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Scientific parallel programs often undergo significant performance tuning before meet-

ing their performance expectation. Performance tuning naturally involves a diagnosis pro-

cess – locating performance bugs that make a program inefficient and explaining them

in terms of high-level program design. Important performance measurement and analy-

sis tools have been developed to support the performance analysis with the facilities of

running experiments on parallel computers and generating measurement data to evaluate

performance. However, current performance analysis technology does not yet allow for

associating found performance problems with causes at a high-level program abstraction.

Nor does it support the performance diagnosis process in a well automated manner.

We present a systematic method to guide the performance diagnosis process and sup-

port the process with minimum user intervention. The motivating observation is that per-

formance diagnosis can be greatly improved with the use of performance knowledge about
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parallel computation models. We therefore propose an approach to generating performance

knowledge for automatically diagnosing parallel programs. Our approach exploits program

execution abstraction and parallelism found in computational models to search and explain

performance bugs. We identify categories of knowledge required for performance diagno-

sis and describe how to derive the knowledge from computational models. We represent

the extracted knowledge in a manner such that performance inferencing can be carried out

in an automatic manner.

We have developed theHerculeautomatic performance diagnosis system that imple-

ments the model-based diagnosis strategy. In this dissertation, we present how Hercule

integrates the performance knowledge into a performance analysis tool and demonstrate

the effectiveness of our performance knowledge engineering approach through Hercule

experiments on a variety of parallel computational models.We also investigate compo-

sitional programs that combine two or more models. We extendperformance knowledge

engineering to capture the interplay of multiple models in an integrated state, and improve

Hercule capabilities to support the compositional performance diagnosis. We have applied

Hercule to two representative scientific applications, both of which are implemented with

combined models. The experiment results show that, requiring minimum user intervention,

model-based performance analysis is vital and effective indiscovering and interpreting per-

formance bugs at a high level of program abstraction.
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CHAPTER 1

Introduction

Scientific parallel programs often undergo significant performance tuning before meet-

ing performance expectation. Performance tuning naturally involves a diagnosis process –

locating performance bugs that make a program inefficient and explaining them in terms

of high-level program design. The process of performance diagnosis, including the gener-

ation and running of experiments, the characterization of performance properties, and the

locating and interpretation of performance problems (bugs), is particularly challenging to

automate because it fundamentally is an intelligent process wherein we capture and apply

knowledgeabout performance problems, how to detect them (i.e., theirsymptoms), and

why they exist (i.e., theircauses).

This dissertation presents a new approach to performance analysis: model-based auto-

matic performance diagnosis. Our approach exploits program semantics and parallelism

embedded inmodelsof parallel computations to search and explain bugs. We present a set

of principles to engineer performance knowledge from the models and use the knowledge

as the basis for building a framework to support automated performance diagnosis. The

framework’s function is therefore guided by expert strategies for automatic problem dis-

covery and hypothesis testing, strategies that are captured and encoded in the performance

knowledge base.

Hercule is such an automatic performance diagnosis framework that we have developed

using the model-based approach. The Hercule system operates as an expert system within

a parallel performance measurement and analysis toolkit. Model knowledge base is the
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core of the system, which fuels the diagnosis process. Hercule automates all aspects of the

diganosis process, including experiment construction, performance analysis, and perfor-

mance causal inferencing. Hercule diagnosis results, which consist of a list of performance

problems existing in the program and corresponding explanations, are feedbacks at a high-

level program abstraction so the burdens imposed on the userto map primitive performance

data to computational design is greatly reduced.

Our experiments corroborate the effectiveness of designing tools using model-based

approach. We have tested Hercule on a variety of parallel programs and scientific com-

putations, coded with singleton or compositional models. For each of the applications,

Hercule provides the user with an insight about how each essential design component per-

forms and how efficient the problem concurrency is realized among parallel ingredients.

In the case that more than one model is used, Hercule additionally unravels performance

effects resulting from model interactions. The Hercule feedbacks point directly to per-

formance degrading factors in the design model, filling in the semantic gap between raw

measurements with program design.

1.1 Thesis Statement

The central hypothesis of this dissertation is that performance diagnosis would benefit

from knowing the computation model of a parallel program andthe model knowledge can

support automatic performance problem discovery and interpretation if incorporated into a

performance tool.

In order to substantiate this claim, we design an approach toextracting performance

information from computational models that can guide the diagnosis process with min-

imum user intervention. We also develop Hercule that implements automatic diagnosis

with model knowledge. Providing performance interpretation in model language, Hercule

eliminates the need to correlate raw performance information at the level of source code

with program design at a high level of abstraction . It therefore can be used easily by

inexperienced parallel programmers to improve performance.
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1.2 Contributions

This thesis makes the following specific contributions:

Contribution 1 A new approach for designing performance analysis tools, which en-

ables performance problem discovery and causal inferencing at a high level of program

abstraction.

Important performance measurement and analysis tools, such as Paradyn [32], AIMS

[33], and SvPablo [19], have been developed to help programmers diagnose performance

problems. However, the performance feedback provided by the tools tend to be descrip-

tive information about parallel program execution at low levels of abstraction. Even if the

tools detect a specific source code location or machine resource that demonstrates poor

performance, the information may lack the context requiredto relate the performance in-

formation to a higher-level cause. Thus, it falls on the users to explain the performance

observations and reason about causes of performance inefficiencies with respect to compu-

tational abstractions used in the program and known only to them. Unfortunately, novice

parallel programmers often lack the performance analysis expertise required for high-level

problem diagnosis using only raw performance data.

We believe that the deficiencies above could be addressed by incorporating program

semantics into performance analysis. We are particularly inspired by expert parallel pro-

grammers who often approach performance tuning in a systematic, empirical manner by

running experiments on a parallel computer, generating andanalyzing performance data,

and then testing performance hypotheses to decide on problems and prioritize opportuni-

ties for improvement. Implicit in this process is the expert’s knowledge of the program’s

code structure, its parallelization approach, and the relationship of application parame-

ters to performance. We therefore specify a set of program-specific information required

for high-level performance interpretation (namedperformance knowledge), which includes

behavioral descriptions, performance metrics, and high-level design factors. And we ad-

vocate looking to models of parallel computations as sources of the information required

for diagnosis as the models abstract parallel execution details and provide a semantic basis

for parallel program development. Provided with the program-specific information, it is

possible for a performance analysis tool to produce feedbacks directly relating to program
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design.

Contribution 2 A model-based knowledge engineering approach that systematically

acquires and represents performance information requiredfor diagnostic analysis.

Parallel computational models attract our attention in oursearch for the answer to

“Where does the performance knowledge come from?” Models are recurring algorith-

mic and communication patterns in parallel computing, and are widely used in the design

of parallel program. The models provide semantically rich descriptions that enable better

interpretation and understanding of performance behavior. Our view is that we can gener-

ate basic performance knowledge from the design models, andthen from which program-

specific information will be derived.

In order to generate performance knowledge from models and use it to diagnose real-

istic parallel programs, we specifically identify methods for parallel model representation,

performance modeling, metric definition, and performance bug search and interpretation

methodology. The performance knowledge derived in this manner supports bottom-up in-

ference of performance that starts with primitive performance data and ends up with high-

level explanations. And it provides a sound basis for automating diagnosis processes. We

encode and store the knowledge in a base foundation and interface it to a performance

analysis system, then the system can use the knowledge base for forming problem hypoth-

esis, evaluating performance metrics to test the hypothesis, and deciding which candidate

hypothesis is most useful to pursue and new experiment requirements are generated to con-

firm or deny it. The knowledge-driven inference relaxes the requirement of intelligent input

from the user.

Contribution 3 A framework that implements automatic performance diagnosis with

model-based approach.

The design of performance experiments, examining performance data from experiment

runs, and evaluating performance against the expected values to identify performance bugs

are not well automated and not necessarily guided by a diagnosis strategy in existing per-

formance tools. Typically, the user decides on the instrumentation points and measurement

data to collect before an experiment run. The user is also often involved with the process-

ing and interpretation of performance results. The manual efforts required by tools and the

lack of support for managing performance problem investigation ultimately limit diagnosis
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capability.

We have developed Hercule, an automatic performance analysis framework, that uses

our model-based approach. A knowledge base that consists ofmodel-derived performance

knowledge is the core of the system. Interfacing the knowledge base to an inference en-

gine and performance measurement toolkits would automate the laborious experiment-and-

analysis process that is otherwise imposed on the user.

Given a program to be diagnosed, Hercule is informed of its computational model and

then comes up with a set of experiment instructions by referring to the model knowledge

base and has the measurement toolkits execute the corresponding experiments to collect

necessary performance data. Hercule automates data analysis, performance inferencing,

and possibly more iterations of experiments, and finally reaches conclusions about perfor-

mance with respect to the model use.

To date the knowledge base in Hercule system have included Master-Worker, Wave-

front, Divide-and-Conquer, AMR, and Geometric Decomposition model knowledge. We

tested Hercule on a range of parallel programs. The experiment results show that Hercule

is an viable system that is able to design performance experiments and conduct bug search

and causal reasoning in an automated manner. They also corroborate the usefulness of

designing tools based on our model-based approach.

Contribution 4 A set of techniques to address performance impact of model composi-

tion in the diagnosis system.

Model composition, as one of the most common means of model application, cap-

tures how singleton models are composed together and interact in a parallel program. The

challenges to diagnose compositional parallel program arethat performance effects of indi-

vidual models may change and new effects may arise from the composite interactions. We

extend the knowledge engineering and problem inferencing to capture the interplay of one

model with another. Classifying model compositions into different patterns, we present a

set of guidelines for identifying performance nuances introduced by each pattern, and incor-

porate them into steps towards the knowledge generation, such as behavioral modeling and

causal inferencing, so that the performance effects of model variations and interactions will

be taken into account in the diagnosis process. The adaptations to (compositional) model

implementation eventually improves the quality of performance diagnosis as demonstrated
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on some scientific applications.

1.3 Dissertation Overview

This dissertation is organized as follows.

Chapter 2 describes a new approach to performance diagnosis. The approach incor-

porates performance knowledge into generic iterative diagnosis processes to address the

automation of performance diagnosis at a high level abstraction. Required performance

knowledge is identified and classified into four categories:experiment design and manage-

ment, performance models, performance evaluation metrics, and performance factors at a

high level of abstraction. Parallel computational models are examined and evaluated as a

dependable source of performance diagnosis knowledge.

In chapter 3, a model-based performance knowledge engineering approach is presented.

Our approach addresses how to extract expert performance knowledge from parallel model

with four types of modeling: behavioral modeling, performance modeling, model-specific

metric definition, and inference modeling. We demonstrate the approach with a parallel

Divide-and-Conquer model.

Chapter 4 then describes how we implements the model-based performance diagnosis

in Hercule system. We will discuss Hercule design issues, how to use Hercule from a user’s

perspective, and validation of Hercule diagnosis results.Next in Chapter 5, we apply Her-

cule to three parallel applications that represent Divide-and-Conquer, Master-Worker, and

Wavefront model respectively. We provide Hercule results demonstrating the effectiveness

of our model-based approach to performance diagnosis. We particularly extend Hercule to

support relative performance diagnosis from a multi-experiment view. Relative diagnoses

of Sweep3D (implemented with Wavefront model) performanceanomalies in strong and

weak scaling cases are presented.

In Chapter 6, we extend the model-based diagnosis methodology to support composi-

tional models that integrate singleton computational patterns. We identify different model

composition styles and discuss systematic steps to addressthe performance implications of

model integration in performance knowledge engineering sothat performance losses due to
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model interaction can be detected and interpreted. We enhance Hercule framework to sup-

port compositional performance diagnosis and test herculewith two scientific applications,

FLASH and PDLAHQR. The experiment results are reported.

Finally, our conclusions and plans for future work are discussed in Chapter 7.
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CHAPTER 2

Performance Diagnosis

Performance tuning(a.k.a. performance debugging) is a process that attempts to find

and repair performance problems (performance bugs). For parallel programs, performance

problems may be the result of poor algorithmic choices, incorrect mapping of the compu-

tation to the parallel architecture, or a myriad of other parallelism behavior and resource

usage problems that make a program slow or inefficient. Expert parallel programmers often

approach performance tuning in a systematic, empirical manner by running experiments

on a parallel computer, generating and analyzing performance data for different param-

eter combinations, and then testing performance hypotheses to decide on problems and

prioritize opportunities for improvement. We can view performance tuning as involving

two steps: detecting and explaining performance problems (a process we callperformance

diagnosis), and performance problem repair (commonly referred to asperformance opti-

mization). Implicit in the diagnosis process is the expert’s knowledge of the program’s

code structure, its parallelization approach, and the relationship of application parameters

to performance. Barely capturing and formalizing the expert knowledge, existing perfor-

mance analysis tools provide only descriptive feedbacks about parallel program execution

at low-levels abstraction and lack supports for the automatic performance reasoning.

This chapter first describes generic performance diagnosisprocess. Next we present a

new knowledge-based approach to performance diagnosis that enables automatic perfor-

mance problem discovery and causal inferencing at a high level of program abstraction and

discuss the feasibility of extracting performance diagnosis knowledge from parallel com-
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putational model. We finally present literature review, contrasting our approach with other

relevant research work.

2.1 Generic Performance Diagnosis Process

Performance diagnosis is the process of locating and explaining sources of performance

loss in a parallel program. Expert parallel programmers often improve program perfor-

mance by iteratively running their programs on a parallel computer, then interpret the ex-

periment results and performance measurement data to suggest changes to the program.

The generic diagnosis process is shown in Figure 2.1. More specifically, the process in-

volves:

• Designing and running performance experiments. Researchers in parallel computing

have developed integrated measurement systems to facilitate performance analysis

[33, 32, 36]. They observe performance of a parallel programunder a specific cir-

cumstance with specified input data, problem size, number ofprocessors, and other

parameters. The experiments also decide on points of instrumentation and what per-

formance information to capture. Performance data are thencollected from experi-

ment runs.

• Finding symptoms. We define asymptomas an observation that deviates from perfor-

mance expectation. Generalmetricsfor evaluating performance includes execution

time, parallel overhead, speedup, efficiency, and cost [27]. By comparing the metrics

computed from performance data with what is expected, we canfind symptoms such

as low scalability, poor efficiency, and so on.

• Inferring causes from symptoms. Causesare explanations of observed symptoms.

Expert programmers interpret performance symptoms at different levels of abstrac-

tion. They may explain symptoms by looking at more specific performance prop-

erties [28], such as load balance, memory utilization, and communication cost, or

tracking down specific source code fragments that are responsible for major perfor-

mance loss [29]. Attributing a symptom to culprit causes requires bridging a seman-



10

   some performance

performance data

Evaluate against 
the expected

Specify experiments

Refine search space Stop searching

YesNo

Sym
ptoms

Compute
performance metrics

Set targeting 
performance metric

Stop searching

Normal

Explainable with

factors?

Generate

FIGURE 2.1: A high-level overview of generic iterative diagnosis process.

tic gap between raw performance data and higher-level parallel program abstraction.

Expert parallel programmers, relying on their performanceanalysis expertise and

knowledge about program design, are able to form mediating hypotheses, capture

supporting performance information, synthesize raw performance data to testify the

hypotheses, and iteratively refine hypotheses towards higher-level abstractions until

some cause is found.
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2.2 Knowledge-based Automatic Performance Diagnosis

Approach

We believe that both of the deficiencies in existing performance analysis tools, low-

level feedbacks and lack of automation support, could be addressed by encoding how ex-

pert parallel programmers debug performance problems. In particular, we want to capture

performance knowledgeabout program’s code structure, its parallelization approach, per-

formance problems and expert strategies for detecting them, and then apply it in a diagnosis

system to guide performance inferencing.

2.2.1 Performance Knowledge

We identify four main categories of knowledge required by performance diagnosis.

Experiment design and specification. Empirical-based performance analysis relies on

experiments to capture performance information. Experiment specification includes sys-

tem parameter setting, instrumentation instruction, and decisions about what performance

events to record. The experiment design should be particularly tailored to code structure to

restrict performance data to a tractable level.

Performance models. A performance model, which is derived based on computational

structure and parallelization approach of a program, presents performance compositions

that can help identify overhead categories that often result from cooperations and inter-

actions between parallel components. Refining the focus of performance modeling from

overall system behavior to a specific or problematic behavioral aspect will help narrow the

performance problem search while preserving a semantic context for reasoning the found

problems.

Both experiment design and performance modeling are based on behavioral models of

the parallel program. There therefore arises a need for behavioral descriptions of parallel

programs in a format that is suitable for performance diagnosis.

Performance evaluation metrics. Performance diagnosis is driven by metric-based eval-

uations. A metric is a formulation of a performance aspect. Expert programmers define

metricsdescribing certain performance properties of concern, compute them from raw per-
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formance data, then assess and interpret them in the contextof parallel systems employed.

Traditional performance analysis approaches use generic metrics without relevance to pro-

gram semantics, such assynchronization overheadand imperfect L2 cache behaviorin

[28]. A consequence of evaluation with the generic metrics is that the users still need to

attribute them to specific program design decisions. To enhance explanation power of per-

formance metrics, we intend to incorporate program semantics into their definition. The

advantage of semantics-aware metrics over generic ones is that they can not only assess

performance but help reason about the assessment with algorithmic design of the program.

Performance factors at a high level of abstraction. In our diagnosis approach, we aim

to find performance causes at the level of parallelization design. For this end, we should

identify design factors at this abstraction level that are most critical to performance. We

investigate factors with respect to algorithmic or parallelism design that are specific to a

problem-solving solution. A performance cause – an interpretation of performance symp-

toms in terms of these factors – can therefore immediately direct the programmer to bad

design decisions.

2.2.2 Modeling Inference Steps

The three major types of actions involved in diagnosis – running experiments, com-

puting and evaluating performance metrics to find symptoms,and explaining symptoms –

are proceeding in an iteratively refined manner. Besides theperformance knowledge, we

also need a diagnostic strategy to guide performance problem search and inference steps,

which, in our approach, determines how to invoke performance knowledge systematically.

We advocate a bottom-up inference approach that starts withperformance problem dis-

covery at low-level abstraction, and then gradually booststhe abstraction level of causal

reasoning by refining performance models. Specifically, theinference process begins with

evaluation of a generic performance metric like efficiency or speedup. Corresponding per-

formance experiments are conducted and the collected data is abstracted according to the

metric computing rules. We then reach a symptom by evaluating the metric against the

expected value or the tolerance for its severity. If the symptom can be directly interpreted

by some performance factors at a high level of abstraction, then the search for performance
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causes resulting in the symptom is over. That is, there is an explanation for the performance

problem. Otherwise, we refine performance models to restrict attention to more specific

program behaviors, then define corresponding metrics to assess the overhead categories

as revealed in the refined models. New experiment specifications and performance metric

choices are generated as a result of refinement. They are fed into next iteration of inference.

As the refined performance models are specific to program behaviors, the inferencing will

eventually achieves an interpretation of found problems with program semantics.

2.2.3 Knowledge-based Automatic Performance Diagnosis

The application of the knowledge in performance diagnosis process is displayed in the

Figure 2.2. We envision that the performance knowledge is stored in a base foundation that

includes behavioral descriptions (for experiment design and performance modeling), per-
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formance models, evaluation metrics, and high-level performance factors. Each diagnosis

stage retrieves necessary information from the knowledge base and uses it as guidance to

generate stage results, therefore reducing the requirement of intelligent input from the user.

2.3 Model-based Performance Diagnosis Approach

The answer to whether a diagnosis tool would benefit from the performance knowl-

edge at high levels of program abstraction is most certainly“yes.” The question we need

to answer next is “Where does the performance knowledge comefrom?” Parallel compu-

tational models present possibilities to answer the question. A parallel model, also called

design pattern [20, 21] or parallel programming paradigm [30] in the literature, is a recur-

ring algorithmic and communication pattern in parallel computing, and are widely used in

the design of parallel program. Typical models include master-worker, pipeline, divide-

and-conquer, and geometric decomposition [21]. Representing parallelism inherent to a

wide range of problems, parallel models are adopted by many realistic parallel application

designs. For instance, Sweep3D [62] uses Wavefront model – atwo-dimensional variant

of pipeline model. SPhot [64] employs Master-Worker style of task management. Finite

difference codes mostly follow geometric decomposition model.

