple points include thick-

surface points and thick-curve points.

After the point classification, thick-surface points and very-thick-curve points are first

removed if they are still so at the moment of removal. After a thick-surface point is re-

moved, points in its neighbor should be reclassified. The order in which thick-surface

points are removed has a significant influence on the resultant shape of the surface skeleton.



59

Algorithm 3 : Thick-surface skeletonization

Data: A setX 0 in n-adjacency
X ← X 0; /* X denotes the eroded set in the process */
Classify all points inX into border points and interior points;
terminate← false;
repeat

terminate← true;
Classify border points into simple points and non-simple points;
Classify simple points into thick-simple points and thin-simple points;
Classify thick-simple points into volume-boundary pointsand
non-volume-boundary points;
Let V be the set of all volume-boundary points;
continue← true;
repeat

continue← false;
foreach pointp in the setV do

if p is simple relative toX then
Removep fromX ;
Classify interior points inp’s neighborN (p) into border points and
interior points;
continue← true;
terminate← false

until continue = false;
Reset all non-interior points as border points;

until terminate = true;
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Algorithm 4 : Chamfer-thick-surface skeletonization

Data: A setX 0 in n-adjacency
X ← X 0; /* X denotes the eroded set in the process */
Calculate the Chamfer distance map;
d← 3;
Classify all points inX into border points and interior points at distanced ;
terminate← false;
repeat

terminate← true;
Classify border points at distanced into simple points and non-simple points;
Classify simple points into thick-simple points and thin-simple points;
Classify thick-simple points into volume-boundary pointsand
non-volume-boundary points;
Let V be the set of all volume-boundary points;
continue← true;
repeat

continue← false;
foreach pointp in the setV do

if p is simple relative toX then
Removep fromX ;
Classify interior points at distanced in p’s neighborN (p) into border
points at distanced + 1 and interior points at distanced + 1;
continue← true;
terminate← false

until continue = false;
d← d + 1;
Reset all non-interior points as border points;

until terminate = true;
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Whenever a thick-suface point is removed, we put its neighbors that are still thick-surface

points in the highest priority for removal. Such an breath-first-search order of removal has

a benefit in that it alleviates the jitter effect of the resulted surface skeleton. After removal

of thick-surface points, thick surface-edge points of thinsurfaces are thinned in the similar

breath-first-search order. Finally, thick curve-end points are thinned. Thin-surface skele-

tonization is presented in algorithm 5. Figure 5.1(c) showsthe thin surface skeleton of a

cerebral white matter object.

Algorithm 5 : Thin-surface skeletonization

Data: A thick surface skeletonX 0

X ← X 0 ; /* X is the eroded skeleton in the process */
/* Point classification */
Classify all points inX into border points and interior points;
Classify all border points into simple points and non-simple points;
Classify all simple points into volume-boundary points ( should be empty),
thick-surface points, surface-edge points, very-thick-curve points, thick-curve points,
and curve-end points. LetT be the set of thick-surface points and very-thick-curve
points,E be the set of surface-edge points, andC be the set of the curve-end points;
/* Thin thick surfaces and very thick curves */
foreach pointp in the setT do

Putp in an empty queueQ;
while Q is not emptydo

Pop up a pointq from the queue;
if q is still a thick-surface point or a very-thick-curve pointthen

Removeq fromX . Reclassifyq’s neighbors that are inX and enqueue
new thick-surface points and very-thic-kcurve points;

/* Thin thick surface edge points of thin surfaces */
foreach pointp in the setE do

Putp in an empty queueQ;
while Q is not emptydo

Pop up a pointq from the queue;
if q is now actually a thick surface-edge points of thin surfacesthen

Removeq fromX ;

/* Thin thickcurveend points */
foreach pointp in the setC do

if p is now actually a thick curve-end pointthen
Removep fromX ;
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(a) Cerebral white matter

(b) Thick surface skeleton

(c) Thin surface skeleton

FIGURE 5.1: Surface skeletonization results
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5.3 Curve Skeletonization

Curve skeletonization of a setX iteratively removes thick-simple points except for

curve-end points fromX resulting in discrete curves of one voxel wide. In each iteration, all

border points ofX are first classified into simple points and non-simple points. Non-simple

points are forbidden to be removed at the current iteration.Simple points are classified into

thick-simple points and thin-simple points (thick-surface points and thick-curve points).

Curve-end points are identified among thick-simple points.Then only thick-curve points

and thick-simple that are not curve-end points are allowed to be removed at the current

iteration. Whenever a point is removed, new border points inits neighbor are identified for

processing in the next iteration. At the end of each itertaion, any points that have not been

removed and are not interior points are reset to be border points for processing in the next

iteration. Curve skeletonization is presented in algorithm 6.

Unlike many other curve skeletonization algorithms, our algorithm does not require a

preprocessing step of surface skeletonization before curve skeletonzation. In other words,

our curve skeletonization can be directly performed on the original 3D object. The resultant

discrete curve is topologically equivalent to the originalobject and highly central within the

original object.

When we limit the number of iterations that the curve skeletonzation algorithm can

perform with a scales, the partial curve skeletonzation produces output that canbe seen as

the erosion of the original object with topology and shape preservation at scales. We will

see that such atopology-and-shape-preserving erosion (TSPE)plays an important role for

topology correction of white matter. It can also be used for morphological smoothing of

surface-like objects. LetX be 3D object with thin protrusions that we want to eliminate.We

can first apply TSPE at scales onX ending up withX ′. Then we can obtain the smoothed

result by dilatingX ′ such that the voxels inX \ X ′ whose distances fromX ′ are less than

or equal tos are added intoX ′. The advantage of this smoothing approach over traditional

morphological smoothing is that the shape noise can be removed while thin surface parts

of the original object are preserved. Figure 5.2 and 5.3 respectively demonstrate the results

of curve skeletonization and partial curve skeletonization of a cerebral WM object.
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There are exceptions to the assertion that a thin surface skeleton is one voxel thick and

a curve skeleton is one voxel wide. In these situations, the surface skeleton may be thicker

than one voxel and the curve skeleton may be wide than one voxel. The skeleton cannot be

further thinned, otherwise either the topology of the object will be changed or the shape of

the skeleton will be significantly modied from the original object.

Algorithm 6 : Curve skeletonization

Data: A set of pointsX 0 in n-adjacency
X ← X 0; /* X denotes the eroded set in the process */
Classify all points inX into border points and interior points;
terminate← false;
repeat

terminate← true;
Classify border points into simple points and non-simple points;
Classify simple points into thick-simple points and thin-simple points;
Identify curve-end points among thick-simple points and classify thin-simple
points into thick-surface points and thick-curve points;
Let T be the set of all thick-curve points and thick-simple pointsexcept for
curve-end points;
continue← true;
repeat

continue← false;
foreach pointp in the setT do

if p is still simple relative toX then
Removep fromX ;
Classify interior points inp’s neighborN (p) into border points and
interior points;
continue← true;
terminate← false

until continue = false;
Reset all non-interior points as border points;

until terminate = true;
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(a) Curve skeleton at scale 0 (b) Curve skeleton at scale 15

(c) Curve skeleton at scale 30 (d) Curve skeleton at scale 45

FIGURE 5.2: Curve skeletonization results. For a curve skeleton shownat scales, all
curve skeleton points at scale less thans is not shown. All curve skeletons are dilated for
visual inspection.

5.4 Related Work

Several other works [103, 104, 105] also apply distance-ordered homotopic thinning for

surface skeletonization of 3D objects. The difference between their work and ours is that

our skeletonization is based on a more systematic point classification in which a new notion

called thick-simple points are introduced. Based on such a framework of point classifica-

tion, we perform thinning of thick-surface skeleton in a breath-first-searching order such

that the resultant surface skeleton adheres to the shape of the original object to a higher

extent and jitter effect is largely alleviated. For curve skeletonization, our algorithm works

directly on the original 3D object intead of a two-stage manner of surface skeletonization
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(a) Cerebral WM matter (b) Partial curve skeleton at scale 15. Curve
skeleton points at scale less than 15 is not
shown

FIGURE 5.3: Partial curve skeletonization results.

followed by curve skeletonization [105, 106]. Based on our systematic point classification,

this one-stage curve skeletonzation results in curve skeletons that are central within the

original object to a higher extent than the two-stage methods. In addition, partially running

the one-stage curve skeletonization algorithm gives rise to topology-and-shape-preversing

erosion that can be applied for other morphological image analysis tasks such as topology

correction and smoothing of surface-like objects.
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CHAPTER VI

Cell Complex Based Morphometric Analysis

In this chapter, we present a cell complex based morphometric analysis (CCBMA)

method. Cell complex is a set of interconnected polyhedra, polygons, segments, and points.

CCBMA first transforms a 3D binary object into a cell complex and then simplifies the

complex such that it only consists of segments and points without removing any points

in the complex. Meanwhile, meaningful metrics on each segment can be calculated that

provide various geometrical information on the segment with respect to the original object.

In our work on neuroanatomical segmentation, CCBMA plays a critical role for white

matter localization and extraction. It may also be applied for many other problem solving

in computer vision and image understanding.

This chapter starts with the motivation of CCBMA. Then the algorithm of CCBMA

is presented in the subsequent sections. The input for cell complex analysis can be any

3D object but we use the thin-surface skeleton of the white matter object as input in our

work for white matter localization and extraction. The application of CCBMA in our neu-

roanatomical segmentation will be presented in the next chapter.

6.1 Motivation

Since the 1960’s, skeletonization of 2D object has been widely used for various tasks in

computer vision, pattern recognition, image segmentation, and image compression. This is

due to the capability of skeletonization to reduce the dimensionality of the original object
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while maintaining the information on the extent and connectivity of the object. To be more

specific, after skeletonization on 2D regions, we obtain curve skeletons in which for each

point we have a metric that measures the shortest distance ofthe point from the boundary

of original regions.

In 3D, however, things become much more complicated. After both surface skele-

tonization and curve skeletonization, we can also obtain a metric that measures for each

point in the skeleton the shortest distance of the point fromthe boundary of the original 3D

object. This metric is very useful when we are working with surface skeletons. In many

cases, however, what we really need is further skeletonization into curve skeletons, since

the metricdistance-from-boundaryis only marginally useful unless the original object is a

tubular structure. The reason is that the metric provides little information on the wideness

and connectivity of the original object. Cell complex analysis is hence motivated by pur-

suit of metrics that provides meaningful information of wideness and connectivity of the

3D object while reducing the dimensionality of the object.

6.2 Cell Complex

CCBMA is essentially a series of transformation on a space called cell complex. A cell

complex is a topological space composed of points, segments, polygons, polyhedrons and

the generation to any dimension of polygons in two dimensions. The generation of polygon

to any dimension is termedpolytope. Here, we are following the definition of cell complex

given in [107]. A more abstract definition is given in [108].

An n-dimensional polytope is bounded by a number of(n−1)-dimensional faces. Each

pair of(n−2)-faces meet at an(n−2)-dimensional face, and so on. An-dimensional face

is also an-dimensional polytope. A 3-dimensional face is called acell, a 1-dimensional

face is called anedge, a 0-dimensional face is called avertex, and a 2-dimensional face is

just called aface. Note thatcell can also generally denote a polytope at any dimension. A

precise definition is omitted here for simplicity. In this thesis, we only deal with polytopes

up to 3-dimension (i.e. we only deal with polyhedrons, polygons, segments, and points).



69

Given the definition of polytopes (cells) and faces, we give aformal definition ofcell

complex[107].

Definition 6.2.1. Cell complexA cell complex or simply complex inRd is a setC of

polytopes(called cells) inRd satisfying two condition: (1) Every face of a cell is a cell in

C, and (2) two cells inC either do not intersect, or their intersection is a cell of smaller

dimension which is their common face of maximal dimension.

One special kind of polytope is aconvex polytope, which is the convex hull of a finite

set of points. In the rest of thesis, we mean convex polytope whenever we refer to polytope.

If the maximal dimension of the constituting cells in a cell complex isk then the complex

is called ak-complex. Our cell complex analysis can be seen as a process of transforming

a 3-complex to a 1-complex. First, we need to construct a 3-complex from a 3D object.

6.3 Cell Complex Construction

In this section, we describe the procedure for constructinga cell complex from a 3D

objectX in 26-adjacency. Cell complex construction for other adjacencies is a similar

procedure to that for 26-adjacency and the cell complex transformation algorithms are same

for all adjacencyies. We only deal with 26-adjacency in thisthesis.

Given a set of voxelsX in 26-adjacency, we first create a set of verticesV each corre-

sponding to a voxel inX . In the following, whenever we say a point, a vertex or a voxel,

we refer to the same thing without distinction. Second, we create an edge connecting every

two vertices if they are 26-adjacent. Third, we create a triangle for every three distinct

edges if they share three distinct vertices. Fourth, we create a tetrahedron for every four

distinct triangles if they share four distinct edges.

By now, we have a set of polytopes up to 3-dimension. Even if the inputX is a surface

skeleton, we may still have 3-dimensional polytope. At thispoint, the set of polytope is

probably not a cell complex yet and what we do next is to perform following operations on

the set to create a cell complex.
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In a 3D lattice where each voxel is a grid point, we can identify each cube bounded

by 8 voxels. All tetrahedra that locate within the same cube are contracted to a single

polyhedron. All triangles that are in the same cube and within the same plane are also

contracted into a single polygon. This simple procedure will finally result in a cell complex.

6.4 Generating 2-complex

Given a 3-complexC, we perform cell complex analysis by first transforming the 3-

complex to a 2-complex, as presented in algorithm 7. This transformation can be seen

as a “surface skeletonization” procedure in the context of cell complex. The result is a

2-complex that only consists of polygons, segments, and points while all polyhedra are

eliminated. A central rule for polydedron elimination is that only a border polydedron can

be removed at any time. Aborder polyhedronhas one 2-face that is shared by no other

polyhedron. To eliminate a polyhedron, we can simply removeone of its 2-faces that is

incident with only one polyhedron. Note that removal of a 2-face from the complex does

not involve removal of any 1-face or 0-face of the complex. Inother words, all segments

and points remain in the complex after polyhedra elimination. A 2-face that is incident

with only one polyhedron is calledsimple facebecause removal of the face and the incident

polyhedron does not change the topology of the complex.

