MODEL-BASED AUTOMATIC PERFORMANCE DIAGNOSIS OF PARALLEL
COMPUTATIONS

LILI

A DISSERTATION

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

February 2007

“Model-based Automatic Performance Diagnosis of Par&l@hnputations,” a dissertation
prepared by Li Li in partial fulfilment of the requirementsrfthe Doctor of Philosophy
degree in the Department of Computer and Information Seiehhis dissertation has been

approved and accepted by:

Dr. Allen D. Malony, Chair of the Examining Committee

Date

Committee in charge: Dr. Allen D. Malony, Chair
Dr. Stephen Fickas
Dr. Virginia Lo

Dr. Daniel Steck
Dr. Xian-He Sun

Accepted by:

Dean of the Graduate School

© 2007 Li Li

An Abstract of the Dissertation of
Li Li for the degree of Doctor of Philosophy
in the Department of Computer and Information Science
to be taken February 2007
Title: MODEL-BASED AUTOMATIC PERFORMANCE DIAGNOSIS OF

PARALLEL COMPUTATIONS

Approved:

Dr. Allen D. Malony

Scientific parallel programs often undergo significant genfance tuning before meet-
ing their performance expectation. Performance tuningradly involves a diagnosis pro-
cess — locating performance bugs that make a program imeiffiegind explaining them
in terms of high-level program design. Important perforceameasurement and analy-
sis tools have been developed to support the performandgsanwaith the facilities of
running experiments on parallel computers and generategsorement data to evaluate
performance. However, current performance analysis tdogg does not yet allow for
associating found performance problems with causes athaléigl program abstraction.
Nor does it support the performance diagnosis process illauwemated manner.

We present a systematic method to guide the performanceasegprocess and sup-
port the process with minimum user intervention. The maoingaobservation is that per-

formance diagnosis can be greatly improved with the use ddprance knowledge about

parallel computation models. We therefore propose an agjprto generating performance
knowledge for automatically diagnosing parallel prograf@ar approach exploits program
execution abstraction and parallelism found in computafionodels to search and explain
performance bugs. We identify categories of knowledgeiredudor performance diagno-

sis and describe how to derive the knowledge from computatimodels. We represent
the extracted knowledge in a manner such that performameesircing can be carried out
in an automatic manner.

We have developed thdercule automatic performance diagnosis system that imple-
ments the model-based diagnosis strategy. In this diseertave present how Hercule
integrates the performance knowledge into a performanag/sis tool and demonstrate
the effectiveness of our performance knowledge engingapproach through Hercule
experiments on a variety of parallel computational mod#&e also investigate compo-
sitional programs that combine two or more models. We expartbrmance knowledge
engineering to capture the interplay of multiple modelsnnrdegrated state, and improve
Hercule capabilities to support the compositional perfamoe diagnosis. We have applied
Hercule to two representative scientific applicationshhaftwhich are implemented with
combined models. The experiment results show that, reguminimum user intervention,
model-based performance analysis is vital and effectigésoovering and interpreting per-

formance bugs at a high level of program abstraction.

CURRICULUM VITA

NAME OF AUTHOR: Li Li
PLACE OF BIRTH: Anhui Province, P.R. China

DATE OF BIRTH: June 24, 1976

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
Institute of Software, Chinese Academy of Sciences, BgijChina
Nanjing University, Nanjing, China

DEGREES AWARDED:
Master of Science, 2004, University of Oregon
Master of Science, 2000, Institute of Software, Chinesed&oay of Sci-

ences
Bachelor of Science, 1997, Nanjing University

AREAS OF SPECIAL INTEREST:

Performance tuning of parallel programs

PROFESSIONAL EXPERIENCE:

Research Assistant, Department of Computer and Inform&ence, Uni-
versity of Oregon, 2001-2006

Research Assistant, Institute of Software, Chinese AcgdeihSciences,
1997-2000

Vi

Vil

PUBLICATIONS:

Li Li and Allen D. Malony, "Model-based Performance Diagio®f
Master-worker Parallel Computations”, in the proceedimgsEuropar
2006.

Li Li, Allen D. Malony, "Knowledge Engineering for Automati Par-
allel Performance Diagnosis”, to appear in Concurrency@ohputation:
Practice and Experience.

Li Li, Allen D. Malony and Kevin Huck, "Model-Based Relative
Performance Diagnosis of Wavefront Parallel Computatioms High
Performance Computing and Communications, volume 4192eature
Notes in Computer Science, pp. 200-209, Springer Berlin idélberg,
2006.

Li Li and Allen D. Malony, "Automatic Performance Diagnosisf
Parallel Computations with Compositional Models”, aceepby the 12th
International Workshop on High-Level Parallel ProgramgnModels and
Supportive Environments, 2007

Li Li and Allen D. Malony, "Knowledge Engineering for Modélased
Parallel Performance Diagnosis”, Poster SC 2005 confereSeattle,
Washington, Nov. 12-18, 2005

A. D. Malony, S. Shende, R. Bell, K. Li, L. Li, N. Trebon, "Ad-
vances in the TAU Performance System,” Chapter, "Perfooaanalysis
and Grid Computing,” (Eds. V. Getov, M. Gerndt, A. Hoisie,Malony, B.
Miller), Kluwer, Norwell, MA, pp. 129-144, 2003.

viii

ACKNOWLEDGMENTS

| would like to express my deepest appreciation to my advidan Malony, who
consistently inspired and supported me in the past five yeaval not forget his encour-
agement and confidence in me in the periods when confusiofrastdation were great. |
greatly appreciate his guidance and advice, which have ma@mormous contribution to
this dissertation.

| thank the members of my committee, Stephen Fickas, Viadua, Daniel Steck, and
Xian-He Sun, for invaluable suggestions and feedback.

Special thanks go to Dr. Zena Ariola and Virginia Lo. Theyesdtaordinary examples
of successful woman in computer science. They keenly affsuggestions and assistance
along the way, and their help is greatly valued and appeidiat

| would not have completed this dissertation without my fgiwilove, support, and
patience over the long journey. | dedicate this dissematbomy grandparents, who made
this dissertation possible at its very beginning. | was b &0 go back to China to take
care of my grandma when she was badly ill. | hope this disserntavill make her smile,
just like she lightened up my life when | was a little girl.

| also dedicate the dissertation to my mentor, my best friemdhusband Kai. | would
thank him for growing up with me, and going through all thiglwine over the years. His
unwavering support and tolerance for me to explore my lifa way different from that of
traditional Chinese women helped make me the person | anheaoeértainly deserves most
of the credit for any accomplishments of mine. I'm grateful dur every day together.

To my grandparents and Kai.

TABLE OF CONTENTS
Chapter Page
1. INTRODUCTION e e e e e e e e e e 1
1.1 ThesisStatement 2
1.2 Contributions 3
1.3 Dissertation OVerview o v i i 6
2. PERFORMANCE DIAGNOSIS e 8
2.1 Generic Performance Diagnosis Process v 9
2.2 Knowledge-based Automatic Performance Dlagn05|s@q1|:h 11
2.2.1 Performance Knowledge. 11
2.2.2 ModelingInference Steps 12
2.2.3 Knowledge-based Automatic Performance Diagnosis. . . 13
2.3 Model-based Performance Diagnosis Approach 14
24 RelatedWork 16
2.4.1 Property- and Metric-based Performance Bottleneekc¢h . . 16
242 CausalityAnalysis o 18
2.5 ChapterSummary e 25
3. MODEL-BASED PERFORMANCE KNOWLEDGE ENGINEERING 26
3.1 Performance Knowledge Generation Based on Models 26
3.1.1 BehavioralModeling 28
3.1.2 Performance Modeling and Metric Formulating 31
3.1.3 Inference Modeling, 32
3.2 Case study — Divide-and-Conquer Model Knowledge Gé¢ioera 34
3.21 ModelDescription 34
3.2.2 BehavioralModeling 36
3.2.3 Performance Modeling 37
3.2.4 Model-specific Metric Definition 38
3.25 InferenceModeling 39

3.3 ChapterSummary e 41

Xi

4. HERCULE AUTOMATIC PERFORMANCE DIAGNOSIS SYSTEM 42

4.1 Design of Hercule — A Prototype Automatic PerformancagDpsis System 42

4.1.1 Encoding of Performance Knowledge 44
4.1.2 Encoding of Inference Processes and Hercule Inferéngine 45
4.2 Hercule Application from the Users Perspective 47
4.3 Validation of Hercule DiagnosisResults 49
4.4 ChapterSummary e 51
5. HERCULE EXPERIMENTS 52
5.1 Divide-and-Conquer Model and Parallel Quicksort 52
5.2 Diagnosing Master-worker Program 58
5.2.1 Knowledge Engineering for M-W Model 58
5.2.2 Experimentwith M-W Program 63
5.3 Wavefront (Pipeline) Model and Sweep3d e+ ... 66
5.3.1 Knowledge Engineering forWavefrontModeI 68
5.3.2 Relative Performance Diagnosis of Sweep3D 70
5.4 ChapterSummary e 81

6. PERFORMANCE DIAGNOSIS OF PARALLEL COMPUTATIONS WITH

COMPOSITIONAL MODELS s e e, 83
6.1 Introduction 83
6.2 Computational Model Composition. 84
6.2.1 ModelNesting 85
6.2.2 Modelrestructuringo 86
6.3 Performance Knowledge Engineering Adaptive to Modeh@osition . . 88
6.3.1 BehavioralModeling 89
6.3.2 Performance Modeling and Metric Formulation 90
6.3.3 Inference Modeling 90
6.4 Hercule Support for Compositional Model Diagnosis 91
6.5 EXperiments e 92
6.5.1 ScalLAPACK nonsymmetric QR algorithm — PDLAHQR . .. 92
6.5.2 FLASH. e 100
6.6 ChapterSummary e 107

7. CONCLUSION e e 109

Xil

7.1 Research Contributions 109

7.2 Future ResearchDirections 111
APPENDIX . . . o e 112
A. ALGORITHMS FORCHAPTERG 113

A.1 Algorithms for Merging Inference Trees in Model Nesting. 113

A.2 Algorithms for Merging Inference Trees in Model Restiuing 115

BIBLIOGRAPHY 118

Xiii

LIST OF FIGURES

Figure Page
2.1 A high-level overview of generic iterative diagnosiege#ss. 10
2.2 A high-level overview of knowledge-based automatigdiasis process. The

use of performance knowledge is annotated in the process.ste. 13
3.1 Generating performance knowledge from parallel moddtporithm variants

can derive performance knowledge from the basic genericeimod 27
3.2 Approachestorefiningsearchspace. 33

3.3 A D&C computation with 8 processors and three levels obmm splitting,
where each splitting divides processors into two group€kvhiork on orthog-
onal data sets independently. The processors merge suibsregth brother

processes as designated by the splittings. 35
3.4 An illustration of load-balancing in D&C. P3 mlgrates rwm)ads assomated

with branch node 3 and 4 to idle P4 and P2 respectively. 36
3.5 Two-level D&C abstract event descriptions.37
3.6 Aninference tree for performance diagnosis of D|V|dd é:onquer model .. 40
4.1 Hercule diagnosisframework e 43
4.2 Hercule and performance diagnosis validation system.. 50

5.1 Extended abstract event descriptionSolivein the parallel Quicksort algorithm. 53
5.2 Vampir timeline view in &olvephase of a parallel Quicksort run with five

PrOCESSES. i e e e e 55
5.3 Anillustration of Master-Worker pattern with a mastedawo workers. 59
5.4 An abstract event description of Master-Worker model 60
5.5 Inference Tree for Performance Diagnosis of M-W program 63
5.6 Clips implementation of c2 asserting master computdtioe (for setting up

task assignment)isacause. e 64.
5.7 Vampir timeline view of an example M-W program executian. 65
5.8 Graphical display of relative time spent in each furctba each node, context,

thread. e 66
5.9 Diagnosis result output from Hercule of the M-W testpaog. 67
5.10 Wavefront parallelism on a 3x3 process grid. Each nepleesents a processor

inthisgrid. 68
5.11 Abstract event description of Wavefront B9
5.12 An inference tree of Wavefront model that dlagnosessipmedup 70
5.13 Sweep3D strong scaling with problem size 150x150x&&0iE€3, mk=10) . . 73

5.14 Sweep3D weak scaling with problem size 20x20x320 (M3gmak=10) 78

Xiv

6.1 PDLAHQR dynamic communication structure in four susogscompute phases

6.2

6.3

6.4

6.5

6.6

ona3x3processorgrid. e
Construct compositional model inference tree for PDIG}¥ The top two

trees represent pipeline and geometric-decompositicionpeance inference
respectively, and they combine into the PDLAHQR inferemee bn the bot-
tom according to its model restructuring. Some subtreealalveeviated in the
composition model for conciseness.
Paraprof view of performance profiles in the PDLAHQR fAre display most
expensive program functionshere. Lo

95

96

The tree structure that represents a set of blocks cayafixed two-dimensional

domain (adapted from [5]). A refined block has a cell size tadt of the par-
ent's. The number near the center of each block is its Mortamber. The
symbols in the tree shows on which processor the block idédcan a four-

processormachine. e 110

Construct compositional model inference tree for FLASHe top two trees
represent AMR and PRT performance inference respectigely,they com-
bine into the FLASH inference tree on the bottom accordirthéamodel nest-
ing in the FLASH code. Added PRT subtrees are highlightethénRLASH
tree and marked with indices in their original PRT tree. Saubtrees are
abbreviated for conciseness. L Lo
Paraprof view of performance profiles in the FLASH run. #li&play most

expensive program functionshere. 105

LIST OF TABLES

Table

5.1 Performance Metrics of Quicksort.

5.2 Metric values of the M-W program.

XV

CHAPTER 1

Introduction

Scientific parallel programs often undergo significant @enfance tuning before meet-
ing performance expectation. Performance tuning najuialblves a diagnosis process —
locating performance bugs that make a program inefficiedteplaining them in terms
of high-level program design. The process of performanagribsis, including the gener-
ation and running of experiments, the characterizationeofgpmance properties, and the
locating and interpretation of performance problems (lpugsarticularly challenging to
automate because it fundamentally is an intelligent pedeerein we capture and apply
knowledgeabout performance problems, how to detect them (i.e., gymptoms and
why they exist (i.e., theicauses

This dissertation presents a new approach to performaratgsist model-based auto-
matic performance diagnosis. Our approach exploits progg@mantics and parallelism
embedded imodelsof parallel computations to search and explain bugs. Weeptesset
of principles to engineer performance knowledge from thel@®and use the knowledge
as the basis for building a framework to support automatetbpeance diagnosis. The
framework’s function is therefore guided by expert streedor automatic problem dis-
covery and hypothesis testing, strategies that are capaume encoded in the performance
knowledge base.

Hercule is such an automatic performance diagnosis framietivat we have developed
using the model-based approach. The Hercule system opa@stn expert system within
a parallel performance measurement and analysis toolkadeVlknowledge base is the

core of the system, which fuels the diagnosis process. Heattomates all aspects of the
diganosis process, including experiment constructionfop@ance analysis, and perfor-
mance causal inferencing. Hercule diagnosis results,inwdoasist of a list of performance
problems existing in the program and corresponding exfilams, are feedbacks at a high-
level program abstraction so the burdens imposed on theais&p primitive performance
data to computational design is greatly reduced.

Our experiments corroborate the effectiveness of desigtonls using model-based
approach. We have tested Hercule on a variety of parallgrpms and scientific com-
putations, coded with singleton or compositional modelsr éach of the applications,
Hercule provides the user with an insight about how eachnéisseesign component per-
forms and how efficient the problem concurrency is realizedrag parallel ingredients.
In the case that more than one model is used, Hercule adaliffjaimravels performance
effects resulting from model interactions. The Herculedfescks point directly to per-
formance degrading factors in the design model, filling ia $emantic gap between raw
measurements with program design.

1.1 Thesis Statement

The central hypothesis of this dissertation is that perforoe diagnosis would benefit
from knowing the computation model of a parallel program #elmodel knowledge can
support automatic performance problem discovery andpragation if incorporated into a
performance tool.

In order to substantiate this claim, we design an approa@xti@cting performance
information from computational models that can guide thegdosis process with min-
imum user intervention. We also develop Hercule that imglets automatic diagnosis
with model knowledge. Providing performance interpretain model language, Hercule
eliminates the need to correlate raw performance infoonadt the level of source code
with program design at a high level of abstraction . It therefcan be used easily by
inexperienced parallel programmers to improve perforraanc

1.2 Contributions

This thesis makes the following specific contributions:

Contribution 1 A new approach for designing performance analysis tools;hwén-
ables performance problem discovery and causal infergratira high level of program
abstraction.

Important performance measurement and analysis toolR, asi®aradyn [32], AIMS
[33], and SvPablo [19], have been developed to help progemsiaiagnose performance
problems. However, the performance feedback provided éydbls tend to be descrip-
tive information about parallel program execution at lowels of abstraction. Even if the
tools detect a specific source code location or machine resdbat demonstrates poor
performance, the information may lack the context requicecklate the performance in-
formation to a higher-level cause. Thus, it falls on the sigerexplain the performance
observations and reason about causes of performanceierdiies with respect to compu-
tational abstractions used in the program and known onljzéat Unfortunately, novice
parallel programmers often lack the performance analygisrtise required for high-level
problem diagnosis using only raw performance data.

We believe that the deficiencies above could be addressedcbypiorating program
semantics into performance analysis. We are particuladpired by expert parallel pro-
grammers who often approach performance tuning in a sysigneanpirical manner by
running experiments on a parallel computer, generatingaaradlyzing performance data,
and then testing performance hypotheses to decide on pnstded prioritize opportuni-
ties for improvement. Implicit in this process is the exjsekhowledge of the program’s
code structure, its parallelization approach, and theioglship of application parame-
ters to performance. We therefore specify a set of prognaecaic information required
for high-level performance interpretation (nanpeEiformance knowledgewhich includes
behavioral descriptions, performance metrics, and hégektldesign factors. And we ad-
vocate looking to models of parallel computations as sauodeghe information required
for diagnosis as the models abstract parallel executicildetnd provide a semantic basis
for parallel program development. Provided with the progispecific information, it is
possible for a performance analysis tool to produce feddbdicectly relating to program

design.

Contribution 2 A model-based knowledge engineering approach that systsia
acquires and represents performance information reqtoraetiagnostic analysis.

Parallel computational models attract our attention in search for the answer to
“Where does the performance knowledge come from?” Modeasracurring algorith-
mic and communication patterns in parallel computing, arednadely used in the design
of parallel program. The models provide semantically riesatiptions that enable better
interpretation and understanding of performance beha@ar view is that we can gener-
ate basic performance knowledge from the design modelsthemdfrom which program-
specific information will be derived.

In order to generate performance knowledge from models aedtuo diagnose real-
istic parallel programs, we specifically identify methods pparallel model representation,
performance modeling, metric definition, and performanaeg $earch and interpretation
methodology. The performance knowledge derived in thismeasupports bottom-up in-
ference of performance that starts with primitive perfoncedata and ends up with high-
level explanations. And it provides a sound basis for autorgaliagnosis processes. We
encode and store the knowledge in a base foundation andaiceeit to a performance
analysis system, then the system can use the knowledgedydseniing problem hypoth-
esis, evaluating performance metrics to test the hypathasd deciding which candidate
hypothesis is most useful to pursue and new experimentnegents are generated to con-
firm or deny it. The knowledge-driven inference relaxes gwuirement of intelligent input
from the user.

Contribution 3 A framework that implements automatic performance diagnegh
model-based approach.

The design of performance experiments, examining perfocedata from experiment
runs, and evaluating performance against the expectedsadudentify performance bugs
are not well automated and not necessarily guided by a dggstrategy in existing per-
formance tools. Typically, the user decides on the instntaten points and measurement
data to collect before an experiment run. The user is alsmafivolved with the process-
ing and interpretation of performance results. The manfbaite required by tools and the
lack of support for managing performance problem invesibgaultimately limit diagnosis

capability.

We have developed Hercule, an automatic performance anélgsmework, that uses
our model-based approach. A knowledge base that consistead|-derived performance
knowledge is the core of the system. Interfacing the knogaeolase to an inference en-
gine and performance measurement toolkits would autorhat@borious experiment-and-
analysis process that is otherwise imposed on the user.

Given a program to be diagnosed, Hercule is informed of ismaational model and
then comes up with a set of experiment instructions by nefgiio the model knowledge
base and has the measurement toolkits execute the cordasga@xperiments to collect
necessary performance data. Hercule automates data ianggsormance inferencing,
and possibly more iterations of experiments, and finallghea conclusions about perfor-
mance with respect to the model use.

To date the knowledge base in Hercule system have includesdeidd/orker, Wave-
front, Divide-and-Conquer, AMR, and Geometric Decompogsitmodel knowledge. We
tested Hercule on a range of parallel programs. The expatiresults show that Hercule
is an viable system that is able to design performance expets and conduct bug search
and causal reasoning in an automated manner. They alsdooate the usefulness of
designing tools based on our model-based approach.

Contribution 4 A set of techniques to address performance impact of moaeposi-
tion in the diagnosis system.

Model composition, as one of the most common means of modsicagion, cap-
tures how singleton models are composed together and ¢hiara parallel program. The
challenges to diagnose compositional parallel progranthatgperformance effects of indi-
vidual models may change and new effects may arise from tmpasite interactions. We
extend the knowledge engineering and problem inferencrgpture the interplay of one
model with another. Classifying model compositions intibetlent patterns, we present a
set of guidelines for identifying performance nuancesidirced by each pattern, and incor-
porate them into steps towards the knowledge generatich,agibehavioral modeling and
causal inferencing, so that the performance effects of in@d@tions and interactions will
be taken into account in the diagnosis process. The adapsatd (compositional) model
implementation eventually improves the quality of perfarmoe diagnosis as demonstrated

on some scientific applications.

1.3 Dissertation Overview

This dissertation is organized as follows.

Chapter 2 describes a new approach to performance diagnbisesapproach incor-
porates performance knowledge into generic iterativerdia processes to address the
automation of performance diagnosis at a high level alistrac Required performance
knowledge is identified and classified into four categoréegeriment design and manage-
ment, performance models, performance evaluation metits performance factors at a
high level of abstraction. Parallel computational modetsexamined and evaluated as a
dependable source of performance diagnosis knowledge.

In chapter 3, a model-based performance knowledge engigesgproach is presented.
Our approach addresses how to extract expert performamedéage from parallel model
with four types of modeling: behavioral modeling, performna modeling, model-specific
metric definition, and inference modeling. We demonstrageapproach with a parallel
Divide-and-Conquer model.

Chapter 4 then describes how we implements the model-baséatpance diagnosis
in Hercule system. We will discuss Hercule design issues,tbaise Hercule from a user’s
perspective, and validation of Hercule diagnosis restlext in Chapter 5, we apply Her-
cule to three parallel applications that represent Diadd-Conquer, Master-Worker, and
Wavefront model respectively. We provide Hercule resutimdnstrating the effectiveness
of our model-based approach to performance diagnosis. Vileydarly extend Hercule to
support relative performance diagnosis from a multi-ekxpent view. Relative diagnoses
of Sweep3D (implemented with Wavefront model) performaacemalies in strong and
weak scaling cases are presented.