A model usually describes computational components of a parallel program and their

behaviors (algorithmic properties) and how multiple threads of execution interact and col-

laborate in a parallel solution (parallelism). Parallel models abstract parallelism common

in realistic parallel applications and serve as a computational basis for parallel program de-

velopment. It is possible to extract from them a performanceknowledge foundation based

on which we are able to derive performance diagnosis processes tailored to specific pro-

gram implementations. Specifically, we envision that models can play an active role in the

following aspects of performance diagnosis:

Selective instrumentation and experiment design.Performance diagnosis naturally

involves mapping low-level performance details to higher-level program designs,

which raises the problems of what low-level information to collect and how to specify

an experiment to generate the information. Parallel modelsidentify major computa-
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tional components in a program, and can therefore guide the code instrumentation

and hep organize performance data produced.

Detection and interpretation of performance bugs.In a parallel program, a signifi-

cant portion of performance inefficiencies is due to processinteractions arising from

data/control dependency. Parallel models capture information about computational

structures and process coordination patterns generic to a broad range of parallel ap-

plications. This information provides a context for describing performance properties

and attributing them to associated process behaviors. In the context of model-specific

behaviors, the low-level performance details can be classified and synthesized to de-

rive performance metrics that have explanation power at a higher level of abstraction.

Expert analysis of performance problems.Expert parallel programmers have built

up rich expertise in both programming with and analyzing commonly-used paral-

lel models. In performance diagnosis, they implicitly refer to their prior knowledge

for attributing performance symptoms to causes. Expert knowledge about the models

includes model-specific performance metrics and performance factors at the level of

program/algorithm design. If we can represent and manage the already available ex-

pert performance knowledge in a proper manner, they will effectively drive diagnosis

process with little or no user assistance.

The above potential advantages of parallel models motivateour pursuit of amodel-

basedperformance diagnosis approach. Our view is that we can extract basic performance

knowledge from the models, and then from which program-specific knowledge will be

derived and applied to diagnosis processes. According to the diagnosis requirements, per-

formance knowledge about a model should consist of behavioral descriptions that provide

a context for performance modeling and experiment design, performance models, metrics

to be used to evaluate model-specific performance aspects, and performance-critical design

factors associated with the model (which we callperformance factorsand form candidate

causes for interpreting performance problems). And the performance knowledge should

be able to support bottom-up inference of performance causes. In next chapter, we will

present a systematic approach to generating performance knowledge from models.
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2.4 Related Work

Existing techniques for performance analysis and debugging focus primarily on two as-

pects – evaluating performance and locating problems through a defined set of performance

metrics, and explaining detected performance problems.

2.4.1 Property- and Metric-based Performance Bottleneck Search

Raw performance data collected through instrumentation and measurement provides

little insight into understanding parallel application performance without relating the data

back to the program and reducing the data into more problem-specific forms. Most existing

performance debugging techniques search for bottlenecks without direct reference to the

raw performance data. Rather, they synthesize raw data and calculate performance metrics

that reflect various performance aspects at a higher level ofabstraction. The metrics are

meaningful and closer to programmer’s understanding, making it easier to interpret a found

problem. Often the metrics are also associated with particular programming constructs,

code regions, and processing nodes to help pinpoint performance bottlenecks in source

code. In this way, performance problems that cause performance degradation in certain

aspect can be tracked down to specific locations in the program.

The idea of enumerating performance properties and problems is found in a number of

tools. Paradyn [32] is a performance analysis system that automatically locates bottlenecks

using theW 3 search model. According to theW 3 model, searching for a performance prob-

lem is an iterative process of refining the answer to three questions:why is the application

performing poorly,whereis the bottleneck, andwhendoes the problem occur. To answer

the “why” question, Paradyn includes hypotheses about potential performance problems

in parallel programs, and collects performance data to testwhether these problems exist.

The types of bottlenecks include synchronization, I/O, computation, etc. Answering the

“where” question isolates a performance bottleneck to a specific resource used by the pro-

gram (e.g., a disk system, a synchronization variable, or a procedure). Answering “when”

a problem occurs isolates a problem to a specific phase of the program’s execution. Each

of the “why”, “where”, “when” axes is represented as one or more hierarchical trees, with
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children nodes being the refinements or the instances of the parent nodes. The search pro-

cess is conducted by thePerformance Consultantmodule without requiring the user to be

involved. The Performance Consultant selects a search refinement in a three-step process:

determining a list of possible refinements by considering the children of the current nodes

along each axis, ordering this list using internally-defined hints, selecting one or more re-

finements to try from the ordered list. If a selected refinement is not true, it considers the

next item from the ordered refinement list. Performance bugsParadyn targets are not in

direct relation to parallel program design. It is not intended for explanation of high-level

bug either.

JavaPSL [37] is an implementation of thePerformance Specification Language(PSL)

developed by the APART project [38]. PSL describes experiment-related data and perfor-

mance properties of applications by using syntax and semantic rules, captured by the Java

programming language in the case of JavaPSL. A performance property (e.g. load im-

balance, synchronization overhead) characterizes a specific negative performance behavior

of a program. Compared with common performance metrics suchas execution and com-

munication time, cache misses, performance properties provide higher level performance

information, easier to interpret and compare across data collected from different program-

ming paradigms or underlying hardware platforms. JavaPSL associates a set of primitive

performance data in a user-specified code region to a specificperformance property in

terms of rules the user defines, and relates the property to its experiment environment. In

this sense, JavaPSL works as a high-level and portable interface that enables the user to

normalize and interpret performance data and to define new performance properties with-

out knowing or changing the underlying implementation details of the tool that makes use

of these properties.

There are also many other approaches to performance overhead/metric definition that

follow the same design theme as JavaPSL andperformance indices, such asperformance

predicates[51] that are computed by recognizing inefficient states andcounting their dura-

tion during execution, and performance overheads that express non-scalability of a program

[52].

JavaPSL is intended for flexibly defining performance bottlenecks. A bottleneck anal-

ysis tool using JavaPSL can automatically search for bottlenecks by navigating through the
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performance data space and computing pre-defined performance properties. Aksum [50],

for example, is such a performance analysis tool. EXPERT [49] performance tool also

incorporates the notion of performance property to make performance problem definition

flexible and extensible. The bottlenecks detected in terms of property definition, however,

cannot be sufficiently interpreted with only the program code regions where the bottle-

necks occurred (but not necessarily the cause of the problemoccurred.) and information

about the experiment environment. Moreover, the performance properties that are defin-

able using JavaPSL are at relatively low semantic level in that they have little relevance to

program semantics, which makes it difficult to reason about them from parallel program

design point of view. In distinct to JavaPSL, we intend to define performance metrics in

terms of model-semantics to enhance their explanation power.

To some extent, all the performance debugging methods aboveare attempting to charac-

terize observed measurements in the form of performance properties and then match those

determined properties to performance problems. The performance debugging is only as

good as the quality of the properties and coverage of the problem space. The tests used to

validate a problem hypothesis are expressed in the tools in terms of a threshold and one or

more performance metrics. The metrics definition in Paradyn, for instance, are intended

to constrain performance data to particular resource such as machines, procedures, files,

communication channels (or combination of these resources), hence at low semantic level.

While performance debugging tools such as Paradyn do incorporate aspects of hypothesis

refinement in the search process, it is difficult for these tools to reason about problems with

respect to their cause.

2.4.2 Causality Analysis

Interpreting detected performance problems requires to certain degree understanding of

the parallel code. The interpretation should reveal the nature of the problems and system

parameters (algorithms, systems, etc.) contributing to them. In the case that performance

inefficiency occurring at a code region is caused by misbehavior in other parts of the pro-

gram, it should be able to identify the relations among the participating code regions. A

handful of performance analysis approaches addresses the issues about explaining perfor-
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mance problems to the user. It is the aspect of explanation that is important for performance

diagnosis.

Cause-effect analysis[53, 41], for example, is an automated inference process that

presents explanations for dynamic phenomena of parallel program execution in terms of

underlying causes. The analysis approach is centered around explaining the occurrence of

a class of local events or states in terms of the events that occurredearlier in the execu-

tion. One example of a local state is “the processor is waiting at a synchronization point”,

and the corresponding explanation might describe the execution path difference between

the processor and the other synchronizing processors. Two important issues involved in

the approach are identifying the bounded region of events that cause a particular effect and

determining the form of explanation that is enlightening tothe user. With respect to the

example of “a processor waiting at a barrier for another processor”, cause-effect analy-

sis might present an answer to such a question: how did the execution paths of these two

processors differ since the last time they synchronized such that one processor arrived at

the barrier before the other? In addition to the waiting time, cause-effect analysis is also

applicable to explaining page fault events in distributed shared memory environments and

transaction abortions in parallel file systems [41]. Although cause-effect analysis focuses

on the inference process that leads from observed effects toroot causes, its applicability

is limited. First, it requires the presence of certain delimiting state/event, such as “the last

time two processors synchronized”, in order to make an explanation. In practice, many ap-

plications do not render such state/event explicitly. Second, the performance inefficiencies

it can detect and explain in a parallel program are restricted to some forms of waiting time.

As an example of a powerful causality analysis performance tool, ATExpert [54] de-

veloped at Cray Research, Inc. uses a rule-based expert system to help users locate and

interpret poor performance. ATExpert can automatically make performance observations

at program, subroutine, parallel region, loop, and case level. For a given region of code,

ATExpert takes as input the actual speedup, the overhead, the amount of serial time, and

the number of processors. Depending on what is dominating the execution, it chooses a

subset of rules. It then looks for patterns in the performance data and associates them

with a list of known parallel performance problems and possible causes. AtExpert helps

improve performance in two aspects. First, it identifies theserial codes that account for sig-
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nificant time cost. The user can restructure the codes to exploit more parallelism. Second,

given the parallelization strategy employed, it locates parallel regions that are responsible

for dominant performance loss due to parallelization overhead such as start-up cost, syn-

chronization cost, etc. In either aspect, rules are associated with the observations made

for a combination of a particular code region/construct andperformance metrics (speedup,

relative execution time, and various performance overheads). And the rules reflect not only

performance debugging expertise that guides finding performance problems and explains

the nature of the problems, but also knowledge of system designers that provides insight

into understanding interplay between program and underlying system. As productive as

ATExpert was, its scope was restricted to underutilized loop parallelization and it required

tight integration with Cray’s compilers and runtime libraries.

POETRIES [59] is a performance tuning tool that takes advantage of the knowledge

about the high-level structure of the application to detectand correct performance draw-

backs. It builds analytical performance models based on thestructures and attributes per-

formance degradation to parameters composing the models. Our approach differs to POET-

RIES in that, first, it targets performance explanation and,second, it features a knowledge-

based inference system that diagnoses performance in an automated manner.

Rajamony [55, 56] observed that existing performance debugging tools onlydescribe

the performance problem, while the onus is then placed on theuser to infer the cause for the

performance problems. Motivated by the observation, he developed Rx, a tool to improve

the performance of explicitly parallel shared-memory programs in a sequential consistent

system. Specifically, Rx automatically analyzes run-time data to derive feedback and cor-

relates the feedback with source program to facilitate reasoning about performance at the

source level. Rx targets inter-process synchronization and data communication, two signif-

icant sources of overhead in shared-memory applications. It identifies excess synchroniza-

tion based on conflicting-access analysis. Rx presents a complete set of sharing-data read

and write access conditions under which barriers can be removed or weakened. It identifies

the dependences enforced by all pair-wise synchronizations presented in the program, and

extracts the minimal set of the synchronizations that enforce all the dependences so as to re-

move redundant ones; Rx introducesaggregationandvectorization– two transformations

that eliminate certain critical sections. It also providestwo ways of computation restruc-
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turing which enhance the opportunity to reduce synchronization and communication. One

way is postponing computation in order to remove or weaken synchronization. The other

is relocating computation which moves part or all of the computation done by a process in

a critical section to anther process that does the computation better.

Issues of reducing synchronization and communication in parallel shared-memory pro-

grams have long been addressed by parallelization compilers via data dependency analysis.

How much optimization they can reach therefore is affected by the accuracy of the static

analysis. Rx approach, however, is based on run-time information in order to get precise

conflicting-access records. To prescribe the program with the Rx approach, information

collected during run-time must suffice for three types of operations: correlate line num-

bers of specific accesses with the source program, determineif a read uses values written

by an earlier write, and determine the source operands of each write to memory. In addi-

tion, measurement overhead and performance perturbation should be controlled. For these

ends, Rx uses a two-step process. First, it instruments the source program to gather certain

information at run-time. This information is stored as state associated with the memory

locations of the program. Then, when the program executes, Rx processes this state using

a set of run-time algorithms, producing the information required for the analysis.

It is worth noting that a lot of strategies employed in Rx to reduce synchronization and

communication are motivated by the observation of a large number of shared-memory ap-

plications. The designer of the tool identified many commonly-occurring scenarios of un-

necessary synchronization in these applications, studiedthe characteristics of conflicting-

access to memory in these scenarios, and figured out a transformation, without violating

the semantics of sequential consistency model, of part or all computation involved in the

scenarios in order to remove or weaken the synchronization.In contrast to other perfor-

mance debugging tools that detect the presence of performance problem by quantitatively

evaluating performance properties or metrics of concern, Rx approach looks for perfor-

mance problem via qualitatively examining each occurrenceof important programming

constructs such as barriers, critical sections, flags, etc.This approach therefore can not

only locate performance problems, but present possible transformation to correct the prob-

lems. On the other hand, performance optimization Rx approach can achieve is limited

for two reasons. First, Rx looks at fundamental synchronization and communication pro-
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gramming constructs with restricted semantics. Without relaxing the strict semantics of

the constructs or using information about the semantics of the whole computation (rather

than individual constructs) involved in the synchronization or communication, exploring

better optimization is difficult. While Rx attempts to inferthe intentions of the program-

mer from the programming constructs, the information most often comes from the pro-

grammers themselves[57]. Second, there are many other aspects, such as cache-relevant

program behavior, load balance, etc., which have significant impact on performance, but

are not addressed in the approach.

Kappa-Pi [39] is also a knowledge-based automatic performance analysis tool. In this

tool, knowledge about commonly-seen performance problemsis encoded into deduction

rules. Rules are divided into different levels. The deduction process applies all rules in

the first level to the trace events until no more facts are deduced. Then, the newly de-

duced facts serve as input to the next level of rules and the deduction process applies

again. (It is not explicitly stated how these levels are demarcated though). The lowest-

level rules involve primitive events like communication sends, receives of some processes,

the highest-level rules may deduce some global collaboration schemes of the application

like the master/worker, the rules in between bridge semantic gap between the two ends. In

this way, higher-order facts can be deduced from lower-level events. The tool explains the

problem found to the user by building an expression of the highest level deduced fact that

includes the situation found, the importance of such a problem, and the program elements

involved in the problem. The creation of a recommendation torepair the problem, how-

ever, is not aways feasible. It often requires more specific information about the program

which allows the evaluation of some possibilities of changes in the source code. Kappa-Pi

provides recommendation only when acquiring the information is possible.

One distinguishing feature of Kappa-Pi is that it tries to present better performance anal-

ysis hints to users by detecting higher level programming models. From the point of view

of the programming constructions, the performance limits of an application are closer to

user understanding and easier to explain. The tool, however, only touches upon two types

of program constructions, Master/Worker and SPMD, focusing on detection of the con-

structions and of performance problems with respect to interplay of the construction with

the underlying parallel machine. Kappa-Pi’s knowledge base collects a very limited set of
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performance problems and rules. It neither shows how to introduce new problem detection

rules into the knowledge base, nor supports queries at different levels of abstraction. While

Kappa-Pi introduces the possibility of using user-level information about program struc-

ture to analyze performance, we realize the possibility andpropose a systematic approach

to extracting knowledge from high level programming models.

Malony et al. [40, 58] point out that lack of a general theory of performance diagnosis

is one of the main reason that performance diagnosis systemsare not extensively used.

They claim that a heuristic classification (HC) model of problem-solving is a sound basis

for a theory of performance diagnosis but ultimately shouldbe extended by model-based

strategies. Elements of HC fitting to performance diagnosisinclude:

1. solution spacethat is composed of a set of predefined hypotheses that explain ob-

served performance behavior;

2. heuristic matchthat matches features of the program’s performance to hypothesis;

3. abstractionthat extracts relevant features from experiment space (rawdata);

4. refinementthat relate generic hypotheses to program-specific explanation of behav-

ior;

5. strategythat a PDS uses to specify the way that the three processes – (heuristic match,

abstraction, andrefinement) are interleaved and ordered.

They apply the HC model to explain many features of existing performance diagnosis

tools, such as Paradyn, AIMS, and MTOOL. Based on the observation that the existing

systems suffer from poor combination of automation and adaptability, they built an auto-

matic performance diagnosis architecture, calledPoirot. Poirot distinguishes itself from

other performance diagnosis systems with two salient components – a problem-solver that

assembles and runs diagnosis methods guided by user policies, and an environment inter-

face that provides portable connection to supporting toolsfor performance data collection,

analysis and presentation. The problem solver stores a variety of performance diagnosis

methods and the associated rationales for method selectionin a knowledge base. There is

an reasoningenginethrough which Poirot chooses methods from the knowledge base and
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executes them. The methods stored in the knowledge base takethe form ofgoal-action

rules, where a goal stands for a particular diagnosis task, and the corresponding action(s)

represents the diagnosis action for accomplishing the task. The actions often need con-

ducting experiment and collecting performance data. In this case, they send commands to

tools via the environment interface, which then transformsthe commands into primitive

diagnosis actions that are executable by the tools.

The advantages of Poirot include: 1. Various existing diagnosis methods converge un-

der a performance diagnosis theory, which makes comparisonand evaluation of the meth-

ods possible. 2. Poirot separates diagnosis methods from the softwares that support the

methods, thus supporting adaptable diagnosis. On the otherhand, the heuristic classifi-

cation model is limited in several aspects. First, HC assumes that program component

structure is given. The assumption is reflected in the performance hypotheses, which typi-

cally state that a component (e.g., a routine) has a particular class of performance problem.

In practice, it is not rarely seen that program components are unknown to the user until per-

formance data is collected. Besides, decomposing program into components helps localize

performance inefficiency, but it loses the context information that helps explain the inef-

ficiency. Second, HC model assumes that all performance problems are given. However,

in some existing performance diagnosis systems, unanticipated problems are sometimes

identified. Third, Poirot presents a diagnosis theory from an architectural point of view

that emphasizes adaptability and automation of performance diagnosis. The model barely

addresses how to explain performance problems detected under the theory. The explana-

tion is necessary for revising the program for better performance. In addition, there are also

some other properties of equal importance to performance diagnosis, such as quality and

efficiency. Determinant factors to these properties are, using terminologies in the heuris-

tic classification model, definition of performance hypotheses, selection of the taxonomy

of performance problems, and selection of heuristic match,abstraction, and refinement

strategies. The performance diagnosis theory is insufficient in comparing and evaluating

diagnosis systems as far as these properties are concerned.

In contrast to the tools and methods outlined above, our goalis very different. Our

focus is on automatic performance problem discovery and explanation at a high level of

program abstraction. We intend to explain performance withprogram-sepcific behaviors
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and to support the causal reasoning in an automated manner.

Our approach also differs from those described above on a number of points. We define

application-specific, semantic-level metrics so as to enhance explanation power of metric-

based performance debugging. Our approach extends construct pattern based performance

interpretation to program pattern based interpretation, and migrates the qualitative debug-

ging methods from explicitly parallel shared memory programs to parallel and distributed

programs. We use a bottom-up diagnosis strategy that promotes abstraction level of perfor-

mance inferencing gradually by refining focus on program-specific behaviors.

2.5 Chapter Summary

In this chapter, we presented a new approach to performance diagnosis. Our approach

incorporates performance knowledge into generic iterative diagnosis processes to address

the automation of performance diagnosis at a high level abstraction. Required performance

knowledge is classified into four categories: experiment design and management, perfor-

mance models, performance evaluation metrics, and performance factors at a high level

of abstraction. Parallel computational models are examined and evaluated as a depend-

able source of performance diagnosis knowledge. In the nextchapter, we will present our

model-based performance knowledge engineering approach.
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CHAPTER 3

Model-based Performance Knowledge

Engineering

A performance diagnosis tool can benefit from knowing computational model, i.e.,

computational and communication pattern, of a parallel program. In previous chapter, we

have presented potential advantages of parallel models to performance diagnosis and the

performance knowledge categories (i.e., experiment design and specification, performance

models, performance evaluation metrics, and performance factors at a high level of abstrac-

tion) we need to extract from the models to support automaticdiagnosis processes. This

chapter will show our methods for realizing the potential advantages of parallel models.