Algorithm 7 : 3-complex to 2-complex transformation
Data: A 3-complexC
Initialize the depth of all 2-faces to be 0;
Insert simple faces into an empty min-priority queueQ;
while Q is not emptydo

Pop up a 2-facef from Q;
if f is still a simple facethen

Removef and its associated polyhedronc from the complex;
foreach 2-facef ′ 6= f that was boundingc do

depth(f ′)← depth(f) + d(f, f ′);
Insertf ′ into Q usingdepth(f ′) as the key if it is a simple face;
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Similar to the distance-ordered thinning for 3D surface skeletonization described in the

previous chapter, we also iteratively eliminate polyhedraand simple faces in an ascending

order of distance from the outside of the complex. This iterative elimination is implemented

utilizing a min-priority queueQ in which each element is a simple face to be removed with

the key being thedepthof simple faces from the outside of the complex. Initially, all 2-

faces have their depth reset as 0 and simple faces are inserted into Q. Then the algorithm

iteratively pops up a 2-facef from the queue and performs polyhedron elimination iff is

still a simple face. Whenever a simple 2-facef and its associated polyhedronc are removed

from the complex, the metric depth of remaining 2-faces bounding c are updated and new

simple faces are inserted into the queue. For any remaining 2-facef ′ that was originally

boundingc, its depth is updated asdepth(f ′) = depth(f) + d(f, f ′), wheredepth(f)

denotes the depth off from the outside of the original complex andd(f, f ′) denotes the

distance between the center of the 2-facesf andf ′. When the queue is empty, all polyhedra

have been eliminated and there is no simple 2-faces anymore in the new complex. At the

end of the algorithm, each remaining 2-facef has been assigned with a depth metric.

6.5 Generating 1-complex

Given a 2-complex generated in the above procedure, we further reduce the dimension

of the complex generating a new 1-complex composed of only segments and points, as

presented in algorithm 8. This procedure is similar to the above one except that here we

recognize and removeborder polygonsandsimple edges. A border polygon is a polygon in

the complex that has a 1-face (an edge) that is shared with no other polygons; an edge that is

incident with only one polygon is called a simple edge. We thereby transform a 2-complex

to a new 1-complex by iteratively removing simple edges and their associated polygons.

Apparently, this procedure also preserves the topology of the original 2-complex.

Like the procedure for transforming a 3-complex to a 2-complex, a min-priority queue

is also used for ordered elimination of border polygons and simple edges. Here, each el-

ement in the queueQ is a 1-face and has to be a simple edge when it is inserted into
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the queue. Whenever a 1-face is popped up from the queue for removal, it has to be

still a simple edge. We propose two elimination order embodied in the definition of the

key of the min-priority queue. We define three metrics for each 1-face in the complex:

radius, wideness, andconnectivity. Initially, all 1-faces in the 2-complex have their ra-

dius and connectivity reset to be 0. Whenever a simple edgee and its associated border

polygonf are removed, the metric radius and connectivity of remaining 1-faces bound-

ing f are updated and new simple edges are inserted into the queue.For any remain-

ing 1-facee′ that was originally boundingf , the radius and connectivity ofe′ are up-

dated asradius(e′) = max(radius(e′), radius(e) + d(e, e′)) and connectivity(e′) =

connectivity(e′) + connectivity(e) + d(e, e′), whereradius(e) andconnectivity(e) de-

note the radius and connectivity ofe respectively andd(e, e′) denotes the distance between

the centers of two 1-faces. We can use the radius or the connectivity as the key for the min-

priority queue and end up with two different orders of simpleedge removal. At the end of

the algorithm, all polygons have been removed and there are no simple edges anymore in

the new 1-complex. The algorithm also preserves the topology of the complex.

Whenever a simple edgee and the associated border polygonf are removed, we also

record a “parent-child” relationship between any remaining 1-facee′ that was bounding

f and the newly removed 1-facee. When the connectivity is used for the key of the min-

priority queue, we need to adjust the radius of 1-faces in theresultant 1-complex as follows.

For any 1-facee in the 1-complex, ife has two or more child 1-faces in the intermediate

2-complex, then the wideness ofe is wideness(e) = (radius(e1)+d(e, e1)+radius(e2)+

d(e, e2))/2, wheree1 ande2 are the two child 1-faces ofe that have greatest radii; otherwise

wideness(e) = radius(e).

With the above two algorithms, we can transform a 3-complex into a 1-complex that

significantly reduces the complexity of the representationof a 3D object. Meanwhile, each

remaining 1-face (segment) has been assigned three metrics: radius, wideness, and con-

nectivity. They give information on how wide and how strongly connected the original 3D

object is at the place wheree locates. If desired, we can also transmit the depth of a poly-

gon in the intermediate 2-complex to the bounding segments that still remain in the final

1-complex. Therefore, we end up with a simple form of representation of the original 3D

object while largely preserving structural, geometrical and morphometrical information of
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the original object. It is demonstrated in the next chapter that this technique of cell complex

analysis can be applied for robust neuroanatomical segmentation.

Algorithm 8 : 2-complex to 1-complex transformation
Data: A 2-complexC and anoption on whether using radius or connectivity as the

key of the min-priority queue
Initialize the radius and connectivity of all 1-faces to be 0;
Insert simple edges into an empty min-priority queueQ;
while Q is not emptydo

Pop up a 1-facee from Q;
if e is still a simple edgethen

Removee and its associated polygonf from the complex;
foreach 1-facee′ 6= e that was boundingf do

radius(e′)← max(radius(e′), radius(e) + d(e, e′);
connectivity(e′)← connectivity(e′) + connectivity(e) + d(e, e′);
Sete as the child ofe′;
if e′ is a simple edgethen

if the option is using radius as the keythen
Inserte′ into Q usingradius(e′) or connectivity(e′) according to
the algorithm option;

foreach 1-facee in the new 1-complexdo
if e has two or more childrenthen

Find the two children ofe that have the largest radius:e1 ande2;
wideness(e)← (radius(e1) + d(e, e1) + radius(e2) + d(e, e2))/2;

else
wideness(e)← radius(e);
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CHAPTER VII

Topology Correction

Although human cortices are highly convoluted and fold in different ways, the cortical

surface should be topologically equivalent to a sphere if the opening at the brain stem is

artificially closed. Topology correctness is an important requirement in the cortical surface

reconstruction process while topology defects or errors, mainly in the form of handles,

may arise in MR image segmentation due to various image artifacts. In this chapter, we

present a volume-based and multiscale morphological approach for topology correction of

white matter [109], based on which topologically correct gray matter can be produced and

the topologically correct cortical surfaces can be generated with the existing isosurfaces

algorithm [110]. Extraction of topologically correct cortex and reconstruction of cortical

surfaces will be presented in the next chapter.

7.1 Topology Correction Preserving Surface-likeness

Our method for topology correction is mainly motivated by the observation about the

surface-likeness of white matter (WM) and gray matter (GM).The surface-likeness of cere-

bra WM is apparent by comparing the cerebral WM and its surface skeleton, as shown in

figure 7.1. To preserve the shape of surface-like objects, the cost of handle cut in blue in

figure 7.2 should be greater than that of a cut in red because the object is “wider”, in other

words more like a surface, at the blue part than at the red part, although the object is thin-

ner at the blue part. Similarly, we should fill the tunnel (i.e. cut the associate background
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handle) in the right object in figure 7.2 instead of cutting the foreground handle. In this

chapter, we describe a morphological topology correction (MTC) filter that cuts all handles

at a specific scale of cost evaluated in terms of the wideness of the object.

(a) Cerebral WM (b) Thin surface skeleton

FIGURE 7.1: Surface-likeness of cerebral white matter

FIGURE 7.2: Topology correction adapted to the surface-likeness of objects

7.2 Three-fold Topology Correction

Traditionally, volume-based methods of topology correction of the white matter are

two-fold in that there are two basic types of tunnel filling: filling the tunnels of the white
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matter or filling the tunnels of the complement of the white matter. Note that the second is

equivalent to cutting the handles of the white matter. Whenever a tunnel of an object (the

white matter or its complement) is filled, the points used to fill the tunnel are always from

the complement of the object.

Brain MRI segmentation, however, is usually able to separate the grey matter from the

rest of the complement of the white matter and there is certain information provided by the

prior segmentation that is not used by the traditional two-fold methods. Let three setsW,

G andBG respectively represent WM, GM, and background(including CSF) produced by

the prior brain tissue segmetnation. When a tunnel of the white matter is filled in the two-

fold method, there are generally three possibilities on thecomposition of the points used

to fill the tunnel: the points are only fromG; the points are only fromBG; or the points

are from bothG andBG. Considering the radiological property of T1-weighted brain MRI

(the average gray level of air, cerebrospinal fluid, grey matter, and white matter are in the

ascending order) and the layered organization of WM, GM, andbackground regions, it is

reasonable to assume that the points fromBG have less credibility of actually belonging

to the white matter than points fromG. In other words, it is reasonable to prefer to use

exclusively the points fromG to fill the tunnels inW. Points inBG are used to fill a tunnel

inW only when necessary (i.e. when the tunnel is passed through by one or more handles

in BG). Based on this rationale, a three-fold topology correction method has been invented

that involves three types of tunnel filling: filling the tunnels of the union ofG andBG using

points fromW (i.e. cutting the handles inW); filling tunnels ofW using points fromG;

and filling tunnels of the union ofG andW using points fromBG. Note that the third type

creates more chances for the second type tunnel filling.

7.3 Multiscale Topology Correction

Our algorithm gradually eliminates topology handles with increasing scales of cost.

The core algorithm is a morphological topology correction (MTC) filter that fills tunnels

in an object (i.e, cuts handles in the complement of the object) at the specific scale of
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cost. At each of a sequence of increasing scales (e.g., scales s = 0, 1, 2, etc.), MTC is

successively applied for correcting topology of WM. MTC associates a larger correction

cost to topology corrections (e.g., cuts) at locations having a larger surface-like property

(i.e. wider regions).

The input to the topology correction algorithm is the pre-segmentation result in three

setsW, G andBG representing WM, GM, and background (including CSF) respectively.

Necessary preprocessing operations are performed to enforce thatW forms only one con-

nected component and contains no cavities andW should not be connected toBG. Algo-

rithm 9 illustrates the topology correction of the white matter (W) in a multiscale manner

starting from scales of 0. At the end,W should be homotopic to a ball. An object is

homotopic to a ball if we can keep removing simple points fromthe object ending up with

a single point. The details of MTC is described in the following section and presented in

algorithm 10.

Algorithm 9 : Topology correction of white matter
Data: presegmentation result in three setsW, G andBG
Result: Topologically corrected white matter set
s← 0;
while truedo

Perform MTC at scales to fill tunnels ofG ∪ BG (i.e. the complement ofW)
using points fromW. The points used to fill the tunnels are moved fromW to G.
Put it in other way, this step cuts the handles ofW at scales;
if W is homotopic to a ballthen

Terminate the loop;
Perform MTC at scales to fill the tunnels ofG ∪W (i.e. the complement ofBG)
using points fromBG. The points used to fill the tunnel are moved fromBG toG.
In other words, this step cuts the handles ofBG at scales;
Perform MTC at scales to fill the tunnels ofW using points fromG. The points
used to fill the tunnels are moved fromG toW;
Fill cavities (if any) inW. In rare situations new cavities may be created inW
by the above step;
if W is homotopic to a ballthen

Terminate the loop;
s← s + 1;
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7.4 Morphological Topology Correction (MTC) Filter

A typical application of the MTC filter is to fill the tunnels ofobjectX using points

from a setM ⊆ X at a specific scales. Put it in another way, the MTC filter cuts the

handles of the complement ofX by moving a subset of points fromM toX .

A minimal set of connected pointsF ⊆ M used to fill a tunnel (or multiple tunnels

simultaneously) is referred to as afill of X . It can be also referred to as acut of X in the

handle-cutting perspective. In other words, a fill of tunnels inX is a cut of handles in the

complement ofX . A characteristic of a fillF of X is that it contains no multisimple points

relative toX \F , that is, adding any point inF intoX \F will create at least a new handle

in X \ F . This implies that a fill must be minimal in that removal of anyproper subset of

the fill will lead to filling fewer or no tunnels.

Locating fills at a specific scale depends a morphological operation called iterative

shape-and-topology-preserving geodesic dilation (ISTPGD). Iterative shape-and-topology

preserving dilation (ISTPD) ofX at scales corresponds to iterative shape-and-topology

preserving erosion (ISTPE) of its complementX at the same scale while the latter can

be seen as the partial curve skeletonization in which the outer loop is performed onlys/2

iterations (see algorithm 6 in chapter VI). To fill tunnels ofX at scales using points in

M, MTC first performs ISTPGD onX with respect toM at scales. ISTPGD behaves as

the same way as ISTPD except for an additional condition thatany point added toX (i.e.

eroded fromX ) must be in the setM. LetX ′ be the dilated set ofX andY = X ′ be the

eroded set ofX . We then recognize all thin-curve points relative toY . Among all thin-

curve points, there may be some handle points relative toY . Removal of any handle point

relative toY breaks one or more handles inY . SinceY is topologically equivalent toX , we

can trace a cut ofX from each handle point relative toY . Furthermore, the mechanism of

ISTPGD determines thatX is approximatelys-voxels wide at the place where each handle

point locates. Therefore, we can trace a cut ofX (i.e. a fill of X ) approximatelys voxels

wide, from each handle point. In the next section, we describe a procedure of geodesic

dilation for extracting all fills ofX at scales starting from handle points relative toY .
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7.5 Geodesic Dilation With Topology Control

After ISTPGD is applied onX with respect toM at a specific scale resulting in eroded

objectY , whereY ⊆ X , the set of all thin-curve points relative toY are recognized and

denoted asR and referred to as theresidual set. Let thebody setbeB = Y \R. In order to

extract fills of tunnels inX at scales (i.e. cuts of handles inX at scales), we first extract

cuts of handles inY at scales, based on which the final fills at scales are extracted.

Although removal of one handle point inR from Y breaks one or more handles inY

at scales, simultaneous removal of all handle points inR from Y may be not necessary

to break all handles inY at scales, may breakY into several connected components, and

even may create new handles. For example, in the object (in 6-adjacency) in figure 7.3,

points 7 to point 30 are all identified as residual point at first. But removal of the residual

point 7 and 30 simultaneously creates a new tunnel in the object. Our solution to this

exception is that any thin-curve point is taken as a residualpoint only if Tm(p,B) = 1. In

this way, it is guaranteed that removal of all residual points will not create new handles.