In Chapter 6, we extend the model-based diagnosis methgygltdosupport composi-
tional models that integrate singleton computationalgsatt. We identify different model
composition styles and discuss systematic steps to adtiepgerformance implications of
model integration in performance knowledge engineerintpabperformance losses due to

model interaction can be detected and interpreted. We eeHdarcule framework to sup-
port compositional performance diagnosis and test heweitiretwo scientific applications,
FLASH and PDLAHQR. The experiment results are reported.

Finally, our conclusions and plans for future work are dssad in Chapter 7.

CHAPTER 2
Performance Diagnosis

Performance tuninda.k.a. performance debuggings a process that attempts to find
and repair performance problems (performance bugs). Fall@lgorograms, performance
problems may be the result of poor algorithmic choices, rired mapping of the compu-
tation to the parallel architecture, or a myriad of othergiatism behavior and resource
usage problems that make a program slow or inefficient. Exaeallel programmers often
approach performance tuning in a systematic, empiricaln@ahy running experiments
on a parallel computer, generating and analyzing perfocmatata for different param-
eter combinations, and then testing performance hypathesdecide on problems and
prioritize opportunities for improvement. We can view memhance tuning as involving
two steps: detecting and explaining performance problenpsdcess we caflerformance
diagnosi3, and performance problem repair (commonly referred tpeatormance opti-
mization). Implicit in the diagnosis process is the expert's knowleaf the program’s
code structure, its parallelization approach, and theiogiship of application parameters
to performance. Barely capturing and formalizing the ekgrowledge, existing perfor-
mance analysis tools provide only descriptive feedbacksigarallel program execution
at low-levels abstraction and lack supports for the autanpetrformance reasoning.

This chapter first describes generic performance diagmposcess. Next we present a
new knowledge-based approach to performance diagnogignhhles automatic perfor-
mance problem discovery and causal inferencing at a hig édyprogram abstraction and
discuss the feasibility of extracting performance diagn&sowledge from parallel com-

putational model. We finally present literature review, tcasting our approach with other

relevant research work.

2.1 Generic Performance Diagnosis Process

Performance diagnosis is the process of locating and exptasources of performance
loss in a parallel program. Expert parallel programmersroftnprove program perfor-
mance by iteratively running their programs on a parallehpater, then interpret the ex-
periment results and performance measurement data to Sugftenges to the program.
The generic diagnosis process is shown in Figure 2.1. Moeeifsgally, the process in-
volves:

¢ Designing and running performance experimeiiResearchers in parallel computing
have developed integrated measurement systems to fecieaformance analysis
[33, 32, 36]. They observe performance of a parallel proguater a specific cir-
cumstance with specified input data, problem size, numbpraxfessors, and other
parameters. The experiments also decide on points of mstntation and what per-
formance information to capture. Performance data are ¢b#ected from experi-

ment runs.

¢ Finding symptomsWe define aymptonas an observation that deviates from perfor-
mance expectation. Generaktricsfor evaluating performance includes execution
time, parallel overhead, speedup, efficiency, and cost By fomparing the metrics
computed from performance data with what is expected, wditdrsymptoms such
as low scalability, poor efficiency, and so on.

¢ Inferring causes from symptomg£ausesare explanations of observed symptoms.
Expert programmers interpret performance symptoms atreffit levels of abstrac-
tion. They may explain symptoms by looking at more specifidggenance prop-
erties [28], such as load balance, memory utilization, amiraunication cost, or
tracking down specific source code fragments that are rasilerfor major perfor-
mance loss [29]. Attributing a symptom to culprit causesinexs bridging a seman-

10

Set targeting
performance metric

Specify experiments

Generate
performance data

Compute
performance metrics

Evaluate against
tI;ne expected
X0
< P
6* Oflbe/
Explainable with
some performance

factors?

'y N

Refine search space Stop searching

FIGURE 2.1: A high-level overview of generic iterative diagnosis pees.

Stop searching

tic gap between raw performance data and higher-levellphprbgram abstraction.
Expert parallel programmers, relying on their performaanalysis expertise and
knowledge about program design, are able to form mediatypgptheses, capture
supporting performance information, synthesize raw perémce data to testify the
hypotheses, and iteratively refine hypotheses towardshighel abstractions until
some cause is found.

11

2.2 Knowledge-based Automatic Performance Diagnosis

Approach

We believe that both of the deficiencies in existing perfarogaanalysis tools, low-
level feedbacks and lack of automation support, could beesddd by encoding how ex-
pert parallel programmers debug performance problemsarticplar, we want to capture
performance knowledgabout program’s code structure, its parallelization apping per-
formance problems and expert strategies for detecting,thechthen apply it in a diagnosis
system to guide performance inferencing.

2.2.1 Performance Knowledge

We identify four main categories of knowledge required byfgrenance diagnosis.

Experiment design and specificatioBmpirical-based performance analysis relies on
experiments to capture performance information. Expeminspecification includes sys-
tem parameter setting, instrumentation instruction, asasibns about what performance
events to record. The experiment design should be pantigiéalored to code structure to
restrict performance data to a tractable level.

Performance modelsA performance model, which is derived based on computation
structure and parallelization approach of a program, mtesgerformance compositions
that can help identify overhead categories that often tésui cooperations and inter-
actions between parallel components. Refining the focusdbpnance modeling from
overall system behavior to a specific or problematic behralaspect will help narrow the
performance problem search while preserving a semantiexbfor reasoning the found
problems.

Both experiment design and performance modeling are basedlmavioral models of
the parallel program. There therefore arises a need fonimiaadescriptions of parallel
programs in a format that is suitable for performance diagno

Performance evaluation metricBerformance diagnosis is driven by metric-based eval-
uations. A metric is a formulation of a performance aspectpeft programmers define
metricsdescribing certain performance properties of concern prdgaithem from raw per-

12

formance data, then assess and interpret them in the carifeatallel systems employed.
Traditional performance analysis approaches use genetitan without relevance to pro-
gram semantics, such agnchronization overheadndimperfect L2 cache behavian
[28]. A consequence of evaluation with the generic metiscthat the users still need to
attribute them to specific program design decisions. To reednaxplanation power of per-
formance metrics, we intend to incorporate program semmsintio their definition. The
advantage of semantics-aware metrics over generic onbatishiey can not only assess
performance but help reason about the assessment witlitaigmrdesign of the program.

Performance factors at a high level of abstractidn our diagnosis approach, we aim
to find performance causes at the level of parallelizatisigie For this end, we should
identify design factors at this abstraction level that akestreritical to performance. We
investigate factors with respect to algorithmic or pateia design that are specific to a
problem-solving solution. A performance cause — an ingtgtion of performance symp-
toms in terms of these factors — can therefore immediategctlithe programmer to bad
design decisions.

2.2.2 Modeling Inference Steps

The three major types of actions involved in diagnosis — mgmeexperiments, com-
puting and evaluating performance metrics to find sympt@nd,explaining symptoms —
are proceeding in an iteratively refined manner. Besidepdnrmance knowledge, we
also need a diagnostic strategy to guide performance probéarch and inference steps,
which, in our approach, determines how to invoke perforredamowledge systematically.

We advocate a bottom-up inference approach that startgeiformance problem dis-
covery at low-level abstraction, and then gradually botistsabstraction level of causal
reasoning by refining performance models. Specificallyjnference process begins with
evaluation of a generic performance metric like efficiencgmeedup. Corresponding per-
formance experiments are conducted and the collected slatastracted according to the
metric computing rules. We then reach a symptom by evalgdtie metric against the
expected value or the tolerance for its severity. If the sygmmpcan be directly interpreted
by some performance factors at a high level of abstractien the search for performance

13

Metric Set targeting®
specifications performance metric

Specify experimen@
specifications
Generate
performance data (profile, trace
Knowledge Base
) Metric @®
performance metric set@® Computing Compute .
behavioral descriptionsA rules performance metrics
performance factor set(l)
performance models @ Evaluate against
the expected
&
%,
S 2
>
Facior Explainable with® st h
it Op searchnin
some performance P 9
factor?
/y Yes
Refined . .
performance Refine se‘arch space Stop searching
models

FIGURE 2.2: A high-level overview of knowledge-based automatic dagja process.
The use of performance knowledge is annotated in the pretegs.

causes resulting in the symptom is over. That is, there igplaeation for the performance
problem. Otherwise, we refine performance models to resttiention to more specific
program behaviors, then define corresponding metrics tesaghe overhead categories
as revealed in the refined models. New experiment specifitaind performance metric
choices are generated as a result of refinement. They anetéedext iteration of inference.
As the refined performance models are specific to programvimkathe inferencing will
eventually achieves an interpretation of found problenth wiogram semantics.

2.2.3 Knowledge-based Automatic Performance Diagnosis

The application of the knowledge in performance diagnoisgss is displayed in the
Figure 2.2. We envision that the performance knowledgei®dtin a base foundation that
includes behavioral descriptions (for experiment desigh gerformance modeling), per-

14

formance models, evaluation metrics, and high-level perémce factors. Each diagnosis
stage retrieves necessary information from the knowle@dge land uses it as guidance to
generate stage results, therefore reducing the requiteshemelligent input from the user.

2.3 Model-based Performance Diagnosis Approach

The answer to whether a diagnosis tool would benefit from #réopmance knowl-
edge at high levels of program abstraction is most certdydg.” The question we need
to answer next is “Where does the performance knowledge ¢mme&” Parallel compu-
tational models present possibilities to answer the qoest\ parallel model, also called
design pattern [20, 21] or parallel programming paradigj [B the literature, is a recur-
ring algorithmic and communication pattern in parallel garing, and are widely used in
the design of parallel program. Typical models include mastorker, pipeline, divide-
and-conquer, and geometric decomposition [21]. Reprageparallelism inherent to a
wide range of problems, parallel models are adopted by meadistic parallel application
designs. For instance, Sweep3D [62] uses Wavefront moddive-@imensional variant
of pipeline model. SPhot [64] employs Master-Worker styi¢ask management. Finite
difference codes mostly follow geometric decompositiordeio

A model usually describes computational components of allehprogram and their
behaviors (algorithmic properties) and how multiple tli®af execution interact and col-
laborate in a parallel solution (parallelism). Paralleldals abstract parallelism common
in realistic parallel applications and serve as a companatibasis for parallel program de-
velopment. It is possible to extract from them a performdauvledge foundation based
on which we are able to derive performance diagnosis presesdored to specific pro-
gram implementations. Specifically, we envision that medah play an active role in the

following aspects of performance diagnosis:

Selective instrumentation and experiment desigiiRerformance diagnosis naturally
involves mapping low-level performance details to higlesel program designs,
which raises the problems of what low-level informationddi@ct and how to specify
an experiment to generate the information. Parallel madelstify major computa-

15

tional components in a program, and can therefore guidedte mstrumentation
and hep organize performance data produced.

Detection and interpretation of performance bugdn a parallel program, a signifi-
cant portion of performance inefficiencies is due to processactions arising from
data/control dependency. Parallel models capture infoomabout computational
structures and process coordination patterns generic toaal lvange of parallel ap-
plications. This information provides a context for delsitrg performance properties
and attributing them to associated process behaviorselodhtext of model-specific
behaviors, the low-level performance details can be dladsind synthesized to de-
rive performance metrics that have explanation power agladnilevel of abstraction.

Expert analysis of performance problemsExpert parallel programmers have built
up rich expertise in both programming with and analyzing swnly-used paral-
lel models. In performance diagnosis, they implicitly retie their prior knowledge
for attributing performance symptoms to causes. Expenvedge about the models
includes model-specific performance metrics and perfoomdactors at the level of
program/algorithm design. If we can represent and manageltbady available ex-
pert performance knowledge in a proper manner, they wiiai¥ely drive diagnosis
process with little or no user assistance.

The above potential advantages of parallel models motivatepursuit of amodel-
basedperformance diagnosis approach. Our view is that we caaeasic performance
knowledge from the models, and then from which program-ifipemowledge will be
derived and applied to diagnosis processes. Accordingetdidgnosis requirements, per-
formance knowledge about a model should consist of beha\i@scriptions that provide
a context for performance modeling and experiment desigrippnance models, metrics
to be used to evaluate model-specific performance aspadtpeaformance-critical design
factors associated with the model (which we gadiformance factorand form candidate
causes for interpreting performance problems). And théopeance knowledge should
be able to support bottom-up inference of performance saukenext chapter, we will
present a systematic approach to generating performamvedaige from models.

16

2.4 Related Work

Existing techniques for performance analysis and debggoitus primarily on two as-
pects — evaluating performance and locating problems ¢firaudefined set of performance
metrics, and explaining detected performance problems.

2.4.1 Property- and Metric-based Performance Bottleneck &rch

Raw performance data collected through instrumentati@hraeasurement provides
little insight into understanding parallel applicatiorrfpemance without relating the data
back to the program and reducing the data into more probfgunisc forms. Most existing
performance debugging techniques search for bottlenettkewt direct reference to the
raw performance data. Rather, they synthesize raw datascudlate performance metrics
that reflect various performance aspects at a higher levabstraction. The metrics are
meaningful and closer to programmer’s understanding, ngakeasier to interpret a found
problem. Often the metrics are also associated with pdatiqurogramming constructs,
code regions, and processing nodes to help pinpoint peaiocen bottlenecks in source
code. In this way, performance problems that cause perfocendegradation in certain
aspect can be tracked down to specific locations in the pmogra

The idea of enumerating performance properties and prabigfound in a number of
tools. Paradyn [32] is a performance analysis system thabhatically locates bottlenecks
using thé¥’? search model. According to th&? model, searching for a performance prob-
lem is an iterative process of refining the answer to threstipres: whyis the application
performing poorlywhereis the bottleneck, andlhendoes the problem occur. To answer
the “why” question, Paradyn includes hypotheses aboutnpiateperformance problems
in parallel programs, and collects performance data towbsther these problems exist.
The types of bottlenecks include synchronization, 1/O, patation, etc. Answering the
“where” question isolates a performance bottleneck to aiBpeesource used by the pro-
gram (e.g., a disk system, a synchronization variable, soegaure). Answering “when”
a problem occurs isolates a problem to a specific phase ofrtlygggm’s execution. Each
of the “why”, “where”, “when” axes is represented as one orenoierarchical trees, with

17

children nodes being the refinements or the instances ofatempnodes. The search pro-
cess is conducted by thlierformance Consultamhodule without requiring the user to be
involved. The Performance Consultant selects a searcleneéint in a three-step process:
determining a list of possible refinements by considerirmgdhildren of the current nodes
along each axis, ordering this list using internally-dediiénts, selecting one or more re-
finements to try from the ordered list. If a selected refinenmenot true, it considers the
next item from the ordered refinement list. Performance Ragadyn targets are not in
direct relation to parallel program design. It is not inteddor explanation of high-level
bug either.

JavaPSL [37] is an implementation of tRerformance Specification LanguaffeSL)
developed by the APART project [38]. PSL describes expernirnelated data and perfor-
mance properties of applications by using syntax and seocvamés, captured by the Java
programming language in the case of JavaPSL. A performargg@efy (e.g. load im-
balance, synchronization overhead) characterizes afspeegative performance behavior
of a program. Compared with common performance metrics agaxecution and com-
munication time, cache misses, performance propertieggedigher level performance
information, easier to interpret and compare across dalcted from different program-
ming paradigms or underlying hardware platforms. JavaPSb@ates a set of primitive
performance data in a user-specified code region to a speeifformance property in
terms of rules the user defines, and relates the propertyg &xgeriment environment. In
this sense, JavaPSL works as a high-level and portablddoéethat enables the user to
normalize and interpret performance data and to define nefierpgance properties with-
out knowing or changing the underlying implementation detaf the tool that makes use
of these properties.

There are also many other approaches to performance odéninetaic definition that
follow the same design theme as JavaPSL perdormance indicessuch aperformance
predicateg51] that are computed by recognizing inefficient states@nating their dura-
tion during execution, and performance overheads thaesgpron-scalability of a program
[52].

JavaPSL is intended for flexibly defining performance bo#tks. A bottleneck anal-
ysis tool using JavaPSL can automatically search for begtlkes by navigating through the

18

performance data space and computing pre-defined perfeen@operties. Aksum [50],
for example, is such a performance analysis tool. EXPERT [p#®formance tool also
incorporates the notion of performance property to maképaance problem definition
flexible and extensible. The bottlenecks detected in terfpsaperty definition, however,
cannot be sufficiently interpreted with only the program ewedgions where the bottle-
necks occurred (but not necessarily the cause of the probtenrred.) and information
about the experiment environment. Moreover, the perfooagroperties that are defin-
able using JavaPSL are at relatively low semantic level an tiiey have little relevance to
program semantics, which makes it difficult to reason abloett from parallel program
design point of view. In distinct to JavaPSL, we intend to mefperformance metrics in
terms of model-semantics to enhance their explanation powe

To some extent, all the performance debugging methods ave\atempting to charac-
terize observed measurements in the form of performangeepties and then match those
determined properties to performance problems. The pwadoce debugging is only as
good as the quality of the properties and coverage of thelgmobpace. The tests used to
validate a problem hypothesis are expressed in the tootsnmstof a threshold and one or
more performance metrics. The metrics definition in Paraflyninstance, are intended
to constrain performance data to particular resource ssahachines, procedures, files,
communication channels (or combination of these resoyrheace at low semantic level.
While performance debugging tools such as Paradyn do incatg aspects of hypothesis
refinement in the search process, it is difficult for thesésttmreason about problems with
respect to their cause.

2.4.2 Causality Analysis

Interpreting detected performance problems requiresrtaioedegree understanding of
the parallel code. The interpretation should reveal thareatf the problems and system
parameters (algorithms, systems, etc.) contributing @émthin the case that performance
inefficiency occurring at a code region is caused by misbiehav other parts of the pro-
gram, it should be able to identify the relations among the#ig@pating code regions. A
handful of performance analysis approaches addressessiiesiabout explaining perfor-

19

mance problems to the user. It is the aspect of explanataintimportant for performance
diagnosis.

Cause-effect analysis[53, 41], for example, is an autothatéerence process that
presents explanations for dynamic phenomena of parakbgrpm execution in terms of
underlying causes. The analysis approach is centeredgeyuiaining the occurrence of
a class of local events or states in terms of the events tltatri@dearlier in the execu-
tion. One example of a local state is “the processor is waéitna synchronization point”,
and the corresponding explanation might describe the éxecpath difference between
the processor and the other synchronizing processors. mportant issues involved in
the approach are identifying the bounded region of eveatsciuse a particular effect and
determining the form of explanation that is enlighteningte user. With respect to the
example of “a processor waiting at a barrier for another ggeor”, cause-effect analy-
sis might present an answer to such a question: how did treieaa paths of these two
processors differ since the last time they synchronizetl st one processor arrived at
the barrier before the other? In addition to the waiting ticeuse-effect analysis is also
applicable to explaining page fault events in distributeared memory environments and
transaction abortions in parallel file systems [41]. Altgbwcause-effect analysis focuses
on the inference process that leads from observed effectsotacauses, its applicability
is limited. First, it requires the presence of certain délimg state/event, such as “the last
time two processors synchronized”, in order to make an egpian. In practice, many ap-
plications do not render such state/event explicitly. 8d¢cthe performance inefficiencies
it can detect and explain in a parallel program are resttitdiesome forms of waiting time.

As an example of a powerful causality analysis performanog ATEXxpert [54] de-
veloped at Cray Research, Inc. uses a rule-based expegtrsysthelp users locate and
interpret poor performance. ATExpert can automaticallkenperformance observations
at program, subroutine, parallel region, loop, and casel.lévor a given region of code,
ATExpert takes as input the actual speedup, the overheadntiount of serial time, and
the number of processors. Depending on what is dominati@gxiecution, it chooses a
subset of rules. It then looks for patterns in the perforneatiata and associates them
with a list of known parallel performance problems and passtauses. AtExpert helps
improve performance in two aspects. First, it identifiessiigal codes that account for sig-

20

nificant time cost. The user can restructure the codes tmigxpbre parallelism. Second,
given the parallelization strategy employed, it locatesibal regions that are responsible
for dominant performance loss due to parallelization ogathsuch as start-up cost, syn-
chronization cost, etc. In either aspect, rules are assaciaith the observations made
for a combination of a particular code region/construct pedormance metrics (speedup,
relative execution time, and various performance overseakhd the rules reflect not only
performance debugging expertise that guides finding peadace problems and explains
the nature of the problems, but also knowledge of systengdess that provides insight
into understanding interplay between program and undeglgystem. As productive as
ATExpert was, its scope was restricted to underutilizeg lparallelization and it required
tight integration with Cray’s compilers and runtime libes.

POETRIES [59] is a performance tuning tool that takes acgambf the knowledge
about the high-level structure of the application to detawd correct performance draw-
backs. It builds analytical performance models based omsttiuetures and attributes per-
formance degradation to parameters composing the modetapproach differs to POET-
RIES in that, first, it targets performance explanation aedpnd, it features a knowledge-
based inference system that diagnoses performance in amatgd manner.

Rajamony [55, 56] observed that existing performance dgimggtools onlydescribe
the performance problem, while the onus is then placed ondéeto infer the cause for the
performance problems. Motivated by the observation, heldped Rx, a tool to improve
the performance of explicitly parallel shared-memory paogs in a sequential consistent
system. Specifically, Rx automatically analyzes run-tira&ado derive feedback and cor-
relates the feedback with source program to facilitateariag about performance at the
source level. Rx targets inter-process synchronizatidrdata communication, two signif-
icant sources of overhead in shared-memory applicatibndentifies excess synchroniza-
tion based on conflicting-access analysis. Rx presents aletarset of sharing-data read
and write access conditions under which barriers can bevedar weakened. It identifies
the dependences enforced by all pair-wise synchronizapoesented in the program, and
extracts the minimal set of the synchronizations that eefail the dependences so as to re-
move redundant ones; Rx introducgregationandvectorization- two transformations
that eliminate certain critical sections. It also provides ways of computation restruc-

21

turing which enhance the opportunity to reduce synchraisizaand communication. One
way is postponing computation in order to remove or weakerwtsionization. The other
is relocating computation which moves part or all of the catagion done by a process in
a critical section to anther process that does the computb#tter.

Issues of reducing synchronization and communication ralfgh shared-memory pro-
grams have long been addressed by parallelization corapil@data dependency analysis.
How much optimization they can reach therefore is affectethle accuracy of the static
analysis. Rx approach, however, is based on run-time irdbam in order to get precise
conflicting-access records. To prescribe the program wighRx approach, information
collected during run-time must suffice for three types ofrapiens: correlate line num-
bers of specific accesses with the source program, deterfrdarread uses values written
by an earlier write, and determine the source operands ¢of weite to memory. In addi-
tion, measurement overhead and performance perturbdterdbe controlled. For these
ends, Rx uses a two-step process. First, it instrumentstiree program to gather certain
information at run-time. This information is stored as stassociated with the memory
locations of the program. Then, when the program executepyétesses this state using
a set of run-time algorithms, producing the informationuieed for the analysis.