We first present a systematic approach to addressing how to extract the expert knowledge

required for performance diagnosis from parallel models and represents the knowledge in a

manner such that the diagnosis process can be automated. We then demonstrate the effec-

tiveness of our knowledge engineering approach through a case study of parallel Divide-

and-Conquer model.

3.1 Performance Knowledge Generation Based on Models

Extracting performance knowledge from parallel models involves four modeling stages,

which are shown in Figure 3.1. First we describe model behaviors in the format of abstract

event, then form performance models based on the structuralinformation in the abstract
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FIGURE 3.1: Generating performance knowledge from parallel models. Algorithm vari-
ants can derive performance knowledge from the basic generic model.

events. Semantics-aware performance metrics are formulated next to evaluate performance

overhead types derived from the performance models. And finally the iteratively refined

inference steps that use the products in the first three stages are formally captured with a

tree structure.

Our four-stage knowledge engineering approach emphasizeson the adaptability to model

variants. We aim to supports performance knowledge generation at two levels of program

abstractions, model-based and algorithm-specific knowledge. Algorithmic implementa-

tions of a computational model may introduce new performance knowledge with regard to

program behaviors, performance properties, performance-critical design factors, or cause

inference. Following our four-stage knowledge extractionapproach, the new knowledge
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can be generated by the users in the form of refinements or extensions of the generic model

knowledge, as shown in right hand part of Figure 3.1. Algorithm-specific knowledge gen-

eration can follow the same generic model-based knowledge extraction approach. In each

stage of the knowledge modeling, we allow for the expressionof algorithm variants that

may add load-balancing, task scheduling, or other performance enhancements to a model

implementation. And our knowledge representation form, i.e., inference trees, can be read-

ily extended to incorporate the new knowledge into the inference system that is initially

based on generic model knowledge.

3.1.1 Behavioral Modeling

The behavioral modelingcaptures knowledge of program execution semantics as be-

havioral models represented by a set of abstract event typesat varying detail levels, de-

pending on the complexity of the model and diagnosis needs. The purpose of the abstract

events in the diagnosis system is to guide experiment designand specification, and to give

contextual informaton for performance modeling, metric definition, and diagnostic infer-

encing.

As an instrumented program executes, it generates performance information based on

event occurrence. Performance data associated with basic events lacks the context of the

model-specific behavior. In the Master-Worker model, for instance, we cannot find a prob-

lem knowing only that a worker spends 2 seconds in aMPI Recv routine call, while we

may identify the master as a “late sender” by comparing entering time of corresponding

MPI Sendat the master with the entering time of theMPI Recv. Further causes of why

a send was late may be found by looking at what the master was doing before entering

theMPI Send. To associate primitive performance information in terms of model-specific

program behaviors, we introduce abstract events that consist of a set of related lower-level

events and represent performance characteristics associated with the event interactions.

We adapt thebehavioral model descriptionused in EBBA [35] to describe abstract

event types. The description of each abstract event type consists of one required com-

ponent, expression, and four optional components, constituent event format, associated

events, constraints, and performance attributes.
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• Expression. An abstract event usually represents a sequence of constituent events.

A constituent event can be a primitive event presenting an occurrence of a prede-

fined action in the program (e.g., inter-process communication or regular routine

invocations), or an instance of other abstract event type. The expressionis a regu-

lar expression-like specification that names the constituent events and enforces their

occurrence order using event operators. The order can besequential(◦), choice(|),

concurrent(∆), repetition(+ or *), andoccur zero or one time([]).

• Constituent event formatspecifies the format and/or types of the constituent events.

For primitive events, the format often takes the form of an ordered tuple that consists

of the event identifier, the timestamp when the event occurred, the event location, etc.

For constituent abstract events, their types are specified.

• Associated eventsare a list of related abstract event types, such as a matchingevent

on a collaborating process or the successive event on the same process. The purpose

of associated events is to formulate performance attributes that may involve multiple

relevant abstract event types.

• Constraintsindicate what attribute values an instance of an abstract event type must

possess to match its corresponding expression members and associated events. Pieces

of constituent events are recognized in accordance with theconstraints as an event

trace stream is scanned through. Different programs using asame computational

model distinguish themselves from the others by the specifications of the constraints,

which are often determined by their implementations.

• Performance attributespresent performance properties associated with the abstract

event type and their computing rules. The computing rules for evaluating the at-

tributes will be filled in as a product of performance modeling. A performance at-

tribute value will be calculated with the rules as the abstract event is instantiated with

performance data. The value quantifies performance inefficiency due to an occur-

rence of the program behavior the abstract event represents.

We often partition program behaviors into a set of abstract event types, each of which

represents either system activities in a distinct computation phase, an interaction pattern
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of parallel components, or a segment of algorithmic solution. The abstract events can

be at varying detail levels depending on the performance inference needs. In the early

inference steps, a coarse description of overall program behavior is sufficient. Having

detected performance degradation happening with an abstract event type, we may zoom

in to elaborate on its constituent event. We refine the definitions of constitute events with

algorithm details, and use the refined behavior descriptions as a base for next iteration of

performance modeling and inferencing.

One salient advantage of abstract events is that they are able to describe dynamically

changing program behavior and associated performance properties. Processes may change

execution path with time due to dynamic control flow or have varying communication part-

ners as data dependency changes. The dynamic attributes of parallel programs makes dif-

ficult locating and explaining performance bugs. Behavioral model subsets are foreseeable

from the algorithm, however, no matter whether occurrencesof their instances are stati-

cally predictable or not. We capture occurrences of the behavioral models from program

execution trace and identify performance properties associated with them, thereby enabling

diagnose of performance losses due to dynamic program behaviors.

The abstract event descriptions can also be used to decide onwhat performance exper-

iments to conduct to collect the information most relevant to the state of problem investi-

gation. The structural information helps captures only performance events that have direct

relevance to hypothesis at the abstraction level the inference has reached so far. And the

incremental measurement data generation can effectively constrain the volume of perfor-

mance information we have to consider.

Algorithm-specific behaviors could be expressed by extending already available model-

based abstract event types. An algorithm using a design model often introduce new activ-

ities due to the specific problem solution. The new activities can also be described in

abstract event format by inheriting generic model descriptions and adding in algorithmic

extensions or refinements. Figure 3.5 in the next section shows examples of abstract event

for the D&C model and an algorithm implementation of D&C .
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3.1.2 Performance Modeling and Metric Formulating

Performance modelingis carried out based on structural information in the abstract

events. The modeling identifies performance attributes with respect to the behavior models

represented by abstract events and model-specific performance overhead categories.

In our methodology, a performance model is not a closed-formmathematical formula

of system/application parameters. Rather we present descriptive performance composi-

tions that consist of computational components/overhead categories. Given a computa-

tional model, participating processes can be grouped into distinct clusters (e.g., masters and

workers in Master-worker model) in terms of their activities and their interaction modes

with other processes. We generate a distinct performance model for each process clus-

ter. Performance models defined in this way serve two goals: (a) performance models of

individual process clusters focus on computational components specific to the cluster ac-

tivities, which are responsible for possible performance losses happening in the cluster. (b)

Differences in the performance models of inter-dependent clusters reflect their behavioral

difference, therefore are useful for interpreting performance losses at interacting points

such as communication and synchronization.

Performance attributes associated with each abstract event type are identified as a prod-

uct of performance modeling. Performance attributes represent different performance over-

head categories, which could be performance contribution of a computational component,

or a pattern of performance inefficiency due to cluster interactions.

Performance metricsfor evaluating the overhead categories are then defined, in terms of

performance attributes in related abstract events. Performance attributes represent perfor-

mance characteristics of one single abstract event type, while metrics sort out performance

attributes in different abstract events that share the samesemantics into one overhead cate-

gory and define the rules for synthesizing the related eventsto evaluate the overhead. Per-

formance evaluations with the model-specific metrics maintain the relevance to program

context, which therefore makes it easier to explain the evaluations with model semantics.

Extending algorithmic-specific metrics from the generic model-based ones follows the

same development path. Performance modeling based on the extended algorithm behav-

iors will produce algorithm-specific performance attributes. The new attributes join in the
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overhead classification and are incorporated into metric formulations to reflect algorithm-

specific semantics.

3.1.3 Inference Modeling

Inference modelingcaptures and represents the performance problem search andinter-

pretation process formally. Refining problem search space is the most important step in

the inference process in that it determines the direction ofperformance cause search and

essentially boosts the abstraction level of inference. Ourapproach refines search space by

first refining performance models to restrict attention to more specific performance aspects,

then defining model-specific metrics addressing the performance aspects, and evaluating

the metrics. Approaches to refining performance modeling therefore play a critical role in

the refinement of search space. We identify following directions and methods for refining

focus of performance examining:

(M1) breadth decomposition– decomposing performance cost according to computational

components of a model and elaborating on each component;

(M2) phase localization– restricting to model-specific computational phases to look for

performance losses occurring in the time periods;

(M3) concurrency coupling– focusing on and formulating performance coupling among

interacting processes which arises from concurrency, workload distribution, data/task

dependency, etc.;

(M4) parallelism overhead formulating– identifying and formulating parallelism-specific

performance overhead due to, for instance, task scheduling, workload migration.

We will illustrate application of these approaches in the case study section.

In our diagnosis approach, we aim to find performance causes (i.e., an interpretation

of performance symptoms) at the level of the design of the parallel program, that is,

performance-critical design factors specific to the particular parallel model. The high-level

performance factors (e.g., in Master-Worker model, numberof workers and load-balancing
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FIGURE 3.2: Approaches to refining search space.

method the master uses to assign jobs) can be collected from performance expertises of ex-

pert programmers, and will form candidate causes for interpreting performance problems.

The cause inference is the mapping of low-level performancemeasurement data to

high-level performance factors to explain a performance symptom (i.e., an anomaly de-

viating from the expected performance, like low speedup, high parallelism cost, etc.). The

bottom-up inference process is captured in the form of an inference tree where the root is

the symptom to be diagnosed, the branch nodes are intermediate observations obtained so

far and needing further performance evidences to explain, and the leaf nodes are explana-

tions of the root symptom in terms of high-level performancefactors. An inference tree for

diagnosing symptom “low speedup” in D&C model is presented in Figure??. An inter-

mediate observation is obtained by evaluating a model-specific performance metric against

the expected value or a certain pre-set threshold that defines the tolerance of severity of the

performance overhead the metric represents. In Figure??, for example, nodecommsolve

means the communication cost in the stage of solving problemcases. If it turns out to

be significant comparing to the expected, the inference engine will continue to search for

the node’s child branches. The leaf nodes finally reached together compose an explana-

tion of the root symptom. It is clear that inference processes presented in the trees are

driven by metric evaluation. Performance knowledge associated with the metrics, includ-

ing related abstract events, performance overhead types, and metric computing rules, are

recalled only when needed by current inference step. Inference trees, therefore, formalize

a structured knowledge invocation process. In addition, inference trees can readily incor-

porate knowledge generated from new experience, further performance model refinement,

or algorithm-specific inference steps through adding branches at appropriate tree levels,
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making knowledge representation highly extensible.

The inference tree structure also has implications for experiment design. Since each

node in the inference tree is associated with a distinct metric evaluation, the abstract event

types relevant to the metric are retrieved to decide experiment specifications. Constraining

clauses of the abstract events implicitly indicate programsegments or routines to be instru-

mented. And constituent event attributes specify performance data and type the experiment

needs to record. Thus each experiment instance captures only performance events that have

direct relevance to hypothesis the inference has reached sofar. Performance data associated

with branches of inference tree that we never visit for some diagnosis cases are avoided.

In the next section, we will demonstrate how to generate performance knowledge from

an example parallel model, Divide-and-conquer (D&C), using the approach presented above.

3.2 Case study – Divide-and-Conquer Model Knowledge

Generation

3.2.1 Model Description

The data-parallel Divide-and-Conquer (D&C) model describes a class of parallel pro-

grams that features recursively splitting a large problem into a certain number of smaller

subproblems of the same type, then solving the subproblems in parallel and merging their

solutions to achieve the solution to the original problem [20]. In this model, data are ini-

tially distributed over all participating processes. To split the work among the processes,

all processes first sort out data locally, then exchange datain a specified order. The data

redistribution results in two independent process sets whose data are orthogonal (this is

due to the nature of divide-and-conquer problems). Each setof processes then contin-

ues the process splitting until singular process sets are reached. Thereafter each process

can independently work on its assigned data with serial divide-and-conquer code. After

the independent computing has finished, processes merge their partial results with sibling

processes’ to form an overall solution. The model behaviorsare illustrated in Figure 3.3.

Example problems that can be parallelized with this model include Quicksort, Barnes-Hut
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FIGURE 3.3: A D&C computation with 8 processors and three levels of problem splitting,
where each splitting divides processors into two groups which work on orthogonal data sets
independently. The processors merge sub-results with brother processes as designated by
the splittings.

n-body [47], Delaunay triangulation [48], etc.

It is well-known that the D&C computing tends to be irregularand data-dependent. Of-

ten associated with the parallel D&C model is a load-balancing method that strategically

migrates workload from overloaded processes to idle ones atruntime. The migration is

illustrated in Figure 3.4. In the figure, the local serial D&Ccomputation at individual pro-

cesses is represented as a tree where the root of the tree represents the whole problem to be

solved by the process, each branch node in the tree corresponds to a problem instance, and

children of the node correspond to its divided subproblems.Each leaf represents a base

problem instance where problem split stops. At runtime, process 3 migrates workloads

represented by branch node 3 and 4 to process 4 and 2 respectively since these two pro-

cesses have completed computing and are being idle. Withoutloss of generality, we make

an assumptions about the load-balancing method that a load migration occurs only when

there are idle processors available for doing extra computation.
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FIGURE 3.4: An illustration of load-balancing in D&C. P3 migrates workloads associated
with branch node 3 and 4 to idle P4 and P2 respectively.

3.2.2 Behavioral Modeling

We model the D&C model behavior with abstract events depicted in Figure 3.5. The

figure shows a level I event that sketches overall behavior ofD&C, and level II events that

refine the descriptions of essential model components. We display only the full descrip-

tion of eventSolvein the figure for brevity. The performance attributes are derived from

inter-process interactions, which will be used later for synthesizing model-specific metrics.

Other fields of the event description, including constituent event format, constraints, and

computing rules of performance attributes are filled in whena concrete algorithmic im-

plementation of the model is generated, which we will illustrate with an example parallel

application, Quicksort, next in section 5.1.

The program instrumented according to the abstract event specifications will generate

only performance data relevant to the investigation of the specified program behaviors.

Event instances matching the event specifications will be recognized from the performance

data stream, and are used for calculation of model-specific metrics in later inference steps.
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FIGURE 3.5: Two-level D&C abstract event descriptions.

3.2.3 Performance Modeling

Next we model D&C performance by referring to the structuraldescriptions in the ab-

stract events. Following phase localization rule in section 3.1.3, total elapsed time of a

processorp in a parallel D&C execution, denoted astp, consists oftinit (process initial-

ization cost),tcomp (computation time),tcomm (communication cost for transferring data

among processors and synchronization cost),twait (amount of time spent waiting for data

transfer or synchronizing with other processors), andtfinal (process finalization cost):

(M2) ⇒ tp = tinit + tcomp + tcomm + twait + tfinal (3.1)

Whenever we refer to communication time in the paper, we meaneffective message

passing time that excludes the time loss due to communication inefficiencies such as late

sender or late receiver in MPI applications. Rather, waiting time accounts for the commu-

nication inefficiencies with the purpose of making explicitperformance losses attributed to

mistimed processor concurrency, hence parallelism design.

According to the level I event and breadth decomposition rule, computation time, com-

munication time, and waiting time can be categorized into three classes, time spent in
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splitting problems, solving problem cases, and merging sub-solutions.

(M1) ⇒ tcomp = tdivide + tsolve + tmerge (3.2)

(M1) ⇒ tcomm = tcomm−divide + tcomm−solve + tcomm−merge (3.3)

(M1) ⇒ twait = tw−divide + tw−solve + tw−merge (3.4)

Level II events dictate refined performance models. The timespent in problem solving,

for instance, is categorized into three classes, finding an idle process to share workload,

finding a busy process to obtain extra workload, and migrating workload, according to the

abstract eventSolvedefined in Figure 3.5.

(M1) ⇒ tsolve = tlocal comp + (tcomp−find idle proc or tcomp−find busy proc) (3.5)

(M1) ⇒ tcomm−solve = tcomm−find idle proc + tcomm−send mgr load

or tcomm−find busy proc + tcomm−recv mgr load (3.6)

Performance coupling of a busy processor with a idle processor in an load migration

event induces possible waiting time at interaction points of the two processors:

(M3) ⇒ tw−solve = tw−find idle proc or (tw−find busy proc + tw−mgr load) (3.7)

3.2.4 Model-specific Metric Definition

The performance models above enable the definition of model-specific metrics to use

for performance evaluation. Model-specific metrics are calculated by categorizing and

synthesizing performance attributes in related abstract events. Formulating each item in

equation (3.7), for instance, we get a set of metrics that areassociated with load-balancing
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performance as below:

tw−find idle proc :=
K∑

i=0

ei
Wait T ime4F ind idle Proc (3.8)

tw−find busy proc :=

K∑

i=0

ei
Wait T ime4F ind busy Proc (3.9)

tw−mgr load :=
K∑

i=0

ei
Wait T ime4MgrLoad (3.10)

whereei
Wait T ime4F ind idle Proc, ei

Wait T ime4F ind busy Proc, andei
Wait T ime4MgrLoad represent

the performance attributeWait Time4Findidle Proc, Wait Time4FindbusyProc, and

Wait Time4MgrLoadof theith Solveevent occurring on the process respectively, andk the

number of event instancesSolve.

The performance modeling and metric definition in terms of model semantics provide

a foundation to the generation of inference trees that formally represent the performance

problem search and interpretation process.

3.2.5 Inference Modeling

For diagnosing D&C programs at a high level of abstraction, we need to identify de-

sign factors critical to parallel D&C performance. We will interpret performance problems

in terms of these factors. In general, following factors have most impact on D&C perfor-

mance:

• Concurrency and cost of divide and merge stage. Due to the nature of D&C prob-

lems, it is very likely that not all of the processes are active at divide or merge stage.

In the case of low concurrency, if divide or merge operationsare expensive, the idle

processors will wait a significant amount of time for problemdividing or solution

merging, therefore insufficiently utilized.

• Size of base problem instance. D&C model is particularly effective when the amount

of work required for solving a base case is large compared to the amount of work
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becomes idle soon and the workload then thrashes between the two processes, causing unnecessary data transfer.

c2: Waiting time for finding a busy process to migrate its workload is significant. It’s likely that the load−balancing algorithm is not efficient in locating busy processes.

at a moderate frequency.
c4: There is a number of communications for finding idle processes to share workload. Change the load−balancing algorithm so that busy processes request help

c5: There is a number of communication for finding busy processes to get workload. One possible cause is that the average workload per migration involves relatively
small amount of computation time so that the process requests for extra workload pretty often. Another possible way to improve performance is to change the 
load−balacing algorithm so that idle processes request extra workload at a moderate frequency.

c6: Load migration is frequent. One possible cause is that the average workload per migration involves relatively small amount of computation time so that the processes 

c1: Waiting time for finding a idle process is significant. It is very likely that the load−balancing algorithm is not efficient in locating idle processes.

c3: Waiting time for the arrival of migrated workload is significant. The possible cause is that deciding workload to be migrated is expensive at the busy processes.  
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FIGURE 3.6: An inference tree for performance diagnosis of Divide-and-Conquer model.

required for recursive splits and merges. On the other hand,for the purpose of max-

imizing processor utilization there should be a sufficient number of base problem

instances. The two often conflicting conditions give rise tothe trade-off between the

depth of recursive split and the amount of base problems.

• Scheduling algorithms used for balancing workload. The algorithm decides where

to migrate workload and the amount of work to be migrated. Thefactor decides the

degree of load balance and communication cost of moving workload around.

The generation of an inference tree of diagnosing D&C programs is based on perfor-

mance modeling and model-specific metric evaluation. An example inference tree for diag-

nosing a symptom “low-efficiency” is presented in Figure??. For brevity we present in the

figure only inference steps that refer to the performance models and metrics we defined in
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section 3.2.3 and 3.2.4. We can see that inference trees represent a bottom-up performance

cause inference approach that links low-level symptoms to causes at high level of abstrac-

tion. As inference process going deep, causes of performance inefficiency are localized.