To find the minimal set of handle points for cutting handles inY and the final fills ofX at

scales, we propose a procedure including three stages of geodesic dilations with topology

control. These three stage of dilations together with the prior topology correction steps are

illustrated in figure 7.4.
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FIGURE 7.3: An example of residual points.

The following three dilation stages iterate in the same manner. The dilation in every

stage involves a seed setS and a condition setC. In each iteration of every stage, any points
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(a) Original objectX with
a handle

(b) Eroded at a certain
scale

(c) Residual points re-
moved

(d) Result of first stage
dilation

(e) Result of second
stage dilation

(f) Result of third stage
dilation

FIGURE 7.4: Illustration of all stages of topology correction

in C that are adjacent toS are marked first and then are moved fromC to S if they satisfy

some additional conditions. The iteration terminates in each stage if no more points can be

moved.

In stage 1,B is the seed set andR is the condition set. The task of dilation in this stage

is to recognize and recover the finger points from the residual set to the body set. In each

iteration, a marked pointp is identified as a finger point and recovered ifTm(p,R+) ≤ 1,

and p is m-adjacent to a body componentBi with degree(Bi) = 1 and is multisimple

relative toB at the moment of recovery. Heredegree(Bi) denotes thedegreeof a body

componentBi and is defined asdegree(Bi) =
∑NR

j=1 Tm(rj,Bi), whererj represents a

thin-curve point inR andNR represents the total number of points inR. degree(Bi) can

be seen as the number of ports at whichBi is connected toR. R+ refers to the union ofR

and all body components with degree greater than 1. Whenevera point is recovered, it is

moved out ofR toB.

In stage 2, a minimal set of handle pointsR∗ ∈ R is identified andR\R∗ is recovered

fromR toB. When multiple handle points relative toY exist whose removal fromY break

the same handle inY , the dilation procedure only choses the handle point in the middle and
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recover others. In this stage, the condition set isR and the seed set isB. In each iteration

of stage 2, a marked point is recovered if it is multisimple relative toB at the moment of

recovery.

In stage 3, the seed set isB while the condition set isX \B. A marked point is recovered

if it is multisimple relative toB at the moment of recovery. Eventually, the objectX is

recovered as the newest body setB except for the points in the cuts that cut the handles of

X (i.e. the fills that fill the tunnels ofX ).

Since a recovered point has to be multisimple relative toB, the number of handles in

B is not changed. Merging of body components may happen and is desirable. In rare

situations, however, there might be more than one connectedcomponent in the resultant

body set and we only keep the largest component in the case of using points from WM to

fill tunnels of the union of GM and background (i.e. cutting handles in WM).

7.6 Related Work

In order to generate topolocially correct cortical surfaces, there have been two basic ap-

proaches proposed in the literature. The first approach imposes topology constraints in the

procedure of segmentation [111, 112], typically in deformable model based methods, start-

ing with a model of the cortical surface with correct topology. The topology of the model

is preserved in the deformation procedure of the segmentation. These methods share the

disadvantages of the original segmentation methods and maylead to unpredictable mor-

phometrical states. Retrospective topology correction isthe mainstream approach in the

literature for extracting topologically correct corticalsurfaces. They take as input the re-

sult of the pre-segmentation and eliminate all topology defects resulting in cortical surfaces

homotopic to a sphere.

Topology correction methods can be classified into two types: surface-based and volume-

based methods. Surface-based methods first extract the cortical surfaces represented as a

triangle mesh and perform topology correction on the surface. Volume-based methods first
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Algorithm 10 : Morphological topology correction

Data: Two setsX andM∈ X in m-adjacency and a specific scales.
Result: A new setX ′ with tunnels at scales eliminated.
/* The task of the algorithm is to fill tunnels in X

using points from M at scale s */
Perform shape-and-topology-preserving geodesic dilation ofX with respect toM.
LetY be the complement of the dilated set;
Recognize thin-curve pointsR ∈ Y . Let the body setB = Y \ R;
foreach pointp inR do

if Tm(p,B) > 1 (m is the adjacency ofY) then
Movep fromR intoB;

/* First stage dilation */
terminate← false;
while terminate = false do

terminate← true;
Mark all points inR that arem-adjacent toB;
foreachmarked pointp do

if p is m-adjacent to a body componentBi with degree(Bi) = 1, p is
multisimple relative toB, andTm(p,R+) ≤ 1 then

Movep fromR toB;
terminate← false;

/* Second stage dilation */
terminate← false;
while terminate = false do

terminate← true;
Mark all points inR that arem-adjacent toB;
foreachmarked pointp do

if p is multisimple relative toB then
Movep fromR toB;
terminate← false;

/* Third stage dilation */
terminate← false;
while terminate = false do

terminate← true;
Mark all points inC = X \ B that arem-adjacent toB;
foreachmarked pointp do

if p is multisimple relative toB then
Movep from C toB;
terminate← false;

X ′ ← B;
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perform topology correction on the image volume and then extract the isosurface of the

topologically correct volume.

Surface-based methods include the methods of Guskov [113],Wood [114], and Jaume

[115, 116]. Guskov’s method is based on wavefront propagation. The topology handle, or

equivalently hole, is detected by tracking the splitting and merging of the front. Wood’s

method is based on the extended Reeb graph, a graphical representation of the topology

of the surface. Topology handles are eliminated by removinga loop in the surface and the

cost of the removal is measured in terms of the length of the loop. Each topology handle

has to be detected and corrected separately, which means that the computation complexity

depends on the number of handles in the surface. Jaume followed Guskov’s and Wood’s

method with improved computation efficiency and topology correction accuracy.

Volume-based methods include the methods of Shattuck [117], Han [118], Segonne

[119, 120], and Kriegeskorte [121]. Shattuck’s method is also based on Reeb graph. Topol-

ogy correction is performed in a multiscale manner on the white matter. Starting from the

smallest scale, the handles whose elimination cost is smaller than the scale are eliminated at

each scale. The volume are then updated and topology correction continues with increased

scale if the task hasn’t been completed. Handle eliminationcost is measured in terms of

the number of removed voxels. One of the major limitations ofShattuck’s method is that

the cut of the handle can only be oriented along cartesian axes. Han also took a multiscale

approach and broke the above limitation. Candidate handle cuts are localized by succes-

sive morphological opening. Therefore, the cost of handle elimination is mainly measured

by the distance-to-surface metric. A graph-based method isthen used to determine the fi-

nal handle cuts attempting to minimize the number of removedvoxels at a specific scale.

Segonne and Kriegeskorte’s methods also evaluate the cost of handle elimination in terms

of the distance-to-surface metric and topology correctionis conducted in a region growing

form. Using the distance-to-surface metric as the cost measurement ends up with cutting

handles along thin regions of the object. Due to the surface-likeness of the white matter,

these methods may incur significant modification to the shapeof the white matter.

The major novelty of the present method lies in the way the handle elimination cost

is measured. The present method considers the special “surface-like” shape of the white

matter and assigns higher cost to the handle cuts that would lead to more modification
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to the “surface-likeness” of the white matter. The “surface-likeness” of an object can be

quantitively measured in terms of the similarity between the object and its surface skeleton.

To our knowledge, all exiting methods correct topology defects by elimination of han-

dles either in the foreground or the background. The presentmethod conducts handle

elimination on three associated objects: the white matter object, the gray matter object, and

the background object. It is reasonable to believe that the pre-segmentation provides credi-

ble information that voxels labeled as “background” have less possibility of actually being

white matter than those labeled as “gray matter”. Topology defects in the white matter

volume can be corrected in three ways: cutting handles in thewhite matter volume, cutting

handles in the gray matter volume, or cutting handles in the union of the gray matter and the

background. The third way is assigned a lower priority than the other two. In other words,

the topology correction solution without modification to the background is preferred.
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CHAPTER VIII

Segmentation Pipeline

In this chapter, we present a neuroanatomical segmentationpipeline integrating various

techniques presented in previous chapters for extraction of cerebral white matter and gray

matter as well as reconstruction of cortical surfaces. The segmentation pipeline starts with

relative thresholding to obtain an initial voxel classification. The following steps can be

regarded a series of correction procedures on the classification errors produced in the initial

step. We propose an technique called “terrain analysis” to recognize thin parts of WM and

CSF that are missed by relative thresholding. The entire setof voxels labeled as WM

is then processed by the multiscale morphological topologycorrection procedure. The

topology correct WM set contains the cerebral white matter,white matter in other parts of

the brain, as well as some positive errors. Cerebral white matter is then extracted from its

superset based on the cell complex analysis while preserving the correct topology. Cerebral

gray matter extraction benefits from the prior segmentationof cerebral white matter and

exploits the layered structure of GM/WM and the nearly uniform thickness of cerebral

cortex. Finally, we use a topologically consistent marching cubes isosurface algorithm

[110] to generate the triangulated surface representationof cortical surfaces.

8.1 Relative Thresholding

Relative thresholding serves as the initial voxel classification procedure in the entire

segmentation pipeline. It classifies all voxels in the gray level T1-weighted MR image into
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three types: white matter, gray matter and background (including CSF). It is essentially a

procedure of intensity comparison between near voxels along the gradient flow with respect

to two relative thresholds. First, a relative threshold between GM and WM is used to

classify all voxels into WM and non-WM. Then, the non-WM voxels are further classified

into GM and background with a relative thresholding betweenCSF and GM.

Relative thresholding is effective because it is based on a structure and image modeling

approach that exploits variousa priori knowledge. First, we knowa priori that CSF, GM

and WM form a layered structure. Second, we knowa priori that the gray level of CSF, GM

and WM is in ascending order in any local regions in T1-weighted MR images. Third, the

intensity inhomogeneity that complicates image segmentation has a beneficial property that

it can be seen as a signal field with very low frequency. Fourth, the thickness of cerebral

cortex is nearly uniform. The detailed formulation of relative thresholding exploiting these

a priori knowledge is presented in chapter III.

The major advantage of relative thresholding is that it is robust to intensity inhomo-

geneity without needing to treat the image artifact explicitly. In other words, intensity

inhomogeneity is transparent to relative thresholding such that the procedure is performed

as if there was no intensity inhomogeneity in the image at all. Relative thresholding is also

able to adapt to large intensity variations within a given brain tissue and thus tends to pro-

duce more accurate segmentation. It can also be seen as a new edge detection method that

avoids shortcomings of the traditional methods. First, it produces coherent regions labeled

with brain tissue types. Second, it is able to recognize blurred edges and tissue boundaries

where intensities vary smoothly. Third, it is able to suppress spurious edges between voxels

of same tissue types.

Relative thresholding is a very efficient procedure. The user can select different relative

thresholds and see the result in real-time. When automatic segmentation achieves a less

than acceptable results, user intervention with a few global parameters actually provides a

simple and effective mechanism to steer the segmentation. Automatic selection of relative

thresholds is under study.
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For convenience of description in the following section, wedenote the set of WM, GM

and background voxels generated by relative thresholding respectively asW0, G0, andB0.

The initial tissue segmentation result using relative thresholding is illustrated in figure 8.1.

(a) A slice of MR image (b) Relative thresholding result

FIGURE 8.1: Relative thresholding result

8.2 Terrain Analysis

Due to limited resolution in image acquisition, there are parts of white matter and CSF

blurred by partial volume effect plus smoothing filtering and thereby missed by relative

thresholding. These misclassifications are mainly reflected as positive errors of gray mat-

ter. In this section, we present a technique calledterrain analysisto recover these missed

structures.

Terrain analysis borrows some notions in terrain classification for further and more

reliable classification of voxels inG0 into thin WM, thin background, and GM. Here we

are interested in three terrain types: ridge, valley, and slope. A point in the terrain surface

is intuitively taken as a ridge if the altitudes of its two neighbor points along the pair of

principle directions are both lower than that of the ridge point. By thepair of principle
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directionswe mean two nearly opposite directions that are steepest andwhose projections

onto the sea-level plane form an angle close to180◦. Similarly, a point in in the terrain

surface is avalley pointif the altitudes of its two neighbor points along the pair of principle

directions are both higher than that of the valley point. Foraslope point, the altitude of one

of its neighbors along the pair of principle directions is higher than that of the slope point

while the altitude of the other is lower.

We can perform terrain analysis in a 2D image taking the gray level as the altitude

and the image plane as the sea-level plane. Terrain analysiscan also be generalized in 3D

images with additional computation. Given a T1-weighted MRimage that is Gaussian-

smoothed at a small scale, we can make an informal observation that thin WM parts corre-

spond to ridges, thin CSF parts correspond to valleys, and GMparts correspond to slopes.

This observation is reasonable in terms of the order of average gray levels of CSF, GM, and

WM in T1-weighted MR images and the layered structure of the three brain tissues. Figure

8.2 gives an example on how terrain analysis can improve the initial tissue segmentation

using relative thresholding.

(a) Part of a MR image slice (b) Relative thresholding result (c) Terrain analysis result

FIGURE 8.2: Terrain analysis result. New valley and ridge points are added and shown
with blue and red respectively.

There are two options in terrain analysis: the scale, and whether it is performed in

2D or 3D. The scale represents the size of the neighborhood inwhich terrain analysis is

performed. If terrain analysis is performed in 2D, then the pair of principle directions can

only be in thex, y, or z plane that intersect with the point in question. In 3D, the pair of

principle directions can be in the 3D space. Lets be the scale of terrain analysis. Then the

size of the neighborhoodN s(p) at scales of a pointp is (2s + 1) × (2s + 1) in 2D and
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(2s+1)× (2s+1)× (2s+1) in 3D. A constraint on a candidate pair of principle directions

is that the two directions must form an angleα ∈ [135◦, 180◦].

Given a pointp and a candidate pair of principle directions(d1, d2), we can determine

the two sets of pointsD1 andD2 at scales. Each point inDi is in the neighborhoodN s(p)

and along the directiondi, for i = 1, 2. We then calculate the average gray levels (or

weighted average with weights set according to how the direction pass through the points),

m1 andm2, for points inD1 andD2 respectively. Letyp be the gray level of pointp.