It is worth noting that a lot of strategies employed in Rx tduee synchronization and
communication are motivated by the observation of a largeber of shared-memory ap-
plications. The designer of the tool identified many commeardcurring scenarios of un-
necessary synchronization in these applications, stutieedharacteristics of conflicting-
access to memory in these scenarios, and figured out a traragfon, without violating
the semantics of sequential consistency model, of partl@oalputation involved in the
scenarios in order to remove or weaken the synchronizatioicontrast to other perfor-
mance debugging tools that detect the presence of perfaenaoblem by quantitatively
evaluating performance properties or metrics of concesaporoach looks for perfor-
mance problem via qualitatively examining each occurresfcenportant programming
constructs such as barriers, critical sections, flags, €hss approach therefore can not
only locate performance problems, but present possibhsfibamation to correct the prob-
lems. On the other hand, performance optimization Rx ambr@an achieve is limited
for two reasons. First, Rx looks at fundamental synchrdignaand communication pro-

22

gramming constructs with restricted semantics. Witholaxiag the strict semantics of

the constructs or using information about the semantich@ftthole computation (rather

than individual constructs) involved in the synchroniaator communication, exploring

better optimization is difficult. While Rx attempts to infére intentions of the program-

mer from the programming constructs, the information mdstmcomes from the pro-

grammers themselves[57]. Second, there are many othettaspach as cache-relevant
program behavior, load balance, etc., which have signifitapact on performance, but

are not addressed in the approach.

Kappa-Pi [39] is also a knowledge-based automatic perfoomanalysis tool. In this
tool, knowledge about commonly-seen performance probismescoded into deduction
rules. Rules are divided into different levels. The deducirocess applies all rules in
the first level to the trace events until no more facts are dedu Then, the newly de-
duced facts serve as input to the next level of rules and theiadi®n process applies
again. (It is not explicitly stated how these levels are deaigd though). The lowest-
level rules involve primitive events like communicatiomds, receives of some processes,
the highest-level rules may deduce some global collalmratcthemes of the application
like the master/worker, the rules in between bridge serogatp between the two ends. In
this way, higher-order facts can be deduced from lowertievents. The tool explains the
problem found to the user by building an expression of théésglevel deduced fact that
includes the situation found, the importance of such a gmblnd the program elements
involved in the problem. The creation of a recommendatiorepmir the problem, how-
ever, is not aways feasible. It often requires more specifarmation about the program
which allows the evaluation of some possibilities of chanigethe source code. Kappa-Pi
provides recommendation only when acquiring the infororais possible.

One distinguishing feature of Kappa-Pi is that it tries teqamt better performance anal-
ysis hints to users by detecting higher level programmingei® From the point of view
of the programming constructions, the performance limitaroapplication are closer to
user understanding and easier to explain. The tool, howergrtouches upon two types
of program constructions, Master/Worker and SPMD, foaysin detection of the con-
structions and of performance problems with respect taophag of the construction with
the underlying parallel machine. Kappa-Pi’'s knowledgesbadlects a very limited set of

23

performance problems and rules. It neither shows how todioice new problem detection
rules into the knowledge base, nor supports queries ateliftéevels of abstraction. While
Kappa-Pi introduces the possibility of using user-levébimation about program struc-
ture to analyze performance, we realize the possibility@gose a systematic approach
to extracting knowledge from high level programming models

Malony et al. [40, 58] point out that lack of a general theorperformance diagnosis
is one of the main reason that performance diagnosis systeensot extensively used.
They claim that a heuristic classification (HC) model of pgenh-solving is a sound basis
for a theory of performance diagnosis but ultimately shdaddextended by model-based
strategies. Elements of HC fitting to performance diagniosiside:

1. solution spacehat is composed of a set of predefined hypotheses that exgitai
served performance behavior;

2. heuristic matctthat matches features of the program’s performance to hgsa;
3. abstractionthat extracts relevant features from experiment spacededa);

4. refinementhat relate generic hypotheses to program-specific exiitamaf behav-

ior;

5. strategythat a PDS uses to specify the way that the three proceskesirigtic match
abstraction andrefinemenjtare interleaved and ordered.

They apply the HC model to explain many features of existiaggmance diagnosis
tools, such as Paradyn, AIMS, and MTOOL. Based on the obsenvthat the existing
systems suffer from poor combination of automation and tdaigy, they built an auto-
matic performance diagnosis architecture, caledrot. Poirot distinguishes itself from
other performance diagnosis systems with two salient cormpis — a problem-solver that
assembles and runs diagnosis methods guided by user pphcié an environment inter-
face that provides portable connection to supporting tfmslperformance data collection,
analysis and presentation. The problem solver stores atyaf performance diagnosis
methods and the associated rationales for method selestanknowledge base. There is
an reasoningnginethrough which Poirot chooses methods from the knowledge bad

24

executes them. The methods stored in the knowledge base¢hikerm ofgoal-action
rules, where a goal stands for a particular diagnosis tasklee corresponding action(s)
represents the diagnosis action for accomplishing the tasle actions often need con-
ducting experiment and collecting performance data. Is thse, they send commands to
tools via the environment interface, which then transfothescommands into primitive
diagnosis actions that are executable by the tools.

The advantages of Poirot include: 1. Various existing desgmethods converge un-
der a performance diagnosis theory, which makes compaaisdrevaluation of the meth-
ods possible. 2. Poirot separates diagnosis methods freraattwares that support the
methods, thus supporting adaptable diagnosis. On the bdret, the heuristic classifi-
cation model is limited in several aspects. First, HC assuthat program component
structure is given. The assumption is reflected in the perdmice hypotheses, which typi-
cally state that a component (e.g., a routine) has a paaticldss of performance problem.
In practice, it is not rarely seen that program componemsiaknown to the user until per-
formance data is collected. Besides, decomposing progremcomponents helps localize
performance inefficiency, but it loses the context infoliorathat helps explain the inef-
ficiency. Second, HC model assumes that all performancdemsbare given. However,
in some existing performance diagnosis systems, unaatempproblems are sometimes
identified. Third, Poirot presents a diagnosis theory fromaechitectural point of view
that emphasizes adaptability and automation of perforearagnosis. The model barely
addresses how to explain performance problems detectest tiieltheory. The explana-
tion is necessary for revising the program for better pentmice. In addition, there are also
some other properties of equal importance to performaragndisis, such as quality and
efficiency. Determinant factors to these properties argugrminologies in the heuris-
tic classification model, definition of performance hypatbg selection of the taxonomy
of performance problems, and selection of heuristic maatistraction, and refinement
strategies. The performance diagnosis theory is insuificiecomparing and evaluating
diagnosis systems as far as these properties are concerned.

In contrast to the tools and methods outlined above, our igoatry different. Our
focus is on automatic performance problem discovery andaagpion at a high level of
program abstraction. We intend to explain performance withlgram-sepcific behaviors

25

and to support the causal reasoning in an automated manner.

Our approach also differs from those described above on deuai points. We define
application-specific, semantic-level metrics so as to rob@&xplanation power of metric-
based performance debugging. Our approach extends ccinséittern based performance
interpretation to program pattern based interpretatiod,raigrates the qualitative debug-
ging methods from explicitly parallel shared memory progsao parallel and distributed
programs. We use a bottom-up diagnosis strategy that pesnatistraction level of perfor-
mance inferencing gradually by refining focus on programesjc behaviors.

2.5 Chapter Summary

In this chapter, we presented a new approach to performaagaasis. Our approach
incorporates performance knowledge into generic iteeadiagnosis processes to address
the automation of performance diagnosis at a high levelattsdtn. Required performance
knowledge is classified into four categories: experimesigieand management, perfor-
mance models, performance evaluation metrics, and peafacenfactors at a high level
of abstraction. Parallel computational models are exathared evaluated as a depend-
able source of performance diagnosis knowledge. In thectegiter, we will present our
model-based performance knowledge engineering approach.

26

CHAPTER 3

Model-based Performance Knowledge
Engineering

A performance diagnosis tool can benefit from knowing corapomal model, i.e.,
computational and communication pattern, of a paralleg@m. In previous chapter, we
have presented potential advantages of parallel modelsrformance diagnosis and the
performance knowledge categories (i.e., experiment desid specification, performance
models, performance evaluation metrics, and performaauters at a high level of abstrac-
tion) we need to extract from the models to support autonthéignosis processes. This
chapter will show our methods for realizing the potentiataattages of parallel models.
We first present a systematic approach to addressing howtrcethe expert knowledge
required for performance diagnosis from parallel modetsrapresents the knowledge in a
manner such that the diagnosis process can be automatetheiWdemonstrate the effec-
tiveness of our knowledge engineering approach througtsa study of parallel Divide-

and-Conquer model.

3.1 Performance Knowledge Generation Based on Models

Extracting performance knowledge from parallel modelsimes four modeling stages,
which are shown in Figure 3.1. First we describe model beiawn the format of abstract
event, then form performance models based on the struetdoamation in the abstract

27

Model-based
Performance
Knowledge Generation

———><—— Algorithmic-specific =~ ——>
i Performance Knowledge Extension |

Abstract (event 3 exten Algorithm-specific
Events

Events

S

Behavioral
Modeling

instantiate
/

Performance Compositioj fefine__Algorithmic Performance
and Coupling Descriptior Modeling |

Modeling

Pattern—specific || Performance

Meric Definition

\l

Metric—driven
Inference

Performance Bug searc
and Cause Inference

Inference
Modeling

Algorithm-specifig]
Factors

FIGURE 3.1: Generating performance knowledge from parallel modelgoAthm vari-
ants can derive performance knowledge from the basic gemerdel.

events. Semantics-aware performance metrics are foreuuhext to evaluate performance
overhead types derived from the performance models. Antlyfittee iteratively refined
inference steps that use the products in the first three stageformally captured with a
tree structure.

Our four-stage knowledge engineering approach emphasidie adaptability to model
variants. We aim to supports performance knowledge genarat two levels of program
abstractions, model-based and algorithm-specific knaydedAlgorithmic implementa-
tions of a computational model may introduce new perforredmowledge with regard to
program behaviors, performance properties, performanteal design factors, or cause
inference. Following our four-stage knowledge extract@mproach, the new knowledge

28

can be generated by the users in the form of refinements arsates of the generic model
knowledge, as shown in right hand part of Figure 3.1. Aldonitspecific knowledge gen-
eration can follow the same generic model-based knowleggaation approach. In each
stage of the knowledge modeling, we allow for the expressioalgorithm variants that
may add load-balancing, task scheduling, or other perfoo@m@&nhancements to a model
implementation. And our knowledge representation fore, inference trees, can be read-
ily extended to incorporate the new knowledge into the erfiee system that is initially
based on generic model knowledge.

3.1.1 Behavioral Modeling

The behavioral modelingaptures knowledge of program execution semantics as be-
havioral models represented by a set of abstract event gipearying detail levels, de-
pending on the complexity of the model and diagnosis neels.plirpose of the abstract
events in the diagnosis system is to guide experiment desidgrspecification, and to give
contextual informaton for performance modeling, metriirdgon, and diagnostic infer-
encing.

As an instrumented program executes, it generates penfameriaformation based on
event occurrence. Performance data associated with basitsdacks the context of the
model-specific behavior. In the Master-Worker model, fatamce, we cannot find a prob-
lem knowing only that a worker spends 2 seconds MRI _Recv routine call, while we
may identify the master as a “late sender” by comparing emgedime of corresponding
MPI1 _Sendat the master with the entering time of th#I _Recv. Further causes of why
a send was late may be found by looking at what the master wiag tde@fore entering
theMPI _Send To associate primitive performance information in terrhsiodel-specific
program behaviors, we introduce abstract events that stoofsa set of related lower-level
events and represent performance characteristics aksbuidh the event interactions.

We adapt thébehavioral model descriptionsed in EBBA [35] to describe abstract
event types. The description of each abstract event typsistsrof one required com-
ponent, expression, and four optional components, coestitevent format, associated
events, constraints, and performance attributes.

29

e Expression An abstract event usually represents a sequence of amrdtiévents.
A constituent event can be a primitive event presenting ammence of a prede-
fined action in the program (e.g., inter-process commuioicatr regular routine
invocations), or an instance of other abstract event typge ekpressions a regu-
lar expression-like specification that names the constiteeents and enforces their
occurrence order using event operators. The order caedpeentialc), choice(|),
concurrent(A), repetition(+ or *), andoccur zero or one tim{]).

e Constituent event formaipecifies the format and/or types of the constituent events.
For primitive events, the format often takes the form of asheoed tuple that consists
of the event identifier, the timestamp when the event ocduthe event location, etc.
For constituent abstract events, their types are specified.

e Associated eventwe a list of related abstract event types, such as a matekierg
on a collaborating process or the successive event on the gaoess. The purpose
of associated events is to formulate performance attréaii@ may involve multiple
relevant abstract event types.

e Constraintdndicate what attribute values an instance of an abstracitéype must
possess to match its corresponding expression memberssoaated events. Pieces
of constituent events are recognized in accordance witltdhstraints as an event
trace stream is scanned through. Different programs usisgnae computational
model distinguish themselves from the others by the spatibics of the constraints,
which are often determined by their implementations.

e Performance attributepresent performance properties associated with the abstra
event type and their computing rules. The computing rulesf@luating the at-
tributes will be filled in as a product of performance modgli®\ performance at-
tribute value will be calculated with the rules as the alzsteaent is instantiated with
performance data. The value quantifies performance inafitgi due to an occur-
rence of the program behavior the abstract event represents

We often partition program behaviors into a set of abstraehetypes, each of which
represents either system activities in a distinct comparigthase, an interaction pattern

30

of parallel components, or a segment of algorithmic sotutidhe abstract events can
be at varying detail levels depending on the performancer@nice needs. In the early
inference steps, a coarse description of overall programawer is sufficient. Having
detected performance degradation happening with an abstvant type, we may zoom
in to elaborate on its constituent event. We refine the defirstof constitute events with
algorithm details, and use the refined behavior descripta@na base for next iteration of
performance modeling and inferencing.

One salient advantage of abstract events is that they aeat@blescribe dynamically
changing program behavior and associated performancerieg Processes may change
execution path with time due to dynamic control flow or have/ireg communication part-
ners as data dependency changes. The dynamic attributasatiepprograms makes dif-
ficult locating and explaining performance bugs. Behavioradel subsets are foreseeable
from the algorithm, however, no matter whether occurrerafeheir instances are stati-
cally predictable or not. We capture occurrences of thevela models from program
execution trace and identify performance properties aatamtwith them, thereby enabling
diagnose of performance losses due to dynamic program imebav

The abstract event descriptions can also be used to decbatrperformance exper-
iments to conduct to collect the information most relevanthie state of problem investi-
gation. The structural information helps captures onljgrerance events that have direct
relevance to hypothesis at the abstraction level the interdnas reached so far. And the
incremental measurement data generation can effectiegigtain the volume of perfor-
mance information we have to consider.

Algorithm-specific behaviors could be expressed by extandiready available model-
based abstract event types. An algorithm using a designIroéide introduce new activ-
ities due to the specific problem solution. The new actigsittan also be described in
abstract event format by inheriting generic model desiomgt and adding in algorithmic
extensions or refinements. Figure 3.5 in the next sectiowsleaamples of abstract event
for the D&C model and an algorithm implementation of D&C .

31

3.1.2 Performance Modeling and Metric Formulating

Performance modelings carried out based on structural information in the alostra
events. The modeling identifies performance attributels reispect to the behavior models
represented by abstract events and model-specific penfaer@erhead categories.

In our methodology, a performance model is not a closed-fmathematical formula
of system/application parameters. Rather we presentigagerperformance composi-
tions that consist of computational components/overhedegories. Given a computa-
tional model, participating processes can be grouped istndt clusters (e.g., masters and
workers in Master-worker model) in terms of their activitiand their interaction modes
with other processes. We generate a distinct performanaieifor each process clus-
ter. Performance models defined in this way serve two goa)spdrformance models of
individual process clusters focus on computational coreptsspecific to the cluster ac-
tivities, which are responsible for possible performamssés happening in the cluster. (b)
Differences in the performance models of inter-dependiesters reflect their behavioral
difference, therefore are useful for interpreting perfante losses at interacting points
such as communication and synchronization.

Performance attributes associated with each abstract gypEnare identified as a prod-
uct of performance modeling. Performance attributes sspriedifferent performance over-
head categories, which could be performance contributi@rcomputational component,
or a pattern of performance inefficiency due to cluster atgons.

Performance metrickr evaluating the overhead categories are then defineekrstof
performance attributes in related abstract events. Redioce attributes represent perfor-
mance characteristics of one single abstract event typiée mietrics sort out performance
attributes in different abstract events that share the sameantics into one overhead cate-
gory and define the rules for synthesizing the related everdgsaluate the overhead. Per-
formance evaluations with the model-specific metrics na@nthe relevance to program
context, which therefore makes it easier to explain theuatans with model semantics.

Extending algorithmic-specific metrics from the genericdelebased ones follows the
same development path. Performance modeling based on téredex algorithm behav-
iors will produce algorithm-specific performance attrésit The new attributes join in the

32

overhead classification and are incorporated into metriméitations to reflect algorithm-
specific semantics.

3.1.3 Inference Modeling

Inference modelingaptures and represents the performance problem searchtand
pretation process formally. Refining problem search spadbkd most important step in
the inference process in that it determines the directiopesformance cause search and
essentially boosts the abstraction level of inference. &pproach refines search space by
first refining performance models to restrict attention taespecific performance aspects,
then defining model-specific metrics addressing the pedoo® aspects, and evaluating
the metrics. Approaches to refining performance modeliegetiore play a critical role in
the refinement of search space. We identify following dicext and methods for refining
focus of performance examining:

(M1) breadth decompositiondecomposing performance cost according to computational
components of a model and elaborating on each component;

(M2) phase localization- restricting to model-specific computational phases td oo
performance losses occurring in the time periods;

(M3) concurrency coupling focusing on and formulating performance coupling among
interacting processes which arises from concurrency, wadkdistribution, data/task
dependency, etc.;

(M4) parallelism overhead formulatingidentifying and formulating parallelism-specific
performance overhead due to, for instance, task schedwidsload migration.

We will illustrate application of these approaches in theecstudy section.

In our diagnosis approach, we aim to find performance causesédn interpretation
of performance symptoms) at the level of the design of thallgrprogram, that is,
performance-critical design factors specific to the patticparallel model. The high-level
performance factors (e.g., in Master-Worker model, nunoberorkers and load-balancing

33

Refine search space

Model-specific Constrianing to Formulating Formulating

. . . parallelism-specifig
decomposing| |computational phase performance coupling overheads

)

FIGURE 3.2: Approaches to refining search space.

method the master uses to assign jobs) can be collected gdormance expertises of ex-
pert programmers, and will form candidate causes for inétinmy performance problems.

The cause inference is the mapping of low-level performaneasurement data to
high-level performance factors to explain a performanaaypm (i.e., an anomaly de-
viating from the expected performance, like low speedugh Iparallelism cost, etc.). The
bottom-up inference process is captured in the form of agramfce tree where the root is
the symptom to be diagnosed, the branch nodes are intertaetiservations obtained so
far and needing further performance evidences to explanhtlae leaf nodes are explana-
tions of the root symptom in terms of high-level performafa#ors. An inference tree for
diagnosing symptom “low speedup” in D&C model is presenteérigure??. An inter-
mediate observation is obtained by evaluating a modeld#spperformance metric against
the expected value or a certain pre-set threshold that ddfiegolerance of severity of the
performance overhead the metric represents. In Fig@rér example, nodeommsolve
means the communication cost in the stage of solving proldases. If it turns out to
be significant comparing to the expected, the inferencenengill continue to search for
the node’s child branches. The leaf nodes finally reacheeltiheg compose an explana-
tion of the root symptom. It is clear that inference procegz®sented in the trees are
driven by metric evaluation. Performance knowledge assediwith the metrics, includ-
ing related abstract events, performance overhead typdsnatric computing rules, are
recalled only when needed by current inference step. Interérees, therefore, formalize
a structured knowledge invocation process. In additiolerénce trees can readily incor-
porate knowledge generated from new experience, furthréonpeance model refinement,
or algorithm-specific inference steps through adding drasat appropriate tree levels,

34

making knowledge representation highly extensible.

The inference tree structure also has implications for expnt design. Since each
node in the inference tree is associated with a distinctimetaluation, the abstract event
types relevant to the metric are retrieved to decide exp@rirspecifications. Constraining
clauses of the abstract events implicitly indicate progsagments or routines to be instru-
mented. And constituent event attributes specify perfocealata and type the experiment
needs to record. Thus each experiment instance captusepenbrmance events that have
direct relevance to hypothesis the inference has reachfad $2erformance data associated
with branches of inference tree that we never visit for soragribsis cases are avoided.

In the next section, we will demonstrate how to generateoperdnce knowledge from
an example parallel model, Divide-and-conquer (D&C), gsire approach presented above.

3.2 Case study — Divide-and-Conquer Model Knowledge

Generation

3.2.1 Model Description

The data-parallel Divide-and-Conquer (D&C) model dessih class of parallel pro-
grams that features recursively splitting a large probleta a certain number of smaller
subproblems of the same type, then solving the subproblemarallel and merging their
solutions to achieve the solution to the original problef][2n this model, data are ini-
tially distributed over all participating processes. Tditgpe work among the processes,
all processes first sort out data locally, then exchangeidaaspecified order. The data
redistribution results in two independent process setsseluata are orthogonal (this is
due to the nature of divide-and-conquer problems). Eaclofsptocesses then contin-
ues the process splitting until singular process sets achesl. Thereafter each process
can independently work on its assigned data with seriabddiand-conquer code. After
the independent computing has finished, processes meiig@dnial results with sibling
processes’ to form an overall solution. The model behawaoesillustrated in Figure 3.3.
Example problems that can be parallelized with this modglhe Quicksort, Barnes-Hut

35

Level O
‘POHPZ‘ ‘P4HP6‘

‘ Pl‘ ‘ PS‘ ‘ PS‘ ‘P?‘

Level 1

Level 2

Level 3|PO P1 P2 | P3| |[P4| | P5 |P6| |P7

FIGURE 3.3: A D&C computation with 8 processors and three levels of fobsplitting,
where each splitting divides processors into two groupskhiork on orthogonal data sets
independently. The processors merge sub-results withérgrocesses as designated by
the splittings.

n-body [47], Delaunay triangulation [48], etc.

It is well-known that the D&C computing tends to be irregudad data-dependent. Of-
ten associated with the parallel D&C model is a load-balagpenethod that strategically
migrates workload from overloaded processes to idle onesrditme. The migration is
illustrated in Figure 3.4. In the figure, the local serial D&@mputation at individual pro-
cesses is represented as a tree where the root of the treser{s the whole problem to be
solved by the process, each branch node in the tree cordspma problem instance, and
children of the node correspond to its divided subproble&ach leaf represents a base
problem instance where problem split stops. At runtimecess 3 migrates workloads
represented by branch node 3 and 4 to process 4 and 2 regpestivce these two pro-
cesses have completed computing and are being idle. Wikhesibf generality, we make
an assumptions about the load-balancing method that a lag@ton occurs only when
there are idle processors available for doing extra contipata

36

FIGURE 3.4: Anillustration of load-balancing in D&C. P3 migrates waylkds associated
with branch node 3 and 4 to idle P4 and P2 respectively.