The knowledge inference present in Figure?? is not meant to be complete. A spe-

cific implementation of the model in an algorithm may introduce new behavioral models

and performance factors. Nevertheless, designed to be extensible, our inference trees can

readily accommodate the knowledge extension.

Another important thing to know about the inference tree is that nodes at different tree

levels may enforce varying experiment specifications. Our diagnosis system can designate

the experiments accordingly to collect performance data needed by the metric evaluation at

an inference step.

3.3 Chapter Summary

This chapter described a systematic approach to generatingand representing perfor-

mance knowledge for the purpose of automatic performance diagnosis. The methodology

makes use of operation semantics and parallelism found in parallel computational models

as a basis for performance bug search and explanation. In order to generate performance

knowledge from computational models and apply it to diagnosing realistic parallel pro-

grams, we specifically identify methods for behavioral model representation, performance

modeling, metric definition, and performance bug search andinterpretation. The methods

address not only performance cause interpretation at high-level program abstractions, but

adaptivity to allow algorithm and implementation variants. We illustrated the knowledge

generation approach with the Divide-and-Conquer model.

In the next two chapters, we will show Hercule framework thatoffers a prototype au-

tomatic performance diagnosis system based on the extracted model knowledge. We will

demonstrate the use of Hercule on three parallel applications that represent different com-

putational models.
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CHAPTER 4

Hercule Automatic Performance

Diagnosis System

We introduced the model-based approach to generating performance knowledge that

can support automatic diagnosis at a high level of abstraction in the previous chapter. In

this chapter, we describe how to apply the knowledge in a realdiagnosis system. We present

Hercule, a prototype automatic performance diagnosis system, that implements the model-

based performance diagnosis approach. We will discuss Hercule design issues, how to use

Hercule from a user’s perspective, and validation of Hercule diagnosis results.

4.1 Design of Hercule – A Prototype Automatic Perfor-

mance Diagnosis System

We have built a prototype automatic performance diagnosis system calledHercule1,

which implements the model-based performance diagnosis approach discussed above; see

Figure 4.1. The Hercule system operates as an expert system within a parallel performance

measurement and analysis toolkit, in this case, the TAU [36]performance system. Her-

cule includes a knowledge base composed of an abstract eventlibrary, metrics set, and

performance factors for individual parallel models.

1The name was chosen in the spirit of our earlier performance diagnosis project,Poirot [40].
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FIGURE 4.1: Hercule diagnosis framework

Given a program to be diagnosed, Hercule starts with being informed of the model the

program is coded on, then comes up with experiment specifications in terms of abstract

event descriptions of model behavior. The performance measurement toolkit integrated in

Hercule system conducts experiments according to the Hercule instructions and generates

performance data specifically for the current inference step. Theevent recognizerin Her-

cule fits event instances into abstract event descriptions as performance data stream flows

through it. Hercule then retrieves relevant metric formulation rules from the knowledge

base to prepare for metric evaluation. The abstract event instances, along with the met-

ric definitions are fed into Hercule’s performance evaluator - metric evaluator, to generate

performance metric values. Theinference enginethen takes in the metrics, evaluates the

metrics, and decides on the next hypothesis to test. The engine actions are driven by en-

coded inference rules in Hercule. Hercule reaches diagnosis conclusions after iterations
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of experiments and analysis. These conclusions are output as the performance problems

found in the program and corresponding explanations.

4.1.1 Encoding of Performance Knowledge

Hercule implements the abstract event representation in a Java class library. This library

provides a general programmatic means to capture computational model behaviors. Each

event type is implemented as an abstract Java class with a setof parameters that represent

model components or constructs the event refers to. Given a program, the user provides

names or values of the parameters used in the model implementation, thus producing an

instantiated event class that is tailored to the specific program. The parameter values are

also used to specify theconstraintclauses in order to identify model components in the

performance data stream. The constraints are implemented in the Java class as a method

that examines whether a performance trace event satisfies the clause or not. The satisfying

events will be instantiated constituent events in the description. Performance models asso-

ciated with an abstract event type are coded as performance attributes and corresponding

formulations, so they are encapsulated in the same Java class of the abstract event. The

encoding of abstract events allows for algorithm extensiondue to model variants.

Model-specific metrics will be evaluated based on the related abstract event types. The

metrics are represented in Hercule as a set of rules that classify and synthesize performance

attributes in the relevant abstract events. Recall that themetrics are at different levels of

program abstraction.Communication time and computation time, for instance, are generic

metrics without reference to model semantics. Whiletw−mgr load in section 3.2.4 is spe-

cific to the D&C model behaviors. We couple high-level performance factors with the

performance metrics at the highest level of program abstraction. Specifically, if a possible

evaluation of a metric can be explained directly by a performance factor, we store the factor

jointly with the formulation rules of the metric to make it easier to retrieve relevant knowl-

edge in diagnosis process. Model-variant metrics not captured in the knowledge base are

required to include the relevant performance factors to be incorporated into Hercule system.

Event recognizer and metric evaluator are coded in Java for the purpose of easily in-

terfacing to the knowledge base. The event recognizer readsin from the knowledge base
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the abstract event types to be used in current inference step, and matches incoming perfor-

mance data with the descriptions to generate valid abstractevent instances. The instantiated

abstract events are handed to the metric evaluator. The evaluator first retrieves relevant per-

formance metrics and then calculates the metrics using the event instance data. The event

recognizer and metric evaluator can incorporate algorithm-specific abstract event defini-

tions or metric computing rules written in Hercule format.

The effort involved in implementing performance knowledgebase for a computational

model consists of two parts: acquiring knowledge with the approach presented in the previ-

ous chapter and encoding the knowledge, including abstractevent specification and perfor-

mance metric formulation in Hercule-readable format. Worktime needed for a performance

analyst to generate knowledge varies depending on computational complexity of the model

and desired detail level of the targeting inference tree. When using the knowledge base

to diagnose a parallel application based on a parallel model, the user may need to express

the programatic or algorithm variations with respect to abstract event descriptions, metric

computing specifications, and corresponding inference tree. Because the generic knowl-

edge base is inherited, additional efforts are reduced to adding knowledge specialization.

4.1.2 Encoding of Inference Processes and Hercule Inference Engine

Perhaps the most interesting part of the Hercule system is the cause inferencing sys-

tem. The expert knowledge used to reason about performance problems based on model

symptoms is structured asinference treeswhere the root is the symptom to be diagnosed,

the branch nodes are intermediate observations obtained sofar, and the leaf nodes are an

explanation of the root symptom in terms of high-level performance factors. We transform

the inference trees into production rules in Hercule system. Formally, a production rule

is a condition-action statement in which the conditions match the current situation and the

actions add to or modify that situation [65]. In performancediagnosis terms, a rule consists

of one or more performance assertions, and performance evidences that must be satisfied to

prove the assertions. Hercule makes use of syntax defined in the CLIPS [34] expert system

building tool to describe production rules. The syntax takes the form:

(defrule <rule-name>
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<condition-element>*
=>
<action>*)

where
condition-element::= <pattern-ce> |

<assigned-pattern-ce> |
<not-ce> | <and-ce> | <or-ce> |

<logical-ce> | <test-ce> |
<exists-ce> | <forall-ce>

action ::= <constant> | <variable> |
<function call>

Due to its extensibility, capabilities, and low-cost, CLIPS has been used in building

expert systems of a wide range of applications in industry and academia. Hercule uses

the inference engine provided in CLIPS to support automaticperformance inference. The

engine can repeatedly fire rules with original and derived performance information until

no more new facts can be produced, thereby realizing automatic performance experiment

specification and cause reasoning.

Inference trees already capture the main control structureand reasoning thread of per-

formance inferencing, so we can immediately transform information embedded in the trees

into production rules. Translated production rules are prioritized in terms of the perfor-

mance problem searching and inferencing order as specified by the inference tree hierarchy.

Regular production rules test performance hypotheses using metric evaluations. We

developed a CLIPS interface to the metric evaluator so that the inference engine can fetch

performance metrics easily from the evaluator in the form ofexternal function call. The in-

terface also supports the passing of values/parameters between the engine and the evaluator.

The benefit of the interfacing is that, other than addressingthe whole program execution,

performance metrics can be restricted to a subset of system behavior, such as a problem-

atic processor, a degrading computation phase, or a set of semantically related program

sections, with the parameter specifications. Thus inference engine can refine performance

problem searching and focus on specific program behaviors.

For the purpose of automatic performance diagnosis with minimum user intervention,

we need additional rules to support specification of experiments that generate necessary

performance data. A performance diagnosis process includes deciding on what perfor-
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mance experiments to conduct to collect the information most relevant to the state of prob-

lem investigation. Thus, each experiment instance captures only performance events that

have direct relevance to hypothesis at the abstraction level the inference has reached so

far. The incremental measurement data generation can effectively constrain the volume of

performance information we have to consider. Performance data associated with branches

of inference tree that we never visit for some diagnosis cases are avoided.

Our experiment specification indicates which inference tree level (i.e., abstraction level

of the relevant metrics) the experiment serves, input problem and system parameters, and

abstract events the experiment captures. Constraint clauses of the abstract events implicitly

indicate program segments or routines to be instrumented. And constituent event attributes

specify performance data and type the experiment needs to record. For example, in terms

of the figure 3.6, if we detect that waiting time atSolvestage is significant with perfor-

mance information from one experiment, then we can make another experiment collecting

more specific data. Referring to the following production rule, the level 3 experiment is

conducted with the same input problem and system parameters, but generates performance

information associated with abstract eventSolveto attempt to identify a higher-level factor.

(defrule do_experiment_level3
(wait_solve_sig)
=>
(assert do_exp3)
(assert (experiment

(level 3)
(input_problem SAME)
(system_setting SAME)
(abs_event_list Solve))))

4.2 Hercule Application from the Users Perspective

User involvement in using Hercule diagnosis system is twofold: specifying system pa-

rameters and extending performance knowledge to adapt to model variants. The users need

to instantiate abstract event descriptions with their program informations.Constituent event

formatis to be filled in with performance data format used by the measurement system, and
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Constraint clausesrefer to program segments or routines that correspond to model com-

ponents in theExpressionpart. At present, Hercule generates performance experiment

specifications in plain text form. The users need to conduct the experiment instructions

on their targeting measurement system to collect performance data, and feed the data into

Hercule to fuel performance inferencing. In diagnosing a program execution, the users

can optionally provide thresholds for evaluating performance metrics (to assert if there is a

problem associated with the metrics that is worth further investigation). In default, Hercule

investigates every model-specific performance aspect, andprovides explanations for the as-

sociated performance losses in a model execution. While with the thresholds, the users will

make Hercule focus on the most concerned model properties orintentionally avoid some

performance inference steps for their diagnosis cases.

We have discussed in the previous chapter that algorithmic implementation of a parallel

model may introduce new performance knowledge with respectto behavioral models, per-

formance properties, performance-critical design factors, and causal inferencing, as shown

in Figure 3.1. The users can derive the new knowledge from thealready built model-based

knowledge using the engineering approach presented in the section 3.1 and integrate the

knowledge into Hercule system to analyze their programs.

An algorithm may address model-specific data/control dependency in a particular man-

ner or introduce extra management work to improve process utilization. The users de-

scribe the behavioral models distinct to the algorithmic implementation using algorithmic-

specific abstract events. The new events can be refinement or extension of available model

events. The increasing complexity of computation and process interactions will introduce

more overhead categories and the need to refine performance model. Following the generic

modeling approaches we presented in the section 3.1.2, algorithmic performance modeling

can elicit potential performance overheads based on the structural information provided in

the new abstract events, and lead to the formulation of algorithmic-specific metrics that

evaluate the identified performance overheads. Algorithmic instantiation of a model may

introduce new performance factors, which are possibly attributed to, for instance, the task

scheduling strategy or data partitioning and mapping method used. To investigate perfor-

mance effects of the new factors, they need to be added to the knowledge base along with

the associated performance metric definitions. The new performance inferencing steps that
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refer to the algorithm-specific knowledge are to be incorporated into the origial model-

based inference tree in the form of branches at appropriate tree levels, and finally to be

translated into production rules that are executable in Hercule system.

The effort involved in adding knowledge specialization of an algorithm varies depend-

ing on computational complexity of the algorithm and desired detail level of the targeting

inference tree. Since the generic knowledge base is inherited, Hercule diagnosis can capture

the set of basic performance problems in a model-based algorithm without any algorithmic

specialization. On the other hand, algorithmic variants not addressed in the original model

knowledge need to be encoded into Hercule system to conduct performance investigation

at the desired level of details. The effort, however, will beamortized over many diagnosis

cases of the same algorithm, and offset the otherwise laborious manual work required.

4.3 Validation of Hercule Diagnosis Results

In general, how is a performance diagnosis system to be validated? In order to test Her-

cule, we want a controlled way to run parallel programs, instrument the program according

to the experiment specifications from the diagnosis system,and generate performance data

in desired forms. However, in addition, a validation environment should also support the

injection of known (model level) performance problems in a parallel program.2 The diag-

nosis system is unaware (a priori) of the performance fault and thus sees the parallel system

as a black box. Once the diagnosis process has completed, thevalidation environment can

evaluate the goodness of the result with respect to the knownproblems introduced.

Figure 4.2 shows how Hercule and the validation environmentwe are developing work

together. When a new parallel model is included in the system, we run test cases (either

synthetic parallel programs or real-world applications) to evaluate Hercule diagnosis re-

sults. Given a program to be diagnosed, Hercule starts with being informed of the model

the program is coded on. Hercule reaches diagnosis conclusions after iterations of exper-

iments and analysis. These conclusions are output as the performance problems found in

the program and corresponding explanations. We then compare the conclusions against the

2Fault injectionis a common part of software testing and diagnosis environments.
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FIGURE 4.2: Hercule and performance diagnosis validation system.

performance problems introduced at the start.

Naturally there is another methodology for Hercule system validation, that is to fix

performance problems in terms of Hercule conclusions and tosee how well the tuning im-

proves performance. This method naturally involves two aspects of evaluation: how fast

the users can find where to fix and how well the performance is optimized. Since Her-

cule results interpret performance losses with model factors at a high level of abstraction,

repairing the problematic factors most possibly leads to performance gains. How to tune

the factors, however, often requires a greater degree of expertise about parallel problem-

solving and understanding of the specific solution to the targeting problem. When there

are more than one problematic design factor in a parallel program, for instance, tuning all

of them at the same time may not generate the expected performance effects. A modifi-

cation that optimizes performance in one test case may slow down execution in another

case. The quality of the optimization phase is therefore hard to evaluate from a diagnosis

tool developer’s perspective. A interesting area for future work is to include in Hercule

tuning-supportive facilities that helps design performance tuning trials in terms of diagno-

sis results and supports relative performance diagnosis that compares multiple executions

with varied factor values and reasons about their performance differences.
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4.4 Chapter Summary

In this chapter, we introduced Hercule - a prototype automatic performance diagno-

sis tool that implements our model-based performance diagnosis approach. The core of

Hercule is a knowledge base composed of an abstract event library, metrics set, and per-

formance factors for individual parallel models. Requiring only model-implementation

information from the user, Hercule recognizes event instances matching the abstract event

specifications as a performance data stream flows through it,calculates the associated per-

formance attributes values, and synthesizes model-specific metrics for performance evalu-

ation. Performance inference steps are encoded into production rule. The inference engine

in Hercule is particularly helpful in performance diagnosis because it can repeatedly fire

rules with original and derived performance information until no more new facts can be

produced, thereby realizing automatic performance experiment generation and cause rea-

soning.

Hercule implementation mainly involves the encoding of model-based performance

knowledge and inference processes, and interfacing knowledge base to inference engine

to support automatic diagnosis. The implementation also addresses the adaptability to

model-variants introduced by algorithmic implementations. A black box parallel experi-

ment system is integrated into Hercule to validate diagnosis results. The validation system

supports a controlled way to run experiments and the injection of known (model level)

performance problems in a parallel program. It enables us toevaluate Hercule diagnosis

conclusions on a sound ground. In the next section, we will present Hercule experiments

with a set of varied parallel applications.



52

CHAPTER 5

Hercule Experiments

In the previous chapter, we introduced Hercule, a prototypeautomatic performance

diagnosis system. We described how Hercule framework implements the model-based per-

formance diagnosis approach and applies the engineered performance knowledge in a real

diagnosis system. In this chapter we will demonstrate Hercule’s ability to diagnose perfor-

mance problems with three parallel applications that represent D&C . Master-worker, and

Wavefront model respectively. We will also investigate relative performance diagnosis, a

specific application scenario of model-based approach, to demonstrate the effectiveness of

our approach.

5.1 Divide-and-Conquer Model and Parallel Quicksort

Section 3.2 have presented performance knowledge engineering process of parallel

Divide-and-Conquer (D&C) model. In this section, we demonstrate Hercule’s ability to

diagnose performance problems in a D&C program, parallel Quicksort. Experiments are

run on a IBM pSeries 690 SMP cluster with 16 processors. The parallel Quicksort algo-

rithm, using the aforementioned Divide-and-Conquer model, first recursively divides pro-

cesses until such a situation is attained – for any two processesPi andPj, if i < j then any

data element onPi is less than or equal to any element onPj . Then each process indepen-

dently executes serial version Quicksort. There is no mergestage in the parallel Quicksort.

Since a poor choice of pivot in Quicksort may lead to imbalanced data distribution over
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RecvRespondFromMngReq2MngEvt SendReq2Mng

[(Find_idle_Proc    Send_MgrLoad)  |  (Find_busy_Proc    Recv_MgrLoad)]     Local_ComputeSolve

(LookupBusyProc RecvReq  SendResponseLookupIdleProc)ManagerEvt

abstract 
events
specific to
the algorithm

Solve (id, pid) {

description
Full 

of Solve

Expression

AbstractEvent

[(Find_idle_Proc    Send_MgrLoad)  |  (Find_busy_Proc    Recv_MgrLoad)]    Local_Compute

others:  <function_name><pid><entering_time><exe_time>[source][dest]
Find_idle_Proc, Find_busy_Proc:  Req2MngEvt

Associated Events

ManagerEvt                correspondingMngEvt;

Constraints
Find_idle_Proc.SendReq2Mng.name  == "MPI_Send";
Find_idle_Proc.SendReq2Mng.dest  == MANAGER;
Find_idle_Proc.RecvRespondFromMng.name  == "MPI_Recv";
Find_idle_Proc.RecvRespondFromMng.source  == MANAGER;
Send_MgrLoad.name  =="MPI_Send";
LocalCompute.name  == "pivot_sort";
... ...

Solve              BusyProcSolve, IdleProcSolve, nextSolve;

Performance Attributes
Wait_Time4Find_idle_Proc := max{(Find_idle_Proc.RecvRespondFromMng.entering_time −

correspndingMngEvt.SendRespond.entering_time), 0}
Wait_Time4Find_busy_Proc := max{(Find_busy_Proc.RecvRespondFromMng.entering_time −

correspndingMngEvt.SendRespond.entering_time), 0}
Wait_Time4MgrLoad := max{(BusyProcSolve.Send_MgrLoad.entering_time −

Perc_Of_MgrLoad := IdleProcSolve.Local_Compute.exe_time  
/  (LocalCompute.exe_time + nextSolve.LocalCompute.exe_time + IdleProcSolve.LocalCompute.exe_time)

}
... ...

with 

details
algorithm

Recv_MgrLoad.entering_time), 0}

Constituent Event Format

FIGURE 5.1: Extended abstract event descriptions ofSolve in the parallel Quicksort
algorithm.

processes at runtime, we employ a simple runtime load balancing system that uses a cen-

tralized manager to manage idle processes and to assign themto busy processes to share

work load. Whenever a processor finishes local data sorting,it registers at the manager.

Whenever a processor is about to recurse on more than a predefined amount of data in the

serial phase, it requests the manager for help. If no idle processor is available, the manager

sends back no-help response, and the original busy processor must continue computing on

its own. Otherwise, the manager selects an idle processor, and tells it which processor to

help and the amount of data to expect. The manager also informs the busy process where

to migrate load. The busy processor then migrates the data tothe helper, continues with its

remaining data load, and waits for the helper to return the result. The actions and relation-

ship of helper (idle) processes, helpee (busy) processes, and the manager are described in
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TABLE 5.1 : Performance Metrics of Quicksort.
Name Meaning

Model-specific
Metrics

granularity Tcomp/Tcomm with respect to D&C trees

Twait divide waiting time for exchanging data in splitting
phase

Twait merge waiting time for merging results with sib pro-
cesses

Twait solve waiting time in the solve stage
Twait find idle proc (idle processes) waiting time for task assign-

ments
Twait find busy proc (busy processes) waiting time for getting a

helper
Twait mgr load (idle processes) waiting time for arrival of

work assignment
Fmgr frequency of migrating data to other (idle)

processes
Lmean mrg average work load migrated to other (idle)

processes

the abstract eventsSolve, Req2MngEvt, and ManagerEvtshown in Figure 5.1. TheSolve

event description instantiated with the Quicksort algorithm is also shown here. Hercule

recognizes event instances matching the event specifications as a performance data stream

flows through it, calculates the associated performance attributes values, and synthesizes

model-specific metrics for evaluation in later inference steps.