We can calculate a metricsteepnessfor p at scales with respect to the candidate pair of

principle directions(d1, d2) assteepness(p, s, d1, d2) = ym1 − yp| + |m2 − yp|. We can

then determine the terrain type forp at scales with respect to(d1, d2) as:

terrainType(p, s, d1, d2)← ridge, if m1 > ip ∧m2 > yp;

terrainType(p, s, d1, d2)← valley, if m1 < yp ∧m2 < yp;

terrainType(p, s, d1, d2)← slope, otherwise.

To perform terrain analysis for pointp at scales, we calculate the steepness and determine

the terrain type forp with respect to each candidate pair of principle directionsat scale

s′, for s′ = 1, 2, ..., s, and select the terrain type with the greatest steepness as the final

result. Note that the gray level image is Gaussian-smoothedat the same scale as that used

in relative thresholding for intensity comparison.

In practice, we first perform terrain analysis at scale 2 for points inG0, which is divided

into three sets: the set of ridge pointsR2, the set of the valley pointsV2, and the set of

slope pointsS2. Then we perform terramin analysis at scale 1 for points inV2 ∪S2, which

is divided intoR1, V1, andS1. Eventually we update the set of WM, GM, and background

asW1 =W0 ∪R2, B1 = B0 ∪ V1, andG1 = S1 ∪R1.

8.3 Topology Correction Of White Matter

Topology correct white matter should contain only one handle that is formed by two

cerebral hemispheres and the brainstem, while cerebral white matter should contain no
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handle. However, topology defects usually arise in the results generated by relative thresh-

olding and terrain analysis. We use a multiscale morphological approach to eliminate the

topology defects in the white matterW1. The method is multiscale in that handles/tunnels

of smaller size are eliminated in prior to those of larger size. The cost to eliminate a

handle/tunnel (i.e. the size of the handle/tunnel), is determined by the wideness of the han-

dle/tunnel so that the topology correction procedure largely preserves the surface-likeness

of the white matter. Unlike two-fold topology correction methods that involve a foreground

object and its complement, our method performs in a three-fold manner in that it involves

three disjoint objects, WM, GM and background, so that more information provided by

the prior voxel classification step is utilized in the topology correction step. Such a three-

fold mechanism and consideration of surface-likeness of the white matter in the multiscale

framework gives rise to robust topology correction that produces reasonable topology cor-

rection solutions.

Topology defects, particularly tunnels in core regions of white matter, may severely

affect the connectivity of the white matter. Therefore, eliminating such topology defects

provides more reliable data for subsequent processing steps that analyze the connectivity

of the white matter for cerebral white matter extraction. Subsequent processing of cerebral

white matter preserves the correct topology and cerebral gray matter processing is depen-

dent on the topology correct cerebral white matter. In all, topology correction of white

matter is meaningful not only in the sense of the correct topology of the final result but also

in the sense of feeding more reliable intermediate result tosubsequent processing steps.

For the convenience of description, we denote the set of WM voxels after topology

correction asW2. It contains three parts: cerebral white matter, non-cerebral white matter,

and voxels that are mislabeled as white matter. In the next section, we describe how to

extract cerebral white matter fromW2.

Figure 8.3 demonstrates the behavior of the method on eliminating handles in the white

matter and the resultant cortical surface after topology correction. The handles in the white

matter are removed by filling the associated tunnels (i.e. the gray matter handles). After ini-

tial tissue classification, there is usually a handle formedby the two cerebral hemispheres,

the corpus callosum and the brainstem. Although the handle is much thicker at brainstem

than at corpus callosum, our method is able to break this handle at the brainstem where it
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is more narrow than other places along the handle. This is shown in figure 8.4. Finally,

note that topology correction is performed on the super set of the true white matter. This is

illustrated in figure 8.5, where a handle in the non-brain tissue is cut.

(a) Before tunnel filling (b) After tunnel filling

FIGURE 8.3: Tunnel filling in topology correction

(a) Before tunnel filling (b) After tunnel filling (c) After tunnel filling and cerebral
WM extraction

FIGURE 8.4: Brainstem breaking in topology correction

8.4 Cerebral White Matter Segmentation

After topology correction of white matter, the setW2 is composed of the following

subsets: cerebral white matter, brainstem, cerebellar white matter, and voxels misclassified
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(a) Before handle elimination (b) After handle elimination

FIGURE 8.5: Handle elimination in topology correction

as white matter. Furthermore, cerebral white matter can be divided into two cerebral hemi-

spheres and the corpus callosum. Locating and extracting cerebral white matter is based on

the assumption that there are three scales of connectivities between those subsets inW2:

• the low scale of connectivity is at the brainstem and betweencomponents of WM

voxels and those of misclassified WM voxels;

• the medium scale of connectivity is at the corpus callosum between two hemispheres;

• the high scale of connectivity is within each cerebral hemisphere itself.

We will utilize the high scale of connectivity within cerebral hemispheres to locate the

cerebral white matter and the low scale of connectivity to extract the cerebral white matter,

while the connectivity is measured with the algorithm of cell complex based morphometric

analysis (CCBMA) .

The entire procedure of cerebral white matter extraction consists of the following steps:

1. Thick-surface skeletonization ofW2 resulting in thick surface skeletonS2;

2. Thin-surface skeletonization ofS2 resulting in thin surface skeletonS1;

3. CCBMA of S1 ending up with a 1-complexC in which each edge is assigned three

metrics: connectivity, radius and wideness;
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4. Locate the center of each cerebral hemisphere;

5. Dilate the center of both cerebral hemispheres to obtain acore cerebral white matter

K;

6. DilateK to reconstruct the thin surface skeleton of cerebral white matterSw
1 ;

7. DilateSw
1 to reconstruct the thick surface skeleton of cerebral whitematterSw

2 ;

8. DilateSw
2 to reconstruct cerebral white matter and restore its topology.

The final result of cerebral white matter is denoted asW3.

We have presented surface skeletonization in chapter V and CCBMA in chapter VI. In

the rest of this section, we will describe step 4 in subsection 8.4.1, step 5 and step 6 in

subsection 8.4.2, step 7 and step 8 in subsection 8.4.3. Figure 8.6 gives an illustration of

step 5 through step 8. Localization of the cerebral hemisphere centers is demonstrated in

figure 8.7.

8.4.1 Locating Cerebral White Matter

SinceW2 contains no handles and surface skeletonization and CCBMA are topology-

preserving, we are guaranteed that the 1-complexC contains no loops and can be seen as

a treeT consisting of a vertex setV and an edge setE . Let v1 ∈ V andv2 ∈ V be any

two distinct vertices in the tree, then there must be a pathP c(v1, v2) = {vc
0, v

c
1, ..., v

c
n} in

T connectingv1 andv2, wherevc
0 = v1 andvc

n = v2. The pathP c(v1, v2) is referred to as

thecorpus callosum pathbecause it should pass through the corpus callosum ifv1 andv2

are the centers of the two cerebral hemispheres.vc
1 is referred to as thecorpus callosum

neighborof v1 in P c(v1, v2) andvc
n−1 is referred to as thecorpus callosum neighborof v2

in P c(v1, v2). The following formulation defines a weight for each vertex pair in the tree so

that we can select the pair of vertices with the greatest weight as the centers of the cerebral

hemispheres.

Given a pair of vertices(v1, v2) and its corpus callosum pathP c(v1, v2), we define a

hemisphere pathof vertexv ∈ {v1, v2} with respect tov’s corpus callosum neighborvc in
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(a) Cerebral WM core (b) Reconstructed thin surface skeleton of
cerebreal WM

(c) Reconstructed thick surface skeleton of
cerebreal WM

(d) Reconstructed cerebreal WM

FIGURE 8.6: Cerebral WM segmentation
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FIGURE 8.7: Maximum hemisphere paths( in red) and corpus callosum path(in green)
and their enbedding in cerebral WM

P c(v1, v2) as a path inT of length less thandH (empirically 200mm) that passes throughv

but notvc and denote it asP h(v, vc).

For a hemisphere pathP h(v, vc) = {vh
0 , vh

1 , ..., vh
i = v, vh

i+1, ..., v
h
m} of vertexv with

respect tov’s corpus callosum neighborvc in P c(v1, v2), we define its weight as

weight(P h(v, vc)) =

m−1
∑

j=0

weight(e(vj, vj+1), v),

whereweight(e(vj, vj+1), v) refers to the weight of edgee(vj , vj+1) with respect to vertex

v. Let P = {v0 = vx, v1, ..., vn = vy} be a path inT connecting vertexvx andvy, then we

define the weight of edgee(vy, vz) with respect tovx as

weight(e(vy, vz), vx) = min(connectivity(e(v0, v1)), connectivity(v1, v2),

..., connectivity(vn−1, vn)), connectivity(vy, vz))).
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We further define the weight of a vertexv ∈ {v1, v2}with respect to its corpus callosum

neighborvc in P c(v1, v2) as the greatest weight of the hemisphere paths ofv with respect

to P c(v1, v2) and denote it asweight(v, vc). Here, the hemisphere path with the greatest

weight is referred to themaximum hemisphere pathof vertexv with respect toP c(v1, v2).

Finally, we define the weight of a pair of vertex(v1, v2) as the weight of the one of them

with lower weight. The criterion of finding the hemisphere centers is that the pair of ver-

tices(v∗
1 , v

∗
2) with the greatest weight is taken as the centers of the cerebral hemispheres.

Exhaustive searching for the center vertices are impractical due to its time complexity.

Next, we will present an efficient and effective searching algorithm, which depends on an

ordering of the strength of the branches connected to each vertex in the tree.

For any vertexv in the treeT , let N (v) be the set of vertices connected tov with a

single edge. Each incident vertexvi ∈ N (v) corresponds to a branch of the tree if we take

the current vertexv as the root of the tree. We consider the pathP b = {v0 = v, v1 =

vi, v2, ..., vn} of length less thanradius(e(v, vi)) and define thestrengthof the pathP b as:

strength(P b) =

n−1
∑

j=0

weight(e(vj , vj+1), v),

whereweight(e(vj, vj+1), v) refers to the weight of edgee(vj , vj+1) with respect tov.

We further define the strength of the directed edge~e(v, vi) as the maximum strength

of all paths headed byvvi whose length are less thanradius(e(v, vj)). For each vertex

v, we can compute and order the strengths of all directed edgesemanated fromv. The

directed edge with the greatest strength is referred to as the primary edge ofv and the

corresponding neighbor vertex is referred to as the primaryneighbor ofv and denoted as

N1st(v). Similarly, we can define second and tertiary edge and neighbor of v, if any. The

secondary neighbor and tertiary neighbor ofv are respectively denoted asN2nd(v) and

N3rd(v).

Having computed the strengths of edges emanated from each vertex in T , we reduce

the searching space of hemisphere paths ofv ∈ {v1, v2} with respect tov’s corpus cal-

losum neighborvc in P c(v1, v2) by only considering pathsP h(v) = {v0, v1, ..., vi =

v, vi+1, ..., vm} such that:
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vi−1 = N1st(v) andvi+1 = N2nd(v) if vc = N3rd(v)

vi−1 = N1st(v) andvi+1 = N3rd(v) if vc = N2nd(v)

vi−1 = N2nd(v) andvi+1 = N3rd(v) if vc = N1st(v)

vj−1 = N1st(vj) if vj+1 6= N1st(vj)

vj−1 = N2nd(vj) if vj+1 = N1st(vj)
for j = 1, ..., i− 1

vj+1 = N1st(vj) if vj−1 6= N1st(vj)

vj+1 = N2nd(vj) if vj−1 = N1st(vj)
for j = i + 1, 1, ..., m− 1

This is essentially an act of searching for hemisphere pathsof v only along strongest avail-

able edges starting fromv. It is an effective heuristic and dramatically reduces our search-

ing space. In this efficient algorithm, the weight of a vertexv ∈ {v1, v2} with respect to

its corpus callosum neighborvc in P c(v1, v2) is also determined at the same time while its

maximum hemisphere path is found.

To find the centers of cerebral hemispheres, we start from each vertexv in T with degree

greater than 1 and assume it is in the target corpus callosum path. Then we initialize the

corpus callosum path asN1st(v)vN2nd(v) and have two sides to search for the hemisphere

centers respectively. At each side, we further reduce our searching space by marching

along the strongest available edges (a similar procedure tothat for finding the maximum

hemisphere path of a vertex). At one side, we can find a vertexvx with greatest weight with

respect to its corpus callosum neighbor inP c(vx, v); at the other side, we can find another

such vertexvy. (vx, vy) form a candidate pair of hemisphere centers with weight being the

minimum of their weights. The pair of vertex with greatest weight is selected as the target

cerebral hemisphere centers. This procedure is presented in algorithm 11.