3.2.2 Behavioral Modeling

We model the D&C model behavior with abstract events degiaig-igure 3.5. The
figure shows a level | event that sketches overall behavi®&E, and level Il events that
refine the descriptions of essential model components. Wf@ayi only the full descrip-
tion of eventSolvein the figure for brevity. The performance attributes araveer from
inter-process interactions, which will be used later fartegsizing model-specific metrics.
Other fields of the event description, including constitugrent format, constraints, and
computing rules of performance attributes are filled in whetoncrete algorithmic im-
plementation of the model is generated, which we will ilfag with an example parallel
application, Quicksort, next in section 5.1.

The program instrumented according to the abstract evexifsgations will generate
only performance data relevant to the investigation of fhecsgied program behaviors.
Event instances matching the event specifications will begeized from the performance
data stream, and are used for calculation of model-specétaes in later inference steps.

37

Levell | Qverall— (Divide)* o (Solve o Merge)*
expression

Level Il
expression

Full
description
of Solve

FIGURE 3.5: Two-level D&C abstract event descriptions.

3.2.3 Performance Modeling

Next we model D&C performance by referring to the structaledcriptions in the ab-
stract events. Following phase localization rule in secBal.3, total elapsed time of a
processop in a parallel D&C execution, denoted gs consists of;,;; (process initial-
ization cost),t ., (computation time){....,, (communication cost for transferring data
among processors and synchronization cagt); (amount of time spent waiting for data
transfer or synchronizing with other processors), angd, (process finalization cost):

(MZ) = tp = tinit + tcomp + teomm + twait + tfinal (31)

Whenever we refer to communication time in the paper, we naef@ctive message
passing time that excludes the time loss due to communicaigfficiencies such as late
sender or late receiver in MPI applications. Rather, wgitime accounts for the commu-
nication inefficiencies with the purpose of making expltformance losses attributed to
mistimed processor concurrency, hence parallelism design

According to the level | event and breadth decompositioa,rcbmputation time, com-
munication time, and waiting time can be categorized intedhclasses, time spent in

38

splitting problems, solving problem cases, and mergingsalbtions.

(M]-) = tcomp - tdivide + tsolve + tmerge

(3.2)
(M]-) = tcomm = tcomm—divide + tcomm—solve + tcomm—merge (33)
(M]-) = twait - tw—divide + tw—solve + tw—merge (34)

Level Il events dictate refined performance models. The spsnt in problem solving,
for instance, is categorized into three classes, findinglengrocess to share workload,

finding a busy process to obtain extra workload, and miggatiarkload, according to the
abstract everolvedefined in Figure 3.5.

(Ml) = tsolve = tlocal_comp + (tcomp—find_idle_;m"oc or tcomp—find-busy.proc) (35)

(Ml) = tcomm—solve

tcomm—find_idle_proc + tcomm—send-mgr-load

or tcomm—find_busy_proc + tcomm—recv_mgr_load

(3.6)

Performance coupling of a busy processor with a idle prazdssan load migration
event induces possible waiting time at interaction poifthe two processors:

(M?’) = tw—solve = tw—find_idle_proc or (tw—find_busy_proc + tw—mgr_load)

(3.7)

3.2.4 Model-specific Metric Definition

The performance models above enable the definition of mgpletific metrics to use
for performance evaluation. Model-specific metrics areuwlated by categorizing and
synthesizing performance attributes in related abstreamte. Formulating each item in

equation (3.7), for instance, we get a set of metrics thaasseciated with load-balancing

39

performance as below:

K

. 7
tw—find_idle_proc T E : CW ait_TimedFind_idle_Proc (3 8)
=0

K

. 7
tw—find_busy_;m"oc T E : CW ait_TimedFind_busy_Proc (3 9)
=0

K

R 7
tw—mgr_load T E : 6Wait_Time4Mg7”Load (3 10)
1=0

WNEre €ly iy TimedFind.idie.Proct €Wait TimetFindbusy-Proc 8N €W it TimeartgrLoad TEPTESEN
the performance attribui&ait Time4Findidle_Proc, Wait Time4FindbusyProc, and
Wait Time4MgrLoadbf theith Solveevent occurring on the process respectively, fatite
number of event instanc&lve

The performance modeling and metric definition in terms ofled\éemantics provide
a foundation to the generation of inference trees that fdymepresent the performance
problem search and interpretation process.

3.2.5 Inference Modeling

For diagnosing D&C programs at a high level of abstractioa,need to identify de-
sign factors critical to parallel D&C performance. We wilterpret performance problems

in terms of these factors. In general, following factorsénenost impact on D&C perfor-
mance:

e Concurrency and cost of divide and merge staBele to the nature of D&C prob-
lems, itis very likely that not all of the processes are actvdivide or merge stage.
In the case of low concurrency, if divide or merge operatiaresexpensive, the idle
processors will wait a significant amount of time for probldimiding or solution
merging, therefore insufficiently utilized.

e Size of base problem instand®&C model is particularly effective when the amount
of work required for solving a base case is large comparetidamount of work

40

compute %

*.

®** |comm_divide ?/o

frequency
frequenc
fespenc
(co (e (co

c1: Waiting time for finding a idle process is significant. It is very likely that the load-balancing algorithm is not efficient in locating idle processes.
c2: Waiting time for finding a busy process to migrate its workload is significant. It's likely that the load—balancing algorithm is not efficient in locating busy proce

. symptom

<
[1: intermediate observation
O

. cause

— : inference direction

wait_loadmgr%

¢3: Waiting time for the arrival of migrated workload is significant. The possible cause is that deciding workload to be migrated is expensive at the busy process

c4: There is a number of communications for finding idle processes to share workload. Change the load-balancing algorithm so that busy processes request he
at a moderate frequency.

c5: There is a number of communication for finding busy processes to get workload. One possible cause is that the average workload per migration involves rel
small amount of computation time so that the process requests for extra workload pretty often. Another possible way to improve performance is to change th
load-balacing algorithm so that idle processes request extra workload at a moderate frequency.

c6: Load migration is frequent. One possible cause is that the average workload per migration involves relatively small amount of computation time so that the
request for extrat workload pretty often. Another possible cause is that some load migration trafers too much workload to an idle process so that orignial bus
becomes idle soon and the workload then thrashes between the two processes, causing unnecessary data transfer.

FIGURE 3.6: An inference tree for performance diagnosis of Divide-&uahquer model.

required for recursive splits and merges. On the other Handhe purpose of max-
imizing processor utilization there should be a sufficieatber of base problem
instances. The two often conflicting conditions give riséhtrade-off between the
depth of recursive split and the amount of base problems.

e Scheduling algorithms used for balancing worklodkhe algorithm decides where
to migrate workload and the amount of work to be migrated. felstor decides the
degree of load balance and communication cost of moving lvadkaround.

The generation of an inference tree of diagnosing D&C pnogrés based on perfor-
mance modeling and model-specific metric evaluation. Amgtainference tree for diag-
nosing a symptom “low-efficiency” is presented in Fig@f& For brevity we present in the
figure only inference steps that refer to the performanceatscahd metrics we defined in

41

section 3.2.3 and 3.2.4. We can see that inference treesseyra bottom-up performance
cause inference approach that links low-level symptomatses at high level of abstrac-
tion. As inference process going deep, causes of perforenaetficiency are localized.

The knowledge inference present in Figi¥2is not meant to be complete. A spe-
cific implementation of the model in an algorithm may introdunew behavioral models
and performance factors. Nevertheless, designed to bes#ste, our inference trees can
readily accommodate the knowledge extension.

Another important thing to know about the inference tred& hodes at different tree
levels may enforce varying experiment specifications. Qagmbsis system can designate
the experiments accordingly to collect performance da¢alee by the metric evaluation at
an inference step.

3.3 Chapter Summary

This chapter described a systematic approach to generaticigepresenting perfor-
mance knowledge for the purpose of automatic performaragndisis. The methodology
makes use of operation semantics and parallelism foundrailpbcomputational models
as a basis for performance bug search and explanation. ém trdjenerate performance
knowledge from computational models and apply it to diagmpsealistic parallel pro-
grams, we specifically identify methods for behavioral medpresentation, performance
modeling, metric definition, and performance bug searchiatedpretation. The methods
address not only performance cause interpretation atleigiprogram abstractions, but
adaptivity to allow algorithm and implementation varian®e illustrated the knowledge
generation approach with the Divide-and-Conquer model.

In the next two chapters, we will show Hercule framework thitrs a prototype au-
tomatic performance diagnosis system based on the exdraatdel knowledge. We will
demonstrate the use of Hercule on three parallel applitatizat represent different com-
putational models.

42

CHAPTER 4

Hercule Automatic Performance

Diagnosis System

We introduced the model-based approach to generatingrpeafwe knowledge that
can support automatic diagnosis at a high level of abstnadti the previous chapter. In
this chapter, we describe how to apply the knowledge in adiaghosis system. We present
Hercule, a prototype automatic performance diagnosigsyghat implements the model-
based performance diagnosis approach. We will discussuléedesign issues, how to use
Hercule from a user’s perspective, and validation of Herclihgnosis results.

4.1 Design of Hercule — A Prototype Automatic Perfor-

mance Diagnosis System

We have built a prototype automatic performance diagngsitem calledHerculé,
which implements the model-based performance diagnopi®aph discussed above; see
Figure 4.1. The Hercule system operates as an expert systeim svparallel performance
measurement and analysis toolkit, in this case, the TAU f@8formance system. Her-
cule includes a knowledge base composed of an abstract Ewemt, metrics set, and
performance factors for individual parallel models.

The name was chosen in the spirit of our earlier performaizmmasis projectoirot [40].

43

Parallel
program

Parallel
models

algorithm
knowledge

Hercule

performance event knowledge base |7
———1(_recognizer
data
inference engine
experiment
specifications inference rules

diagnosis results

problems explanations

FIGURE 4.1: Hercule diagnosis framework

Given a program to be diagnosed, Hercule starts with beifogrired of the model the
program is coded on, then comes up with experiment speaifiitsain terms of abstract
event descriptions of model behavior. The performance areagent toolkit integrated in
Hercule system conducts experiments according to the Hentstructions and generates
performance data specifically for the current inferencp.stéeevent recognizein Her-
cule fits event instances into abstract event descriptiseeormance data stream flows
through it. Hercule then retrieves relevant metric fornialarules from the knowledge
base to prepare for metric evaluation. The abstract evetdanges, along with the met-
ric definitions are fed into Hercule’s performance evaluatoetric evaluatorto generate
performance metric values. Tlference engin¢éhen takes in the metrics, evaluates the
metrics, and decides on the next hypothesis to test. Theergiions are driven by en-
coded inference rules in Hercule. Hercule reaches diagrmasiclusions after iterations

44

of experiments and analysis. These conclusions are ouspiliteaperformance problems
found in the program and corresponding explanations.

4.1.1 Encoding of Performance Knowledge

Hercule implements the abstract event representationawaaclass library. This library
provides a general programmatic means to capture compuightinodel behaviors. Each
event type is implemented as an abstract Java class withod gatameters that represent
model components or constructs the event refers to. Givaogram, the user provides
names or values of the parameters used in the model implatr@ntthus producing an
instantiated event class that is tailored to the specifignam. The parameter values are
also used to specify theonstraintclauses in order to identify model components in the
performance data stream. The constraints are implementixe iJava class as a method
that examines whether a performance trace event satiséesahse or not. The satisfying
events will be instantiated constituent events in the digison. Performance models asso-
ciated with an abstract event type are coded as performatrdmiges and corresponding
formulations, so they are encapsulated in the same Jawaidke abstract event. The
encoding of abstract events allows for algorithm extendiomto model variants.

Model-specific metrics will be evaluated based on the rdlatestract event types. The
metrics are represented in Hercule as a set of rules thaifglasnd synthesize performance
attributes in the relevant abstract events. Recall thatrtbiics are at different levels of
program abstractiorCommunication time and computation tinier instance, are generic
metrics without reference to model semantics. While,,;, ;.44 IN Section 3.2.4 is spe-
cific to the D&C model behaviors. We couple high-level peniance factors with the
performance metrics at the highest level of program abstracSpecifically, if a possible
evaluation of a metric can be explained directly by a pertoroe factor, we store the factor
jointly with the formulation rules of the metric to make itster to retrieve relevant knowl-
edge in diagnosis process. Model-variant metrics not cagtin the knowledge base are
required to include the relevant performance factors tmberporated into Hercule system.

Event recognizer and metric evaluator are coded in Javahéopurpose of easily in-
terfacing to the knowledge base. The event recognizer rieadsm the knowledge base

45

the abstract event types to be used in current inferenceatdpmatches incoming perfor-

mance data with the descriptions to generate valid absvact instances. The instantiated
abstract events are handed to the metric evaluator. Theatwafirst retrieves relevant per-

formance metrics and then calculates the metrics usingviigt enstance data. The event
recognizer and metric evaluator can incorporate algorsipecific abstract event defini-

tions or metric computing rules written in Hercule format.

The effort involved in implementing performance knowledigese for a computational
model consists of two parts: acquiring knowledge with thgrapch presented in the previ-
ous chapter and encoding the knowledge, including absvaett specification and perfor-
mance metric formulation in Hercule-readable format. Worle needed for a performance
analyst to generate knowledge varies depending on conqeahtomplexity of the model
and desired detail level of the targeting inference tree.elVasing the knowledge base
to diagnose a parallel application based on a parallel mtiieluser may need to express
the programatic or algorithm variations with respect tati@as event descriptions, metric
computing specifications, and corresponding inferencae tBecause the generic knowl-
edge base is inherited, additional efforts are reduceddmgdknowledge specialization.

4.1.2 Encoding of Inference Processes and Hercule Inferem&ngine

Perhaps the most interesting part of the Hercule systeneisdhse inferencing sys-
tem. The expert knowledge used to reason about performanbéems based on model
symptoms is structured asference treesvhere the root is the symptom to be diagnosed,
the branch nodes are intermediate observations obtainfs,sand the leaf nodes are an
explanation of the root symptom in terms of high-level perfance factors. We transform
the inference trees into production rules in Hercule systéarmally, a production rule
is a condition-action statement in which the conditionsahdhe current situation and the
actions add to or modify that situation [65]. In performada@gnosis terms, a rule consists
of one or more performance assertions, and performanceraead that must be satisfied to
prove the assertions. Hercule makes use of syntax definbd @LtIPS [34] expert system
building tool to describe production rules. The syntax satke form:

(defrul e <rul e- nane>

46

<condi ti on-el enent >*

=>
<acti on>x*)

wher e

condition-elenent::= <pattern-ce>

I
<assi gned-pattern-ce> |
<not-ce> | <and-ce> | <or-ce>
<l ogical -ce> | <test-ce>
<exi sts-ce> | <forall-ce>
action ::= <constant> | <variable> |
<function call>

Due to its extensibility, capabilities, and low-cost, CElhas been used in building
expert systems of a wide range of applications in industy arademia. Hercule uses
the inference engine provided in CLIPS to support autonpiéormance inference. The
engine can repeatedly fire rules with original and derivedopmance information until
no more new facts can be produced, thereby realizing autopatformance experiment
specification and cause reasoning.

Inference trees already capture the main control struetndereasoning thread of per-
formance inferencing, so we can immediately transformrmittion embedded in the trees
into production rules. Translated production rules arerfirzed in terms of the perfor-
mance problem searching and inferencing order as specifiteblinference tree hierarchy.

Regular production rules test performance hypotheseg usgtric evaluations. We
developed a CLIPS interface to the metric evaluator so teirtference engine can fetch
performance metrics easily from the evaluator in the forraxtérnal function call. The in-
terface also supports the passing of values/parameteve®ethe engine and the evaluator.
The benefit of the interfacing is that, other than addresdiegvhole program execution,
performance metrics can be restricted to a subset of sysédmawvior, such as a problem-
atic processor, a degrading computation phase, or a senwrgeeally related program
sections, with the parameter specifications. Thus infere@mgine can refine performance
problem searching and focus on specific program behaviors.

For the purpose of automatic performance diagnosis withrmim user intervention,
we need additional rules to support specification of expenits that generate necessary
performance data. A performance diagnosis process irglddeiding on what perfor-

a7

mance experiments to conduct to collect the informationtmedevant to the state of prob-
lem investigation. Thus, each experiment instance captméy performance events that
have direct relevance to hypothesis at the abstraction tbeenference has reached so
far. The incremental measurement data generation cartie#fiyoconstrain the volume of
performance information we have to consider. Performaiata associated with branches
of inference tree that we never visit for some diagnosiscase avoided.

Our experiment specification indicates which inference kegel (i.e., abstraction level
of the relevant metrics) the experiment serves, input grokdnd system parameters, and
abstract events the experiment captures. Constraintadaaighe abstract events implicitly
indicate program segments or routines to be instrumented.cAnstituent event attributes
specify performance data and type the experiment needsdodeFor example, in terms
of the figure 3.6, if we detect that waiting time @blvestage is significant with perfor-
mance information from one experiment, then we can makehaneiperiment collecting
more specific data. Referring to the following productioteruhe level 3 experiment is
conducted with the same input problem and system parambtgrgenerates performance
information associated with abstract evBolveto attempt to identify a higher-level factor.

(defrul e do_experinment_I|evel 3

(wait_sol ve_sig)

=>

(assert do_exp3)

(assert (experinent
(level 3)
(i nput _pr obl em SAME)
(system setting SAME)
(abs_event |ist Solve))))

4.2 Hercule Application from the Users Perspective

User involvement in using Hercule diagnosis system is tWbfspecifying system pa-
rameters and extending performance knowledge to adaptdelwariants. The users need
to instantiate abstract event descriptions with their paoginformationsConstituent event
formatis to be filled in with performance data format used by the mesasent system, and

48

Constraint clausesefer to program segments or routines that correspond taehomon-
ponents in theExpressionpart. At present, Hercule generates performance expetimen
specifications in plain text form. The users need to condueteixperiment instructions
on their targeting measurement system to collect perfocaadata, and feed the data into
Hercule to fuel performance inferencing. In diagnosing agpam execution, the users
can optionally provide thresholds for evaluating perfonceametrics (to assert if there is a
problem associated with the metrics that is worth furtheegtigation). In default, Hercule
investigates every model-specific performance aspeciprevides explanations for the as-
sociated performance losses in a model execution. Whiletivé thresholds, the users will
make Hercule focus on the most concerned model propertiggastionally avoid some
performance inference steps for their diagnosis cases.

We have discussed in the previous chapter that algorithmptementation of a parallel
model may introduce new performance knowledge with resppdathavioral models, per-
formance properties, performance-critical design fagtand causal inferencing, as shown
in Figure 3.1. The users can derive the new knowledge froralteady built model-based
knowledge using the engineering approach presented irettteos 3.1 and integrate the
knowledge into Hercule system to analyze their programs.

An algorithm may address model-specific data/control déeeay in a particular man-
ner or introduce extra management work to improve procafigation. The users de-
scribe the behavioral models distinct to the algorithmiplementation using algorithmic-
specific abstract events. The new events can be refinemextiemiseon of available model
events. The increasing complexity of computation and m®oateractions will introduce
more overhead categories and the need to refine performarae.nfrollowing the generic
modeling approaches we presented in the section 3.1.2jthlgac performance modeling
can elicit potential performance overheads based on thetstal information provided in
the new abstract events, and lead to the formulation of glgoic-specific metrics that
evaluate the identified performance overheads. Algorithmstantiation of a model may
introduce new performance factors, which are possiblybatied to, for instance, the task
scheduling strategy or data partitioning and mapping ntetised. To investigate perfor-
mance effects of the new factors, they need to be added tothel&dge base along with
the associated performance metric definitions. The nevopraence inferencing steps that

49

refer to the algorithm-specific knowledge are to be incaapent into the origial model-
based inference tree in the form of branches at approprne¢el¢vels, and finally to be
translated into production rules that are executable irttdersystem.

The effort involved in adding knowledge specialization nfadgorithm varies depend-
ing on computational complexity of the algorithm and desidetail level of the targeting
inference tree. Since the generic knowledge base is ildeftercule diagnosis can capture
the set of basic performance problems in a model-basedtgowithout any algorithmic
specialization. On the other hand, algorithmic variantsaalolressed in the original model
knowledge need to be encoded into Hercule system to conéuictrpmance investigation
at the desired level of details. The effort, however, willdmortized over many diagnosis
cases of the same algorithm, and offset the otherwise lalrmanual work required.

4.3 Validation of Hercule Diagnosis Results

In general, how is a performance diagnosis system to beateli@ In order to test Her-
cule, we want a controlled way to run parallel programsyuraent the program according
to the experiment specifications from the diagnosis sysaeithgenerate performance data
in desired forms. However, in addition, a validation enmiment should also support the
injection of known (model level) performance problems insaghlel progrant. The diag-
nosis system is unawara priori) of the performance fault and thus sees the parallel system
as a black box. Once the diagnosis process has completegliti@tion environment can
evaluate the goodness of the result with respect to the kpoalsiems introduced.

Figure 4.2 shows how Hercule and the validation environmenare developing work
together. When a new parallel model is included in the systeenrun test cases (either
synthetic parallel programs or real-world applicatiorsevaluate Hercule diagnosis re-
sults. Given a program to be diagnosed, Hercule starts witngtinformed of the model
the program is coded on. Hercule reaches diagnosis coankusiter iterations of exper-
iments and analysis. These conclusions are output as tf@mpance problems found in
the program and corresponding explanations. We then cantiparconclusions against the

2Fault injectionis a common part of software testing and diagnosis envirorsne

50

Parallel Parallel
models program

model knowledge

algorithm-specific info

v y Hercule

event recogni ~f
inference engine
metric evaluator
| inference rules

diagnosi% results
=7

problems explanations

knowledge basel

injection

experiment
specifications

"Black box" parallel system
candidat'
problems

FIGURE 4.2: Hercule and performance diagnosis validation system.

performance problems introduced at the start.

Naturally there is another methodology for Hercule systeidation, that is to fix
performance problems in terms of Hercule conclusions aseéédhow well the tuning im-
proves performance. This method naturally involves twceatpof evaluation: how fast
the users can find where to fix and how well the performance tisngged. Since Her-
cule results interpret performance losses with model faaba high level of abstraction,
repairing the problematic factors most possibly leads téopmance gains. How to tune
the factors, however, often requires a greater degree argse about parallel problem-
solving and understanding of the specific solution to thgeting problem. When there
are more than one problematic design factor in a parallgnara, for instance, tuning all
of them at the same time may not generate the expected paricereffects. A modifi-
cation that optimizes performance in one test case may staw agxecution in another
case. The quality of the optimization phase is thereford taevaluate from a diagnosis
tool developer’s perspective. A interesting area for feitwork is to include in Hercule
tuning-supportive facilities that helps design perforggtuning trials in terms of diagno-
sis results and supports relative performance diagnoasitimpares multiple executions
with varied factor values and reasons about their perfoomalifferences.

51

4.4 Chapter Summary

In this chapter, we introduced Hercule - a prototype auta@rformance diagno-
sis tool that implements our model-based performance deigrapproach. The core of
Hercule is a knowledge base composed of an abstract eveaylilbmetrics set, and per-
formance factors for individual parallel models. Requgrionly model-implementation
information from the user, Hercule recognizes event ircdgammatching the abstract event
specifications as a performance data stream flows througgidtjlates the associated per-
formance attributes values, and synthesizes model-spaud#irics for performance evalu-
ation. Performance inference steps are encoded into piioduale. The inference engine
in Hercule is particularly helpful in performance diagrobecause it can repeatedly fire
rules with original and derived performance informatiorilumo more new facts can be
produced, thereby realizing automatic performance expsrt generation and cause rea-
soning.