Table 5.1 presents major performance metrics we identify for D&C model.

In Figure 5.2, Vampir timeline view of aSolvephase with load balancing in a Quick-

sort run with five processes is shown. It also depicts activity chart of the phase. The

event trace is generated by the TAU [36] performance measurement system with only

major model/algorithm components being instrumented. In the figure, dark red regions

represent effective computation. Light yellow regions represent MPI function calls, includ-

ing MPI Init , MPI Send, MPI Recv, etc. Note that blocking/waiting time of processors

is implicitly included in the elapsed time of blockedMPI Send and MPI Recv opera-

tions. In following performance diagnosis, we focus on investigating efficiency of the

load-balancing aspect of the Quicksort.
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FIGURE 5.2: Vampir timeline view in aSolvephase of a parallel Quicksort run with five
processes.

We can see that most of the time is spent in communication (i.e., light yellow areas).

It is difficult to tell the communication pattern and what causes the communcations in the

event trace stream. However, our abstract event descriptions can fit the seemly intractable

performance data into recognizable patterns and help inferperformance causes. Hercule in-

terpretations ofSolvestage communication performance in this Quicksort run is presented

below.

dyna6-221:˜/PerfDiagnosis/bin lili$ testDC DC.clp 5pe.d up
Begin diagnosing DivideConquer program
... ...
Level 1 experiment -- generate performance data for computi ng
granularity associated with each D&C tree.
___________________________________________________ _________
do experiment 1... ...
___________________________________________________ _________
At Solve stage of D&C pattern, each process independently
runs sequential D&C code, which can be viewed as a process
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of expanding and collapsing a D&C tree. In the case of load-
imbalance, some branches of the D&C tree on a process may
be migrated to another process which has finished
computing. We explain performance with respect to the D&C
tree structure.

The D&C tree originally rooted at process 2 has as low
computation/communication ratio as 0.019.
___________________________________________________ _________
Level 2 experiment -- generate performance event trace for
evaluating communication performance of Solve in D&C
tree 2.
___________________________________________________ _________
do experiment 2... ...
___________________________________________________ _________
Among the communcations with respect to tree 2, moving data
to other processes to balance work load comprises 15.09% of
overall communication time, and requesting the manager for
finding a idle processor comprises 84.9%.

One possible factor contributing to the expensive
requesting-manager communication cost is that busy
processes send request to the manager to find a idle process
at a high frequency. Users are advised to check the amount
of work a process has to get done prior to requesting the
manager to make sure that the processes request the
manger at a moderate frequency.

Small size of base problem instance is also a possible cause
of too much commnication with the manager because the
communication frequency is proportional to recursion dept h.
___________________________________________________ _________
Level 3 experiment -- generate performance data for
computing load migration caused performance overheads.
___________________________________________________ _________
do experiment 3... ...
___________________________________________________ _________
In averge, every work load migration inappropriately
transfers 89.8% of remaining work to idle processes, which
causes load imbalance in the subsequent D&C tree computing,
thus more communication due to load migration. In D&C tree 2,
work load migrated to other processes is partially migrated
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back to the original process that initiates the tree,
causing workload thrashing and unnecessary data transfer.
=================================================== =========
Diagnosing finished...

Recall that recursive process splitting in D&C model leads to a hierarchy of process

sets. Each process independently runs sequential D&C code,which can be viewed as a

process of expanding and collapsing aD&C tree [17] as shown in Figure 3.4. In the case

of load-imbalance (i.e., D&C trees on different processes involve varied workload), some

branches of the D&C tree on a process may be migrated to another process which has

finished computing. Hercule evaluates and explains performance from the point of view of

the D&C trees since the structure makes it easy to interpret inter-process communications

for load migrations.

Given the program and performance knowledge associated with D&C pattern, Hercule

automatically request an experiment that collects performance event trace for evaluating

efficiencies (i.e., computation time/communication time)of each D&C tree at Solve stage.

The source code instrumentation of the experiment is specified in accordance with the event

expression of Solve in Figure 5.1. Hercule classifies computation and communication cost

and finds that the D&C tree originally rooted at process 2 performs worst. Then Hercule

investigates the communication cost associated with D&C tree 2 in detail. Of course, any

D&C tree can be identified for additional study. Hercule computes model-specific perfor-

mance metrics and distinguishes load-migration communications and find-idle-processor

communications, each is presented as the percentage the category contributes to the overall

communication time. It then tries to explain the high cost associated with these two types

of communications respectively and identifies possible factors giving rise to the commu-

nications. The inference process and diagnosis results, asshown above, are presented in a

manner close to programmer’s reasoning and understanding.
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5.2 Diagnosing Master-worker Program

5.2.1 Knowledge Engineering for M-W Model

A widely used parallel computation pattern is the classic Master-Worker (M-W) model.

Master-Worker models a computation that is decomposed intoa number of independent

tasks of variable length. Amasteris responsible for assigning the tasks to a group of

workers. Communications are required between the master and workers before and after

processing each task. The workers are independent to one another. A M-W illustration

with a master and two workers is displayed in Figure 5.3

The master usually employs certain task scheduling algorithms to achieve load balance

and minimize workspan. M-W performance factors we identified, through performance

observation of M-W codes and knowledge obtained from expertperformance analysts, are:

• Inherent sequential code fragments in the master. In Figure 5.3, both the master and

the workers need to do initialization and finalization. But the master usually spends

more time in these two phases than the workers for extra management work of read-

ing in and preprocessing the data, or post-processing worker results. The differences

in initialization and finalization workload incur inherently sequential penalty at the

worker side since they are dealt with exclusively by the master.

• Number and complexity of tasks assigned to the workers. This characterizes the total

amount of task workload to be shared by all workers.

• Task setup costs in the master and the task scheduling method. This reflects how fast

the master is able to process worker requests.

• Number of worker processors. It can happen that increasing the number of worker

processors does not reduce the total elapsed time of execution [25]. This is because

there is often a saturation point beyond which more workers cannot be effectively

served by the master. This results in the master being seen asa performance bottle-

neck.
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FIGURE 5.3: An illustration of Master-Worker pattern with a master andtwo workers.

• Task scheduling strategy. Scheduling independent tasks withm identical machines

(m ≥ 2) and a single server has been shown to be a NP-hard problem [26]. Often

certain scheduling heuristics are used in a M-W program. If during an execution

tasks are assigned in such a way that new-task requests from some workers arrive at

the master at approximately the same time, then some workershave to wait while the

peer requests are being processed. This is one type of inefficient scenario. Another

inefficient scenario happens when a long task is assigned to the last job requester,

which makes all other finished workers wait for the worker which gets this task as-

signment to complete computing. Avoiding the situations ofmaster bottleneck and

time-imbalance is key to achieving better worker efficiency.

In a M-W program, an independent task assigned to a worker process has a well-defined

life cycle: first the worker sends a task request to the master, the master receives the request
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((MasterSetUpTask MasterSendTask) WorkerComputeWorkerRecv)

MasterRecv.name=="MPI_Recv";

MasterRecv.source==WorkerSendReq.pid;
MasterSetUpTask.name=="setup";
MasterSendTask.name=="MPI_Send";
MasterSendTask.dest==WorkerSendReq.pid;
WorkerRecv.name=="MPI_Recv";
WorkerRecv.pid==WorkerSendReq.pid

WorkerSendReq.proc_cluster ==WORKER;

MasterRecv.proc_cluster==MASTER;

WorkerSendReq.name=="MPI_Send";

{   true      if WorkerSendReq.entering_time > MasterRecv.entering_time;

otherwisefalse

false otherwise{    true      if MasterSendTask.entering_time > WorkerRecv.entering_time;

{    MasterSetUpTask.execution_time,  if IsWorkerSendLate; 
MasterRecv.enteting_time − WorkerSendReq.entering_time + MasterSetUpTask.execution_time,  otherwise

Optional

Expression
expression
Event

AbstractEvent (id, pid){

descriptor

Constinuent
event

Event

TaskLifeCycle

Associated Events
  TaskLifeCycle     preTask,  nextTask

Related
abstract
event list

Constraints

Constraint

Attribute
descriptors

clauses

Performance Attributes

IsMasterSendLate:=

IsWorkerSendLate:=

WorkerWaitingTimeForTheTask:=

SetupTime := MasterSetUpTask.execution_time;

}

Required

(EventComponent  <name><pid><proc_cluster><entering_time><execution_time>[source][dest])

Performance

(WorkerSendReq MasterRecv)

FIGURE 5.4: An abstract event description of Master-Worker model

and sets up a task, it then transfers the data and task specification to the requesting worker,

and the worker processes the task until finished. At that time, that worker returns the re-

sult to the master and the cycle continues until the worker isinstructed to terminate. We

specify the program behaviors and performance properties associated with a task life cycle

by an abstract event typeTaskLifeCycle, as shown in Figure 5.4. Note that information

in the shaded area in the figure is not available until an implementation of the model is

provided. This is because the binding of appropriate valuesto performance properties and

performance properties evaluation rules are dependent on model implementation. For in-

stance, when using non-blocking communication routine “MPI Irecv” instead of blocking

version “MPI Recv”, the computing rule of communication time will reflectcorresponding

“MPI Wait” routine as well, rather than looking at the message-receiving routine only.

Given the program behavior, we can formulate M-W performance models. Following
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phase localization rule, a worker’s total elapsed timetworker consists oftinit (initialization

cost),tcomp (the amount of time spent computing tasks),tcomm (the amount of time spent

communicating with the master),twait (the amount of time spent waiting for task assign-

ment or synchronizing with other workers before finalization, excluding communication

overhead), andtfinal (finalization cost):

(M2) ⇒ tworker = tinit + tcomp + tcomm + twait + tfinal (5.1)

Whenever we refer to communication time, we mean effective message passing time

that excludes time loss due to communication inefficienciessuch as late sender or late

receiver in MPI applications. Rather, waiting time accounts for the communication inef-

ficiencies with the purpose of making explicit performance losses attributed to mistimed

processor concurrency.

The master’s total elapsed time is:

(M1,M2) ⇒ tmaster = tinit + tsetup + tcomm + tidle + tfinal (5.2)

Performance coupling of a worker with the master and the restof peer workers man-

ifests four performance overheads –tseq (the master initialization and finalization costs

translated to idle overhead in the worker),tw−setup (master task setup time),tw−bn (blocking

time in master bottlenecks), andtw−final (the cost of synchronization with other workers

for finalization).

(M2,M3) ⇒ twait = tseq + tw−setup + tw−bn + tw−final (5.3)

The above performance models enable us to define performancemetrics specifically

tailored to M-W programs. We start with evaluating individual worker efficienciesto detect

a top-level symptom because efficiency is a reflection of total worker scalability.

worker efficiency :=
tworker
comp

tworker

(5.4)
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Refining each item in model (5.3), we obtain metrics of workerwait time:

tseq := max{tmaster
init − tworker

init , 0} + max{tmaster
final − tworker

final , 0}

tw−setup :=

M∑

i=1

tisetup, tw−bn :=

M∑

i=1

tiw−bn =

M∑

i=1

(tiwait − tisetup)

tw−final := max
all workers

{Tfin} − Tfin

whereM is the number of tasks the worker processes altogether,tisetup the amount of time

for setting up taski, tiw−bn is the waiting time due to master bottleneck when requesting

the ith task,tiwait is the total amount of worker idle time between sending out request and

receiving taski, maxallworkers{Tfin} is the finish timestamp of the last task computed, and

Tfin the last task finish timestamp of the observed worker processor.

Having been prepared with performance attributes in abstract event descriptions, we

are able to reduce model-specific metric computing to aggregating attribute values of re-

lated event instances. In performance debugging, it is desirable to be able to concentrate

on and evaluate a specific code section, or a problematic execution phase as bug searching

proceeds. This is attainable in our approach by gathering event instances occurring in the

interested spatial or temporal regions and synthesizing their performance attribute values.

For instance, to compute amount of time a worker process spends waiting for task assign-

ments throughout the execution, we can simply add up waitingtime for each task, which

is attributeWorkerWaitingTimeForTheTaskof the abstract eventTaskLifeCycle in Figure

5.4. In this way our approach allows flexible definition of performance metrics at different

abstraction levels.

Now we can incorporate these performance factors and metrics in diagnosis inference

rules. An inference tree is created for every symptom type. The inference tree for explain-

ing low efficiency of a worker process, for instance, is shownin Figure 5.5. Figure 5.6

illustrates the resulting CLIPS implementation of the assertion that master task setup time

is a potential problem cause.
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FIGURE 5.5: Inference Tree for Performance Diagnosis of M-W programs.

5.2.2 Experiment with M-W Program

We tested Hercule’s performance diagnosis capability for the M-W model using a syn-

thetic M-W application. This allowed us to introduce various known performance problems

(i.e., performance faults) and evaluate whether Hercule would be able to discover them. All

experiments were run on an distributed memory Pentium Xeon cluster running Linux.

Using the M-W computational model components, as presentedin Figure 5.3, we cre-

ated a synthetic parallel program to run on our test cluster.The performance problems we

introduce in the program focus on the impact of master-processing-request speed on overall

performance. We implement the M-W program using MPI, and setthe initialization and

finalization cost of both the master and workers to a small value. Some number of indepen-

dent tasks is chosen and their processing times are assignedduring execution. The master

setup task time is set to be proportional to the average task processing time. Figure 5.7 and

5.8 respectively present a Vampir [43] timeline view and ParaProf [36] profile display of an

execution of the program with 7 processors. The event trace and profiles are generated by



64

FIGURE 5.6: Clips implementation of c2 asserting master computation time (for setting
up task assignment) is a cause.

the TAU [36] performance measurement system with only majormodel components being

instrumented. In Figure 5.7, red regions represent task setup at the master and task process-

ing at the workers. Light blue regions represent MPI function calls, includingMPI Init ,

MPI Send, MPI Recv, andMPI Finalize. Note that in both figures, blocking/waiting

time of processors is implicitly included in elapsed time ofblockedMPI Send, MPI Recv

andMPI Finalize operations.

Given the program and performance knowledge associated with M-W model, Hercule

automatically requests three experiments during the diagnosis of this problem. The infer-

ence process and diagnosis results of these experiments arepresented in Figure 5.9. The

first experiment collects data for computing efficiencies ofeach worker. The measurement
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task_setup,   if the process is master
task_processing,  if workers

Time
imbalance

workers

master

master bottlenecks

FIGURE 5.7: Vampir timeline view of an example M-W program execution.

data shows that worker 3 performs worst. Then Hercule investigates the performance loss

of worker 3 (of course, any worker can be identified for additional study), and issues the

second experiment to evaluate individual overheads in equation (5.1). Waiting time cost

stands out as a result of this inference step. The third experiment then targets performance

loss categories in equation (5.3). Table 5.2 presents model-specific metrics computed dur-

ing the diagnosis in the form of percentage that each overhead category contributes to the

overall performance loss (i.e., total elapsed execution time minus effective task process-

ing time). It is important to note that diagnosis results canbe encoded to present output

in a manner close to programmer’s reasoning and understanding of the M-W computation

model.
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FIGURE 5.8: Graphical display of relative time spent in each function on each node,
context, thread.

5.3 Wavefront (Pipeline) Model and Sweep3d

Wavefront is a two-dimensional variant of a traditional pipeline pattern. Computation or

data is partitioned and distributed on a two-dimensional process grid where every processor

receives data from preceding processors and passes down data to successive processors

in two orthogonal directions. Those processors within eachwavefront, i.e., those on a

diagonal, are algorithmically independent and can do computations concurrently. The data

dependence of wavefront parallelism is shown in Figure 5.10. Additional concurrency can

be achieved by blocking the computation, resulting in more wavefront sweeps using smaller

computational subgrids. Well-known pipeline performanceproblems include sensitivity to

load imbalance, processor idleness when pipeline filling upand emptying, and so on. It

is these types of problems that we want to find. Next we will show how performance

Metric name Performance loss%
tw−bn 39.2%

tw−setup 34.3%
tw−final 14.8%
tcomm 6.2%

TABLE 5.2 : Metric values of the M-W program.
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dyna6-166:˜/PerfDiagnosis lili$ ./model_diag MW.clp
Begin diagnosing ...
=================================================== ========
Level 1 experiment - collect data for computing worker
efficiencies.
___________________________________________________ ________
Worker 3 is least utilized, whose efficiency is 0.385.
=================================================== ========
Level 2 experiment - collect data for computing
initialization, communication, finalization costs, and
wait (idle) time of worker 3.
___________________________________________________ ________
Waiting time of worker 3 is significant.
=================================================== ========
Level 3 experiment - collect data for computing individual
waiting time fields.
___________________________________________________ ________
Among lost cycles of worker 3, 14.831% is spent waiting for
the last worker to finish up (time imbalance).
___________________________________________________ ________
Master processing time for assigning task to workers is
significant relative to average task processing time, whic h
causes workers to wait a while for next task assignment.
Among lost cycles of worker 3, 34.301% is spent waiting
for master computing next task to assign.
___________________________________________________ ________
Among lost cycles of worker 3, 39.227% is spent waiting
for the master to process other workers’ requests in
bottlenecks. This is because master processing time for
assigning task is expensive relative to average task
processing time, which causes some workers to queue
up waiting for task assignment.
=================================================== ========
Diagnosing finished...

FIGURE 5.9: Diagnosis result output from Hercule of the M-W test program.
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P8

inter−stage communication

concurrent processors at a pipeline stage.

pipeline
sweeps

P0 P1 P2

P3 P4 P5

P6 P7

FIGURE 5.10: Wavefront parallelism on a 3x3 process grid. Each node represents a
processor in this grid.

knowledge for diagnosing Wavefront programs is engineeredwith model-based approach.

5.3.1 Knowledge Engineering for Wavefront Model

The abstract event describing a Wavefront process node is shown in figure 5.11.

According to the behavioral descriptions of abstract event, a processor’s execution time

tproc can be decomposed intotinit (initialization cost),tcomp (the amount of time spent

computing tasks),tcomm (the amount of time spent communicating with the neighbor pro-

cessors in the pipeline),twait (the amount of idle time at the communication points), and

tfinal (finalization cost):

(M2) ⇒ tproc = tinit + tcomp + tcomm + twait + tfinal (5.5)
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FIGURE 5.11: Abstract event description of Wavefront

Performance coupling of a processor with neighbors in the pipeline manifests four per-

formance overheads –tpl fill (the waiting time for the pipeline to fill up at the pipeline

start-up),tpl empty (the waiting time for the pipeline to empty up at the end of pipeline

computing),tpl handshake (the waiting time to receive data from predecessor processors in

sweeps), andtpl directionchange (the performance penalty due to pipeline sweep direction

change).

(M2,M3) ⇒ twait = tpl fill + tpl empty + tpl handshake + tpl directionchange (5.6)

Performance metrics tailored to Wavefront model can be derived from the performance
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FIGURE 5.12: An inference tree of Wavefront model that diagnoses low-speedup

models. For instance, we definetpl fill as:

tpl fill =

M−1∑

i=1

tcomp.,i
pre−proc

whereM represents the pipeline stage number where the processor islocated, andtcomp.,i
pre−proc

the computation time of the preceding processors at theith stage during pipeline start-up.

Now we can incorporate these performance metrics into diagnosis inference rules. The

inference tree for explaining low speedup of wavefront computing, for instance, is shown

in Figure 5.12.

5.3.2 Relative Performance Diagnosis of Sweep3D

In this section, we will demonstrate Hercule’s effectiveness in relative performance

diagnosisof the ASCI Sweep3D benchmark which uses Wavefront computational model.