Sometimes there may be large patches of skull structure inW2 which possess large

connectivity as well as large wideness. To differentiate these structures from cerebral white

matter, which possess large connectivity and limited wideness, we modify the connectivity

of each edge inT used in locating cerebral hemisphere centers such that:

connectivity(e)← connectivity(e) ifwideness(e) < 180mm

connectivity(e)← connectivity(e) ∗ 180/wideness(e) ifwideness(e) ≥ 180mm
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Algorithm 11 : Finding cerebral hemisphere centers

Data: A treeT = (V, E) spanning the surface skeleton ofW2

Result: Cerebral hemisphere centerv∗
1 andv∗

2

weight∗ ← 0;
foreach vertexv ∈ V such thatdegree(v) > 1 do

weightx ← 0; vx ← N1st(v); v∗
x ← vx; vz ← v;

while degree(vx) > 1 do
if weight(vx, vz) > weightx then

v∗
x ← vx;

weightx ← weight(vx, v
c
x);

vz ← vx;
if vz 6= N1st(vx) then

vx ← N1st(vx)

else
vx ← N2nd(vx)

weighty ← 0; vy ← N2nd(v); v∗
y ← vy; vz ← v;

while degree(vy) > 1 do
if weight(vy, vz) > weightx then

v∗
y ← vy;

weighty ← weight(vy, v
c
y);

vz ← vy;
if vz 6= N1st(vy) then

vy ← N1st(vy)

else
vy ← N2nd(vy)

weight(v∗
x, v

∗
y)← min(weightx, weighty);

if weight(v∗
x, v

∗
y) > weight∗ then

weight∗ ← weight(v∗
x, v

∗
y);

v∗
1 ← v∗

x; v∗
2 ← v∗

y;
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8.4.2 Reconstruction Of Thin-surface Skeleton Of CerebralWhite Matter

Having identified the cerebral hemisphere centersv∗
1 andv∗

2, we then use a connectivity

thresholdtc to determine the cerebral white matter coreK that is connected tov∗
1 andv∗

2

above a certain scale. Formally,K is a set of vertices and edges defined as follows:

1. {v∗
1, v

∗
2} ⊂ K;

2. For any vertexv ∈ K, its incident edgee(v, v′) ∈ C1 is inK if connectivity(e) > tc

andradius(e) > tc/3;

3. For any edgee ∈ K, its child edgee′ ∈ C2 is in K if connectivity(e′) > tc and

radius(e′) > tc/3 (the ”parent-children” relationship between edges is established

in CCBMA);

4. For any edgee(v1, v2) ∈ K, its incident verticesv1 andv2 are also inK.

Given the kernel set of cerebral white matter, we reconstruct the thin surface skeleton

Sw using the following simple rules:

1. K ⊂ Sw;

2. For each edgee ∈ K ∩ C1, any edgee′ ∈ C1 that has a path of length less than

radius(e) is also inSw;

3. For each edgee ∈ Sw, its child edges are also inSw;

4. For any edgee(v1, v2) ∈ Sw, its incident verticesv1 andv2 are also inSw.

The setSw contain both vertices and edges. We specially useSw
1 to denote the voxels

corresponding to the vertices inSw. Note thatSw
1 is a subset of the thin surface skeleton

S1 ofW2, i.e.Sw
1 ⊆ S1 ⊆ S2 ⊆ W2.
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8.4.3 Reconstruction Of Cerebral White Matter

By reconstruction of surface skeleton of cerebral white matter, we have divided the set

S1 into two subsets:Sw
1 andSw

1 = S1 \ Sw
1 . Now we reconstruct the thick surface skeleton

of cerebral white matter, denoted asSw
2 . Let Sw

2 = S2 \ Sw
2 . First of all, it is obvious

thatSw
1 ⊆ S

w
2 andSw

1 ⊆ S
w
2 , therefore, the task is essentially to separateS2 \ S1 into

two parts: those inSw
2 and those inSw

2 . The simple rule that we follow here is that for

each voxelv ∈ S2 \ S1, if the geodesic distance ofv from Sw
1 with respect toS2 is less

then that fromSw
1 , thenv is in Sw

2 ; otherwise,v is in Sw
2 . The geodesic distance between

v andSw
1 with respect toS2 is the length of the shortest path inS2 connectingv andSw

1 .

Having determined the thick surface skeleton of cerebral white matter (Sw
2 ), we reconstruct

the cerebral white matter, denoted asW3− such that:

1. Sw
2 ⊆ W

3−;

2. For each voxelv ∈ Sw
2 , any voxelv′ ∈ W2 whose distance fromv is less than or

equal tod(v) is also inW3−, whered(v) is the distance ofv from the boundary of

W2.

The procedures described above do not enforce particular topology control and the re-

sultW3− is not necessarily topologically equivalent toW2. To restore the correct topology

onW3−, we perform a topology-preserving erosion onW2 with respect toW3−. It is a

process that keeps removing voxels fromW2 until no more voxels can be removed. Each

voxelv removed fromW2 must satisfy the following conditions:

• v is a simple point with respect toW2 at the moment of removal;

• v is not in the setW3−;

Let W3 denote the result of this conditional topology-preservingerosion. It represents

our final set of cerebral white matter voxels. It is a supersetof W3− and topologically

equivalent toW2, i.e. topologically correct.
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8.5 Cerebral Gray Matter Segmentation

Segmentation of cerebral gray matter is based on the prior segmentation of cerebral

white matter and utilizes the followinga priori knowledge:

• The thickness of cerebral cortex is nearly uniform;

• Cerebral gray matter wraps around cerebral white matter so that two tissues form a

layered structure;

• The average gray level of cerebral gray matter is lower than that of cerebral white

matter at any local region;

Segmentation of cerebral gray matter takes a series of stepsas follows, which are also

illustrated in figure 8.8.

1. Initialization:G2 ← ∅. whereG2 denotes the set of cerebral gray matter voxels;

2. Gradient flow analysis: For each voxelv in G0 \ W3, if there exists a pathP =

{v0 = v, v1, ..., vn} of length less thandC along the gradient flow such thatvn ∈ W3.

Then we update the set of cerebral gray matter voxels asG2 ← G2 ∪ {v}; The

thresholddC is associated with the average thickness of cerebral cortex. Considering

the segmentation of cerebral white matter may be not ideallyaccurate, we setdC to

be a value greater than the average cortex thickness. In practice, we letdC = 15mm.

3. Closing: The setG2 generated by the prior step will form a gray matter layer wrap-

ping around the cerebral white matterW3. However, there may be some narrow and

thin regions betweenG2 andW3 that were labeled as white matter inW0. They may

be real cerebral white matter and may be actually cerebral gray matter. Nevertheless,

we take them as cerebral gray matter at this moment. We first perform morphological

closing at a small scales onG2 ∪W3 and denote the closed cerebrum mask asM.

Then we updateG2 asG2 ← G2 ∪ (W0 ∩M \ (G2 ∪W3)). Morphological closing

at scales first performs morphological dilation at scales onX resulting inX ′ and

then performs morphological erosion at scales onX ′ resulting inX ′′. We describe

morphological erosion and dilation below.
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(a) Gradient flow analysis result (b) First closing result

(c) Holes to be closed (d) Holes closed

(e) Geodesic opening result (f) Second closing result. Partial gray matter
is colored in blue

FIGURE 8.8: Cerebral GM segmentation.
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4. Geodesic opening: In this step we use a operation called geodesic opening to remove

certain false positive errors inG2. First, we remove the voxels that were recognized

as valley points inB1 from G2 such thatG2 ← G2 \B1. Ideally,G2 should still form

a thin layer wrapping aroundW3, but in practice, there may be some thin and narrow

protrusions fromG2 that do not wrap around any cerebral white matter regions. To

eliminate these errors, geodesic opening at scales first perform geodesic morpholog-

ical erosion at scales onG2 ∪W3 with respect toW3 resulting inF , then perform

geodesic dilation at scales onF with respect toG2 resulting in a mask where those

thin protrusions at scales are eliminated. We then updateG2 such that those false

positive voxels are removed. Geodesic erosion and geodesicare described below.

5. Closing: The prior step removes all valley points fromG2, which is necessary for

geodesic opening to be effective. However, a valley point insulci may be partially a

cerebral gray matter voxel. To recognize such valley points, we perform morpholog-

ical closing at a small scale onG2 ∪W3 resulting in a new cerebrum maskM. Then

every valley point inM is taken as a partial cerebral gray matter point and assigned

with a value between 0 and 1 indicating how much of the voxel belongs to gray mat-

ter. The value is calculated by comparing the intensity of the valley point to that of

a near WM point along the gradient flow emanating from the valley point. Formally

speaking, we update the set of cerebral gray matter asG2 ← G2 ∪ ((B1 \ B0) ∩M)

and compute a functionf : (B1 \ B0)∩M→ [0, 1]. For convenience of the descrip-

tion in the following sections, we denote the valley points in the cerebrum mask as

G2
v = (B1 \ B0) ∩M.

Morphological erosion onX at scales can be seen as a procedure of subtracting voxels

fromX whose distances from the boundary ofX are less than or equal tos. Morphological

dilation onX at scales can be seen as a procedure of adding voxels in the complement

of X to X whose distances toX are less than or equal tos. Geodesic erosion onX with

respect toM at scales can be seen as a procedure of subtracting voxels inX \M fromX

whose distances from the boundary ofX are less than or equal tos. Geodesic dilation of

X with respect toM at scales can be seen as a procedure of adding voxels inM\ X to

X whose geodesic distance fromX are less than or equal tos.
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8.6 Cortical Surface Extraction

Extraction of inner cortical surface and outer cortical surface requires the set of topology-

correct cerebral white matter voxels and the set of topology-correct cerebral gray matter

voxels. When they are available, we use a topologically consistent marching cubes iso-

surface algorithm [110] to generate the triangulated surface representation of the cortical

surfaces. It is demonstrated in [110] that for(26, 6) adjacency, an isovalue less than0.25

should be used to avoid topological paradoxes.

Prior processing steps have generated topology-correct cerebral white matter, denoted

asW3, and a mask of cerebral gray matter, denoted asG2. Note thatG2 is not guaranteed

to possess correct topology. Computation of topology-correct cerebral gray matter consists

of following steps, whose effect is demonstrated in figure 8.9.

1. Initialization: We initialize a new set of background voxels as the complement of

the cerebral white matter set; i.e.B3 ← W3. Let B2 denote the background voxel

set before topology correction of cerebral gray matter plusthe valley points in the

cerebrum mask; i.e.B2 =W3 ∪ G2 ∪ G2
v .

2. Erosion: We then perform topology-and-shape-presevinggeodesic erosion onB3

with respect toB2 at scales, which is a partial curve skeletonization procedure (see

chapter V) with additional condition that any voxels removed fromB3 cannot be in

B2. Next, thicksurface points in the eroded background and outsideB2 are thinned

in a procedure similar to the thin-surface skeletonizationalgorithm. Eroded voxels

connected toW3 are taken as the cerebral gray matter in the setG3. Since the erosion

preserves topology, the topology ofW3 ∪G3 is equivalent to that ofW3. The scales

is associated with the average cortex thickness we know a priori. In practice we sets

to be6mm.

3. Verification: We verify that the cerebral white matter is wrapped around by the cere-

bral gray matte at any places and perform necessary modification to enforce the con-

straint. UpdateB3 with the new set ofW3 andG3 asB3 ←W3 ∪ G3.
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4. Smoothing: We finally perform morphological smoothing (see chapter V) onB3

and updateG3 accordingly. This step will remove the curve-like protrusions of the

background and has the effect of smoothing the outer cortical surface.

(a) Cerebral GM segmentation

(b) Outer cortical surface

FIGURE 8.9: Reconstruction of outer cortical surface from cerebral GMsegmentation.
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CHAPTER IX

Evaluation

This chapter evaluates our neuroanatomical segmentation algorithms both quantita-

tively and qualitatively on a variety of MRI data sets with respect to the accuracy, auto-

maticity, robustness and computational efficiency of our tools compared with those of four

four leading segmentation tools: Freesurfer, SPM5, FSL, and BrainVisa. We refer to our

segmentation tool as TAS (Topological Approach to Segmentation) in the following sec-

tions.

9.1 Comparative Packages

Below is a brief description of the four tools used for our comparative performance eval-

uation. Their segmentation methods are presented in chapter II. Although these tools pro-

vide various amount of functionality with respect to neuroimage analysis, they all support

automatic T1-weighted human brain MR image segmentation. Our comparative evaluation

is thus focused on this functionality.

9.1.1 Freesurfer

FreeSurfer [122, 43] is a set of tools for reconstruction of cortical surfaces from struc-

tural MRI data and for the overlay of functional data onto thereconstructed surface. Freesurfer

is developed in the Nuclear Magnetic Resonance (NMR) Center, Massachusetts General

Hospital .
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The cortical surface reconstruction pipeline in Freesurfer mainly consists of three steps.

First, a brainmask is extracted with alignment of the structure MR image to the Talairach

atlas and the bias field is corrected. Then the brain volume islabeled as various cortical

or subcortical structures in a procedure based on both a subject-independent probabilistic

atlas and subject-specific measured values. Finally, the cortical surfaces are constructed

from the prior segmentation, which involves a topology correction procedure.

9.1.2 SPM5

SPM (Statistical Parametric Mapping) is a statistical technique for testing hypotheses

about functional imaging data [123]. SPM also refers to the software developed by the

Wellcome Department of Imaging Neuroscience , University College London, to carry out

such analysis. SPM5 is the latest version of SPM. SPM5 features structural MRI segmen-

tation as well as a series of functional neuroimage analysis.

Structural MRI segmentation in SPM5 can be characterized asa circular procedure that

involves alternating three processing steps [42]: a bias correction step that corrects the

intensity inhomogeneity, a registration step that normalizes the image to standard tissue

probability maps, and a segmentation step that classifies image voxels into different tissue

types. As the segmentation result, SPM5 assigns each image voxel three probabilities with

respect to three tissue types: CSF, GM and WM.

9.1.3 FSL

FSL (the FMRIB Software Library) is a collection of functional and structural neu-

roimage analysis tools [124]. For structural segmentation, FSL mainly contains the Brain

Extraction Tool (BET) for segmenting brain from non-brain in structural and functional

data, and FAST (FMRIB’s Automated Segmentation Tool) for bias field correcton and brain

segmentation into three tissue types: CSF, GM and WM.

Structural MRI segmentation in FSL consists of two steps: using BET to extract the

brain and using FAST to classify tissue types. BET performs skull stripping with a surface

model [96]. The underlying method of FAST is based on an Expectation-Maximization

algorithm combined with a hidden Markov random field (MRF) model [28]. Due to the
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regularization of the MRF model, FAST is supposed to be more robust to noise than stan-

dard finite mixture model based methods.

9.1.4 BrainVisa

BrainVisa [125, 126] is software developed at Service Hospitalier Frdric Joliot (SHFJ)

that embodies an image processing factory and is distributed with a toolbox of building

blocks dedicated to the segmentation of T1-weighted MR image.

Structural MRI segmentation in BrainVisa consists of four main steps. First, the user

prepares the data for segmentation by specifying several key landmark points including the

Anterior Commissure (AC), the Posterior Commisure (PC), aninterhemispheric point, and

a left hemisphere point. A brain mask is then extracted including only white matter and gray

matter integrating bias field correction [127] and histogram analysis [93]. This is followed

by a hemisphere partition and removal of cerebellum with morphological image analysis

[128]. Finally, cerebral gray matter and white matter are differentiated with histogram

analysis [93].

9.2 Data Sets

The evaluation is performed on three group of data sets: a setof BrainWeb data with

groundtruth segmentation, a set of IBSR data with manually-guided expert segmentation,

and a set of real scans of subjects with mild cognitive impairment or Alzheimers disease.