Hercule implementation mainly involves the encoding of midohsed performance
knowledge and inference processes, and interfacing kng®wl®ase to inference engine
to support automatic diagnosis. The implementation alsbrems$es the adaptability to
model-variants introduced by algorithmic implementasior black box parallel experi-
ment system is integrated into Hercule to validate diagnesiults. The validation system
supports a controlled way to run experiments and the irgeabf known (model level)
performance problems in a parallel program. It enables @vatuate Hercule diagnosis
conclusions on a sound ground. In the next section, we wa@nt Hercule experiments
with a set of varied parallel applications.

52

CHAPTER 5

Hercule Experiments

In the previous chapter, we introduced Hercule, a protog®matic performance
diagnosis system. We described how Hercule framework impigs the model-based per-
formance diagnosis approach and applies the engineerfrpance knowledge in a real
diagnosis system. In this chapter we will demonstrate Heisability to diagnose perfor-
mance problems with three parallel applications that igeD&C . Master-worker, and
Wavefront model respectively. We will also investigateat®e performance diagnosis, a
specific application scenario of model-based approachertwodistrate the effectiveness of
our approach.

5.1 Divide-and-Conquer Model and Parallel Quicksort

Section 3.2 have presented performance knowledge engigeerocess of parallel
Divide-and-Conquer (D&C) model. In this section, we dentoate Hercule’s ability to
diagnose performance problems in a D&C program, parallétk3dort. Experiments are
run on a IBM pSeries 690 SMP cluster with 16 processors. ThallphQuicksort algo-
rithm, using the aforementioned Divide-and-Conquer mgdiitst recursively divides pro-
cesses until such a situation is attained — for any two psas#$ and P;, if : < j then any
data element o, is less than or equal to any element®8n Then each process indepen-
dently executes serial version Quicksort. There is no mstiage in the parallel Quicksort.
Since a poor choice of pivot in Quicksort may lead to imbatghdata distribution over

53

abstract Solve — [(Find_idle_Procc Send_MgrLoad) | (Find_busy Proc Recv_MgrLead)] Local_Comj
event ~Reg2MngEvt — SendReq2Mnge RecvRespondFromMng
specific o “ManagerEvt — RecvReq o(LookupBusyProd LookupldleProc) o SendResponse

the algorithm

AbstractEvent Solve (id, pid) {

Expression
[(Find_idle_Proe Send_MgrLoad) | (Find_busy Proc Recv_MgrLead)] Local_Compute

Full
description Constituent Event Format
of Solve -)
with Find_idle_Proc, Find_busy_Proc: Req2MngEvt
algorithm others: <function_name><pid><entering_time><exe_time>[source][dest]
details Associated Events

Solve BusyProcSolve, IdleProcSolve, nextSolve;

ManagerEvt correspondingMngEvt;

Constraints

Find_idle_Proc.SendRegq2Mng.name == "MPI_Send";
Find_idle_Proc.SendReg2Mng.dest == MANAGER;
Find_idle_Proc.RecvRespondFromMng.name == "MPI_Recv";
Find_idle_Proc.RecvRespondFromMng.source == MANAGER;
Send_MgrLoad.name =="MPI_Send";

LocalCompute.name == "pivot_sort";

Performance Attributes

Wait_Time4Find_idle_Proc := max{(Find_idle_Proc.RecvRespondFromMng.entering_time —
correspndingMngEvt.SendRespond.entering_time), 0}
Wait_Time4Find_busy_Proc := max{(Find_busy_Proc.RecvRespondFromMng.entering_time —
correspndingMngEvt.SendRespond.entering_time), 0}
Wait_Time4MgrLoad := max{(BusyProcSolve.Send_MgrLoad.entering_time —
Recv_MgrLoad.entering_time), 0}

Perc_Of_MgrLoad := IdleProcSolve.Local_Compute.exe_time
| (LocalCompute.exe_time + nextSolve.LocalCompute.exe_time + IdleProcSolve.LocalCompute.exe_time)

FIGURE 5.1: Extended abstract event descriptionsSuflvein the parallel Quicksort
algorithm.

processes at runtime, we employ a simple runtime load bialgrsystem that uses a cen-
tralized manager to manage idle processes and to assigntéhiensy processes to share
work load. Whenever a processor finishes local data soritimggisters at the manager.
Whenever a processor is about to recurse on more than a prediefmount of data in the
serial phase, it requests the manager for help. If no idlegs®or is available, the manager
sends back no-help response, and the original busy praa@ssb continue computing on
its own. Otherwise, the manager selects an idle processoredls it which processor to
help and the amount of data to expect. The manager also iaftivenbusy process where
to migrate load. The busy processor then migrates the d#te twelper, continues with its
remaining data load, and waits for the helper to return teelteThe actions and relation-
ship of helper (idle) processes, helpee (busy) processdgha manager are described in

54

TABLE 5.1: Performance Metrics of Quicksort.

Name Meaning
Model-specific granularity Teomp/ Teomm With respect to D&C trees
Metrics
Tvait_divide waiting time for exchanging data in splitting
phase
Tvait-merge waiting time for merging results with sib pro-
cesses
T vait_solve waiting time in the solve stage
Tait_findidieproc | (idle processes) waiting time for task assign-
ments
Towait_findbusyproc | (DUSY processes) waiting time for getting a
helper
Tvait-mgrload (idle processes) waiting time for arrival of
work assignment
Frgr frequency of migrating data to other (idle)
processes
Lineanmrg average work load migrated to other (idle)
processes

the abstract evenSolve, Req2MngEvt, and ManagerBWown in Figure 5.1. Th8olve
event description instantiated with the Quicksort aldontis also shown here. Hercule
recognizes event instances matching the event specifisai®a performance data stream
flows through it, calculates the associated performanciaties values, and synthesizes
model-specific metrics for evaluation in later inferenapst

Table 5.1 presents major performance metrics we identif{p&C model.

In Figure 5.2, Vampir timeline view of &olvephase with load balancing in a Quick-
sort run with five processes is shown. It also depicts agtieftart of the phase. The
event trace is generated by the TAU [36] performance measnt system with only
major model/algorithm components being instrumented. hinfigure, dark red regions
represent effective computation. Light yellow regionsresent MPI function calls, includ-
ing MPI _Init , MPI _Send MPI _Recy, etc. Note that blocking/waiting time of processors
is implicitly included in the elapsed time of blockédPl _Send and MPI _Recv opera-
tions. In following performance diagnosis, we focus on stigating efficiency of the
load-balancing aspect of the Quicksort.

55

O0on » Vampir 4.0 - Timeline

2,786 s 2.086 s 2.087 s 2,788 s
0 0 0 . HPI

i TRU_DEFALULT
231123023 |23 |11‘ ITAU_SER
R ‘
Y

Process 023

|
Process 119 | | [
|

Process 219 |

—

—
T3
(23]
=
Ll

i l HP1
: | TAl_TEFAULT
: 40 M m - m e m e m e M TAU_USER

Process 319 I I ‘

|2 | 2B 23 '23

Process 4 23

i IRy -
Fix Pl P2 F3 P4

A

FIGURE 5.2: Vampir timeline view in aSolvephase of a parallel Quicksort run with five
processes.

We can see that most of the time is spent in communication ljipét yellow areas).
It is difficult to tell the communication pattern and what sas the communcations in the
event trace stream. However, our abstract event desargptan fit the seemly intractable
performance data into recognizable patterns and helppei€¢ormance causes. Hercule in-
terpretations oSolvestage communication performance in this Quicksort runésnted
below.

dyna6-221:"/PerfDiagnosis/bin lili$ testbC DC.clp 5pe.d up
Begin diagnosing DivideConquer program

Level 1 experiment -- generate performance data for computi ng
granularity associated with each D&C tree.

do experiment 1... ...

At Solve stage of D&C pattern, each process independently
runs sequential D&C code, which can be viewed as a process

56

of expanding and collapsing a D&C tree. In the case of load-
imbalance, some branches of the D&C tree on a process may
be migrated to another process which has finished

computing. We explain performance with respect to the D&C
tree structure.

The D&C tree originally rooted at process 2 has as low
computation/communication ratio as 0.019.

Level 2 experiment -- generate performance event trace for
evaluating communication performance of Solve in D&C
tree 2.

do experiment 2... ...

Among the communcations with respect to tree 2, moving data
to other processes to balance work load comprises 15.09% of
overall communication time, and requesting the manager for
finding a idle processor comprises 84.9%.

One possible factor contributing to the expensive
requesting-manager communication cost is that busy

processes send request to the manager to find a idle process
at a high frequency. Users are advised to check the amount
of work a process has to get done prior to requesting the
manager to make sure that the processes request the
manger at a moderate frequency.

Small size of base problem instance is also a possible cause
of too much commnication with the manager because the
communication frequency is proportional to recursion dept h.

Level 3 experiment -- generate performance data for
computing load migration caused performance overheads.

do experiment 3... ...

In averge, every work load migration inappropriately

transfers 89.8% of remaining work to idle processes, which
causes load imbalance in the subsequent D&C tree computing,
thus more communication due to load migration. In D&C tree 2,
work load migrated to other processes is partially migrated

57

back to the original process that initiates the tree,
causing workload thrashing and unnecessary data transfer.

Diagnosing finished...

Recall that recursive process splitting in D&C model leanls thierarchy of process
sets. Each process independently runs sequential D&C eddeh can be viewed as a
process of expanding and collapsin@&C tree [17] as shown in Figure 3.4. In the case
of load-imbalance (i.e., D&C trees on different process®slve varied workload), some
branches of the D&C tree on a process may be migrated to anptbeess which has
finished computing. Hercule evaluates and explains pedoo@ from the point of view of
the D&C trees since the structure makes it easy to interptet-process communications
for load migrations.

Given the program and performance knowledge associatéd8iC pattern, Hercule
automatically request an experiment that collects perdoice event trace for evaluating
efficiencies (i.e., computation time/communication timmegach D&C tree at Solve stage.
The source code instrumentation of the experiment is spddifiaccordance with the event
expression of Solve in Figure 5.1. Hercule classifies coatpart and communication cost
and finds that the D&C tree originally rooted at process 2qrveré worst. Then Hercule
investigates the communication cost associated with D&€ #& in detail. Of course, any
D&C tree can be identified for additional study. Hercule comes model-specific perfor-
mance metrics and distinguishes load-migration commtinits and find-idle-processor
communications, each is presented as the percentage ggooatontributes to the overall
communication time. It then tries to explain the high cosbasated with these two types
of communications respectively and identifies possibléofacgiving rise to the commu-
nications. The inference process and diagnosis resulsh@asn above, are presented in a
manner close to programmer’s reasoning and understanding.

58

5.2 Diagnosing Master-worker Program

5.2.1 Knowledge Engineering for M-W Model

A widely used parallel computation pattern is the classistdaWorker (M-W) model.
Master-Worker models a computation that is decomposedanmamber of independent
tasks of variable length. Anasteris responsible for assigning the tasks to a group of
workers Communications are required between the master and veoblefore and after
processing each task. The workers are independent to orteean@ M-W illustration
with a master and two workers is displayed in Figure 5.3

The master usually employs certain task scheduling alguostto achieve load balance
and minimize workspan. M-W performance factors we iderdijfigarough performance
observation of M-W codes and knowledge obtained from exmaformance analysts, are:

¢ Inherent sequential code fragments in the madtefFigure 5.3, both the master and
the workers need to do initialization and finalization. Bug tnaster usually spends
more time in these two phases than the workers for extra neanegt work of read-
ing in and preprocessing the data, or post-processing wogkalts. The differences
in initialization and finalization workload incur inherénsequential penalty at the
worker side since they are dealt with exclusively by the erast

¢ Number and complexity of tasks assigned to the workers characterizes the total
amount of task workload to be shared by all workers.

e Task setup costs in the master and the task scheduling méthmreflects how fast
the master is able to process worker requests.

e Number of worker processardt can happen that increasing the number of worker
processors does not reduce the total elapsed time of esad@6]. This is because
there is often a saturation point beyond which more workarsot be effectively
served by the master. This results in the master being sesipa&dormance bottle-
neck.

59

master worker 1 worker 2

1nit. 1nit. 1nit.
Y
setup
send :::::::::{ ________________________ V
recv recv
v v
compute compute
T v
send send
recv [ETTIII L
f . .
final. final. final.

FIGURE 5.3: An illustration of Master-Worker pattern with a master ang workers.

e Task scheduling strategyscheduling independent tasks withidentical machines
(m > 2) and a single server has been shown to be a NP-hard problgmQ2&n
certain scheduling heuristics are used in a M-W program.utind) an execution
tasks are assigned in such a way that new-task requests dreworkers arrive at
the master at approximately the same time, then some wdnkeesto wait while the
peer requests are being processed. This is one type of iaeffacenario. Another
inefficient scenario happens when a long task is assignduakettast job requester,
which makes all other finished workers wait for the worker ethgets this task as-
signment to complete computing. Avoiding the situationsnaister bottleneck and
time-imbalance is key to achieving better worker efficiency

In a M-W program, an independent task assigned to a workeepsthas a well-defined
life cycle: first the worker sends a task request to the masiemaster receives the request

60

AbstractEvent TaskLifeCycle (id, pid){

Event ,ﬁ_[Expression
expressio

(WorkerSendRed® MasterRecv)((MasterSetUpTaske MasterSendTask)WorkerRecv) © WorkerCompu
Constinuent [~ Event

g\égg}iptor (EventComponent iiamexpid><proc_cluster><entering_time><extisution_time>[source][dest])
Required Optional
Related Associated Events P
abstract TaskLifeCycle preTask, nextTask
event list
— Constraints

WorkerSendReq.name=="MP|_Send";
WorkerSendReq.proc_cluster ==WORKER;
MasterRecv.name=="MPI_Recv";

. MasterRecv.proc_cluster==MASTER;
Gonstraint_| | MasterRecv.source==WorkerSendReq.pid;
MasterSetUpTask.name=="setup";
MasterSendTask.name=="MPI_Send";
MasterSendTask.dest==WorkerSendReq.pid;
WorkerRecv.name=="MPI_RecVv";

“—- WorkerRecv.pid==WorkerSendReq.pid

— Performance Attributes
{ true if WorkerSendReg.entering_time > MasterRecv.entering_time;

false otherwise
{ true if MasterSendTask.entering_time > WorkerRecv.entering_time;
false otherwise

Performance|

Attribute | -
descrLljptors IsWorkerSendLate:3

IsMasterSendLate: 5

WorkerWaitingTimeForTheTask:=

MasterSetUpTask.execution_time, if IsWorkerSendLate;
{ MasterRecv.enteting_time — WorkerSendReg.entering_time + MasterSetUpTask.execution_time, othe

L SetupTime :Jf MasterSetUpTask.execution_tir*we;

}

FIGURE 5.4: An abstract event description of Master-Worker model

and sets up a task, it then transfers the data and task sp#oifito the requesting worker,
and the worker processes the task until finished. At that,ttiveet worker returns the re-
sult to the master and the cycle continues until the workarssucted to terminate. We
specify the program behaviors and performance propesgscéated with a task life cycle
by an abstract event typkaskLifeCycle, as shown in Figure 5.4. Note that information
in the shaded area in the figure is not available until an impl&ation of the model is
provided. This is because the binding of appropriate valoi@erformance properties and
performance properties evaluation rules are dependentoalelnmplementation. For in-
stance, when using non-blocking communication routine FMBcv” instead of blocking
version “MPLRecv”, the computing rule of communication time will reflectrresponding
“MPI1_Wait” routine as well, rather than looking at the messageikeng routine only.

Given the program behavior, we can formulate M-W perforneamodels. Following

61

phase localization rule, a worker’s total elapsed timg;... consists of;,,;; (initialization
cost),t..m, (the amount of time spent computing tasks),.,, (the amount of time spent
communicating with the master,,.;; (the amount of time spent waiting for task assign-
ment or synchronizing with other workers before finalizatiexcluding communication

overhead), and;;,, (finalization cost):

(Mz) = tworker - tim’t + tcomp + tcomm + twait + tfinal (51)

Whenever we refer to communication time, we mean effectiesgage passing time
that excludes time loss due to communication inefficiensigsh as late sender or late
receiver in MPI applications. Rather, waiting time accaufior the communication inef-
ficiencies with the purpose of making explicit performanasskes attributed to mistimed

processor concurrency.

The master’s total elapsed time is:

(M17 Mz) = tmaster - tinit + tsetup + tcomm + tidle + tfinal (52)

Performance coupling of a worker with the master and theakpeer workers man-
ifests four performance overheads , (the master initialization and finalization costs
translated to idle overhead in the worker), ..., (master task setup time),_,,, (blocking
time in master bottlenecks), ang_ s, (the cost of synchronization with other workers

for finalization).

(M27 M?’) = twait = tseq + tw—setup + tw—bn + tw—final (53)

The above performance models enable us to define perfornmetes specifically
tailored to M-W programs. We start with evaluating indivadiworker efficiencieto detect
a top-level symptom because efficiency is a reflection of teteker scalability.

worker

worker efficiency := “2 (5.4)
worker

62

Refining each item in model (5.3), we obtain metrics of workait time:

L master worker master worker
tseq T maX{tinit - tim't) O} + maX{tfinal - tfinal) O}
M M M
tw—setup T E :tsetup7 bw—bn 1= E :tw—bn - E :(twait - tsetup)
i=1 =1 =1
tw—final = max {szn} - Tfin

all workers

where)M is the number of tasks the worker processes altogefthgr, the amount of time
for setting up task, ¢’,_, is the waiting time due to master bottleneck when requesting
theith task,t’, ., is the total amount of worker idle time between sending ogtiest and
receiving task, max,orkers{ 1 rin } 1S the finish timestamp of the last task computed, and

Ty, the last task finish timestamp of the observed worker pratess

Having been prepared with performance attributes in attséngent descriptions, we
are able to reduce model-specific metric computing to aggieg attribute values of re-
lated event instances. In performance debugging, it isalasito be able to concentrate
on and evaluate a specific code section, or a problematiciBgagphase as bug searching
proceeds. This is attainable in our approach by gatheriegtamstances occurring in the
interested spatial or temporal regions and synthesizieig gerformance attribute values.
For instance, to compute amount of time a worker processisp&aiting for task assign-
ments throughout the execution, we can simply add up waiting for each task, which
is attributeWorkerWaitingTimeForTheTasK the abstract everfiaskLifeCycle in Figure
5.4. In this way our approach allows flexible definition offoemance metrics at different
abstraction levels.

Now we can incorporate these performance factors and raetridiagnosis inference
rules. An inference tree is created for every symptom tye ilference tree for explain-
ing low efficiency of a worker process, for instance, is shawirigure 5.5. Figure 5.6
illustrates the resulting CLIPS implementation of the a@sse that master task setup time
is a potential problem cause.

63

cl: Sequential initialization and finalization on

: symptoms
ymp master account for lost cycles of the worker.

[: intermediate c2: master setup task overhead is significant,
O
—

observations which means the speed of master processing
: causes request is pretty slow.

:inference steps | 3. During the execution the master ware rarely
idle. The worker spent excess time waiting in
‘ master bottleneck, but only a few worker requests
got stuck in the bottlenecks. The situation
indicates that master processing request speed is
slow. In other words, task setup cost is expensive
relative to task computation cost.

wait flnal % cd: During this execution, the master was rarely
idle, which implies that there is little room for
< rescheduling to improve performance. The facts

.4
o o that the worker spent quite time waiting in
‘Wmt setup% ’Waﬂ _bn% master bottlenecks and a number of worker

/ requests got stuck at the master imply that the
amount of workers used exceeds the number

ED
@

e, master mastsr master _ _master| | needed, given the master processing speed and
Finletancen tae =Tae Lale idle | | the input problem size
aevemy of master :
idle. c5: Master idle time is significant. There is room
T:‘q”"“ tolerance = for improving performance by rescheduling.

Adjusting task assignment order in a way that

for severity of ‘
keeps the mater busy while aveiding bottlenecks.

mastel
master bottleneck. N, .= L

req —

master
‘ N> Treg

c6: Time imbalarice is significant. Try to normalize
cd the last task finish time of all workers.

FIGURE 5.5: Inference Tree for Performance Diagnosis of M-W programs.

5.2.2 Experiment with M-W Program

We tested Hercule’s performance diagnosis capabilityferM-W model using a syn-
thetic M-W application. This allowed us to introduce vasdunown performance problems
(i.e., performance faults) and evaluate whether Herculdavoe able to discover them. All
experiments were run on an distributed memory Pentium X&gster running Linux.

Using the M-W computational model components, as presentEgjure 5.3, we cre-
ated a synthetic parallel program to run on our test clu3tee performance problems we
introduce in the program focus on the impact of master-@siog-request speed on overall
performance. We implement the M-W program using MPI, andfseinitialization and
finalization cost of both the master and workers to a smallazabome number of indepen-
dent tasks is chosen and their processing times are assigned execution. The master
setup task time is set to be proportional to the average taslepsing time. Figure 5.7 and
5.8 respectively present a Vampir [43] timeline view anddPaof [36] profile display of an
execution of the program with 7 processors. The event tradgeofiles are generated by

64

(defrule assert-masterComputeSig
(declare (salience -30))
(masterAssignTime ?masterAssignTime)
(threshold MA ?threshold MA)
(test (>= 7?masterAssignTime ?threshold MA))
==
(assert (masterComputeSig))

(defrule assert-masterComputeEffect
(declare (salience -30))
(minWEID 7id)
(waitingT imeSig)
(masterC omputeSig)
(masterAssignTime TmasterAssignT)
==
(assert (master-as sign-tas k-time-sig))

FIGURE 5.6: Clips implementation of c2 asserting master computatioe {for setting
up task assignment) is a cause.

the TAU [36] performance measurement system with only majodel components being
instrumented. In Figure 5.7, red regions represent tasipsttthe master and task process-
ing at the workers. Light blue regions represent MPI functalls, includingMPI _Init ,
MPI _Send MPI _Recy, and MPI _Finalize. Note that in both figures, blocking/waiting
time of processors is implicitly included in elapsed timdlfckedMP1 _Send MPI _Recv

andMPI _Finalize operations.

Given the program and performance knowledge associatédviviV model, Hercule
automatically requests three experiments during the disigrof this problem. The infer-
ence process and diagnosis results of these experimensesented in Figure 5.9. The
first experiment collects data for computing efficiencies@ath worker. The measurement

65

task_setup, if the process is master

master bottlenecks task_processing, if workers

"o O x| Vampir 4.0 - Timeline)

HPI
ITAU_USER
ITAU_DEFALLT

master—— Frocess 015

Process 1

Process 2

\Time

[imbalance

Process 3

workers

Process 4

Process B __

75 !
1 ' 1
| ' |
i i i
Procesz B 25 3 15KE7 19 18 k5 13 18 d
i
1

FIGURE 5.7: Vampir timeline view of an example M-W program execution.

| .2

data shows that worker 3 performs worst. Then Hercule inyatss the performance loss
of worker 3 (of course, any worker can be identified for adadisl study), and issues the
second experiment to evaluate individual overheads intequéb.1). Waiting time cost
stands out as a result of this inference step. The third expet then targets performance
loss categories in equation (5.3). Table 5.2 presents remilific metrics computed dur-
ing the diagnosis in the form of percentage that each ovdrbategory contributes to the
overall performance loss (i.e., total elapsed executime tminus effective task process-
ing time). It is important to note that diagnosis results barencoded to present output
in a manner close to programmer’s reasoning and undersi@oflthe M-W computation
model.