Sweep3D [62] is a solver for the 3-D, time-independent, neutron particle transport equa-

tion on an orthogonal mesh. Its parallelism comes from multiple wavefronts in multiple
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dimensions, which are partitioned and pipelined on a distributed memory system. The

three-dimensional space is partitioned on a two-dimensional processor grid, where each

processor is assigned one columnar domain. Sweep3D exchanges messages between adja-

cent processors in the grid as wavefront propagates diagonally across the 3-D space in eight

directions. Sweep3D is a well-researched parallel benchmark. Although parallelism over-

heads in Sweep3D have been minimized, for instance, by evenly distributing data across a

process grid, leaving little room for performance tuning, Hercule can tell exactly how run-

ning time is spent in terms of model semantics, helping understand inherent performance

losses of the model under an optimistic condition. Our performance study with Sweep3D

focuses on overall scalability, looking at how well the application scales as the number of

processors is increased (strong scaling) and as total problem size increases with the process

count increase (weak scaling).

Diagnosis of a single execution is incomplete as a comprehensive diagnosis process.

Understanding of performance problems routinely involvescomparativeand relative in-

terpretation. In the experiments with Sweep3D, we improve the Hercule methodology to

support what we will termrelative performance diagnosis(in the spirit of relative debug-

ging [63]). The multi-experiment relative performance analysis is also addressed in [61]

[60] etc.

Understanding of performance problems routinely involvescomparativeand relative

interpretation. Performance analysts often need to answersuch questions in scalability

analysis of a parallel application: what are most pronounced performance differences be-

tween two program executions with difference problem scales, which program design fac-

tors contribute to the differences, and what are magnitudesof their contributions?

Hercule’s single execution diagnosis can be extended to support what we termrelative

performance diagnosisthat is intended to answer the questions. To interpret what was hap-

pening at the performance anomalies with certain problem scale, we pick a performance

reference run, in the family of scalability executions, which has comparatively normal per-

formance and evaluate problematic runs against it. Relative performance diagnosis follows

the same inference processes as presented in model-specificinference trees except for per-

formance evaluation at branch nodes. Recall that cause inference in the inference trees is

driven by performance evaluation, that is, to compare the model-specific metric with an
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expected value (from performance modeling) to decide on an intermediate observation. In

relative performance diagnosis, we calculate the expectedvalue based on model-specific

metrics of the reference run to evaluate problem behaviors.Examples of relative diagnosis

of anomalous Wavefront application executions will be presented in the next section.

Hercule extensions for supporting relative performance diagnosis manifest in the inter-

facing of the metric evaluator and the inference engine. To assert the performance observa-

tion associated with a branch node in the inference tree, themetric evaluator takes in event

instances of two runs to be compared and feeds the calculatedmodel-specific metrics into

the inference engine. The inference engine sets a performance expectation according to the

reference run metric and evaluates the problematic run against it.

We ran Sweep3D tests on MCR, a linux cluster located at Lawrence Livermore national

Laboratory. MCR has 1,152 nodes, each with two 2.4-GHz Pentium 4 Xeon processors

and 4 GB of memory and has peak performance rating of 11.06 Tflop/s. The system in-

terconnection is a customized 1024-port single rail QsNet network, which provides a 400

MBytes/s bi-directional bandwidth.

Case I: Diagnose strong scaling performance problems

Figure 5.13 shows the strong scaling behavior of Sweep3D with problem size1503, and

angle blocking factor,mmi, equal to 3, k-blocking factor,mk, equal to 10. The application

scales well in general, but at process count 32 the speedup drops and bounces up when pro-

cess count increases to 36. We applied Hercule to contrast performance of run1 (with 32

processors) against run2 (with 36 processors) and diagnoseperformance anomaly cause.

Hercule uses relative speedup (compared to two-processor run) to evaluate performance

since there is no inter-processor communication in a sequential execution. The results that

follow were generated in a completely automated manner.

Hercule first calculates speedup of run1 (with 32 processors), run2 (with 36 processors)

relative to run3 (with 2 processors), and expected speedup of run1 based on run2 perfor-

mance. It reaches a performance symptom of run1 that will be further explained.

Hercule diagnosis step 1:find performance symptom

dyna6-166:˜/PerfDiagnosis lili$ ./model_diag WF_speedu p.clp
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comparative diagnosis

FIGURE 5.13: Sweep3D strong scaling with problem size 150x150x150 (mmi=3, mk=10)

32pe.dup 36pe.dup 2pe.dup

Begin diagnosing ...
=================================================== ========
Speedup of run1 and run2 relative to run3

run1 run2 expected run1
speedup 12.80 15.84 14.08
___________________________________________________ ________
run1 is slower than the expected value 14.08
___________________________________________________ ________
Next we look at the symptom low speedup.
=================================================== ========

Hercule then breaks runtime down into computation and communication, narrowing

performance bug search.
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Hercule diagnosis step 2:locate poorly performed functional groups

=================================================== ========
Level 1 experiment -- generate performance data with respec t
to comp. and comm..
___________________________________________________ ________
Relative speedup of functional groups in run1 and run2

run1 run2 expected run 1
computation: 16.035 19.906 17.694
communication: 1.115 1.172 1.042
___________________________________________________ ________
computation in run1 is longer than the expected.
___________________________________________________ ________
Next look at performance with respect to pipeline component s.

As computation time per process stands out, Hercule furtherdistinguishes pipeline-

related computation and others.

Hercule diagnosis step 3:refine locating poorly performed functional groups

=================================================== ========
Level 2 experiment -- generate performance data with respec t
to pipeline components.
___________________________________________________ ________
Relative speedup of pipeline components in run1 and run2

run1 run2 expected run 1
computation in pipeline: 16.598 20.702 18.402
other computation: 10.452 12.405 11.03
___________________________________________________ ________
computation in pipeline in run1 is slower than the expected
most.
___________________________________________________ ________
Next look at computation in pipeline.
=================================================== ========

Pipeline computation per process in run1 is more expensive than the expected. Hercule

then looks at how well the load is distributed on processes.

Hercule diagnosis step 4:form performance hypothesis
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=================================================== ========
run1 run2 difference

computation in pipeline SDV (us): 236859 97548 139311
(w.r.t. processes)
___________________________________________________ ________

Standard deviation of pipeline computation in run1 is
significantly larger than run2, which implies a load
imbalance across processes.
___________________________________________________ ________
Next testify the hypothesis load imbalance.
=================================================== ========

Hercule forms a load imbalance performance hypothesis based on the standard de-

viation of pipeline computations on all processes. It teststhe hypothesis by looking at

model-related overheads to which load imbalance possibly contributes most. It calculates

and distinguishes performance impact of load imbalance on the overhead categories, and

exemplifies occurrence of load imbalance with process behaviors in some specific compu-

tation step (iteration) and pipeline sweep. This way of explanation provides the users with

both the nature of performance causes and evaluations of performance impact of the causes.

Hercule diagnosis step 5:test performance hypothesis

=================================================== ========
The impact of process load imbalance on performance
manifests in pipeline-handshaking and
sweep-direction-change overhead.

Passing along data among successive pipeline stages
(handshaking) takes 14.9% of pipeline communication time.
Pipeline handshake delay is unevenly distributed across
processes. std dev = 486463.75. process 31 involves the
longest pipeline handshake cost.
___________________________________________________ ________
Level 3 experiment for diagnosing handshaking related
problems -- collect performance event trace with respect
to process 31
___________________________________________________ ________
Pipeline HS delay is evenly distributed across iterations
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in the process 31. Next we look at performance
characteristics of iteration 3 which involves the longest
pipeline HS.

Pipeline HS delay is evenly distributed across sweep in
iteration 3 process 31, Next we look at sweep 6 which
involves the longest pipeline HS.

In iteration 3 sweep 6, computation are unevenly
distributed across pipeline stages. For example,
in stage 4 process 4 spends 1964(us) doing
computation, while in stage 10 process 31
spends 1590(us) computing.

In general, process 31 is assigned 23.6% less work
load than process 4. Such discrepancy causes process
31 idle for 29.5% of pipeline communication time..
___________________________________________________ ________
When pipeline sweep direction change, processes may be idle
waiting for successive pipeline stages in previous sweep to
finish, and for pipeline to fill up in a new sweep. The sweep
direction changes comprise 34.6% of pipeline communicatio n
time. The delay is unevenly distributed across processes.
process 31 involves the longest pipeline direction change.
___________________________________________________ ________
Level 3 experiment for diagnosing sweep-direction-change
related problems -- collect performance event trace with
respect to process 31
___________________________________________________ ________
Pipeline direction change delay of process 31 is unevenly
distributed across iterations. Next we look at performance
of the iteration 10 which involves the longest direction
change delay.

In this wavefront execution, pipeline sweep direction
change delay is significant in process 31, especially in
iteration 10. Between sweep 3 and 4, process 31 has been
idle for 117980(us). Among the idle time, 85.5% is spent
waiting for successive pipeline stages in sweep 3 to finish
up, and 14.7% waiting for pipeline filling up in sweep 4.
We compare performance behaviors in process 31 and
next sweep head (process 24) to explain where is the idle
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time from.

In sweep 3 process 31 is in pipeline stage 3, next sweep
head, process 24, is in stage 10. Due to the pipeline
working mechanism, process 31 has to wait process 24
to finish computation before next sweep begins.
Computation load difference between the two processes,
by 12.8%, contributes 39.9% to the direction change delay.
=================================================== ========
Diagnosing finished...

Case II: Diagnose weak scaling performance problems

The second experiment with Hercule demonstrates its capability of identifying and ex-

plaining parallelism overhead increases as both problem size and process count are in-

creased in weak scaling study. Figure 5.14 shows the weak scaling behavior of Sweep3D

with fixed problem size 20x20x320. We can see that runtime increases as more processors

are used even though each process’s computation load is keptthe same. Hercule will com-

pare 4-processor and 48-processor run and report and explain the performance difference.

Again, the results that follow are generated in a completelyautomated fashion.

Hercule first calculates significance of performance difference and reaches a perfor-

mance symptom, higher parallelism overhead.

Hercule diagnosis step 1:find performance symptom

dyna6-166:˜/PerfDiagnosis lili$ ./model_diag WF_overhe ad.clp
weak.48pe.dup weak.4pe.dup

Begin diagnosing ...
=================================================== ========
Runtime of run1 and run2 (in seconds)

run1 run2 difference%
runtime 11.489 9.815 17.055%
___________________________________________________ ________
run1 is 17.055% slower than the run2.
___________________________________________________ ________
Next we look at the symptom parallelism overhead.
=================================================== ========

Hercule then breaks runtime down into computation and communication, locating the
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comparative diagnosis

FIGURE 5.14: Sweep3D weak scaling with problem size 20x20x320 (mmi=3, mk=10)

functional group with most pronounced performance difference.

Hercule diagnosis step 2:locate poorly performed functional groups

=================================================== ========
Level 1 experiment - generate performance data with respect
to comp. and comm..
___________________________________________________ ________
Runtime of functional groups in run1 and run2 (in seconds)

run1 run2 difference%
computation: 8.886 8.891 -5.624e-4
communication: 2.603 0.924 181.71%
___________________________________________________ ________
communication cost in run1 is significantly higher than run 2.
___________________________________________________ ________
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Next look at communication performance with respect to
pipeline components.
=================================================== ========

Hercule further distinguishes pipeline-related communication and others.

Hercule diagnosis step 3: refine locating poorly performed functional groups

=================================================== ========
Level 2 experiment -- generate performance data with respec t
to pipeline components.
___________________________________________________ ________
Runtime of pipeline in run1 and run2 (in seconds)

run1 run2 difference%
computation in pipeline: 8.014 8.013 1.25e-4
other computation: 0.872 0.878 -6.83e-3

communication in pipeline: 2.275 0.803 183.31%
effective commu. in pipeline: 0.943 0.571 65.15%
waiting time in pipeline: 1.332 0.231 476.62%
other communication: 0.328 0.121 171.07%

comm. count (count/per process): 12288 12288 0
comm. volume (byte/per process): 58982400 58982400 0
___________________________________________________ ________
waiting time in pipeline in run1 is 476.62% higher than run2.
___________________________________________________ ________
Next look at pipeline overheads.
=================================================== ========

Since waiting time in pipeline is significant, Hercule refines model-specific overhead

categories and computes corresponding metrics.

Hercule diagnosis step 4:locate poorly performed pipeline components

=================================================== ========
Level 3 experiment -- generate performance data with respec t
to pipeline waiting time
___________________________________________________ ________
Runtime of pipeline components in run1 and run2 (in seconds)

run1 run2 difference%
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waiting time in pipeline 1.332 0.231 476.62%
pipeline fill-up: 0.161 0.014 1050%
pipeline empty-up: 0.244 0.017 1335.29%
pipeline handshaking: 0.337 0.075 349.33%
pipeline direction change: 0.584 0.125 367.2%

=================================================== ========

There are increases in most overhead categories. We presentbelow diagnosis results

explaining two most pronounced categories, pipeline fill-up and empty-up.

Hercule diagnosis step 5:diagnose two most pronounced pipeline overheads

=================================================== ========
Diagnosing pipeline fill-up ... ...

In run1, pipeline fill-up delay is evenly distributed acros s
iterations. We look at performance characteristics of the
iteration 0, which involves the longest pipeline fill-up.

In iteration 0, the depth of pipeline is 13. The pipeline
tail, process 0 is being idle when the pipeline is filling
up by processes in preceding stages. The pipeline fill-up
delay comprises 335103us (20.8%) of process 0’s total
waiting time. The computations at preceding pipeline
stages together account for the long waiting time at the
process. Reducing computation load at preceding
stages or pipeline depth will decrease filling up time.

In run2, pipeline fill-up delay is evenly distributed
across iterations. We look at performance
characteristics of the iteration 1, which involves the
longest pipeline fill-up.

In iteration 1, the depth of pipeline is 3. The pipeline
tail, process 0 is being idle while the pipeline is filling
up by processes in preceding stages. The pipeline
fill-up delay comprises 28707us (25.5%) of process 0’s
total waiting time.
___________________________________________________ ________
Diagnosing pipeline empty-up ... ...
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In run1, pipeline empty-up delay is evenly distributed
across iterations. Next we look at performance
characteristics of the iteration 4, which involves the
longest pipeline empty-up.

In iteration 4, the depth of pipeline is 13. The pipeline
head, process 0 is being idle when the pipeline is
emptying up by processes in successive stages. The
pipeline empty-up delay comprises 573,162us (35.5%)
of process 0’s total waiting time. The computations at
successive pipeline stages together account for the
long waiting time at the process. Reducing workload at
successive pipeline stages or pipeline depth will
decrease empty-up time.

In run2, pipeline empty-up delay is evenly distributed
across iterations. We look at performance characteristics
of the iteration 1, which involves the longest pipeline
empty-up.

In iteration 1, the depth of pipeline is 3. The pipeline
head, process 0 is being idle when the pipeline is
emptying up by processes in successive stages. The
pipeline empty-up delay comprises 34858us (31.0%)
of process 0’s total waiting time.
=================================================== ========

As shown in the results, the increase of pipeline depth in run1 (48-processor run) is

clearly the main cause of its overhead increase. Hercule illustrates and interprets perfor-

mance impact of the pipeline depth with the behaviors of the process of the longest pipeline

fill-up and empty-up. The pipeline depth also has a performance effect on sweep direction

change. Due to limitation of space, we skip the interpretation of other overhead categories,

event though Hercule is able to explain them equally well.

5.4 Chapter Summary

In this chapter, We presented Hercule experiments with three parallel applications that

represent Divide-and-Conquer, Master-Worker, and Wavefront model respectively. Our
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experience diagnosing the programs shows that model-basedperformance knowledge can

provide effective guidance for locating and explaining performance bugs at a high level

of program abstraction. Particularly in Wavefront analysis, we extend Hercule to allow

for relative execution diagnostic analysis that compare multiple experiment performance

and explain the differences with model semantics. Relativediagnoses of Sweep3D (imple-

mented with Wavefront model) performance anomalies in strong and weak scaling cases

are given. This broadens the application of model-based performance diagnosis approach

to multi-experiment investigation.
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CHAPTER 6

Performance Diagnosis of Parallel

Computations with Compositional

Models

6.1 Introduction

In the previous chapters, we focused on generating and encoding performance knowl-

edge from singleton models, and we developed theHerculeperformance diagnosis system

to validate how performance knowledge derived from parallel models provides a sound

basis for automating performance diagnosis processes and explaining performance loss

from high-level computation semantics. This has been shownfor several parallel models

to date (e.g., master-worker, divide-and-conquer, and pipeline). However, we also realized

that singleton model program analysis is incomplete as a comprehensive diagnosis process.

Often parallel programmers in scientific computing combinetwo or more computational

models to realize the intended parallelism or address specific performance issues.Com-

positionalmodels capture how singleton models are composed together and interact in a

parallel program. The model composition may change performance identify of individual

models. This raises new challenges as to how to allow the amount and location of the

occurred performance loss due to model interaction to be detected and interpreted within

an integrated environment. This chapter reports our experience with investigating perfor-
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mance problems of compositional models. We will present a framework for discovering

and interpreting performance bugs using both the semanticsof individual models and their

composition pattern. We extend our Hercule performance diagnosis framework to support

performance engineering of compositional models and test Hercule on the scientific ap-

plication FLASH [4] and the ScaLAPACK algorithm PDLAHQR [7], each representing

different types of model integration. These experience demonstrate that our approach can

effectively support automatic diagnosis of compositionalmodel performance.

In Section§6.2, we classify different model composition patterns and highlight their

impact on performance. We then present in Section§6.3 the performance knowledge engi-

neering approach adaptive to the model compositions. Hercule is extended to support the

compositional diagnostic analysis, which is presented in Section§6.4. We show in Sec-

tion §6.5 the Hercule experiments with two real-world applications that represent different

types of model integration. Section§6.6 concludes with observations.

6.2 Computational Model Composition

In the previous chapters, we investigated how to generate and encode performance

knowledge from singleton models, and developed theHerculesystem to test how effective

the derived performance knowledge support for performancediagnosis processes. While

the results using Hercule were generally successful, real-world applications are more com-

plex, often based on the composition or synthesis of two or more elementary computational

models. To conduct performance diagnosis of a compositional parallel program we must

extend the knowledge engineering and problem inferencing to capture the interplay of one

model with another. Since we have well researched single model performance, we intend

to devise compositional model diagnosis approach as an extension to it.

In this section, we will look at different model compositionpatterns, especially their

impact on performance. Parallel models can be combined in quite a few styles. Model

compositions can be roughly divided into two categories from the standpoint of perfor-

mance effects of the interaction. The first category is simply an addition of the involving

models without cross-interleaving model components. The model composition, therefore,
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does not incur new performance overhead type. The second category may shuffle the model

components so that performance effects of the original models change or new effects arise.

Performance analysis of the second type is more complicated, and will be the focus in the

following discussion.

To help understand model interaction, we follow the description format of model be-

havior we used in the singleton model diagnosis, abstract events. Consider a parallel com-

putational model as a set of indivisible computational components,{C1, C2, ..., Ck}, and a

function,F (C1, C2, ..., Ck), that specifies the relative control order (e.g., sequential, choice,

concurrent, iteration, and so on) of component occurrence.We can then regard the compo-

sition of two models,F (...) andG(...), as an integration of the components in some manner.

Model interleaving is constrained to the component level, that is, model components can

be shuffled when combining two models.

Several compositional forms are possible. For instance, one model could simply nest

one model hierarchically within another (model nesting), or the component sets of two

models could be restructured in a more complex way by a higher-order function (model

restructuring). Our objective is to understand the compositional properties of model inte-

gration in order to engineer the performance knowledge needed for performance diagnosis.

Our approach will describe how performance effects of individual models change as the

components merge and how new performance effects arise fromthe composite interac-

tions.

6.2.1 Model Nesting

This type of model composition refines a high-levelroot (outer) model’s components

with lower-levelchild (inner) models so that the workload of the refined componentsis

computed in the parallelism specified by the child models. Model nesting forms a hierar-

chy of models where the root model dictates the parallelism of the program at the highest

level of abstraction, and the lower-level child models address parallelization and imple-

mentation of the finer-level details. State more formally, two modelsF (C1, C2, ..., Ck) and

G(D1, D2, ..., Dl) (Di are components ofG) may compose into a new nested model as
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follows:

F (C1, C2, ..., Ck) + G(D1, D2, ..., Dl) →

F (C1{G(D1, D2, ..., Dl)},

C2{G(D1, D2, ..., Dl)},

· · · ,

Ck{G(D1, D2, ..., Dl)})

(6.1)

whereCi{G(D1, D2, ..., Dl)} means the componentCi implements theG model. Note,

not necessarily every component inF is refined withG, and there may be additional child

models used.