9.2.1 BrainWeb Data Sets

This is a group of 8 realistic T1-weighted MR simulated images with grountruth seg-

mentation provided by BrainWeb, a simulated brain database[129]. All 8 MR images are

simulated on a normal anatomical model. The resolution of the images are1mm3. In the

groundtruth image, all voxels in the image are segmented into the following tissue types:

Background, CSF, GM, WM, Fat, Muscle/Skin, Skin, Skull, Glial Matter, and Connective.
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A variety of noise levels and levels of intensity inhomogeneity (i.e. intensity non-

uniformity(INU)) are artificially introduced in the simulated images, as listed in table

9.1. As stated in BrainWeb documentation [130], “The noise in the simulated images

has Rayleigh statistics in the background and Rician statistics in the signal regions. The

‘percent noise’ number represents the percent ratio of the standard deviation of the white

Gaussian noise versus the signal for a reference tissue.” The noise reference tissue used in

our data set is white matter. The meaning of the intensity inhomogeneity level is as follows.

“For a 20% level, the multiplicative INU field has a range of values of0.90...1.10 over the

brain area. For other INU levels, the field is linearly scaledaccordingly (for example, to a

range of0.80...1.20 for a 40% level).” According to BrainWeb, the INU fields are realistic

in that they are slowly-varying fields of a complex shape and were estimated from real MRI

scans.

TABLE 9.1 : Noise levels and IIH levels of the BrainWeb data set
Data set 1 2 3 4 5 6 7 8

Noise level 3% 3% 5% 5% 7% 7% 9% 9%
IIH level 20% 40% 20% 40% 20% 40% 20% 40%

9.2.2 IBSR Data Sets

This is a group of 18 T1-weighted real MR brain data sets and their manually-guided

expert segmentations in the Internet Brain Segmentation Repository (IBSR) supported by

the Center for Morphometric Analysis (CMA) at Massachusetts General Hospital [131]).

The slice resolution of all datasets is1.5mm and the XY resolution varies from1mm2 at

low end to0.837mm2 at high end. The MR images have been “positionally normalized”

into the Talairach orientation, but all five tools performedon this group of data assumed that

the brain were not normalized. The MR images were also processed by the CMA biasfield

correction routines, but it is not guaranteed that the intensity inhomogeneity is completely

corrected and all five tools also treated the data sets as if nobiasfield correction had ever

been performed on them.

Each MR image was manually segmented into 44 individual structures including 3rd

Ventricle, 4th Ventricle, Brain Stem, and Left and Right: Accumbens area , Amygdala,
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Amygdala Anterior, Caudate, Cerebellum Cortex, Cerebellum Exterior, Cerebellum White

Matter, Cerebral Cortex, Cerebral Exterior, Cerebral White Matter, Hippocampus, Inf Lat

Vent, Lateral Ventricle, Pallidum, Putamen, Thalamus Proper, VentralDC, and Vessel.

The 18 MR images are in various levels of quality. For convenience of the following

evaluation, we divided the group into two subgroups: the first 13 MR images with good

quality and 5 more MR image with bad quality. Note that the ordering of the IBSR data

sets is different from the original order. A map of the order we used to the original order is

(1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 3, 4, 13). For example, when we refer the

3rd data set, it is actually the 5th in the original order.

9.2.3 Pathological Data Sets

In addition to the BrainWeb and the IBSR data sets, which wereused for both quantita-

tive and qualitative evaluation, we also tested fives tools on an auxiliary group of 8 real MR

images scanned from subjects with minor recognitive impairment or Alzheimers disease for

qualitative evaluation only. The resolution of these data sets is1.139×1.211×1.211mm3.

The source of these data sets is the Neurobiology Research Unit [132] in the University

Hospital Rigshospitalet in Denark. No groundtruth or manual segmentation are provided

for these data sets.

9.3 Quantitative Evaluation

In this section, we present a quantitative evaluation on thesegmentation accuracy, ro-

bustness and computational efficiency of TAS with comparison to other four packages. We

use the widely-used Dice metric [42, 43, 133, 134] as the measurement for segmentation

accuracy and the standard deviation of the Dice metric over aset of data as the measure-

ment for segmentation robustness. Computational efficiency is simply measured with the

running time of each package.
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9.3.1 Dice Metric

Let TP refers to the number of true positives, FP to false positives and FN to false

negatives, then the Dice metric is given by

Dice metric=
2× TP

2× TP+ FP+ FN
(9.1)

Note that when the segmentation is given as a probability between 0 and 1 for each image

voxel for each tissue class, such as in the case of SPM5, TP, FPand FN are calculated as

the sum of the probabilities instead of discrete counting.

For quantitative evaluation using Dice metric, we have to decide the tissue type on

which the metric is measured. Currently TAS, like BrainVisa, only perform cerebrum seg-

mentation while FSL and SPM5 segment the entire brain into CSF, GM and WM without

extraction of the cerebrum. Freesurfer also performs segmentation on the whole brain but

segments the brain into a greater number of tissue types including cerebral white matter

and cerebral cortex. In our quantitative evaluation, we must calibrate the segmentation

of the five package into a standard behavior so that common tissue types can be used for

quantitative metric measurements.

For the BrainWeb data sets, we calibrated the segmentation of five tools to the segmen-

tation of cerebral WM and cerebral GM, and measured the Dice metrics with respect to

these two tissue types. To enable this, we manually partitioned the groundtruth whole brain

(WM plus GM) at the brainstem to extract the cerebral WM and the cerebral GM. Cerebral

WM and cerebral GM also have be extracted for the SPM5 and FSL segmentation results.

We use a procedure (described in the next paragraph) that almost “perfectly” partitions the

segmentation results based on the groundtruth partition. For BrainVisa and TAS, no trans-

formation in the calibration is required. For Freesurfer, we just simply need to relabel all

ceberal cortex voxels and all subcortical voxels excludingcerebral WM as cerebral gray

matter.

Let TP-Cerebrum and TP-Cerebellum respectively denote theset of true positives of

cerebrum and cerebellum in the segmentation of SPM5 and FSL.Let FP-Brain denote the

entire false positives including those in cerebrum and cerebellum. The partition of the brain

segmented by FSL and SPM5 is essentially the partition of FP-Brain into false positives in
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cerebrum and those in cerebellum, which is described as follows. For each voxelv in

FP-Brain, if it has a shorter path in FP-Brain to TP-Cerebrumthan any paths in FP-Brain

from v to TP-Cerebellum, thenv is taken as a false positive (of WM or GM) in cerebrum;

otherwise it is taken as a false positive (of GM or WM) in cerebellum.

For the IBSR data, we calibrated the segmentation of five tools to the segmentation

of cerebral cortex and cerebral white matter, and measured the Dice metrics with respect

to these two tissue types. These quantitative metrics give an evaluation on the accuracy

of the cortical surface reconstruction that depend on segmentation of cerebral cortex and

cerebral WM and are irrelevant to segmentation of subcortical gray matter tissues. Since

Freesurfer explicitly labels cerebral cortex and cerebralwhite matter, we do not need to

do any transformation in the calibration. The calibration of FSL and SPM5 first conducts

the brain partition to extract the cerebral WM and cerebral GM. Given the set of cerebral

WM and cerebral GM segmented by FSL, SPM5, BrainVisa or TAS, we measured the

Dice metrics with respect to cerebral cortex and cerebral WMin the same way as described

below.

In the measurement of the Dice metric with respect to cerebral cortex, the true positives

are the voxels labeled as cerebral cortex in the manual segmentation and cerebral GM in

the automatic segmentation, the false positives are the voxels labeled as cerebral GM in

the automatic segmentation but not cerebral GM (i.e. cerebral cortex or other subcortical

GM) in the manual segmentation, and the false negatives are the voxels labeled as cerebral

cortex in the manual segmentation but not cerebral GM in the automatic segmentation.

In the measurement of the Dice metric with respect to cerebral WM, the true positives

are the voxels labeled as cerebral WM in both the manual segmentation and the automatic

segmentation, the false positives are the voxels labeled ascerebral WM in the automatic

segmentation but neither cerebral WM nor subcortical GM in the manual segmentation,

and the false negatives are the voxels labeled as cerebral WMin the manual segmentation

but not cerebral WM in the automatic segmentation.
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9.3.2 Experiments

Freesurfer

We tested Freesurfer on both the BrainWeb and the IBSR data sets in a fully automatic

mode without any user intervention. An issue in collecting Freesurfer segmentation results

is the production of the cerebral cortex mask. There is a so-called “aseg” image and a

“ribbon” image both recording voxels labeled as cerebral cortex. The “ribbon” data is what

Freesurfer suggested [135] to use, but has more false negatives than the “aseg” data, while

the latter is an intermediate result and has more false positives than the “ribbon” data. We

applied a simple morphological closing operation on the union of the cortex ribbon and

the subcortical structures so that certain true cerebral cortex voxels labeled in “aseg” but

missed in “ribbon” are covered. This procedure apparently improved the performance of

the cerebral cortex segmentation, as shown in table 9.2. We used the “closed” mask of

cerebral cortex for our comparative evaluation.

FSL

In our first batch of experiments with FSL, we let FSL automatically extract the brain

and perform brain tissue classification on both the BrainWeband the IBSR data sets. How-

ever, FSL generated poor results on the brain extraction andbrain tissue classification on 6

IBSR data sets ( data set 5 to data set 10). In our second batch of experiments, we used dif-

ferent parameters in FSL, obtained better brain masks for these data, and repeated the brain

tissue classification subsequently. Since the brain masks generated in the second batch

of experiemnts are still not good enough, we turned to use thebrain masks generated by

Freesurfer for the brain tissue classification in FSL. This gives rise to best performance on

the 6 IBSR data sets. The three batch of experiments on FSL show that the brain extraction

algorithm of FSL is not robust on the IBSR data sets, but the brain tissue segmentation

performed well given good brain masks. The performance of FSL on the 6 IBSR data set

with respect to the three batch of experiments are shown in table 9.3.
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TABLE 9.2 : Dice metrics collected for Freesurfer over IBSR data sets

IBSR Data sets
Dice metrics with respect to cerebral cortex

“ribbon” data “aseg” data “closed” data
1 0.6905 0.7916 0.8039
2 0.7115 0.8061 0.8175
3 0.7390 0.7991 0.8362
4 0.8131 0.7838 0.8641
5 0.7361 0.7343 0.7794
6 0.7688 0.7301 0.8068
7 0.7421 0.7462 0.7888
8 0.7291 0.7327 0.7800
9 0.7780 0.7357 0.8128
10 0.7142 0.7336 0.7729
11 0.7839 0.8672 0.8702
12 0.7515 0.8045 0.8458
13 0.7504 0.8841 0.8647
14 0.6830 0.8316 0.8065
15 0.7272 0.8705 0.8487
16 0.7374 0.8514 0.8413
17 0.6626 0.8652 0.8076
18 0.7170 0.8485 0.8337

Mean 0.7353 0.8009 0.8212

TABLE 9.3 : Dice metrics collected for FSL using different brain masks

Brain masks
Tissue
types

Dice metrics over 6 IBSR data sets
5 6 7 8 9 10

Default FSL
brainmask

Cerebral
cortex

0.6591 0.6806 0.7268 0.6887 0.7713 0.6762

Cerebral
WM

0.8845 0.8928 0.8891 0.8335 0.9095 0.8792

Customized
FSL
brainmask

Cerebral
cortex

0.7608 0.7735 0.7772 0.7740 0.7854 0.7859

Cerebral
WM

0.8722 0.8747 0.8766 0.8711 0.8953 0.8767

Freesurfer
brainmask

Cerebral
cortex

0.7312 0.7559 0.7898 0.7587 0.8277 0.7471

Cerebral
WM

0.8862 0.8953 0.8912 0.8914 0.9146 0.9009
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SPM5

In our first batch of experiments with SPM5, we used the default parameters and let

SPM5 automatically perform brain tissue segmentation on the BrainWeb and the IBSR data

sets. In the second batch of experiments, we changed the parameter “Bias regularization”

from the default “Very light regularization” to “Medium regularization” and reran SPM5

on the IBSR data sets. SPM5 is supposed to be used with greaterbias regularization when

it is knowna priori that there is less intensity inhomogeneity in the image. Since the IBSR

data sets were processed by bias field correction, the use of “Medium regularization” rather

than the default “Very light regularization” improved the performance of SPM5 over almost

all IBSR data sets, as shown in table 9.4. We use the best performance for each data set in

our comparative evaluation.

TABLE 9.4 : SPM5 experiments with different bias regularization

IBSR Data sets
Dice metrics

Cerebral cortex Cerebral WM
Very light reg-
ularization

Medium regu-
larization

Very light reg-
ularization

Medium regu-
larization

1 0.7759 0.7705 0.8762 0.8927
2 0.8005 0.8048 0.8777 0.8940
3 0.8043 0.8080 0.8781 0.8936
4 0.8363 0.8356 0.8958 0.9013
5 0.4127 0.4621 0.7088 0.7312
6 0.4162 0.4207 0.7394 0.7422
7 0.7166 0.7065 0.8687 0.8734
8 0.7644 0.7670 0.8914 0.8923
9 0.7663 0.7595 0.9036 0.9059
10 0.6504 0.6868 0.8609 0.8744
11 0.8451 0.8396 0.8896 0.8927
12 0.8415 0.8541 0.8882 0.9014
13 0.8523 0.8588 0.8794 0.8955
14 0.8365 0.8426 0.8491 0.8678
15 0.8512 0.8439 0.8744 0.8880
16 0.8471 0.8263 0.8736 0.8948
17 0.8284 0.8407 0.8293 0.8551
18 0.8508 0.8539 0.8447 0.8764

Mean 0.7609 0.7656 0.8572 0.8707
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BrainVisa

We tested BrainVisa on both the BrainWeb and the IBSR data sets automatically except

for manually specifying landmark points including the AC point, the PC point, an inter-

hemipheric point and a left hemisphere point. BrainVisa produced an empty brain mask in

the 9th IBSR data set and was unable to generate brain masks for the 13th and the 18th data

sets. In both cases, we set the Dice metrics to be 0.

TAS

TAS is tested on the BrainWeb and the IBSR data sets automatically except for the

user to select the parameters in relative thresholding. Theuser only need to determine

the best two relative thresholds (a relative threshold between GM and WM and another

one between background and GM). Since the BrainWeb data setshave various noise level,

we also use different smoothing scales in addition to the tworelative thresholds for the

BrainWeb data. Whenever the user changes the parameters forrelative thresholding, the

result can be generated in real time, so tuning relative thresholding is an efficient procedure.