66

FaYala B
O O O [X] Function Ledgs

"0 O O X ParaProf: profs /SCO5 ftaskg/masterworker /research/lili/users fhome/sanfs /m_File Windows Help

File Options Windows Help (] MPI_Comm_rank(
Metric Mame: Time B MPI_Comm_sizel
alue Type: exclusive ‘ — O MPI_Finalize(
\ \ \ L B mPILInit
rrear [T I O 1l L B MPi_Recw)
neot 0,00 1] B D T[] O MPI_Send)
nct 10,0 D [0 Cnl O int maingint, char **)
nc,t 20,0 | [T [| 0 [l [void doaskidaunle)
nct 30,0 [T O 11 B oid masterFinal()
n,c,t 4,0,0] [. il O woid masterinitg
nct 50,0 D [. 1l O woid slaveFinal()
n.ct 60,0 [[11 B oid slavelnit)
B i tasksetupiint)
1] G

FIGURE 5.8: Graphical display of relative time spent in each functioneach node,
context, thread.

5.3 Wavefront (Pipeline) Model and Sweep3d

Wavefront is a two-dimensional variant of a traditionalgdipe pattern. Computation or
data is partitioned and distributed on a two-dimensionatess grid where every processor
receives data from preceding processors and passes dowmodsticcessive processors
in two orthogonal directions. Those processors within eaakiefront, i.e., those on a
diagonal, are algorithmically independent and can do caatjmuns concurrently. The data
dependence of wavefront parallelism is shown in Figure .5AMdlitional concurrency can
be achieved by blocking the computation, resulting in maaeefront sweeps using smaller
computational subgrids. Well-known pipeline performapogblems include sensitivity to
load imbalance, processor idleness when pipeline fillinguog emptying, and so on. It
is these types of problems that we want to find. Next we willvelmw performance

| Metric name || Performance loss%|

to—bm 39.2%
tao—setup 34.3%
tu—fimal 14.8%

teomm 6.2%

TABLE 5.2: Metric values of the M-W program.

dyna6-166:"/PerfDiagnosis lili$./model_diag MW.clp
Begin diagnosing ...

Level 1 experiment - collect data for computing worker
efficiencies.

67

Worker 3 is least utilized, whose efficiency is 0.385.

Level 2 experiment - collect data for computing
initialization, communication, finalization costs, and
wait (idle) time of worker 3.

Waiting time of worker 3 is significant.

Level 3 experiment - collect data for computing individual
waiting time fields.

Among lost cycles of worker 3, 14.831% is spent waiting for
the last worker to finish up (time imbalance).

Master processing time for assigning task to workers is

significant relative to average task processing time, whic
causes workers to wait a while for next task assignment.
Among lost cycles of worker 3, 34.301% is spent waiting
for master computing next task to assign.

Among lost cycles of worker 3, 39.227% is spent waiting
for the master to process other workers’ requests in
bottlenecks. This is because master processing time for
assigning task is expensive relative to average task
processing time, which causes some workers to queue
up waiting for task assignment.

Diagnosing finished...

FIGURE 5.9: Diagnosis result output from Hercule of the M-W test pragra

68

pipeline
sweeps

— inter—stage communication

— concurrent processors at a pipeline s

FIGURE 5.10: Wavefront parallelism on a 3x3 process grid. Each nodeessmts a
processor in this grid.

knowledge for diagnosing Wavefront programs is engineeiigtdmodel-based approach.

5.3.1 Knowledge Engineering for Wavefront Model

The abstract event describing a Wavefront process nodeversim figure 5.11.

According to the behavioral descriptions of abstract ev@ptocessor’s execution time
tyroc CaN be decomposed intg,;; (initialization cost),t.., (the amount of time spent
computing tasks)....... (the amount of time spent communicating with the neighbor pr
cessors in the pipeline),..;; (the amount of idle time at the communication points), and
t rinat (finalization cost):

(Mz) = tproc - tim't + tcomp + tcomm + twait + tfinal (55)

69

A coneutrency
O szequence

AbstractEvent WavefrontNode (id, pid) { * zero or more
Expression occuITences

RecvEW* © RecvNS* © LocalCompo SendEW*0 SendNS#
Event Format
(EventComponent <name><pid><entering time>[source][dest][length])

Assocoated Events
WavefrontNode preEW, preNS, nextEW, nextNS

Constraints _ o
RecvEW.name == “MPI_Recv’”; use for event instantiation

preEW.SendEW .dest == pid;
RecvNS.name == “MPI_Recv”,
prelNS. SendNS. dest == pid;
SendEW.name == “MPI_Send™;]
nextEW.RecvEW.source == pid; use later for metric
evaluation and inference
Performance Attributes /
hands haking_ EW:= max{(preEW.SendEW .entering_time —
RecvEW.entering_time), 0};
handshaking NS := max{(preNS.SendNS.entering_time —
RecvNS.entering_time), 0};

FIGURE 5.11: Abstract event description of Wavefront

Performance coupling of a processor with neighbors in thelpie manifests four per-
formance overheads ¢;_;; (the waiting time for the pipeline to fill up at the pipeline
start-up), ¢, empty (the waiting time for the pipeline to empty up at the end ofefiipe
computing) .t randshake (the waiting time to receive data from predecessor procssso
sweeps), and,; dircctionchange (the performance penalty due to pipeline sweep direction

change).

(M27 M3) = twait = tpl_fill + tpl_empty + tpl_handshake + tpl_directionchange (56)

Performance metrics tailored to Wavefront model can bevddrirom the performance

70

<> : symptoms
ow speedu] intermediate
observations
(> performance factors
e — | inference
communication : Ao ohan
— computation
pipeline_comm
L__‘_‘_"‘—-.
other_comp A

waiting_time. pipeline_comp

pl_direction_change
|pl_emptyup | |pl_ha11dshaking | «
<ELcomp. per. s>

1_comp_std.dev.

FIGURE 5.12: An inference tree of Wavefront model that diagnoses loeestoip

models. For instance, we defifig ;;; as:

M—-1
. comp.,i
tpl_fill - E tp?“e—p?“OC
i=1

whereM represents the pipeline stage number where the procedsoated, and;r=:"

the computation time of the preceding processors attthstage during pipeline start-up.
Now we can incorporate these performance metrics into disigrinference rules. The

inference tree for explaining low speedup of wavefront catimg, for instance, is shown

in Figure 5.12.

5.3.2 Relative Performance Diagnosis of Sweep3D

In this section, we will demonstrate Hercule’s effectivenen relative performance
diagnosisof the ASCI Sweep3D benchmark which uses Wavefront comipat@tmodel.
Sweep3D [62] is a solver for the 3-D, time-independent, mguparticle transport equa-
tion on an orthogonal mesh. Its parallelism comes from plgtivavefronts in multiple

71

dimensions, which are partitioned and pipelined on a disted memory system. The
three-dimensional space is partitioned on a two-dimemsiprocessor grid, where each
processor is assigned one columnar domain. Sweep3D exahargssages between adja-
cent processors in the grid as wavefront propagates dilgaceoss the 3-D space in eight
directions. Sweep3D is a well-researched parallel bendhn#dthough parallelism over-
heads in Sweep3D have been minimized, for instance, by edgsitibuting data across a
process grid, leaving little room for performance tuningréule can tell exactly how run-
ning time is spent in terms of model semantics, helping wtdad inherent performance
losses of the model under an optimistic condition. Our gertnce study with Sweep3D
focuses on overall scalability, looking at how well the apgtion scales as the number of
processors is increased (strong scaling) and as totalgaroize increases with the process
count increase (weak scaling).

Diagnosis of a single execution is incomplete as a comphemiagnosis process.
Understanding of performance problems routinely involeesparativeand relative in-
terpretation. In the experiments with Sweep3D, we impriéneHercule methodology to
support what we will ternrelative performance diagnos{g the spirit of relative debug-
ging [63]). The multi-experiment relative performance lgsis is also addressed in [61]
[60] etc.

Understanding of performance problems routinely involeesparativeand relative
interpretation. Performance analysts often need to answu@r questions in scalability
analysis of a parallel application: what are most pronodrerformance differences be-
tween two program executions with difference problem s;aldnich program design fac-
tors contribute to the differences, and what are magnitatigeeir contributions?

Hercule’s single execution diagnosis can be extended tpatpvhat we termelative
performance diagnosibat is intended to answer the questions. To interpret whathvap-
pening at the performance anomalies with certain probleseseve pick a performance
reference run, in the family of scalability executions, eéhhas comparatively normal per-
formance and evaluate problematic runs against it. Relg&rformance diagnosis follows
the same inference processes as presented in model-sp#eifence trees except for per-
formance evaluation at branch nodes. Recall that causeeide in the inference trees is
driven by performance evaluation, that is, to compare thdehspecific metric with an

72

expected value (from performance modeling) to decide omtemmediate observation. In
relative performance diagnosis, we calculate the expeakde based on model-specific
metrics of the reference run to evaluate problem behavibramples of relative diagnosis
of anomalous Wavefront application executions will be preeed in the next section.

Hercule extensions for supporting relative performanagiosis manifest in the inter-
facing of the metric evaluator and the inference engine.séeu the performance observa-
tion associated with a branch node in the inference tream#itec evaluator takes in event
instances of two runs to be compared and feeds the calcutaiddl-specific metrics into
the inference engine. The inference engine sets a perfaerepectation according to the
reference run metric and evaluates the problematic rumagii

We ran Sweep3D tests on MCR, a linux cluster located at Laver&ivermore national
Laboratory. MCR has 1,152 nodes, each with two 2.4-GHz Ben#d Xeon processors
and 4 GB of memory and has peak performance rating of 11.0@/§flor'he system in-
terconnection is a customized 1024-port single rail QsN&tvark, which provides a 400
MBytes/s bi-directional bandwidth.

Case I: Diagnose strong scaling performance problems
Figure 5.13 shows the strong scaling behavior of Sweep3b pribblem sizel 502, and
angle blocking factonmmi, equal to 3, k-blocking factomk equal to 10. The application
scales well in general, but at process count 32 the speedpp dnd bounces up when pro-
cess count increases to 36. We applied Hercule to contrdsirpance of runl (with 32
processors) against run2 (with 36 processors) and diagreréermance anomaly cause.
Hercule uses relative speedup (compared to two-procesadta evaluate performance
since there is no inter-processor communication in a séhenxecution. The results that
follow were generated in a completely automated manner.

Hercule first calculates speedup of runl (with 32 proce$sans2 (with 36 processors)
relative to run3 (with 2 processors), and expected speetiym@ based on run2 perfor-
mance. It reaches a performance symptom of runl that willltadr explained.

Hercule diagnosis step 1find performance symptom
dyna6-166:"/PerfDiagnosis lili$./model_diag WF_speedu p.clp

73

|---|| |{-\| |H--\I

Relative Speedup

File Help

Relative Speedup - sweep3d:150.1 Strong Scaling 2:Time
130
120
114
100
g
BO

70

Value

/

comparative diagnosis

0 10 20 30 40 50 &0 70 80 a0 100 110 120 130
Number of Processors

|® 1501 Strong Scaling 2 ® ideal | /

FIGURE 5.13: Sweep3D strong scaling with problem size 150x150x150 @3mnk=10)

32pe.dup 36pe.dup 2pe.dup

Begin diagnosing ...

Speedup of runl and run2 relative to run3
runl run2 expected runl
speedup 12.80 15.84 14.08

runl is slower than the expected value 14.08

Next we look at the symptom low speedup.

Hercule then breaks runtime down into computation and comcation, narrowing
performance bug search.

74

Hercule diagnosis step 2locate poorly performed functional groups

Level 1 experiment -- generate performance data with respec t
to comp. and comm..

Relative speedup of functional groups in runl and run2

runl run2 expected run 1
computation: 16.035 19.906 17.694
communication: 1.115 1.172 1.042

computation in runl is longer than the expected.

Next look at performance with respect to pipeline component S.

As computation time per process stands out, Hercule fudiggnguishes pipeline-
related computation and others.

Hercule diagnosis step 3refine locating poorly performed functional groups

Level 2 experiment -- generate performance data with respec t
to pipeline components.

Relative speedup of pipeline components in runl and run2

runl run2 expected run 1
computation in pipeline: 16.598 20.702 18.402
other computation: 10.452 12.405 11.03

computation in pipeline in runl is slower than the expected
most.

Next look at computation in pipeline.

Pipeline computation per process in runl is more expensaethe expected. Hercule
then looks at how well the load is distributed on processes.

Hercule diagnosis step 4form performance hypothesis

runl run2 difference
computation in pipeline SDV (us): 236859 97548 139311
(w.r.t. processes)

Standard deviation of pipeline computation in runl is
significantly larger than run2, which implies a load
imbalance across processes.

Next testify the hypothesis load imbalance.

Hercule forms a load imbalance performance hypothesisdbasethe standard de-
viation of pipeline computations on all processes. It téseshypothesis by looking at
model-related overheads to which load imbalance possdnyributes most. It calculates
and distinguishes performance impact of load imbalancéneroverhead categories, and
exemplifies occurrence of load imbalance with process betsin some specific compu-
tation step (iteration) and pipeline sweep. This way of arption provides the users with
both the nature of performance causes and evaluationsfofpemce impact of the causes.

Hercule diagnosis step 5test performance hypothesis

The impact of process load imbalance on performance
manifests in pipeline-handshaking and
sweep-direction-change overhead.

Passing along data among successive pipeline stages
(handshaking) takes 14.9% of pipeline communication time.
Pipeline handshake delay is unevenly distributed across
processes. std dev = 486463.75. process 31 involves the
longest pipeline handshake cost.

Level 3 experiment for diagnosing handshaking related
problems -- collect performance event trace with respect
to process 31

Pipeline HS delay is evenly distributed across iterations

in the process 31. Next we look at performance
characteristics of iteration 3 which involves the longest
pipeline HS.

Pipeline HS delay is evenly distributed across sweep in
iteration 3 process 31, Next we look at sweep 6 which
involves the longest pipeline HS.

In iteration 3 sweep 6, computation are unevenly
distributed across pipeline stages. For example,
in stage 4 process 4 spends 1964(us) doing
computation, while in stage 10 process 31
spends 1590(us) computing.

In general, process 31 is assigned 23.6% less work
load than process 4. Such discrepancy causes process
31 idle for 29.5% of pipeline communication time..

When pipeline sweep direction change, processes may be idle
waiting for successive pipeline stages in previous sweep to
finish, and for pipeline to fill up in a new sweep. The sweep
direction changes comprise 34.6% of pipeline communicatio
time. The delay is unevenly distributed across processes.
process 31 involves the longest pipeline direction change.

Level 3 experiment for diagnosing sweep-direction-change
related problems -- collect performance event trace with
respect to process 31

Pipeline direction change delay of process 31 is unevenly
distributed across iterations. Next we look at performance
of the iteration 10 which involves the longest direction
change delay.

In this wavefront execution, pipeline sweep direction

change delay is significant in process 31, especially in
iteration 10. Between sweep 3 and 4, process 31 has been
idle for 117980(us). Among the idle time, 85.5% is spent
waiting for successive pipeline stages in sweep 3 to finish
up, and 14.7% waiting for pipeline filling up in sweep 4.
We compare performance behaviors in process 31 and

next sweep head (process 24) to explain where is the idle

76

77

time from.

In sweep 3 process 31 is in pipeline stage 3, next sweep
head, process 24, is in stage 10. Due to the pipeline
working mechanism, process 31 has to wait process 24

to finish computation before next sweep begins.
Computation load difference between the two processes,
by 12.8%, contributes 39.9% to the direction change delay.

Diagnosing finished...

Case Il: Diagnose weak scaling performance problems

The second experiment with Hercule demonstrates its ciyadfiidentifying and ex-
plaining parallelism overhead increases as both problee @nd process count are in-
creased in weak scaling study. Figure 5.14 shows the wedikgdsehavior of Sweep3D
with fixed problem size 20x20x320. We can see that runtimesases as more processors
are used even though each process’s computation load isheepame. Hercule will com-
pare 4-processor and 48-processor run and report and expé&performance difference.
Again, the results that follow are generated in a compledalpmated fashion.

Hercule first calculates significance of performance diifiee and reaches a perfor-
mance symptom, higher parallelism overhead.

Hercule diagnosis step 1find performance symptom

dyna6-166:"/PerfDiagnosis lili$./model_diag WF_overhe ad.clp
weak.48pe.dup weak.4pe.dup

Begin diagnosing ...

Runtime of runl and run2 (in seconds)
runl run2 difference%
runtime 11.489 9.815 17.055%

runl is 17.055% slower than the run2.

Next we look at the symptom parallelism overhead.

Hercule then breaks runtime down into computation and comication, locating the

78

66 Total Execution Time

File Help

Total Execution:Time

comparative diagnosis
T

Time

0 10 20 30 40 50 80 7 BO a0 100 110 120 130
Mumber of Processors

| 302032 0wtracas?

FIGURE 5.14: Sweep3D weak scaling with problem size 20x20x320 (mmi=3;10)

functional group with most pronounced performance diffies2

Hercule diagnosis step 2iocate poorly performed functional groups

Level 1 experiment - generate performance data with respect
to comp. and comm..

Runtime of functional groups in runl and run2 (in seconds)

runl run2 difference%
computation: 8.886 8.891 -5.624e-4
communication: 2.603 0.924 181.71%

communication cost in runl is significantly higher than run 2.

79

Next look at communication performance with respect to
pipeline components.

Hercule further distinguishes pipeline-related commatian and others.

Hercule diagnosis step 3refine locating poorly performed functional groups

Level 2 experiment -- generate performance data with respec t
to pipeline components.

Runtime of pipeline in runl and run2 (in seconds)

runl run2 difference%

computation in pipeline: 8.014 8.013 1.25e-4

other computation: 0.872 0.878 -6.83e-3
communication in pipeline: 2.275 0.803 183.31%
effective commu. in pipeline: 0.943 0.571 65.15%

waiting time in pipeline: 1.332 0.231 476.62%

other communication: 0.328 0.121 171.07%
comm. count (count/per process): 12288 12288 0

comm. volume (byte/per process): 58982400 58982400 0

waiting time in pipeline in runl is 476.62% higher than run2.

Next look at pipeline overheads.

Since waiting time in pipeline is significant, Hercule renmaodel-specific overhead
categories and computes corresponding metrics.

Hercule diagnosis step 4locate poorly performed pipeline components

Level 3 experiment -- generate performance data with respec t
to pipeline waiting time

Runtime of pipeline components in runl and run2 (in seconds)
runl run2 difference%

80

waiting time in pipeline 1.332 0.231 476.62%
pipeline fill-up: 0.161 0.014 1050%
pipeline empty-up: 0.244 0.017 1335.29%
pipeline handshaking: 0.337 0.075 349.33%
pipeline direction change: 0.584 0.125 367.2%

There are increases in most overhead categories. We pissent diagnosis results
explaining two most pronounced categories, pipeline filand empty-up.

Hercule diagnosis step 5diagnose two most pronounced pipeline overheads

In runl, pipeline fill-up delay is evenly distributed acros S
iterations. We look at performance characteristics of the
iteration 0, which involves the longest pipeline fill-up.

In iteration O, the depth of pipeline is 13. The pipeline
tail, process 0 is being idle when the pipeline is filling
up by processes in preceding stages. The pipeline fill-up
delay comprises 335103us (20.8%) of process 0’s total
waiting time. The computations at preceding pipeline
stages together account for the long waiting time at the
process. Reducing computation load at preceding

stages or pipeline depth will decrease filling up time.

In run2, pipeline filllup delay is evenly distributed
across iterations. We look at performance
characteristics of the iteration 1, which involves the
longest pipeline fill-up.

In iteration 1, the depth of pipeline is 3. The pipeline
tail, process 0 is being idle while the pipeline is filling
up by processes in preceding stages. The pipeline
fill-up delay comprises 28707us (25.5%) of process 0’s
total waiting time.

Diagnosing pipeline empty-up

81

In runl, pipeline empty-up delay is evenly distributed
across iterations. Next we look at performance
characteristics of the iteration 4, which involves the
longest pipeline empty-up.

In iteration 4, the depth of pipeline is 13. The pipeline
head, process 0 is being idle when the pipeline is
emptying up by processes in successive stages. The
pipeline empty-up delay comprises 573,162us (35.5%)
of process 0’s total waiting time. The computations at
successive pipeline stages together account for the
long waiting time at the process. Reducing workload at
successive pipeline stages or pipeline depth will
decrease empty-up time.

In run2, pipeline empty-up delay is evenly distributed
across iterations. We look at performance characteristics
of the iteration 1, which involves the longest pipeline
empty-up.

In iteration 1, the depth of pipeline is 3. The pipeline
head, process 0 is being idle when the pipeline is
emptying up by processes in successive stages. The
pipeline empty-up delay comprises 34858us (31.0%)
of process 0’'s total waiting time.

As shown in the results, the increase of pipeline depth il r@8-processor run) is

clearly the main cause of its overhead increase. Herculstiites and interprets perfor-

mance impact of the pipeline depth with the behaviors of tbegss of the longest pipeline
fill-up and empty-up. The pipeline depth also has a perfoneaifect on sweep direction
change. Due to limitation of space, we skip the interpretatif other overhead categories

event though Hercule is able to explain them equally well.

5.4 Chapter Summary

In this chapter, We presented Hercule experiments witretpegallel applications that
represent Divide-and-Conquer, Master-Worker, and Wawefmodel respectively. Our

82

experience diagnosing the programs shows that model-lpgsémrmance knowledge can
provide effective guidance for locating and explainingfpenance bugs at a high level
of program abstraction. Particularly in Wavefront anadysive extend Hercule to allow
for relative execution diagnostic analysis that comparétiple experiment performance
and explain the differences with model semantics. Relai@gnoses of Sweep3D (imple-
mented with Wavefront model) performance anomalies imstrand weak scaling cases
are given. This broadens the application of model-basedpeance diagnosis approach
to multi-experiment investigation.

83

CHAPTER 6

Performance Diagnosis of Parallel
Computations with Compositional
Models

6.1 Introduction

In the previous chapters, we focused on generating and grgcpdrformance knowl-
edge from singleton models, and we developedtbeculeperformance diagnosis system
to validate how performance knowledge derived from parafiedels provides a sound
basis for automating performance diagnosis processes xpidireng performance loss
from high-level computation semantics. This has been sHowseveral parallel models
to date (e.g., master-worker, divide-and-conquer, andlipig). However, we also realized
that singleton model program analysis is incomplete as gpoenensive diagnosis process.
Often parallel programmers in scientific computing combine or more computational
models to realize the intended parallelism or address Bp@arformance issueCom-
positionalmodels capture how singleton models are composed togetdenteract in a
parallel program. The model composition may change peidora identify of individual
models. This raises new challenges as to how to allow the atremd location of the
occurred performance loss due to model interaction to bectkrl and interpreted within
an integrated environment. This chapter reports our egpee with investigating perfor-

84

mance problems of compositional models. We will presentenéwork for discovering
and interpreting performance bugs using both the semauitioslividual models and their
composition pattern. We extend our Hercule performancgmndisis framework to support
performance engineering of compositional models and testutle on the scientific ap-
plication FLASH [4] and the ScaLAPACK algorithm PDLAHQR [7&ach representing
different types of model integration. These experiencealestrate that our approach can
effectively support automatic diagnosis of compositianaldel performance.