Parallel applications based on nested computational models are common. Iterative,

multi-phase applications are frequently structured as nested models with an outer code

controlling multiple phases each based on a possibly different parallel pattern. Example

applications are FLASH [4], which nests parallel recursivetree into adaptive mesh refine-

ment model, and graphical animation in [9], which implements expensive pipeline stages

with master-worker model. Our concern is how to understand the performance of nested

models. Due to the hierarchical structure of model nesting,analyzing this type of appli-

cation usually starts with the root model. When a problematic component is found in the

model (e.g., an expensive phase), we switch from the root to the component’s model to

refine performance problem search. The search continues until the finest level of model

is reached. Performance overhead categories of the nested model is the union of the over-

heads associated with the participant models. Thus, they should be organized in a hierarchy

conforming to the model nesting to support the top-down performance bug search.

6.2.2 Model restructuring

The restructuringtype of model composition integrates components of two or more

models according to some new funtion while maintaining the same relative control order of

each model’s components. Formally two modelsF (C1, C2, ..., Ck) andG(D1, D2, ..., Dl)
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may compose into a new restructured model as follows:

F (C1, C2, ..., Ck) + G(D1, D2, ..., Dl) →

H(({CF
1 , ..., CF

k } | {D
G
1 , ..., DG

l })
+)

(6.2)

where{CF
1 , ..., CF

k } | {DG
1 , ..., DG

l } selects a componentCF
i or DG

j such that the relative

control order ofF components andG components are maintained.

The general idea is that the components of the contributing models are being mixed

to form a new set, to which a new model functionH is applied. H could be F, G, or a

new operation, like iteration, nesting, farming, and so on.A simple example might be the

restructuring of two pipeline models into a single pipelinemodel with the components at

each pipeline stage merged. More complex examples are the nonsymmetric QR algorithm

(PDLAHQR) [7] in ScaLAPACK, which combines pipeline and geometric decomposition

models, and the MUMPS sparse direct solver [8], where parallel tree, master-worker, and

geometric decomposition models are mixed together.

For our purposes, the key difference between model nesting and model restructuring

has to do with the notion ofworking context. In model restructuring, the working context

of a component from a contributing model will be different from its context in the singleton

form of that model. The performance overheads associated with the original models (see

[10, 12]), will change corresponding to context-specific factors and the new model function

H. In contrast, when computational models are nested, the model semantics at each level

of hierarchy will be preserved, and the working context for components of a nested model

will be model-local. From a performance diagnosis perspective, the performance overheads

and problem causes can thus be isolated to the models used at different levels of hierarchy.

As we have already gained performance knowledge of individual models, diagnosing

a parallel program coded with restructured models basically requires we learn how per-

formance effects of individual models change as the components interleave. Specifically,

we need to identify the boundary of two models effect, that isto answer which model(s)

caused a performance degradation, and how. New performancecharacteristics introduced

by model restructuring include delegated delay and composite delay. When components of

a model are separated by another model, the performance delay associated with the model
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may take place in the second model’s code region. We call the performance delay, which is

caused by a model while manifesting the effect in another model’s effective context, dele-

gated delay. From Equation 6.2, a delay originally caused byCF
i and manifested in a later

componentCF
j , may now appear in another component, sayCG

k occurring beforeCF
j . This

delay is then an example of delegated delay and should be attributed to its original model.

A composite delay, as the name implies, is jointly caused by two or more participant

models. In this case, a performance delay associated with a model, while remaining its

occurrence location inside the original model, reflects notonly the original model’s effect

but the interleaving models. From Equation 6.2, a performance delay happening inside

CF
i , may reflect the cumulative effects of precedingF andG components, as its working

context switches from solelyF (in the singleton model) to mixedF andG. To assess

composite delay quantitatively, we need to change originalevaluation rules in response to

the model interaction. In next section, we will discuss how to incorporate the compositional

performance effects into the automatic diagnosis framework.

6.3 Performance Knowledge Engineering Adaptive to Model

Composition

At the core of our automatic performance diagnosis approachis engineering perfor-

mance knowledge from computational models, which proceedsin four stages, from behav-

ioral modeling→ performance modeling→ model-specific metric definition→ inference

modeling. The model-specific knowledge is stored into a basewhich, if interfacing to an

appropriate inference engine, will support automatic performance diagnosis. A program us-

ing a customized parallel model may introduce new diagnostic requirements as to problem

discovery and inferencing. Our four-step knowledge engineering approach is applicable

to the program-specific knowledge as well. The user can follow the principles to extract

adapted knowledge step by step and then join them with the inherited model knowledge to

analyze their own programs. The model composition is another type of model variation. In

this case, instead of one single model, two or more are combined together in a program. In

this section, we extend our knowledge engineering approachto address performance issues
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arising from the model interaction, so that the user can use the approach as the guideline

to “compose” performance knowledge about a compositional model from already available

knowledge of individual participant models.

6.3.1 Behavioral Modeling

Behavioral modelingcaptures program execution semantics as behavioral modelsrep-

resented by a set of abstract events at varying detail levels, depending on the complexity

of the model and diagnosis needs. The purpose of the abstractevents in the diagnosis

system is to give contextual informaton for performance modeling, metric definition, and

diagnostic inferencing. An abstract event description essentially includes anexpression

that takes the form ofF (C1, C2, ..., Ck). The expression names the constituent component

Ci (typically, an indivisible computational component or communication function) and en-

forces their occurrence orderF using event operators. Model composition may interleave

constituent components of abstract events from different models.

We describe behavioral characteristics of a compositionalmodel (or called composite

events) by integrating already available abstract events of the participant models (or called

basic events) in a manner that conforms to their compositionstyle, nesting or restructuring.

We use the order operatorssequential(◦), choice(|), concurrent(∆), repetition(+ or *),

andoccur zero or one time([]) to specify occurrence order of the basic events. As shown

in equation 6.1 model nesting requires that a component in a root model event be replaced

by a whole basic event from the child model.

Model restructuring brings up a more complicated scenario where two basic events

from different models interleave their components together as shown in equation 6.2. In this

case, we can first look at the compositional behavior and represent it with an abstract event

expression without considering constituent components’ semantics in their original models.

Then we discern and sort out the constituent components intotheir original models, and

annotate the components at the model switch points to distinguish the model interleaving

pattern.
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6.3.2 Performance Modeling and Metric Formulation

Performance modelingis carried out based on the structural information in the abstract

events. The modeling leads to the formulation ofperformance metricsthat represent the

performance properties dictated by the model semantics. Wecan use the metrics to learn

and evaluate various aspects of a model performance.

Performance metrics in a compositional model are not simplya union of the metrics in

participant models. As we discussed in section 6.2, they maychange as to their occurrence

locations and evaluation rules. In the model restructuring, delegated delay and composite

delay can be identified when performance modeling the composite abstract events. The

annotated components at model switch points provide a clue to where a performance delay

possibly transfers to. A performance loss that originally happens in a model now should

take into account the interleaving model’s cumulative effects in the evaluation.

6.3.3 Inference Modeling

Inference modelingcaptures and represents the performance bug search and interpre-

tation process formally. Targeting performance interpretation at a high-level abstraction,

we aim to find performance causes (i.e., an interpretation ofa performance anomaly) at

the level of parallelization design, that is, to attribute aperformance problem to the culprit

model factor. The performance inferencing is therefore themapping of low-level perfor-

mance measures to high-level performance factors. The inference process is captured in the

form of an inference tree where the root is the symptom (i.e.,a performance anomaly devi-

ating from the expected) to be diagnosed, the branch nodes are intermediate observations

obtained so far and needing further performance evidences to explain, and the leaf nodes

are explanations of the root symptom in terms of high-level performance factors associated

with the computational model used.

We generate the inference tree for a compositional model by merging the individual

inference trees of the participant models. The inference tree merge for a nested model

is based on its model hierarchy, where we expand the inference tree of the root model

with relevant tree branches of the child models in the hierarchy. Recall that each node in

an inference tree represents an intermediate observationsthat is obtained by evaluating a
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model-specific metric. If an involving component in a metricevaluation is refined by a

new model, the sub-trees associated with the metric will be expanded with the new model’s

inference tree. The algorithms for merging inference treesof model nesting is presented in

Appendix A. An example of tree-merging is shown in section 6.5.2 with FLASH code.

For constructing an inference tree of model restructuring,we merge inference trees of

the participant models that share the same performance symptom, that is, root node. We

pick one model tree as the host to expand with inference processes of a second model. The

host tree is usually the one of highest complexity among the involving models. We add

in the inference tree of the second model node by node – we lookfor the node’s correct

location in the host and build its connections with the host tree nodes according to the

interaction pattern of the two models. Starting from the root node, if there is a node in

the host that represent the same semantics (i.e., performance metric type), we remove the

node from the second tree and set its equivalent node in the host as parent of its sub-trees.

Otherwise, we remove the node and its sub-trees from the second tree and merge them

under the node’s parent in the host. In this case, we also needto check if the node or its

children represents a performance metric that is transfered from the host due to the model

interaction (i.e., delegated performance metric), or viceversa. We draw a line pointing

from the deputy model node to the delegator model node. Similarly at a node representing

a composite metric, relevant nodes from the both models willconnect to the node to reflect

the cumulative performance effect. The merge continues until the second tree is empty. The

algorithms for merging inference trees of model restructuring is presented in Appendix B.

We will show an example of building inference tree for model restructuring in section 6.5.1.

In the section 6.5, we will illustrate how to generate performance knowledge about

compositional models with two example applications, FLASHand PDLAHQR, using the

approach presented above.

6.4 Hercule Support for Compositional Model Diagnosis

Hercule’s singleton model analysis facilities can also support the compositional diagno-

sis if provided with the performance knowledge specific to the model composition. Given
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two models whose performance knowledge has been stored in the knowledge base, the

user needs to generate and input the extra knowledge imposedby their interaction pattern

to diagnose a specific algorithm, which includes the combined abstract event descriptions,

composite metric evaluation rules, performance factors specific to the model interaction,

and interfacing inference steps that link two inference trees together in accordance with

their interaction pattern. The guidelines to generate the compositional knowledge from the

already available base model knowledge have been provided in section 6.3. The knowledge

engineering approach, in contrast to building everything from the scratch, can effectively

reduce the users’ burden enforced by the diagnostic process. In next section, we will apply

Hercule to two real world applications to demonstrate the effectiveness of our diagnosis

approach.

6.5 Experiments

6.5.1 ScaLAPACK nonsymmetric QR algorithm – PDLAHQR

PDLAHQR is a parallel QR algorithm solving the nonsymmetriceigenvalue problem

in ScaLAPACK. This implementation of the QR algorithm performs QR iterations implic-

itly by chasing multiple bulges down the subdiagonal of an upper Henssenberge matrix in

parallel. The bulge chase dictates a variant of pipeline model that works as follows. The

processors are arranged logically as a grid of R rows and C columns. The matrix is decom-

posed intoL × L blocks, which are parceled out to the processors by a two-dimensional

(block cyclic) torus wrap mapping. When theith bulge is chased down to thei + 1th row

of processor, thei + 1th bulge can start at the first row of processor. It is not until the

i+1th bulge starts that the processors located on thei + 1th row or thei + 1th column are

occupied and start to work. When theith bulge reaches thei + 1th row, first the leader of

thei+1th row, usually the processor located on the grid diagonal, starts to do householder

transform. And then the leader broadcasts the householder information horizontally to the

i + 1th row and vertically to thei + 1th column so that the neighbor processors located

at the same row or column as the leader become busy. This variant of pipeline model of

parallelism increase scalability of the QR implementationsignificantly. Due to the block
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FIGURE 6.1: PDLAHQR dynamic communication structure in four successive compute
phases on a 3x3 processor grid.

cyclic data distribution, neighbor processors communicate in two scenarios. The first is the

leader processor broadcasting householder information toneighbor processors at the same

row or column. The second happens when a bulge moves from one block to another, which

may incur a neighbor communication of the border between theblocks that the two neigh-

bors share. So we can view the application as a combination ofpipeline and geometric

decomposition model. The dynamic communication structureof four successive compute

phases in the application is illustrated in the Figure 6.1, assuming a3 × 3 processor grid.

Identify and describe model composition pattern

The first step towards generating performance knowledge is to investigate how the

two singleton models, pipeline and geometric decomposition, interleave in the application.
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Generally pipeline and geometric decomposition behavior can be described as:

ITERpl{RECVpl ◦ COMPUTEpl ◦ SENDpl}

and

ITERgd{RECV ∗

gd ◦ COMPUTEgd ◦ SEND∗

gd}

respectively, whereRECVpl andSENDpl represent receive data from preceding pipeline

stage and send data to succeeding stage, andRECVgd andSENDgd represent receive data

from and send data to neighbors respectively. We useITER here instead of * to distinguish

different iteration semantics in the two models.

Since there are two distinct types of processor, row leader and non-leader, we describe

their behaviors in PDLAHQR separately as

ITERpl{RECVpl ◦ COMPUTEpl ◦ SENDrow
gd }◦

ITERpl{SENDcol
gd }◦

ITERgd{RECV ∗

gd ◦ COMPUTEgd ◦ SEND∗

gd}

(6.3)

for row leaders, and

(ITERpl{RECV row
gd }|ITERpl{RECV col

gd })◦

ITERgd{RECV ∗

gd ◦ COMPUTEgd ◦ SEND∗

gd}
(6.4)

for non-leaders. From the above behavior descriptions, we can see that the model compo-

sition in PDLAHQR falls into the category of model restructuring.

Performance metric characteristics

Based on the above model behavior descriptions, we shall focus on detecting and for-

mulating delegated and composite performance delays distinct to the model restructuring.

As seen in formula (6.4), since non-leader processors do nothave explicit pipeline oper-

ations, a pipeline delay, such as idle time due to the pipeline start-up, handshaking, and
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FIGURE 6.2: Construct compositional model inference tree for PDLAHQR. The top two
trees represent pipeline and geometric-decomposition performance inference respectively,
and they combine into the PDLAHQR inference tree on the bottom according to its model
restructuring. Some subtrees are abbreviated in the composition model for conciseness.

wind-down, manifests as the communication delay atRECV row
gd or RECV col

gd , which are

classified as neighbor communication inefficiency in the original geometric decomposition

model. There are also composite delays in the application. In the iterationITERgd, a

row leader needs to exchange data with non-leader neighbor processors.RECVgd in the

formula (6.3) may reflect not only work balance between the neighbors atCOMPUTEgd,

but the extra more workload the row leader undertakes in two precedingITERpl iterations

than the non-leaders. So the communication delay occurringat theRECVgd should take

into account pipeline compute’s performance impact in its evaluation.
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MPI_Bcast() MPI_Recv() PDLAHQR MPI_Allreduce()

FIGURE 6.3: Paraprof view of performance profiles in the PDLAHQR run. Wedisplay
most expensive program functions here.

Merge inference trees of participant models

Constructing compositional model inference tree for PDLAHQR is simply to merge in-

ference trees of pipeline and geometric decomposition. As shown in Figure 6.2, subtrees in

the two models that share the same semantic parent node (e.g., communication and compu-

tation) combine into one single tree rooted at the parent node. Subtrees from different mod-

els remain independent unless they have nodes addressing a delegated or composite perfor-

mance metric.neighbor comm. node in geometric decomposition model, for instance, has

pl fillup andpl handshaking nodes in pipeline model as its children. Connected with a

delegation arrow, the relation means that an expensive neighbor communication may look

for its cause at pipeline fill-up or handshaking. And computeimbalance, a commonly-seen

performance phenomena in geometric decomposition, may be interpreted in part by the

extensive pipeline compute considering the interleaving pattern of the two models. The

relation is denoted by the composition arrow connecting thenodes from the two models.

Experiment results with PDLAHQR

We run the PDLAHQR program on a IBM pSeries 690 SMP cluster with 16 processors.

We set a4×2 processor grid and use PDLAHQR to compute the nonsymmetric eigenvalue
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of a 100 × 100 matrix. The Figure 6.3 shows performance profiles of the execution of

PDLAHQR, where major program functions are presented in order of decreasing mean ex-

ecution time across processors. We can see here that MPIBcast() and MPIRecv() time

dominate, which are main communication functions used in the pipeline and geometric de-

composition model. Hercule first conducts an experiment to find a performance symptom,

expensive communication cost.

--------------------------------------------------- ---------
Found PDLAHQR.clp ... Loading
Begin diagnosing PDLAHQR program
... ...
Level 1 experiment -- collect performance profiles with
respect to computation and communication.
___________________________________________________ _________
do experiment ... ...

Average communication time account for 73.15% of overall
execution time. Communication cost dominates.
___________________________________________________ _________

Hercule then investigates communication cost associated with models. It looks at geometric-

decomposition performance first, and identifies the performance effects of the pipeline

model.

___________________________________________________ _________
Level 2 experiment -- collect performance profiles with
respect to two models used in the program, Pipeline and
Geometric-decomposition.
___________________________________________________ _________
do experiment ... ...

Processors spent 13.23% of communication time in Pipeline
compute and 78.26% in Geometirc-decomposition compute.
___________________________________________________ _________
First we look at geometric-decomposition compute.

Level 3 experiment for diagnosing geometric-decompositio n
model related problems -- collect performance event trace
with respect to neighbor communication, and interaction co st
with pipeline model.
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___________________________________________________ _________
do experiment ... ...

Waiting time associatd with geometric-decomposition
comprises 37.32% of communication time.
___________________________________________________ _________
In geometric-decomposition, load imbalance due to
interleaving with pipeline compute results in waiting
time that account for 17.83% of communications.
___________________________________________________ _________
In geometric-decomposition, communication delay delegat ed
from pipeline comprises 10.55% of communication
time.
___________________________________________________ _________
Level 4 experiment for diagnosing pipeline performance imp act
on geometric-decomposition performance -- collect perfor mance
event trace with respect to pipeline fill-up, handshaking,
and wind-down impact on nearest neighbor communication.
___________________________________________________ _________
do experiment ... ...

Pipeline fill-up delay propagates to compute/communciati on
component in geometric-decomposition, which results in wa iting
time that comprises 3.97% of communications.
___________________________________________________ _________
Pipeline handshaking delay propagates to compute/
communication component in geometric-decomposition, whi ch
results in waiting time that comprises 6.58% of communicati ons.
___________________________________________________ _________
Pipeline wind-down delay propagates to compute/communcia tion
component in geometric-decomposition, which results in
waiting time that comprises 0.0 of communications.
___________________________________________________ _________

Hercule then interpretes pipeline performance.

___________________________________________________ _________
Level 3 experiment for diagnosing pipeline model related
problems -- collect performance event trace with respect to
pipeline compute, and interaction cost with geometric-
decomposition.
___________________________________________________ _________
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do experiment ... ...

Waiting time associatd with pipeline compute comprises 11. 49%
of communication time.
___________________________________________________ _________
Pipeline waiting time due to the interaction with geometric -
decomposition comprises 0.0 of communicaiton time.
___________________________________________________ _________
Pipeline fill-up cost in explicit PL compute comprises 1.46 %
of communicaiton time. That is, processes at the pipeline
tail are idle for 1.46% of communication time when pipeline
is growing up.
___________________________________________________ _________
Passing along data among successive pipeline stages
(handshaking) in explicit PL compute comprises 5.98% of
communication time.
___________________________________________________ _________
Pipeline wind-down cost in explicit PL compute comprises 3. 79%
of communication time. That is, processes at pipeline head
are idle 3.79% of communication time waiting for the pipelin e
to empty up at the end of the iteration.
___________________________________________________ _________

Hercule is also able to explain performance of dynamic behaviors distinct to the PD-

LAHQR algorithm. Since the algorithm is iterative the size of the active matrix is decreased

by deflations. Each deflation causes a portion of the matrix tobecome inactive. As large

portions of the matrix becomes inactive, processors begin to fall idle. Both pipeline and

geometric-decomposition performance are affected by the dynamic program behavior.