9.3.3 Comparison

Segmentation Accuracy Over The IBSR Data Sets

We have collected the Dice metrics with respect to cerebral cortex and cerebral WM of

the five packages on the IBSR data sets and the data is listed intable 9.5 and 9.6. Figure

9.1 through figure 9.8 compare the segmentation accuracy of TAS with SPM5, Freesurfer,

FSL and BrainVisa respectively. Table 9.5 and 9.6 list the performance of the five packages

over the 18 IBSR data sets and over the 13 good IBSR data sets respectively, which are also

illustrated respectively in Figure 9.9 and figure 9.10 .

On average, TAS performed best on cerebral cortex segmentation over all 18 IBSR data

sets, good and bad, and the 13 good data sets exclusively. In particular, TAS’s cerebral cor-

tex performance is consistently better than four other packages over the 13 good data sets

except for the 4th data set, where TAS’s performance is almost identical to the best, and
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the 12th data set, where TAS’s performance is close to the best. The cerebral cortex per-

formance of the five packages over the five bad data sets are similar except that BrainVisa

generated empty brain mask for the 18th data set.

On average, FSL performed best on cerebral WM segmentation over both all 18 IBSR

data sets and the 13 good data sets. However, TAS’s performance is very close to FSL in

both cases. The performance of the five packages over the five bad data sets are similar

except that BrainVisa generated empty brain mask for the 18th data set and Freesurfer gave

significantly lower performance for the 14th data set.

TABLE 9.5 : Dice metrics of five tools with respect to cerebral cortex over the IBDR data
sets

IBSR Data
sets

Dice metrics with respect to cerebral cortex
BrainVisa SPM5 Freesurfer FSL TAS

1 0.7461 0.7705 0.8039 0.7803 0.8682
2 0.7953 0.8048 0.8175 0.8121 0.8619
3 0.7674 0.8080 0.8362 0.8361 0.8714
4 0.7233 0.8356 0.8641 0.8028 0.8612
5 0.2875 0.4621 0.7794 0.7312 0.8638
6 0.6610 0.6610 0.8068 0.7559 0.8441
7 0.7108 0.7065 0.7888 0.7898 0.8638
8 0.6982 0.7670 0.7800 0.7587 0.8790
9 0 0.7595 0.8128 0.8277 0.8700
10 0.7707 0.6868 0.7729 0.7471 0.8611
11 0.8688 0.8396 0.8702 0.8833 0.8634
12 0.8596 0.8541 0.8458 0.8582 0.8772
13 0 0.8588 0.8647 0.8554 0.8673
14 0.8406 0.8426 0.8065 0.8429 0.8315
15 0.8441 0.8439 0.8487 0.8381 0.8457
16 0.8260 0.8263 0.8413 0.8426 0.8281
17 0.8445 0.8445 0.8076 0.8275 0.8070
18 0 0.8539 0.8337 0.8278 0.8379

Mean 0.6247 0.7656 0.8212 0.8121 0.8557
Mean over
13 good
data sets

0.6068 0.7365 0.8187 0.8030 0.8656
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TABLE 9.6 : Dice metrics of five tools with respect to cerebral WM over the IBDR data
sets

IBSR Data
sets

Dice metrics with respect to cerebral WM
BrainVisa SPM5 Freesurfer FSL TAS

1 0.8652 0.8927 0.7964 0.8971 0.8789
2 0.8899 0.8940 0.8208 0.9160 0.8926
3 0.8649 0.8936 0.8138 0.9084 0.8874
4 0.8596 0.9013 0.8489 0.9168 0.9070
5 0.4097 0.7312 0.9240 0.8862 0.9101
6 0.7970 0.7422 0.9115 0.8953 0.8954
7 0.8255 0.8734 0.9147 0.8912 0.9001
8 0.8110 0.8923 0.9203 0.8914 0.9170
9 0 0.9059 0.9179 0.9146 0.9224
10 0.8457 0.8744 0.9069 0.9009 0.8790
11 0.8975 0.8927 0.8711 0.9142 0.8969
12 0.8858 0.9014 0.8099 0.8988 0.9006
13 0 0.8955 0.8647 0.8673 0.8748
14 0.8613 0.8678 0.7824 0.8632 0.8622
15 0.8541 0.8880 0.8746 0.8743 0.8637
16 0.8792 0.8948 0.8479 0.8933 0.8713
17 0.8619 0.8551 0.8592 0.8585 0.8463
18 0 0.8764 0.8124 0.8323 0.8463

Mean 0.6893 0.8707 0.8610 0.8900 0.8862
Mean over
13 good
data sets

0.6886 0.8685 0.8708 0.8999 0.8971

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.4

0.6

0.8

1

IBSR datasets

C
er

eb
ra

l c
or

te
x 

D
ic

e 
m

et
ric

s

 

 

SPM5 TAS

FIGURE 9.1: Cerebral cortex Dice metrics of SPM5 and TAS on the IBSR datasets.
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FIGURE 9.2: Cerebral WM Dice metrics of SPM5 and TAS on the IBSR datasets.
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FIGURE 9.3: Cerebral cortex Dice metrics of Freesurfer and TAS on the IBSR datasets.
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FIGURE 9.4: Cerebral WM metrics of Freesurfer and TAS on the IBSR datasets.
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FIGURE 9.5: Cerebral cortex Dice metrics of FSL and TAS on the IBSR datasets.
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FIGURE 9.6: Cerebral WM Dice metrics of FSL and TAS on the IBSR datasets.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.6

0.7

0.8

0.9

1

IBSR datasets

C
er

eb
ra

l c
or

te
x 

D
ic

e 
m

et
ric

s

 

 
BrainVisa TAS

FIGURE 9.7: Cerebral cortex Dice metrics of BrainVisa and TAS on the IBSR datasets.
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FIGURE 9.8: Cerebral WM metrics of BrainVisa and TAS on the IBSR datasets.
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FIGURE 9.9: Mean Dice metrics of five tools on the IBSR datasets

BrainVisa SPM5 Freesurfer FSL TAS

0.6

0.7

0.8

0.9

1

M
ea

n 
D

ic
e 

m
et

ric
s

 

 
Cerebral cortex Cerebral WM

FIGURE 9.10: Mean Dice metrics of five tools on the 13 good IBSR datasets
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Segmentation Robustness Over The IBSR Data Sets

We calculated the standard deviations of the Dice metrics over the IBSR data sets and

use them together with the mean Dice metrics as the measurements of the segmentation

robustness of the five packages over MR images scanned from different subjects. Greater

mean Dice metric and lower standard deviation indicate greater robustness with respect to

segmentation accuracy over a set of data.

Two groups of the standard deviations are calculated over the total 18 IBSR data sets

and over the 13 good IBSR data sets. TAS demonstrated lowest standard deviation with

respect to cerebral cortex over both the total 18 IBSR data sets and the 13 good IBSR

data sets, as shown in table 9.7, and figure 9.11 and 9.12. The lowest mean and standard

deviation of Dice metric with respect to cerebral cortex indicate that TAS possesses the best

accuracy robustness with respect to cerebral cortex over the IBSR data sets. For cerebral

WM, TAS and FSL performed neck and neck with respect to both the mean and the standard

deviation of the Dice metric over both the total 18 IBSR data sets and the 13 good IBSR

data sets. TAS and FSL tied for the best accuracy robustness with respect to cerebral WM

over the IBSR data sets. Considering both cerebral cortex and cerebral WM, we think that

TAS performed most robustly on average over the entire IBSR data sets.

TABLE 9.7 : Standard deviation of Dice metrics of five tools over the IBSR data sets
Sample groups Standard deviations

data sets tissue type BrainVisa SPM5 Freesurfer FSL TAS
all IBSR
data sets

Cerebral cortex 0.3155 0.1284 0.0308 0.0429 0.0192
Cerebral WM 0.3351 0.0505 0.0473 0.0230 0.0225

13 good
data sets

Cerebral cortex 0.3047 0.1414 0.0345 0.0476 0.0087
Cerebral WM 0.3305 0.0593 0.0482 0.0143 0.0147
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FIGURE 9.11: Standard deviations of Dice metrics of five tools on the IBSRdatasets
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FIGURE 9.12: Standard deviations of of Dice metrics of five tools on the 13good IBSR
datasets
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Segmentation Robustness With Respect To Noise And IIH Over The BrainWeb Data

Sets

As described in subsection 9.2.1, the BrainWeb data sets vary in noise levels and in-

tensity inhomogeneity (IIH) levels. The performance in Dice metrics of the five package

with respect to cerebral GM and cerebral WM is listed in table9.8 and 9.9 and illustrated

in figure 9.13 and figure 9.14.

TABLE 9.8 : Dice metrics of five tools with respect to cerebral GM over the BrainWeb data
sets

BrainWeb Data sets Dice metrics with respect to cerebral GM
Noise level IIH level BrainVisa SPM5 Freesurfer FSL TAS

3%
20% 0.9292 0.9173 0.8333 0.9242 0.9084
40% 0.9247 0.9189 0.8342 0.9268 0.9086

5%
20% 0.9197 0.8989 0.8323 0.9193 0.8908
40% 0.9201 0.8998 0.8323 0.9193 0.8858

7%
20% 0.8628 0.8673 0.8320 0.9113 0.8816
40% 0.8740 0.8713 0.8312 0.9127 0.8827

9%
20% 0.8166 0.8255 0.8259 0.8996 0.8658
40% 0.7836 0.8301 0.8264 0.9019 0.8678

TABLE 9.9 : Dice metrics of five tools with respect to cerebral WM over the BrainWeb
data sets

BrainWeb Data sets Dice metrics with respect to cerebral GM
Noise level IIH level BrainVisa SPM5 Freesurfer FSL TAS

3%
20% 0.9550 0.9471 0.8849 0.9672 0.9588
40% 0.9599 0.9533 0.8889 0.9664 0.9593

5%
20% 0.9552 0.9314 0.8824 0.9567 0.9494
40% 0.9534 0.9315 0.8863 0.9581 0.9476

7%
20% 0.9325 0.8978 0.8779 0.9448 0.9382
40% 0.9311 0.9008 0.8796 0.9467 0.9370

9%
20% 0.8926 0.8656 0.8757 0.9332 0.9296
40% 0.8748 0.8701 0.8740 0.9354 0.9289

Among the five packages, Freesurfer demonstrated lowest performance variation over

different noise levels; SPM5 and BrainVisa neck and neck have highest performance vari-

ations over different noise levels; and TAS and FSL have medium performance variations

over different noise levels, compared to the other three. Although Freesurfer performed



125

consistently over different noise levels, it also gave results with lowest accuracy on aver-

age. For each of the four noise levels, we also tested the packages on images with two

different IIH levels. All five packages gave little variation over different IIH levels. The

only exception is for BrainVisa to handle with N=9% and IIH=40%. This is due to a poor

brain mask.

It is worth noting that in real MR scans, the intensity inhomogeneity may be in various

and unknown patterns and could occur together with other difficulties that may be not

present in the simulated BrainWeb data sets. Therefore, we remark that our experiments

with the BrainWeb data set do not mean to give a thorough and sufficient evaluation on the

five package with respect to the IIH robustness.
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FIGURE 9.13: Cerebral GM Dice metrices of five tools on the BrainWeb datasets.

Computational Efficiency

The execution times of the fives package tested on the IBSR data sets and the Brain-

Web data sets are listed in table 9.10. The experiments were all run on a single 2.8Ghz

Intel Xeon processor. Among the five packages, BrainVisa took least amount of time but

is also associated with the lowest segmentation accuracy and robustness on the IBSR data
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FIGURE 9.14: Cerebral WM Dice metrics of five tools on the BrainWeb datasets.

sets. Freesurfer took much longer execution time than otherfour but it should be acknowl-

edged that the longer time span covers segmentation of more subcortical structures and

reconstruction of cortical surfaces. TAS took much less time than Freesurfer, but required

more than BrainVisa, FSL and SPM5. However, it should be noted that the most of the

TAS time was spent for topology correction, which was not counted in the execution times

of the other three.

TABLE 9.10: Computation times of five packages on the IBSR and the BrainWeb datasets

Data sets
Computation times

BrainVisa SPM5 Freesurfer FSL TAS TAS(topology
correction)

IBSR 1.5m 34m 27.2h 5m 17m 14m
BrainWeb 1.6m 20m 24.5h 9m 21m 18m

9.4 Qualitative Evaluation

In this section, we give a qualitative evaluation of the five packages based on the ex-

periments of the packages on the IBSR data sets, Brainweb data sets, and the auxiliary 8
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pathological data sets with mild recognitive impairment orAlzheimers disease. We first

summarize and compare the segmentation functionalities ofthe five packages followed by

the discussion of their automaticity. Finally, we present various segmentation abnormalities

of each package that we observed in the experiments. The segmentation abnormalities are

presented in two groups: those that occurred in packages other than TAS (i.e. TAS pros)

and those that occurred in TAS (i.e. TAS cons).

9.4.1 Segmentation Functionalities

The folllowing is a summarization and comparison on the mainsegmentation features

of the five packages.

• Bias field correction: Freesurfer, SPM5, FSL, and BrainVisa, all integrate a bias

field correction procedure, either prior to tissue classification or combined with the

classification. TAS, on the other hand, does not need explicit bias field correction

and the relative thresholding is robust to bias field in arbitrary patterns.

• Brain extraction: FSL, Freesurfer and BrainVisa provide separate tools for brain ex-

traction (i.e. skull stripping) prior to brain tissue classification while SPM5 combine

brain extraction together with tissue classification. TAS,on the other hand, performs

cerebrum extraction after tissue classification. Note thatthe brain mask generated by

BrainVisa is supposed to contain only GM and WM while the brain mask generated

by FSL and Freesurfer is supposed to contain CSF as well as GM and WM.

• Tissue classification: FSL and SPM5 segment the brain volumeinto three tissue

types: CSF, GM, and WM. BrainVisa and TAS extract cerebral WMand cerebral

GM. BrainVisa also provides cerebral hemisphere partition. Freesurfer segments a

whole brain into 37 individual structure including cerebral cortex, cerebral WM, a

set of subcortical structures, brainstem and cerebellar structures.