In Section§6.2, we classify different model composition patterns aighlight their
impact on performance. We then present in Sedi®8 the performance knowledge engi-
neering approach adaptive to the model compositions. Hersextended to support the
compositional diagnostic analysis, which is presentedeatiSn§6.4. We show in Sec-
tion §6.5 the Hercule experiments with two real-world applicasithat represent different
types of model integration. Secti@h.6 concludes with observations.

6.2 Computational Model Composition

In the previous chapters, we investigated how to generateeanode performance
knowledge from singleton models, and developedHkeculesystem to test how effective
the derived performance knowledge support for performali@agnosis processes. While
the results using Hercule were generally successful wedd applications are more com-
plex, often based on the composition or synthesis of two aeratementary computational
models. To conduct performance diagnosis of a compositjmarallel program we must
extend the knowledge engineering and problem inferenarmgpture the interplay of one
model with another. Since we have well researched singleshpetformance, we intend
to devise compositional model diagnosis approach as ansgteto it.

In this section, we will look at different model compositipatterns, especially their
impact on performance. Parallel models can be combinediite qufew styles. Model
compositions can be roughly divided into two categoriesnfritie standpoint of perfor-
mance effects of the interaction. The first category is synapl addition of the involving
models without cross-interleaving model components. Thdehcomposition, therefore,

85

does not incur new performance overhead type. The secoegiargitmay shuffle the model
components so that performance effects of the original isadenge or new effects arise.
Performance analysis of the second type is more complicatetwill be the focus in the

following discussion.

To help understand model interaction, we follow the desiciipformat of model be-
havior we used in the singleton model diagnosis, abstraaitev Consider a parallel com-
putational model as a set of indivisible computational comgnts{C1, Cs, ..., Ci}, and a
function, F'(C4, Cs, ..., Cy), that specifies the relative control order (e.g., sequctiaice,
concurrent, iteration, and so on) of component occurreWecan then regard the compo-
sition of two models/'(...) andG(...), as an integration of the components in some manner.
Model interleaving is constrained to the component leve} ts, model components can
be shuffled when combining two models.

Several compositional forms are possible. For instance,noodel could simply nest
one model hierarchically within another (model nesting)the component sets of two
models could be restructured in a more complex way by a highaar function (model
restructuring). Our objective is to understand the contosl properties of model inte-
gration in order to engineer the performance knowledgeestéat performance diagnosis.
Our approach will describe how performance effects of itligl models change as the
components merge and how new performance effects arisetfiercomposite interac-
tions.

6.2.1 Model Nesting

This type of model composition refines a high-lexa@bt (outer) model’'s components
with lower-levelchild (inner) models so that the workload of the refined componisnts
computed in the parallelism specified by the child modelsd®mesting forms a hierar-
chy of models where the root model dictates the paralleliStheprogram at the highest
level of abstraction, and the lower-level child models addrparallelization and imple-
mentation of the finer-level details. State more formallyg tmodelsF'(Cy, Cs, ..., Cy) and
G(Dy, Do, ..., D;) (D; are components off) may compose into a new nested model as

86

follows:

F(Cl, Cg, e Ck) + G(Dl, DQ, ey Dl) —
F(C{G(Dy, Ds, ..., D))},
CZ{G(D17D27"'7D1)}7 (61)

)

CR{G(DM D, ..., Dl)})

whereC;{G(D1, D», ..., D;)} means the componenq; implements theZ model. Note,
not necessarily every componenthnis refined withGG, and there may be additional child
models used.

Parallel applications based on nested computational rmatel common. Iterative,
multi-phase applications are frequently structured asedesiodels with an outer code
controlling multiple phases each based on a possibly dfffieparallel pattern. Example
applications are FLASH [4], which nests parallel recurdree into adaptive mesh refine-
ment model, and graphical animation in [9], which implensemtpensive pipeline stages
with master-worker model. Our concern is how to understaedperformance of nested
models. Due to the hierarchical structure of model nestmglyzing this type of appli-
cation usually starts with the root model. When a probleemadimponent is found in the
model (e.g., an expensive phase), we switch from the rodtéaccomponent’s model to
refine performance problem search. The search continuéghefinest level of model
is reached. Performance overhead categories of the nesigel m the union of the over-
heads associated with the participant models. Thus, tr@ydbe organized in a hierarchy
conforming to the model nesting to support the top-downgreréince bug search.

6.2.2 Model restructuring

The restructuringtype of model composition integrates components of two oremo
models according to some new funtion while maintaining tiraarelative control order of
each model’'s components. Formally two modgls”;, Cs, ..., Cy) andG (D4, D, ..., D))

87
may compose into a new restructured model as follows:

F(Cl, CQ, ceuy Ck) + G(Dl, Dg, ceny Dl) —

(6.2)
H({CT,...CLY [{DY, ... DF})T)

where{C{,...,C['} | {Df, ..., D'} selects a componeat” or D¢ such that the relative
control order ofF' components and components are maintained.

The general idea is that the components of the contributiodeats are being mixed
to form a new set, to which a new model functiéhis applied. H could be F, G, or a
new operation, like iteration, nesting, farming, and so Arsimple example might be the
restructuring of two pipeline models into a single pipelmedel with the components at
each pipeline stage merged. More complex examples are tigymanetric QR algorithm
(PDLAHQR) [7] in ScaLAPACK, which combines pipeline and geetric decompaosition
models, and the MUMPS sparse direct solver [8], where mraéie, master-worker, and
geometric decomposition models are mixed together.

For our purposes, the key difference between model nestidgreodel restructuring
has to do with the notion oirorking context In model restructuring, the working context
of a component from a contributing model will be differerdrfr its context in the singleton
form of that model. The performance overheads associatédtiae original models (see
[10, 12]), will change corresponding to context-specifitdas and the new model function
H. In contrast, when computational models are nested, theehsednantics at each level
of hierarchy will be preserved, and the working context fomponents of a nested model
will be model-local. From a performance diagnosis perspedhe performance overheads
and problem causes can thus be isolated to the models usiei@rd levels of hierarchy.

As we have already gained performance knowledge of indalichodels, diagnosing
a parallel program coded with restructured models bagicaljuires we learn how per-
formance effects of individual models change as the compsrieterleave. Specifically,
we need to identify the boundary of two models effect, thabianswer which model(s)
caused a performance degradation, and how. New perforntdwacacteristics introduced
by model restructuring include delegated delay and congdsiay. When components of
a model are separated by another model, the performancgatsaciated with the model

88

may take place in the second model’s code region. We callglfefmnance delay, which is
caused by a model while manifesting the effect in anotheret®dffective context, dele-
gated delay. From Equation 6.2, a delay originally cause@'bynd manifested in a later
component’f’, may now appear in another component, §gyoccurring before”)". This
delay is then an example of delegated delay and should hieusid to its original model.

A composite delay, as the name implies, is jointly causedamydr more participant
models. In this case, a performance delay associated witbdelmwhile remaining its
occurrence location inside the original model, reflectsamy the original model’s effect
but the interleaving models. From Equation 6.2, a perfogeastelay happening inside
CF, may reflect the cumulative effects of precediiggndG components, as its working
context switches from solely’ (in the singleton model) to mixed and G. To assess
composite delay quantitatively, we need to change origgaaluation rules in response to
the model interaction. In next section, we will discuss howtorporate the compositional
performance effects into the automatic diagnosis framkwor

6.3 Performance Knowledge Engineering Adaptive to Model

Composition

At the core of our automatic performance diagnosis appraa&mgineering perfor-
mance knowledge from computational models, which proceefisr stages, from behav-
ioral modeling— performance modeling- model-specific metric definition- inference
modeling. The model-specific knowledge is stored into a bdseh, if interfacing to an
appropriate inference engine, will support automaticqgrenince diagnosis. A program us-
ing a customized parallel model may introduce new diagnestjuirements as to problem
discovery and inferencing. Our four-step knowledge engjiimg approach is applicable
to the program-specific knowledge as well. The user canvotlee principles to extract
adapted knowledge step by step and then join them with theziteld model knowledge to
analyze their own programs. The model composition is amaype of model variation. In
this case, instead of one single model, two or more are cadlgether in a program. In
this section, we extend our knowledge engineering apprtmaatidress performance issues

89

arising from the model interaction, so that the user can lis@pproach as the guideline
to “compose” performance knowledge about a compositiomalehfrom already available
knowledge of individual participant models.

6.3.1 Behavioral Modeling

Behavioral modelingaptures program execution semantics as behavioral maagels
resented by a set of abstract events at varying detail ledlefsending on the complexity
of the model and diagnosis needs. The purpose of the absirants in the diagnosis
system is to give contextual informaton for performance etiod, metric definition, and
diagnostic inferencing. An abstract event descriptiorersally includes arexpression
that takes the form of (C4, Cy, ..., Cy). The expression names the constituent component
C; (typically, an indivisible computational component or coomication function) and en-
forces their occurrence ordér using event operators. Model composition may interleave
constituent components of abstract events from differerdets.

We describe behavioral characteristics of a compositioradel (or called composite
events) by integrating already available abstract evdritsegparticipant models (or called
basic events) in a manner that conforms to their composstigie, nesting or restructuring.
We use the order operatossquentiallo), choice(

), concurrent(A), repetition(+ or *),
andoccur zero or one tim€]) to specify occurrence order of the basic events. As show
in equation 6.1 model nesting requires that a componentaotamodel event be replaced
by a whole basic event from the child model.

Model restructuring brings up a more complicated scenahera two basic events
from different models interleave their components togediseshown in equation 6.2. In this
case, we can first look at the compositional behavior andsgmt it with an abstract event
expression without considering constituent componemtsantics in their original models.
Then we discern and sort out the constituent componentgheio original models, and
annotate the components at the model switch points to diggh the model interleaving
pattern.

90

6.3.2 Performance Modeling and Metric Formulation

Performance modelinig carried out based on the structural information in therabs
events. The modeling leads to the formulatiorpefformance metricghat represent the
performance properties dictated by the model semanticscafaise the metrics to learn
and evaluate various aspects of a model performance.

Performance metrics in a compositional model are not siraplgion of the metrics in
participant models. As we discussed in section 6.2, theychapnge as to their occurrence
locations and evaluation rules. In the model restructyriledegated delay and composite
delay can be identified when performance modeling the coitgabstract events. The
annotated components at model switch points provide a ocludere a performance delay
possibly transfers to. A performance loss that originalppens in a model now should
take into account the interleaving model’s cumulativeafen the evaluation.

6.3.3 Inference Modeling

Inference modelingaptures and represents the performance bug search aratente
tation process formally. Targeting performance intemdien at a high-level abstraction,
we aim to find performance causes (i.e., an interpretatioa pérformance anomaly) at
the level of parallelization design, that is, to attributeesformance problem to the culprit
model factor. The performance inferencing is thereforenta@ping of low-level perfor-
mance measures to high-level performance factors. Theeimée process is captured in the
form of an inference tree where the root is the symptom @.performance anomaly devi-
ating from the expected) to be diagnosed, the branch nodastarmediate observations
obtained so far and needing further performance evidemceggdlain, and the leaf nodes
are explanations of the root symptom in terms of high-leeefgrmance factors associated
with the computational model used.

We generate the inference tree for a compositional model érxgimg the individual
inference trees of the participant models. The inferenee mmerge for a nested model
is based on its model hierarchy, where we expand the infer&nee of the root model
with relevant tree branches of the child models in the hamar Recall that each node in
an inference tree represents an intermediate observdliahg obtained by evaluating a

91

model-specific metric. If an involving component in a meti@luation is refined by a
new model, the sub-trees associated with the metric wilkipareded with the new model’s
inference tree. The algorithms for merging inference todesodel nesting is presented in
Appendix A. An example of tree-merging is shown in sectidhBwith FLASH code.

For constructing an inference tree of model restructunvgmerge inference trees of
the participant models that share the same performanceteymghat is, root node. We
pick one model tree as the host to expand with inference pseseof a second model. The
host tree is usually the one of highest complexity among rtkielving models. We add
in the inference tree of the second model node by node — weftwatke node’s correct
location in the host and build its connections with the hosé thodes according to the
interaction pattern of the two models. Starting from thet noade, if there is a node in
the host that represent the same semantics (i.e., perfoemaatric type), we remove the
node from the second tree and set its equivalent node in tteaB@arent of its sub-trees.
Otherwise, we remove the node and its sub-trees from thendetee and merge them
under the node’s parent in the host. In this case, we also teeglieck if the node or its
children represents a performance metric that is trandfieoen the host due to the model
interaction (i.e., delegated performance metric), or vieesa. We draw a line pointing
from the deputy model node to the delegator model node. &ilyiht a node representing
a composite metric, relevant nodes from the both modelscatihect to the node to reflect
the cumulative performance effect. The merge continuakthatsecond tree is empty. The
algorithms for merging inference trees of model restrunguis presented in Appendix B.
We will show an example of building inference tree for moasstructuring in section 6.5.1.

In the section 6.5, we will illustrate how to generate parfance knowledge about
compositional models with two example applications, FLA&H PDLAHQR, using the
approach presented above.

6.4 Hercule Support for Compositional Model Diagnosis

Hercule’s singleton model analysis facilities can alsgmupthe compositional diagno-
sis if provided with the performance knowledge specific ®1tiodel composition. Given

92

two models whose performance knowledge has been storeckiknibwledge base, the
user needs to generate and input the extra knowledge imystheir interaction pattern

to diagnose a specific algorithm, which includes the combatestract event descriptions,
composite metric evaluation rules, performance factoexi§p to the model interaction,

and interfacing inference steps that link two inferencegdrtogether in accordance with
their interaction pattern. The guidelines to generate timepositional knowledge from the
already available base model knowledge have been providsstiion 6.3. The knowledge
engineering approach, in contrast to building everythnognfthe scratch, can effectively
reduce the users’ burden enforced by the diagnostic probessext section, we will apply

Hercule to two real world applications to demonstrate theotizeness of our diagnosis
approach.

6.5 EXxperiments

6.5.1 ScalLAPACK nonsymmetric QR algorithm — PDLAHQR

PDLAHQR is a parallel QR algorithm solving the nonsymmegiigenvalue problem
in ScaLAPACK. This implementation of the QR algorithm perig QR iterations implic-
itly by chasing multiple bulges down the subdiagonal of apargfHenssenberge matrix in
parallel. The bulge chase dictates a variant of pipelineehtitht works as follows. The
processors are arranged logically as a grid of R rows and @rod. The matrix is decom-
posed intol. x L blocks, which are parceled out to the processors by a tweasnonal
(block cyclic) torus wrap mapping. When th bulge is chased down to thie+ 1¢th row
of processor, the + 1th bulge can start at the first row of processor. It is not unt th
i+1th bulge starts that the processors located ori théth row or thei + 1¢th column are
occupied and start to work. When tité bulge reaches thie+ 1th row, first the leader of
thei + 1¢h row, usually the processor located on the grid diagonatssta do householder
transform. And then the leader broadcasts the househaifteniation horizontally to the
i + 1th row and vertically to the + 1th column so that the neighbor processors located
at the same row or column as the leader become busy. Thiswafipipeline model of
parallelism increase scalability of the QR implementasanificantly. Due to the block

93

— neighbor comm

pipeline --»= pipeline commt

FIGURE 6.1: PDLAHQR dynamic communication structure in four sucocessiompute
phases on a 3x3 processor grid.

cyclic data distribution, neighbor processors commumeigatwo scenarios. The first is the
leader processor broadcasting householder informatioritghbor processors at the same
row or column. The second happens when a bulge moves fromlodetb another, which
may incur a neighbor communication of the border betweemkieks that the two neigh-
bors share. So we can view the application as a combinatigpefine and geometric
decomposition model. The dynamic communication struobfifeur successive compute
phases in the application is illustrated in the Figure 6s$uaning &8 x 3 processor grid.

Identify and describe model composition pattern

The first step towards generating performance knowledge isvestigate how the
two singleton models, pipeline and geometric decompasitigerleave in the application.

94
Generally pipeline and geometric decomposition behaaartie described as:
ITER{RECV, 0 COMPUTE, o SEND,}

and
ITER,{REC g*d o COMPUTEq o SEND;d}

respectively, wherd&k EC'V,, and SEN D,, represent receive data from preceding pipeline
stage and send data to succeeding stagefiardV,, andSEN D, represent receive data
from and send data to neighbors respectively. Weli§8 R here instead of * to distinguish
different iteration semantics in the two models.

Since there are two distinct types of processor, row leadeémnan-leader, we describe
their behaviors in PDLAHQR separately as

ITER,{RECV, 0 COMPUTE, o SEND7"}o
ITER,{SEND:}o (6.3)
ITER {RECV,}; 0o COMPUTEy 0 SEND},}

for row leaders, and

(ITER{RECVI"}ITER{RECVSY)o
ITER,{RECV};0 COMPUT Ey 0 SEND}

g

(6.4)

for non-leaders. From the above behavior descriptions,amesee that the model compo-
sition in PDLAHQR falls into the category of model restruttg.

Performance metric characteristics

Based on the above model behavior descriptions, we shalsfon detecting and for-
mulating delegated and composite performance delaysidigt the model restructuring.
As seen in formula (6.4), since non-leader processors dbang explicit pipeline oper-
ations, a pipeline delay, such as idle time due to the pipedtart-up, handshaking, and

95

<> i

:

-
O

—

computation

<ther_ comnr>

fher_comm>
L ‘effective,comml ‘ compute_i ‘
‘effeclive_commJ ‘wailiug time ‘ pipelinefoomp 'd \'
A + / (G)
Eount) pl_comp_stage~. physical_domain.
data_pattition imbalance d
LI ey o] [P g | 44 : g
-\ pL_emptyup | |pl_handshaking sweep Lo g ranularity domain_partitio;
Y / method
bl comp_stage~. ; data_partition
.lm td.dev. method
Pl_comp_:
empiyup

lomain_partitios
method

-- e legation amow means Acan
e can adelegated per
5

»~
[pipeline”comm| [neighbor_commh

. = A
— - [domain_comp
Walﬂﬂg_mrf_- " |compute_imbalance | | LW\ !

pipeline_comp

pl_comp_stage
td.dev.

data_partition®

L
| data_imbalance |

4'“'/'/ ’1/
PLAAp | e rnptyup] [pL handshaking
4/

L physical_domain
: [comp_stage~.
td.dev.

imbalance
data_structure
% domain_representatior]
domain_partition
method

FIGURE 6.2: Construct compositional model inference tree for PDLAHQRe top two
trees represent pipeline and geometric-decompositidonpeance inference respectively,
and they combine into the PDLAHQR inference tree on the lbo@ocording to its model
restructuring. Some subtrees are abbreviated in the catgrosiodel for conciseness.

wind-down, manifests as the communication delag&CV; 7" or RECV", which are
classified as neighbor communication inefficiency in thgioal geometric decomposition
model. There are also composite delays in the applicatiarthé iteration/TER,,, a
row leader needs to exchange data with non-leader neighiboegsors.REC'V,, in the
formula (6.3) may reflect not only work balance between thgi®ors atCOM PUT E,,,
but the extra more workload the row leader undertakes in t@oquling/ T E' R, iterations
than the non-leaders. So the communication delay occuatitige R EC'V,,; should take
into account pipeline compute’s performance impact invtdugation.

96

"0D00 X! ParaProf: /home/users/lili/Benchmarks/SCALAPACK /TESTING

File Options Windows Help

Metric: Time

Yalue: Exclusive
stol. dev. [l I i | 0 11 &

mean [I:I e e [D08 O
NCT0,0,0] | Eeeeeesmes [D08 O
et 1,00] I—I eeeeeslmes [B 0O
n,Ct2,0,0 [——— e e [O e[
net 30,0] | | e [I O
Nt 40,0] | s Em) D08 O
nEISOO—I—I s s [| 0 O & O
net6,0,0 E] eees sl | 0 0 &0
G O | — e = (B08 O
MPI_Bcast() MPI_Recv() PDLAHQR MPI_Allreduce()
B [i

FIGURE 6.3: Paraprof view of performance profiles in the PDLAHQR run. tligplay
most expensive program functions here.

Merge inference trees of participant models

Constructing compositional model inference tree for PDI¥RIis simply to merge in-
ference trees of pipeline and geometric decompositionhawa in Figure 6.2, subtrees in
the two models that share the same semantic parent nodec@umunication and compu-
tation) combine into one single tree rooted at the parené n8dbtrees from different mod-
els remain independent unless they have nodes addressiétegatd or composite perfor-
mance metricneighbor_comm. node in geometric decomposition model, for instance, has
pl_fillup andpl_handshaking nodes in pipeline model as its children. Connected with a
delegation arrow, the relation means that an expensivénbhergcommunication may look
for its cause at pipeline fill-up or handshaking. And compnriealance, a commonly-seen
performance phenomena in geometric decomposition, maynteepreted in part by the
extensive pipeline compute considering the interleaviatggon of the two models. The
relation is denoted by the composition arrow connectingittaes from the two models.

Experiment results with PDLAHQR

We run the PDLAHQR program on a IBM pSeries 690 SMP clusten W@ processors.
We set al x 2 processor grid and use PDLAHQR to compute the nonsymmegenealue

97

of a 100 x 100 matrix. The Figure 6.3 shows performance profiles of the @tec of
PDLAHQR, where major program functions are presented ieoofldecreasing mean ex-
ecution time across processors. We can see here thaBgddt() and MPIRecv() time
dominate, which are main communication functions usederpipeline and geometric de-
composition model. Hercule first conducts an experimentia d performance symptom,
expensive communication cost.

Found PDLAHQR.clp ... Loading
Begin diagnosing PDLAHQR program

Level 1 experiment -- collect performance profiles with
respect to computation and communication.

do experiment

Average communication time account for 73.15% of overall
execution time. Communication cost dominates.

Hercule then investigates communication cost associatedwodels. It looks at geometric-
decomposition performance first, and identifies the peréorce effects of the pipeline
model.

Level 2 experiment -- collect performance profiles with
respect to two models used in the program, Pipeline and
Geometric-decomposition.

do experiment

Processors spent 13.23% of communication time in Pipeline
compute and 78.26% in Geometirc-decomposition compute.

First we look at geometric-decomposition compute.

Level 3 experiment for diagnosing geometric-decompositio n
model related problems -- collect performance event trace

with respect to neighbor communication, and interaction co st
with pipeline model.

98

do experiment

Waiting time associatd with geometric-decomposition
comprises 37.32% of communication time.

In geometric-decomposition, load imbalance due to
interleaving with pipeline compute results in waiting
time that account for 17.83% of communications.

In geometric-decomposition, communication delay delegat
from pipeline comprises 10.55% of communication
time.

ed

Level 4 experiment for diagnosing pipeline performance imp
on geometric-decomposition performance -- collect perfor
event trace with respect to pipeline fill-up, handshaking,
and wind-down impact on nearest neighbor communication.

act
mance

do experiment

Pipeline fill-up delay propagates to compute/communciati
component in geometric-decomposition, which results in wa
time that comprises 3.97% of communications.

on
iting

Pipeline handshaking delay propagates to compute/
communication component in geometric-decomposition, whi
results in waiting time that comprises 6.58% of communicati

ch
ons.