___________________________________________________ _________
Pipeline sweeps in some iterations do not grow deep enough to
make every process active due to data characteristics of the
iterations. Some processes therefore fall idle. Such idle
time comprises 0.76% of communication time.
___________________________________________________ _________
Dynamic load imbalance may arise as the compute step
increases. The load imbalance causes processor idleness
that comprises 6.65% of communication time in geometric-
decomposition compute.
___________________________________________________ _________
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6.5.2 FLASH

FLASH [4, 5] is an astrophysical hydrodynamics code developed at the center for As-

trophysical Thermonuclear Flashes at the University of Chicago. FLASH is intended for

parallel simulations that solve the compressible Euler equations on an block-structured

adaptive mesh. Adaptive Mesh Refinement (AMR) is handled using the PARAMESH li-

brary. PARAMESH employs a tree structure of logically Cartesian blocks to cover the

computational domain. Each block in the domain is refined by halving the block along each

dimension and generating a set of new sub-blocks, each of which has a resolution twice that

of the parent block. When a block is de-refined, sibling blocks are removed. Each block

is represented by a node in the tree structure. The node stores information about its parent

block, child blocks, and neighboring blocks. An example of atwo-dimensional domain

and its tree structure is shown in Figure 6.4. For the sake of load-balance across proces-

sors, a redistribution of blocks is performed using a Mortonspace-filling curve [16] after

all refinements and de-refinements are completed. So a block may be placed on a different

processor from it parent or siblings.

Regardless of the particular algorithm, AMR dictates a set of basic operations which

include guardcell filling, refining and de-refining grids, prolongation of the solution to

newly created leaf blocks, restriction of the solution up the block tree, data redistribution

when the grid block tree is rearranged (load balancing), etc. In the FLASH implementation,

implied in the operations is the communications dictated bythe grid block tree structure

with the blocks being distributed to different processors and the maintenance of the tree

structure with mesh refinement and de-refinement. We therefore view the FLASH code

as a combination of two parallel computational models, AMR and Parallel Recursive Tree

(PRT).

Identify and Describe Model Composition Pattern

AMR model consists of a set of basic mesh grid operations and data operations. The

mesh grid operations includes:

• AMR Refinement, refine a mesh grid
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FIGURE 6.4: The tree structure that represents a set of blocks coveringa fixed two-
dimensional domain (adapted from [5]). A refined block has a cell size half that of the
parent’s. The number near the center of each block is its Morton number. The symbols in
the tree shows on which processor the block is located on a four-processor machine.

• AMR Derefinement, coarsen a mesh grid

• AMR LoadBalance, even out work load among processors after a refinement or dere-

finement

The data operations corresponding to the mesh rebuilding includes

• AMR Guardcell, update guard cells at the boundary of every grid block with data

from the neighbors

• AMR Prolongation, prolong the solution to newly created leaf blocks after refine-

ment
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• AMR Restriction, restrict the solution up the block tree after derefinement

• AMR DataRedistribution, data redistribution resulting from mesh redistribution when

balancing workload

All the AMR operations in the Flash code are closely related to its grid block tree,

which determines the communication needs and data movements. Parallel recursive tree

model consists of a set of generic operations that include:

• PRTcommto parent, communicate the processor on which the parent block is lo-

cated.

• PRTcommto child, communicate to the processor where the child block is located.

• PRTcommto sibling, communicate to the processor where the sibling block is lo-

cated.

• PRTbuild tree, initialize tree structure, or migrate part of the tree to another proces-

sor and rebuild the connection.

In Flash code, every AMR operation recalls the set of PRT operations to perform its

function. The work mechanism of theAMR Refinement, for instance, is first to generate

a list of children of the grid blocks to be refine, then to connect the new children blocks

with off-processor neighbors designated by the parent blocks. The links between the new

children and the parent neighbors are built through PRT operations. In other words, the

computation of every component in the AMR model is reduced into PRT operations, while

the semantic integrity of the two models are preserved. So the model composition in the

FLASH code falls into the category of model nesting. The nesting forms a two-level model

hierarchy where AMR is the root model that dictates the parallelism of the overall solution,

and PRT the second-level model that addresses parallelization and implementation of the

AMR operations.

Performance Modeling and Metric Characteristics

Due to the model nesting property of FLASH code, we intend to explain the perfor-

mance in terms of its model hierarchy. The performance modeling starts with the root
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model, then fills the lower-level model into the root framework to refine performance

overhead categories.1 Performance overhead types of the nested model compositionis

the union of the overheads associated with the individual participant models. To reflect

the model hierarchy structure, however, we refine a performance overhead further into a

number of context-aware types that indicate different occurrence circumstances within the

model heirarchy. Guardcell filling, for instance, is one of the main sources of program

inefficiency in AMR model. Due to the use of PRT model for data communication in

the FLASH code, the guardcell filling overhead can be furtherbroken down in terms of

PRT overhead classes, i.e., communication cost with the parent nodes, child nodes, and

neighbors nodes in the grid block tree. So it is possible to look into PRT performance

as well within the AMR framework. Performance metrics that quantitatively evaluate the

overheads are also organized in the hierarchy dictated by the model nesting to support the

top-down performance problem search. In this way, we allow for capturing performance

bugs at different levels of the model hierarchy and provide acontext for performance inter-

pretation in terms of the cross-level model interaction.

Merge Inference Trees of Participant Models

The construction of FLASH inference tree is essentially to extend the AMR inference

tree with PRT inference steps. The Figure 6.5 shows the mergeprocess. We can see from

the figure that some AMR subtrees are extended with PRT branches, which means that a

performance problem found relating to the subtree roots canbe further tracked down to

the PRT operations used.parent prolong in AMR guardcell filling, for instance, involves

communications to parent, child, and/or sibling in the gridtree. Its performance counts on

these PRT operations along with the factors in the original AMR model. So when there is

a problem withparent prolong, we should incorporate the relevant PRT inference steps to

find the possible causes.
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+

FIGURE 6.5: Construct compositional model inference tree for FLASH. The top two
trees represent AMR and PRT performance inference respectively, and they combine into
the FLASH inference tree on the bottom according to the modelnesting in the FLASH
code. Added PRT subtrees are highlighted in the FLASH tree and marked with indices in
their original PRT tree. Some subtrees are abbreviated for conciseness.

Experiment results with FLASH3

We experiment with the Sedov explosion simulation in the FLASH3.0, and run the

simulation on a IBM pSeries 690 SMP cluster with eight processors. The Figure 6.6 shows

performance profiles of a simulation run, where major program functions on each proces-

sor are presented in order of decreasing mean exclusive execution time. From the profiles

we can see that communications, including MPISsend(), MPIAllreduce(), MPIBarrier(),

MPI Waitall(), dominate the runtime. But the profiles provide little insight into the perfor-

mance of the AMR operations or the supporting data communications with PRT.

Hercule first conducts an experiment to find the performance symptom, expensive com-

1For this work, we created new singleton models for AMR and PRT.
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MPI_Waitall()
MPI_Alltoall()

MPI_Allreduce() MPI_Barrier()MPI_Ssend()

FIGURE 6.6: Paraprof view of performance profiles in the FLASH run. We display most
expensive program functions here.

munication cost.

___________________________________________________ _________
Begin diagnosing AMR program
... ...
Level 1 experiment -- collect performance profiles with
respect to computation and communication.
___________________________________________________ _________
do experiment 1... ...

Communication accounts for 80.70% of run time.
Communication cost of the run degrades performance.
___________________________________________________ _________

Hercule then looks at the performance of the the top level model, AMR.

___________________________________________________ _________
Level 2 experiment -- collect performance profiles with
respect to AMR refine, derefine, guardcell-fill, prolong,
and workload-balance.
___________________________________________________ _________
do experiment 2... ...

Processes spent
4.35% of communication time in checking refinement,
2.22% in refinement,
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13.83% in checking derefinement (coarsening),
1.43% in derefinement (coarsening),
49.44% in guardcell filling,
3.44% in prolongating data,
9.43% in dealing with work balancing,
___________________________________________________ _________

Hercule then picks the most expensive AMR operation, guardcell-filling, to look at its per-

formance in details, especially the performance of second level model PRT that implements

guardcell-fillings.

___________________________________________________ _________
Level 3 experiment for diagnosing grid guardcell-filling
related problems -- collect performance event trace with
respect to restriction, intra-level and inter-level
communication associated with the grid block tree.
___________________________________________________ _________
do experiment 3... ...

Among the guardcell-filling communication, 53.01% is spen t
restricting the solution up the block tree, 8.27% is spent
in building tree connections required by guardcell-fillin g
(updating the neighbor list in terms of morton order),
and 38.71% in transferring guardcell data among grid blocks .
___________________________________________________ _________
The restriction communication time consists of 94.77%
in transferring physical data among grid blocks, and 5.23%
in building tree connections.

Among the restriction communication, 92.26% is
spent in collective communications.

Looking at the performance of data transfer in restrictions
from the PRT perspective,
remote fetch parent data comprises 0.0%,
remote fetch sibling comprises 0.0%,
and remote fetch child comprises 100%.
Improving block contiguity at the inter-level of the PRT
will reduce restriction data communication.
___________________________________________________ _________
Among the guardcell-filling communication, 65.78% is
spent in collective communications.
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Looking at the performance of guardcell data transfer from
the PRT perspective,
remote fetch parent data comprises 3.42%,
remote fetch sibling comprises 85.93%,
and remote fetch child comprises 10.64%.
Improving block contiguity at the intra-level of the PRT
will reduce guardcell data communication.
___________________________________________________ _________

In FLASH, the AMR Guarcell algorithm first restricts the data at ”leaf” blocksup to

the parent block, then all blocks that are leaf blocks or are parents of leaf blocks ex-

change guardcell data with any neighbor blocks they might have at the same refinement

level. Hercule explains guardcell-filling performance from two dimensions here. It in-

forms performance of each functional category, including AMR Restriction, building tree

connection, and guardcell data transportation. It also breaks down communications into

collective and point-to-point (P2P) groups. The collective operations used in FLASH

include MPIAllreduce, MPIBarrier, MPI Alltoall, etc. The P2P includes MPISsend,

MPI Irecv and MPIWaitall pair, which are mostly used in the tree-related datatransfer.

From figure 6.6 we already know that these operations dominate the runtime. Hercule dis-

criminates the performance of these two types of communication in AMR Guardcell and

AMR Restriction, and interprets the P2P performance as reflected in the PRT compute.

The users can thereby obtain an extensive insight into the FLASH performance from the

perspective of the parallel models they coded with.

It is important to note is that Hercule automated all aspectsof the diganosis process,

including experiment construction, performance analysis, and performance causal infer-

encing.

6.6 Chapter Summary

Models of parallel computation are useful for discovering and explaining performance

problems of parallel applications. For programs based on singleton models, we have shown

that capturing knowledge of model behaviors, performance properties, and inference rules
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proves effective for diagnosis automation [11]. However, the approach will be limited in

practice if we do not allow for more complex applications that combine multiple compu-

tational methods. In this chapter, we extend the model-based diagnosis methodology to

support compositional models that integrate singleton computational patterns. Model nest-

ing and model restructuring are two general compositional forms for which we discuss

systematic steps to generate the performance knowledge necessary for automatic diagno-

sis of compositional programs. Our approach addresses the performance implications of

model integration so that performance losses due to model interaction can be detected and

interpreted. We implemented compositional performance diagnosis in Hercule framework

and tested it with two scientific applications, FLASH and PDLAHQR. The experiment re-

sults reported here suggest that automatic diagnosis of compositional model performance

is viable and effective.

Acknowledgements: The FLASH software used in this work was developed by the

DOE-supported ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the Uni-

versity of Chicago.
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CHAPTER 7

Conclusion

This dissertation presented a new approach to performance analysis of parallel pro-

grams, model-based automatic performance diagnosis. While previous research has pro-

duced a wide range of approaches for performance tuning, fewof these ideas have suffi-

ciently improved the ease of performance bug discovery and causal reasoning at a high-

level program abstraction. Our view is that the primitive performance data evaluation and

inferencing ought to be handled by performance tools, freeing the programmer to concen-

trate on the higher-level, algorithmic aspect. Our approach is motivated by the observa-

tion that by coding with computational models, parallel programs are already providing

a well-defined abstraction of structural and parallelization design. We therefore devise a

knowledge engineering approach that captures and codifies performance information from

computational models. By using the performance knowledge,we can significant improve

the quality of performance analysis as well as reduce the manual work imposed on the users

compared to existing performance analysis tools. To substantiate this claim, we developed

Hercule, a prototype automatic performance diagnosis tool, and apply it to a variety of

parallel programs and scientific computations.

7.1 Research Contributions

We presented our model-based performance knowledge engineering approach, which

addresses some important issues in performance analysis tool design.
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• Our approach provide performance feedback at the program design-level, without

requiring the users to evaluate and reasoning about performance with primitive mea-

surements . The advantage of building a tool using our approach is that it can be

used by novice programmers to find performance problems directly related to the

programming model they coded with.

• Model-derived performance knowledge makes it possible to automate performance

analysis processes. Model-specific information can guide experiment design, help

pinpoint performance problems, and provide a semantic context for the problem-

explanation. Performance experts implicitly use the information in analyzing their

codes. We encode the expertise in a form that supports automatic performance diag-

nosis for non-expert users.

• Our model-based performance knowledge generation approach leverages a signifi-

cant body of proven performance analysis techniques, such as behavioral modeling,

performance modeling, metric formulation, and causal performance inferencing. We

adapt and enhance the techniques by taking into account program semantics, and

bring them together under a performance diagnosis framework.

• The knowledge engineering approach emphasizes adaptationto model variations

which include algorithm-specific implementation and multiple model compositions.

We provide a set of guidelines that help the user identify performance nuances intro-

duced by the variations. Besides, each step towards the knowledge generation, like

behavioral modeling and causal performance inferencing, is presented in a manner

that can easily incorporate new performance information. In this sense, our approach

produces a performance knowledge base that serves as a foundation of model-specific

expertise which the users can inherit and extend into implementation-specific perfor-

mance knowledge.

• We demonstrated the knowledge generation and encoding withboth single and com-

positional models. And our later experiments with some real-world parallel applica-

tions show that the encoded knowledge, when judiciously interfacing to an inference
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engine, can provide in-depth insight into parallel performance, while requiring only

minimum intelligent input.

We developed Hercule system that implements our model-based performance diagnosis

approach. Hercule presents a new performance analysis framework with encoded perfor-

mance knowledge being the core of the system. To date the knowledge base in Hercule

system has included master-worker, pipeline, divide-and-conquer, AMR, and PRT model

knowledge. We have demonstrated that Hercule is an viable system that is able to design

performance experiments and conduct bug search and causal reasoning in an automated

manner. Herule experiment results also corroborate the usefulness of designing tools based

on our model-based approach. Experiments with Sweep3d application demonstrate Her-

cule’s capability of relative performance diagnosis, i.e., contrasting performance of two

problem scales and explaining the difference in terms of model semantics. Parallel applica-

tions representing different model composition styles arealso investigated under Hercule

framework. In this case, Hercule can not only provide model-specific performance feed-

backs but identify the performance losses due to model interactions.

7.2 Future Research Directions

Our work represents the first step in exploiting models as a means to incorporate pro-

gram semantics in performance analysis. Our results and experiences point to several di-

rections for future research:

• While we provide salient guidelines to derive performance knowledge from already

available base model knowledge, thereby significantly reducing the complexity of

knowledge engineering for compositional models, the process is still manual. As

more singleton and compositional models are developed, thepractice will improve

in quality and more reuse will be possible. An interesting area for future work is

to consider automatic techniques to transform and merge existing singleton perfor-

mance knowledge into performance knowledge according to compositional rules.

There are many useful features that we could include in future versions of Hercule.
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• We will continue to enhance Hercule adaptability to the nuances and complexities of

parallel programs. In current version of Hercule, the user needs to identify algorith-

mic variations to the model stored in knowledge bases and encode the differences into

performance knowledge necessary for automatic diagnosis.Hercule may help tackle

the complexity by supporting for knowledge customization,e.g., specify differences

in abstract event descriptions and metric evaluation rules. Hercule then transforms

the differences into system-readible format automatically and incorporates them into

relevant diagnosis system components.

Hercule may also target irregular, non-model based parallel programs. Instead of

exhaustive performance problem diagnosis, the goal here isto find and explain major

performance issues by loosely matching the program with models. As more models

are developed, we envision that a wide variety of parallel execution patterns will be

captured and encoded in abstract event library. Hercule mayallow the user to look up

close behavioral descriptions in abstract event library, which may be from different

models, and specifies the combination forms of the retrievedabstract events. Hercule

then automatically composes the performance inferencing processes associated with

these abstract events into performance knowledge specific to the program. There will

certainly be a diagnosis validity testing step involved afterward.

• Although Hercule already addresses scalability with selective instrumentation and

multiple level experiment management, the performance data processing will be

bottleneck of causal inferencing as problem scale increases. Hercule may include

proven scalable performance data management techniques under its framework. Per-

fExplorer [15], for instance, is such a technique that uses data mining operations to

simplify the management and analysis of large-scale parallel performance profiles.

Interfacing to the techniques can improve Hercule efficiency in the early inferencing

steps that involve identifying a predominant performance phenomenon to focus on

and synthesizing a large amount of measurement dataset intoperformance metrics at

a higher level of program abstraction.
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APPENDIX A

Algorithms for Chapter 6

A.1 Algorithms for Merging Inference Trees in Model Nest-

ing

Algorithm 1 Algorithms for merging inference trees in model nesting

Algorithm MERGE(T root, T child)
Input:

T root - inference tree of root model
T child - inference tree of child model

Output:
T root - root model inference tree extended with child model inference steps

BEGIN
ROOT⇐ root node ofT root

for all child nodeNi of ROOTdo
look at performance metricMi the nodeNi represents
if Mi involves a component which is implemented by modelT child then

if all children ofNi are leaf nodesthen
BRANCHES⇐ SEARCH(T root

Ni
, T child)

add BRANCHES as subtree ofNi

else
MERGE(T root

Ni
, T child)

end if
end if

end for
END
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Algorithm SEARCH(T root
N , T child)

Input:
T root

N - a subtree of root model rooted at nodeN
T child - inference tree of child model

Output:
subtrees ofT child that refinesN inference

BEGIN
SUBTREES⇐ φ
ROOT⇐ root node ofT child

if N refers to all children of ROOTthen
SUBTREES⇐ SUBTREES∪ T child

else
for all child nodeCi of ROOTdo

SUBTREES⇐ SUBTREES∪ SEARCH(T root
N , T child

Ci
)

end for
end if
return SUBTREES
END
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A.2 Algorithms for Merging Inference Trees in Model Re-

structuring

Algorithm 2 Algorithms for merging inference trees in model restructuring

Algorithm MERGE(T host, T 2nd)
Input:

T host - inference tree of host model
T 2nd - another inference tree that is to be merged into host
REQUIRE:T host andT 2nd have the same root node, i.e., symptom

Output:
T host - host model inference tree extended with 2nd model inference steps

BEGIN
ROOT⇐ root node ofT 2nd

PARENT⇐ LOOKUP(ROOT,T host) {look up a node inT host that has the same seman-
tics as ROOT}
if PARENT 6= NULL then

remove ROOT fromT 2nd

for all subtreesT 2nd
Ci

of ROOTdo
set PARENT asT 2nd

Ci
s parent node in host

MERGE(T host
PARENT , T 2nd

Ci
)

end for
else

addT 2nd as a subtree of its parent in host
LINK INTERACT(T host, T 2nd) {build up connections due to model interaction}

end if
END
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Algorithm LOOKUP(N , T host)
Input:

N - a node to be merged into host
T host - inference tree of host model

Output:
The node inT host that has the same semantics asN

BEGIN
ROOT⇐ root node ofT host

if ROOT andN represent the same performance metricthen
return ROOT

else
let T host

Ci
(i = 1, . . . , k) be subtrees of ROOT

i ⇐ 1
while i <= k do

NODE⇐ LOOKUP(N,T host
Ci

)
if NODE == NULL then

i + +
else

return NODE
end if

end while
return NULL

end if
END

Algorithm LINK INTERACT(T host, T 2nd)
Input:

T host - inference tree of host model
T 2nd - inference tree of another model to be merged

Output:
T host - host model inference tree extended with branches due to interaction with the

2nd model
BEGIN
ROOT⇐ root node ofT 2nd

NODE INTERACT(T host, ROOT)
for all subtreesT 2nd

Ci
of ROOTdo

LINK INTERACT(T host, T 2nd
Ci

)
end for
END
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Algorithm NODE INTERACT(T host, NODE)
Input:

T host - inference tree of host model
NODE - a node to be merged into host

Output:
T host - host model inference tree extended with branches due to interaction with

NODE in 2nd model
BEGIN
ROOT⇐ root node ofT host

if performance metric at ROOT transforms into the one at NODEthen
draw a delegation arrow connecting NODE to ROOT

end if
if metric at ROOT contributes to metric at NODEthen

draw a composition arrow connecting NODE to ROOT
end if
for all subtreesT host

Ci
of ROOTdo

NODE INTERACT(T host
Ci

, NODE)
end for
END
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