• Cortical surface reconstruction: BrainVisa, Freesurfer and TAS support cortical sur-

face reconstruction while FSL and SPM5 do not. A core mechanism involved in the

surface reconstruction is to make sure that topology of the cortical surfaces is correct.
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9.4.2 Segmentation Automaticity And User Intervention

All five packages support highly automatic brain segmentation without or with little

user intervention. Freesurfer allows the user to start the cortical surface reconstruction

without any intervention. In case the segmentation is not satisfiable, Freesufer supports

interactive tools for the user to modify the brain mask and add control points to improve

the intensity normalization of WM, a procedure extremely important for the performance

of Freesurfer’s whole brain segmentation. Freesurfer alsosupports interactive tools for

editing the final results generated by the automatic processing.

FSL also allows the user to start the segmentation without any intervention. In FSL,

brain extraction and tissue classification are performed respectively by BET and FAST.

The BET performance substantially influences that of FAST. If the user is not satisfied

with the brain extraction, FSL allows the user to select different parameters and rerun BET.

However, our experiments with BET on the IBSR data sets and the pathological data sets

show that BET cannot guarantee good brain extraction even with user intervention. FAST

has custom options for the user to select whether to use the k-means segmentation ora

priori probability maps for initial segmentation and to guide the k-means segmentation

with manual intervention.

In SPM5, brain segmentation can also be automatically started with the default param-

eters and SPM5 often generates good results. An important custom parameter of SPM5 is

the one that control the extent of bias field regularization.When any parameter is changed,

the segmentation procedure has to be started over from scratch.

BrainVisa requires the user to prepare the data by first specifying several landmark

points including the AC point, the PC point, an inter-hemespheric point and a left hemi-

sphere point. When the data is prepared by the user, BrainVisa automatically performs

segmentation. BrainVisa supports interactive tools for the user to edit the segmentation

results.

TAS recommends the user to first determine the two relative thresholds and occasion-

ally the smoothing scale for relative thresholding, which can be performed in a real-time

procedure, and starts the subsequent segmentation withoutany user intervention. When the

user want to process a set of data which are apparently acquired with the same or similar
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parameters, the user can determine the relative thresholding parameter for only one of the

data sets and use them for the rest. In our experiments, for example, we used the same set

of parameters for the 8 pathological data sets.

Compared to the user intervention mechanisms in the other four packages, user inter-

vention in TAS is in the form of global parameter selection and has the following advan-

tages. First, it is straightforward and requires little even no expertise to understand the

meaning of the parameters and the criterion for selecting optimal ones. Second, it is very

easy to operate by sliding a value bar. Third, it is very efficient and the user can obtain

the effect of parameter selection in real time. Fourth, the parameters have global effect

for segmentation and the user does not need to repeat similaroperations for different local

regions.

9.4.3 Segmentation Abnormalities

TAS Pros

First of all, we are interested in why TAS consistently givesbetter performance with

respect to cerebral cortex segmentation over the 13 good IBSR data sets. By examining the

segmentation results, we found that there were a “shrinking” effect on the cerebral cortex

segmentation for Freesurfer, FSL, SPM5 and BrainVisa, which gives rise to significant

amount of false negatives, while this problem did not occur or was much milder in TAS.

We think the underlying reason is that TAS uses a new image modeling mechanism that

can adapt to wider variations of GM intensities while the statistical methods used in other

packages were misled by such variations and missed a great deal of GM voxels with lower

intensities. This phenomenon is shown in figure 9.15 with a representative IBSR data set

and the segmentation results of the five packages.

In figure 9.15, pink stands for correct WM, red for false WM negative, light green for

correct GM, very light green for false WM negative and false GM negative, dark green

for false GM positive, and gray false for GM negative. Note that for SPM5, light green

represents correct GM segmentation, darker green represents false GM negative, and gray

level represents false GM positive. The differences between the segmentation of TAS and
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other four packages on the same subject are shown in figure 9.16. Note that the green part

is mainly due to the false positives of TAS, particularly around the lateral ventricles. It

can be seen that all the other four packages have significantly more errors (mainly false

negatives), colored in red, than TAS around the cerebral cortex.

Another common problem in FSL, BrainVisa and SPM5 is the poorbrain extraction.

Some examples are shown in figure 9.17. Poor brain mask is mainly responsible for the

poor performance for SPM5 and BrainVisa over the IBSR data sets indicated as the valley

points in figure 9.1 and 9.2. Since we used the relatively better brain masks generated from

Freesurfer for FSL, there are no deep valleys of performancefor FSL in figure 9.5 and 9.6.

Freesurfer did not encounter poor skull stripping, but unclean brain mask may still be gen-

erated, as shown in figure 9.17(b) where some non-brain voxels with high intensities are

taken as brain tissues. TAS on the other hand, does not dependon a brain extraction pre-

processing step and robustly generated clean cerebrum masks as the union of the cerebral

white matter and the cerebral gray matter over all tested data sets.

We also found some other interesting abnormalities with Freesurfer, as shown in figure

9.18. For example, in figure 9.18(c) Freesurfer cut off a significant amount of cerebral WM

and cortex at the top of the brain. In figure 9.18(d) Freesurfer was unable to correctly rec-

ognize the complete lateral ventricle of the subject with Alzheimers disease. In figure 9.19,

Freesurfer generated poor GM/WM segmentation even for a simulated image with excel-

lent quality (noise level is 3% and IIH level is 20%) while TASand FSL generated excellent

results. These abnormalities, we believe, are probably because of the over-regularization

of thea priori probability maps used in Freesurfer.

TAS Cons

We found two types of abnormalities in the TAS segmentation results. One is the con-

sistently existence of a rim of GM around the lateral ventricles, as shown in figure 9.19(d)

and 9.15(f). This is associated with our structure modelingof CSF, GM and WM as a

layered structure. This abnormality actually also occurs consistently with SPM5. An-

other abnormality is that sometimes a significant amount of voxels in the amigdala area are

missed in the segmentation, as shown in figure 9.20. This is mainly due to the fact that



131

(a) MR image (b) BrainVisa result

(c) Freesurfer result (d) FSL result

(e) SPM5 result (f) TAS result

FIGURE 9.15: GM-shrinking phenomenon.
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(a) TAS and Freesurfer (b) TAS and FSL

(c) TAS and SPM5 (d) TAS and BrainVisa

FIGURE 9.16: Segmentation differences between segmentation of TAS andother four
tools. Black: both correct non-GM; gray: both correct GM; green: TAS incorrect while
other correct; red TAS correct while other incorrect; Blue:both incorrect.
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(a) BrainVisa brain mask (b) Freesurfer brain mask

(c) FSL brain mask (d) SPM5 GM mask

FIGURE 9.17: Poor brain masks
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(a) MR image (b) MR image

(c) Freesurfer result for MRI in (a) (d) Freesurfer result for MRI in (b)

(e) TAS result for MRI in (a) (f) TAS result for MRI in (b)

FIGURE 9.18: Freesurfer abnormalities in the pathological data sets and comparison with
TAS
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(a) BrainWeb MRI: N=3% IIH=20% (b) Freesurfer result

(c) FSL result (d) TAS result

FIGURE 9.19: Freesurfer segmentation on the BrainWeb MRI with comparison to TAS
and FSL
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the gray matter is usually thicker than average cerebral cortex and that the white matter

surrounded by the gray matter in the amigdala area is sometimes too thin for TAS to obtain

good segmentation.

(a) BrainWeb MRI: N=7% IIH=40% (b) TAS result

(c) Freesurfer result (d) FSL result

FIGURE 9.20: TAS segmentation missing part of amigdala on the BrainWeb MRI with
comparison to Freesurfer and FSL

Unlike the abnormalities of other packages that often occurred at the cerebral cortex,

the two abnormalities with TAS have little or no adversary influence to cerebral cortex seg-

mentation and cortical surface reconstruction. These abnormalities have been well located

and we know why they occur. It is part of our future work to eliminate these abnormalities

in TAS.
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CHAPTER X

Conclusion

10.1 Summary Of The Segmentation Pipeline

In this dissertation, we presented an image analysis pipeline for neuroanatomical MR

image segmentation, which consists of an initial brain tissue classification procedure with

relative thresholding complemented by terrain analysis, aseries of segmentation error cor-

rection procedures, and a procedure for cortical surface reconstruction. Segmentation er-

ror correction includes a multiscale morphological topology correction procedure for white

matter and two non-cerebrum tissue elimination proceduresfor extraction of cerebral white

matter and cerebral gray matter respectively. The topologycorrection algorithm and the

cerebrum extraction procedure depend on several generic morphological and morphomet-

ric analysis algorithms, particularly a 3D curve skeletononzation algorithm and its variants,

and a cell-complex-based morphometric analysis algorithm.

10.2 Segmentation Performance

We have evaluated our segmentation method quantitatively and qualitatively on vari-

ous MR images including simulated and real, normal and pathological. We also compared
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our segmentation results with those of four leading segmentation tools. The comparison

demonstrated that our method tends to produce more accuratesegmentation on cerebral

gray matter segmentation and comparable segmentation on cerebral white matter to the

leading packages. In addition, our segmentation method exhibited least performance fluc-

tuation across different subjects. Quantitative evaluation of our segmentation method on

different noise levels and different intensity inhomogeneity levels also demonstrated high

segmentation robustness of our method. It also produced least segmentation abnormalities

with respect to cerebral cortex segmentation among the compared tools. Our method took

about 20 minutes on average for cortical surface reconstruction and is computationally ef-

ficient compared to other tools. Finally, our segmentation method is highly automatic in

that little or no user intervention is required to produce accurate and robust segmentation

in limited time.

10.3 Contributions

The main contribution of this dissertation can be characterized as the presentation of a

work flow for neuroanatomical MR image segmentation in whichbrain tissue classification

is conducted prior to brain extraction and is independent ofexplicit bias field correction,

design and implementation of a set of original algorithms that were applied in different

stages in the work flow, and a comparative evaluation that demonstrated that our method is

highly accurate, robust, automatic and computationally efficient.

The relative thresholding algorithm is based on a new structure modeling of neuroanatomy

and a new image modeling of the T1-weighted MR images exploiting various structural,

geometrical and radiologicala priori knowledge. Brain tissue classification with relative

thresholding is free from three typical problems that occurin traditional intensity based

segmentation methods. First, it is independent of prior brain extraction and thus avoids

performance instabilities caused by poor brain extractionin many traditional methods. Sec-

ond, relative thresholding is robust against intensity inhomogeneities without explicit bias

field correction. Third, relative thresholding is also ableto adapt to large intensity vari-
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ations within a given brain tissue and thus tends to produce more accurate segmentation.

On the other hand, relative thresholding can be seen as a special edge (or intensity differ-

ence) based segmentation method that overcomes several critical disadvantages of edge

based segmentation approaches. First, it produces coherent regions labeled with brain

tissue types. Second, it is able to recognize blurred edges and tissue boundaries where

intensities vary smoothly. Third, it is able to suppress spurious edges between voxels of

same tissue types. In these respects, we see relative thresholding as a fusion of intensity

based segmentation and edge based segmentation. The idea can be effective in other image

segmentation problems, particularly where there are intensity inhomogeneities and blurred

edges.

The cell complex based morphometric analysis simplifies a 3Dobject into a 1D struc-

ture and gives a quantitative measurement on the wideness and connectivity on every loca-

tion in the 3D object. This is a significant advancement over the fact that traditionally only

a “thickness” metric (i.e. the distance to the boundary) canbe calculated for each point

in the 3D object. This new 3D morphometric instrument will potentially promote more

applications of morphological analysis for various problems in computer vision and image

understanding. By applying this new morphometric analysison the white matter gener-

ated, we are able to eliminate non-brain tissues and divide the entire white matter at the

brain stem based on thea priori knowledge of strong connectivity of cerebral white mat-

ter. Cerebrum extraction using cell-complex-based morphometric analysis provides higher

robustness than other brain extraction such as traditionalmorphological image analysis,

deformable model based methods, and atlas based methods.

The white matter topology correction algorithm is based on thea priori observation that

human white matter, particularly cerebral white matter, isa surface-like object. Preserva-

tion of this morphological property is taken as the major criterion for eliminating topology

defects. In addition, our topology correction algorithm involves WM, GM and background

in the procedure, in contrast to the traditional procedure where only the foreground and

background are involved. Our three-fold procedure exploiting the surface-likeness morpho-

logicala priori knowledge tends to more robustly produce reasonable solutions to topology

defect elimination than other methods.
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The 3D curve skeletonization algorithm is performed directly on a 3D object in contrast

to the traditional methods that depend on prior surface skeletonization and tend to gener-

ate skeletons with better “medialness”. A variant of our curve skeletonization is referred

to as “shape and topology preserving erosion” in which the skeletonization procedure is

conducted in certain iterations instead of until conversion. This variant algorithm is used

as an important component in the white matter topology correction algorithm as well as for

generating topology correct gray matter in our neuroanatomical pipeline. A similar proce-

dure can also used in 3D object smoothing to eliminate noisy protrusions on the 3D object.

This framework of 3D curve skeletonization is based on a systematic point classification

of discrete 3D objects. In this classification approach, we proposed the central notion of a

thick-simple point. This notion enables deeper and wider topology and geometrycharac-

terization of any points in a 3D digital object.

As a brief summary of our contributions in this dissertation, we essentially opened a

new window on the general methodology for neuroanatomical segmentation in MRI and

proposed new perspectives on particular issues such as brain extraction, bias field cor-

rection, brain tissue classification, image modeling, topology correction, as well as mor-

phological and morphometric analysis. These new thoughts and the practice in the spe-

cific problem solving for neuroantomical MR image segmentation are also meaningful in a

wider area of computer vision and image understanding.

10.4 Future Work

First, as addressed in our qualitative evaluation (subsection 9.4.3), there is consistently a

rim of gray matter around the lateral ventricles and partialamigdala areas may be missed in

our cerebrum segmentation. Future work will recognize the lateral ventricles and separate

true gray matters from false in the gray matter rim. In addition, more robust segmentation in

the amigdala area or automatic recovery techniques will help to find the missed amigdala

area. Second, future work will extend segmentation of WM andGM in the cerebrum to
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segmentation of other anatomical structures in the entire brain, such as cerebellum and

deep subcortical structures.

Currently typical medical resolution of MRI is about1mm3, while research models

can have much higher resolutions. An interesting topic for us to study is the performance

scalability with respect to higher MRI resolution, particularly of the relative thresholding

method. It is also worth verifying whether a fixed pair of relative thresholds can be used

for all MR imags scanned on different subjects with same image acquisition parameters.

Automatic relative threshold selection method for data with unknown imaging parameters

is under study.
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