Pipeline wind-down delay propagates to compute/communcia
component in geometric-decomposition, which results in
waiting time that comprises 0.0 of communications.

tion

Hercule then interpretes pipeline performance.

Level 3 experiment for diagnosing pipeline model related
problems -- collect performance event trace with respect to
pipeline compute, and interaction cost with geometric-
decomposition.

99

do experiment

Waiting time associatd with pipeline compute comprises 11. 49%
of communication time.

Pipeline waiting time due to the interaction with geometric -
decomposition comprises 0.0 of communicaiton time.

Pipeline fill-up cost in explicit PL compute comprises 1.46 %
of communicaiton time. That is, processes at the pipeline

tail are idle for 1.46% of communication time when pipeline

is growing up.

Passing along data among successive pipeline stages
(handshaking) in explicit PL compute comprises 5.98% of
communication time.

Pipeline wind-down cost in explicit PL compute comprises 3. 79%
of communication time. That is, processes at pipeline head
are idle 3.79% of communication time waiting for the pipelin e

to empty up at the end of the iteration.

Hercule is also able to explain performance of dynamic bienswdistinct to the PD-
LAHQR algorithm. Since the algorithm is iterative the siZéhe active matrix is decreased
by deflations. Each deflation causes a portion of the matrbettbome inactive. As large
portions of the matrix becomes inactive, processors begfalt idle. Both pipeline and
geometric-decomposition performance are affected byyhamic program behavior.

Pipeline sweeps in some iterations do not grow deep enough to
make every process active due to data characteristics of the
iterations. Some processes therefore fall idle. Such idle

time comprises 0.76% of communication time.

Dynamic load imbalance may arise as the compute step

increases. The load imbalance causes processor idleness

that comprises 6.65% of communication time in geometric-
decomposition compute.

100

6.5.2 FLASH

FLASH [4, 5] is an astrophysical hydrodynamics code dewvedbat the center for As-
trophysical Thermonuclear Flashes at the University oic&po. FLASH is intended for
parallel simulations that solve the compressible Euleraggas on an block-structured
adaptive mesh. Adaptive Mesh Refinement (AMR) is handledgudie PARAMESH Ii-
brary. PARAMESH employs a tree structure of logically Cside blocks to cover the
computational domain. Each block in the domain is refinedddyihg the block along each
dimension and generating a set of new sub-blocks, each ofwitais a resolution twice that
of the parent block. When a block is de-refined, sibling bsoake removed. Each block
is represented by a node in the tree structure. The nodesstdoemation about its parent
block, child blocks, and neighboring blocks. An example diva-dimensional domain
and its tree structure is shown in Figure 6.4. For the sakead-balance across proces-
sors, a redistribution of blocks is performed using a Mosdpace-filling curve [16] after
all refinements and de-refinements are completed. So a blagbmplaced on a different
processor from it parent or siblings.

Regardless of the particular algorithm, AMR dictates a $dtasic operations which
include guardcell filling, refining and de-refining gridspjangation of the solution to
newly created leaf blocks, restriction of the solution ue Htock tree, data redistribution
when the grid block tree is rearranged (load balancing),letihe FLASH implementation,
implied in the operations is the communications dictatedhi®ygrid block tree structure
with the blocks being distributed to different processard ¢he maintenance of the tree
structure with mesh refinement and de-refinement. We therefew the FLASH code
as a combination of two parallel computational models, AMiId Rarallel Recursive Tree
(PRT).

Identify and Describe Model Composition Pattern

AMR model consists of a set of basic mesh grid operations ata aperations. The
mesh grid operations includes:

¢ AMR Refinementefine a mesh grid

101

'y

[= =
=

=

Illlwl R
:::F:iﬂl_.__
i

13 1516 17

FIGURE 6.4. The tree structure that represents a set of blocks coverifiged two-
dimensional domain (adapted from [5]). A refined block hask size half that of the
parent’s. The number near the center of each block is itsdarumber. The symbols in
the tree shows on which processor the block is located onrgpimeessor machine.

e AMR Derefinementcoarsen a mesh grid

¢ AMR LoadBalanceeven out work load among processors after a refinement er der
finement

The data operations corresponding to the mesh rebuildeigdes

e AMR Guardcell update guard cells at the boundary of every grid block watad
from the neighbors

e AMR Prolongation prolong the solution to newly created leaf blocks aftemefi
ment

102

e AMR Restriction restrict the solution up the block tree after derefinement

¢ AMR DataRedistributiondata redistribution resulting from mesh redistributidmen
balancing workload

All the AMR operations in the Flash code are closely reladtg grid block tree,
which determines the communication needs and data movemBatallel recursive tree
model consists of a set of generic operations that include:

e PRT.commto_parent communicate the processor on which the parent block is lo-
cated.

e PRT.commto_child, communicate to the processor where the child block is émtat

e PRT.commto_sibling, communicate to the processor where the sibling block is lo-
cated.

e PRT build_treg initialize tree structure, or migrate part of the tree tother proces-
sor and rebuild the connection.

In Flash code, every AMR operation recalls the set of PRT atjpmrs to perform its
function. The work mechanism of théM R_Re finement, for instance, is first to generate
a list of children of the grid blocks to be refine, then to castrtbe new children blocks
with off-processor neighbors designated by the parentislo€he links between the new
children and the parent neighbors are built through PRT atjmers. In other words, the
computation of every component in the AMR model is reducédl RRT operations, while
the semantic integrity of the two models are preserved. 8artbdel composition in the
FLASH code falls into the category of model nesting. Theingdborms a two-level model
hierarchy where AMR is the root model that dictates the pelrain of the overall solution,
and PRT the second-level model that addresses paralietizand implementation of the
AMR operations.

Performance Modeling and Metric Characteristics

Due to the model nesting property of FLASH code, we intendxjagan the perfor-
mance in terms of its model hierarchy. The performance niogleitarts with the root

103

model, then fills the lower-level model into the root framekvdo refine performance
overhead categoriés.Performance overhead types of the nested model composition
the union of the overheads associated with the individugligiant models. To reflect
the model hierarchy structure, however, we refine a perfoo@averhead further into a
number of context-aware types that indicate different aence circumstances within the
model heirarchy. Guardcell filling, for instance, is one lo¢ tmain sources of program
inefficiency in AMR model. Due to the use of PRT model for datenenunication in
the FLASH code, the guardcell filling overhead can be furtbreken down in terms of
PRT overhead classes, i.e., communication cost with thenparodes, child nodes, and
neighbors nodes in the grid block tree. So it is possible tk lmto PRT performance
as well within the AMR framework. Performance metrics thaautitatively evaluate the
overheads are also organized in the hierarchy dictatedebgntidel nesting to support the
top-down performance problem search. In this way, we allomcapturing performance
bugs at different levels of the model hierarchy and providergtext for performance inter-
pretation in terms of the cross-level model interaction.

Merge Inference Trees of Participant Models

The construction of FLASH inference tree is essentiallyxieied the AMR inference
tree with PRT inference steps. The Figure 6.5 shows the npeapess. We can see from
the figure that some AMR subtrees are extended with PRT besnethich means that a
performance problem found relating to the subtree rootsbeafurther tracked down to
the PRT operations usegarent_prolong in AMR guardcell filling, for instance, involves
communications to parent, child, and/or sibling in the gres. Its performance counts on
these PRT operations along with the factors in the origindRAmodel. So when there is
a problem withparent_prolong, we should incorporate the relevant PRT inference steps to
find the possible causes.

104

jcommunication|

wysical_blosk, palculate_Hocks {
somiguity weight

/ lanee,
tlock_we gh™ ¥ frgrate_blocks
ass;gn_method //Physical_block

contiguity fa

A--» WD) refine perf. problem search
following subtrees of PRT that
are relevantto A The No
represent cortesponding
subtrees in PRT

refine_fre

ock_weight_ @

sign_method
fysical_block
contiguity

FIGURE 6.5: Construct compositional model inference tree for FLASHeTop two

trees represent AMR and PRT performance inference respgtand they combine into
the FLASH inference tree on the bottom according to the madsting in the FLASH

code. Added PRT subtrees are highlighted in the FLASH trelenaarked with indices in
their original PRT tree. Some subtrees are abbreviatedfuriseness.

Experiment results with FLASH3

We experiment with the Sedov explosion simulation in the BHS.0, and run the
simulation on a IBM pSeries 690 SMP cluster with eight preces. The Figure 6.6 shows
performance profiles of a simulation run, where major progfanctions on each proces-
sor are presented in order of decreasing mean exclusivetsxet¢ime. From the profiles
we can see that communications, including M¥3end(), MPJAllreduce(), MPLBarrier(),
MPI1_Waitall(), dominate the runtime. But the profiles providédi insight into the perfor-
mance of the AMR operations or the supporting data commtioitawith PRT.

Hercule first conducts an experiment to find the performayogsom, expensive com-

LFor this work, we created new singleton models for AMR and PRT

105

6606 X/| ParaProf: fhome/users/lili/Benchmarks/FLASH3 /object/taudata/set?
File Options Windows Help

Metric; Time
walue: Exclusive

. ey e TR ol T TR
G — T
AR e — i
ML L, (e TN T

LT 2,00] e Tl RN T o
MCt 3,0, e T ST T
net 40,0 Ess] e T ol T
AL —— I mn T
ML 60,0] | ERRETIEn
M 7,0, L DT Tl o TG
MPI1_Allreduce() MPI_Ssend() MPI_Barrier()MPI_Waitall()f
MPI_Alltoall() y;

FIGURE 6.6: Paraprof view of performance profiles in the FLASH run. Weptky most
expensive program functions here.

munication cost.

Begin diagnosing AMR program
Level 1 experiment -- collect performance profiles with
respect to computation and communication.

do experiment 1... ...

Communication accounts for 80.70% of run time.
Communication cost of the run degrades performance.

Hercule then looks at the performance of the the top leveleh@dR.

Level 2 experiment -- collect performance profiles with
respect to AMR refine, derefine, guardcell-fill, prolong,
and workload-balance.

do experiment 2... ...

Processes spent
4.35% of communication time in checking refinement,
2.22% in refinement,

106

13.83% in checking derefinement (coarsening),
1.43% in derefinement (coarsening),

49.44% in guardcell filling,

3.44% in prolongating data,

9.43% in dealing with work balancing,

Hercule then picks the most expensive AMR operation, guairfitling, to look at its per-
formance in details, especially the performance of secevel model PRT that implements

guardcell-fillings.

Level 3 experiment for diagnosing grid guardcell-filling
related problems -- collect performance event trace with
respect to restriction, intra-level and inter-level
communication associated with the grid block tree.

do experiment 3... ...

Among the guardcell-filling communication, 53.01% is spen t
restricting the solution up the block tree, 8.27% is spent
in building tree connections required by guardcell-fillin g

(updating the neighbor list in terms of morton order),
and 38.71% in transferring guardcell data among grid blocks

The restriction communication time consists of 94.77%
in transferring physical data among grid blocks, and 5.23%
in building tree connections.

Among the restriction communication, 92.26% is
spent in collective communications.

Looking at the performance of data transfer in restrictions
from the PRT perspective,

remote fetch parent data comprises 0.0%,

remote fetch sibling comprises 0.0%,

and remote fetch child comprises 100%.

Improving block contiguity at the inter-level of the PRT
will reduce restriction data communication.

Among the guardcell-filling communication, 65.78% is
spent in collective communications.

107

Looking at the performance of guardcell data transfer from
the PRT perspective,

remote fetch parent data comprises 3.42%,

remote fetch sibling comprises 85.93%,

and remote fetch child comprises 10.64%.

Improving block contiguity at the intra-level of the PRT
will reduce guardcell data communication.

In FLASH, the AMR Guarcell algorithm first restricts the data at "leaf” bloakgs to
the parent block, then all blocks that are leaf blocks or amemts of leaf blocks ex-
change guardcell data with any neighbor blocks they migtie lzd the same refinement
level. Hercule explains guardcell-filling performancenfrawo dimensions here. It in-
forms performance of each functional category, includifdFRA Restriction, building tree
connection, and guardcell data transportation. It alsaks&own communications into
collective and point-to-point (P2P) groups. The colleetoperations used in FLASH
include MPLAllreduce, MPLBarrier, MPLAlltoall, etc. The P2P includes MBE3send,
MPI_Irecv and MPIWaitall pair, which are mostly used in the tree-related dedasfer.
From figure 6.6 we already know that these operations dosithatruntime. Hercule dis-
criminates the performance of these two types of commubpita AMR_Guardcell and
AMR _Restriction, and interprets the P2P performance as reflentéhe PRT compute.
The users can thereby obtain an extensive insight into theSIFLperformance from the
perspective of the parallel models they coded with.

It is important to note is that Hercule automated all aspettbe diganosis process,
including experiment construction, performance analyasl performance causal infer-

encing.

6.6 Chapter Summary

Models of parallel computation are useful for discovering axplaining performance
problems of parallel applications. For programs basedmygletion models, we have shown
that capturing knowledge of model behaviors, performamopgrties, and inference rules

108

proves effective for diagnosis automation [11]. Howeviee approach will be limited in
practice if we do not allow for more complex applicationsttbambine multiple compu-
tational methods. In this chapter, we extend the modelébdsegnosis methodology to
support compositional models that integrate singletonmdational patterns. Model nest-
ing and model restructuring are two general compositioaah$ for which we discuss
systematic steps to generate the performance knowledgsseey for automatic diagno-
sis of compositional programs. Our approach addressesettiermance implications of
model integration so that performance losses due to motihiction can be detected and
interpreted. We implemented compositional performaneagrsis in Hercule framework
and tested it with two scientific applications, FLASH and AHQR. The experiment re-
sults reported here suggest that automatic diagnosis opasitional model performance
is viable and effective.

Acknowledgements The FLASH software used in this work was developed by the
DOE-supported ASC/Alliance Center for Astrophysical Thenuclear Flashes at the Uni-
versity of Chicago.

109

CHAPTER 7

Conclusion

This dissertation presented a new approach to performamelgsis of parallel pro-
grams, model-based automatic performance diagnosis.eVighélvious research has pro-
duced a wide range of approaches for performance tuningpfahese ideas have suffi-
ciently improved the ease of performance bug discovery audal reasoning at a high-
level program abstraction. Our view is that the primitivefpemance data evaluation and
inferencing ought to be handled by performance tools, figeéie programmer to concen-
trate on the higher-level, algorithmic aspect. Our appndaanotivated by the observa-
tion that by coding with computational models, parallelgraomms are already providing
a well-defined abstraction of structural and parallel@atiesign. We therefore devise a
knowledge engineering approach that captures and codédrésrmance information from
computational models. By using the performance knowledgegan significant improve
the quality of performance analysis as well as reduce thaialavork imposed on the users
compared to existing performance analysis tools. To sobata this claim, we developed
Hercule, a prototype automatic performance diagnosis & apply it to a variety of
parallel programs and scientific computations.

7.1 Research Contributions

We presented our model-based performance knowledge amgigeapproach, which
addresses some important issues in performance analgbdesign.

110

e Our approach provide performance feedback at the prograigrdéevel, without
requiring the users to evaluate and reasoning about peafarenwith primitive mea-
surements . The advantage of building a tool using our agpr@athat it can be
used by novice programmers to find performance problemsttlireelated to the
programming model they coded with.

e Model-derived performance knowledge makes it possibleutoraate performance
analysis processes. Model-specific information can guigerment design, help
pinpoint performance problems, and provide a semanticezorior the problem-
explanation. Performance experts implicitly use the imfation in analyzing their
codes. We encode the expertise in a form that supports atitopeaformance diag-
nosis for non-expert users.

e Our model-based performance knowledge generation agpieserages a signifi-
cant body of proven performance analysis techniques, ssiblel@avioral modeling,
performance modeling, metric formulation, and causalgreraince inferencing. We
adapt and enhance the techniques by taking into accountgmogemantics, and
bring them together under a performance diagnosis frantewor

e The knowledge engineering approach emphasizes adaptatiorodel variations
which include algorithm-specific implementation and npl#éimodel compositions.
We provide a set of guidelines that help the user identiffjguarance nuances intro-
duced by the variations. Besides, each step towards thel&dge/ generation, like
behavioral modeling and causal performance inferencsgresented in a manner
that can easily incorporate new performance informatiorhis sense, our approach
produces a performance knowledge base that serves as afmumaf model-specific
expertise which the users can inherit and extend into imeteation-specific perfor-
mance knowledge.

e We demonstrated the knowledge generation and encodingwithsingle and com-
positional models. And our later experiments with some-vaalld parallel applica-
tions show that the encoded knowledge, when judicioussriating to an inference

111

engine, can provide in-depth insight into parallel perfante, while requiring only
minimum intelligent input.

We developed Hercule system that implements our modeldhy@edormance diagnosis
approach. Hercule presents a new performance analysig\rark with encoded perfor-
mance knowledge being the core of the system. To date thelkdges base in Hercule
system has included master-worker, pipeline, divide-emmjuer, AMR, and PRT model
knowledge. We have demonstrated that Hercule is an vialskesythat is able to design
performance experiments and conduct bug search and caasaning in an automated
manner. Herule experiment results also corroborate tHelngss of designing tools based
on our model-based approach. Experiments with Sweep3dcapph demonstrate Her-
cule’s capability of relative performance diagnosis,, iaantrasting performance of two
problem scales and explaining the difference in terms ofehseimantics. Parallel applica-
tions representing different model composition stylesase investigated under Hercule
framework. In this case, Hercule can not only provide magbeleific performance feed-
backs but identify the performance losses due to modeldotens.

7.2 Future Research Directions

Our work represents the first step in exploiting models as anséo incorporate pro-

gram semantics in performance analysis. Our results aneriexges point to several di-
rections for future research:

e While we provide salient guidelines to derive performancevidedge from already
available base model knowledge, thereby significantly ceduthe complexity of
knowledge engineering for compositional models, the msds still manual. As
more singleton and compositional models are developedprietice will improve
in quality and more reuse will be possible. An interestingaafor future work is
to consider automatic techniques to transform and mergeiegisingleton perfor-
mance knowledge into performance knowledge accordingngoositional rules.

There are many useful features that we could include in éuarsions of Hercule.

112

e We will continue to enhance Hercule adaptability to the rmegrand complexities of
parallel programs. In current version of Hercule, the us&ds to identify algorith-
mic variations to the model stored in knowledge bases anoldenibie differences into
performance knowledge necessary for automatic diagnidsixule may help tackle
the complexity by supporting for knowledge customizatieuw,., specify differences
in abstract event descriptions and metric evaluation rutésrcule then transforms
the differences into system-readible format automatcaild incorporates them into
relevant diagnosis system components.

Hercule may also target irregular, non-model based pafgaltgrams. Instead of
exhaustive performance problem diagnosis, the goal héodirsd and explain major
performance issues by loosely matching the program withatsod\s more models
are developed, we envision that a wide variety of parallecexon patterns will be
captured and encoded in abstract event library. Herculeathay the user to look up
close behavioral descriptions in abstract event librahjictv may be from different
models, and specifies the combination forms of the retriabstract events. Hercule
then automatically composes the performance inferendingasses associated with
these abstract events into performance knowledge spextfie pprogram. There will
certainly be a diagnosis validity testing step involveeaftard.

¢ Although Hercule already addresses scalability with selecnstrumentation and
multiple level experiment management, the performanca gabcessing will be
bottleneck of causal inferencing as problem scale inceeabkercule may include
proven scalable performance data management techniqdesitsiframework. Per-
fExplorer [15], for instance, is such a technique that usga dhining operations to
simplify the management and analysis of large-scale mhnadirformance profiles.
Interfacing to the techniques can improve Hercule effigrandhe early inferencing
steps that involve identifying a predominant performanicermmenon to focus on
and synthesizing a large amount of measurement datasgtdrftr/mance metrics at
a higher level of program abstraction.

113

APPENDIX A

Algorithms for Chapter 6

A.1 Algorithms for Merging Inference Trees in Model Nest-

ing

Algorithm 1 Algorithms for merging inference trees in model nesting
Algorithm MERGE({o°, T<hild)
Input:
T - inference tree of root model
Tehld _inference tree of child model
Output:
Tm°° - root model inference tree extended with child model infegesteps
BEGIN
ROOT <= root node of["°!
for all child nodeN; of ROOTdo
look at performance metrié/; the nodeV; represents
if M; involves a component which is implemented by mdbiét’® then
if all children of NV; are leaf nodethen
BRANCHES < SEARCH(32, T<hild)
add BRANCHES as subtree of;

else
MERG E(ZK;ZOt, Tchild)
end if
end if
end for

END

114

Algorithm SEARCH(I 5o, Tehild)

Input:
Tir°t - a subtree of root model rooted at nalle
Tehild _inference tree of child model

Output:
subtrees of " that refinesV inference

BEGIN

SUBTREES« ¢

ROOT <« root node of7"d

if N refers to all children of ROO1hen
SUBTREES« SUBTREESU T¢"ild

else
for all child nodeC; of ROOTdo

SUBTREES«< SUBTREESU SEARCH(Z}Q‘M, Tg{”'ld

end for

end if

return SUBTREES

END

115

A.2 Algorithms for Merging Inference Trees in Model Re-

structuring

Algorithm 2 Algorithms for merging inference trees in model restructgr

Algorithm MERGE([est, T%d)
Input:

Thest - inference tree of host model

T?"4 - another inference tree that is to be merged into host

REQUIRE:T"*t andT?"¢ have the same root node, i.e., Ssymptom
Output:

Thest - host model inference tree extended with 2nd model infereteps
BEGIN
ROQOT <= root node of7"
PARENT < LOOKUP(ROOT,7"°*) {look up a node irT""**! that has the same seman-
tics as ROOF
if PARENT # NULL then

remove ROOT froni ™24

for all subtreeg2" of ROOTdo

set PARENT ag¢"’s parent node in host
MERGE (1%t s T2

end for
else

add7?" as a subtree of its parent in host

LINK _INTERACT(T*st, T?*4) {build up connections due to model interaction
end if
END

116

Algorithm LOOKUP(V, T"5t)
Input:
N - anode to be merged into host
T"st - inference tree of host model
Output:
The node il that has the same semantics\as
BEGIN
ROOT <« root node ofl"ost
if ROOT andN represent the same performance metren
return ROOT
else
let Thes'(i = 1,.. ., k) be subtrees of ROOT
1< 1
while i <= k do
NODE < LOOKUP(N, T}
if NODE == NULL then
1+ +
else
return NODE
end if
end while
return NULL
end if
END

Algorithm LINK _INTERACT(Tost, T214)
Input:
T"st - inference tree of host model
T?"d - inference tree of another model to be merged
Output:
T"st - host model inference tree extended with branches dueécaiction with the
2nd model
BEGIN
ROQOT <« root node of7?"¢
NODE_INTERACT(Z"*t, ROOT)
for all subtreeg 2" of ROOTdo
LINK _INTERACT (7", Té?d)
end for
END

117

Algorithm NODE_INTERACT (775!, NODE)
Input:
Thest - inference tree of host model
NODE - a node to be merged into host
Output:
Thest - host model inference tree extended with branches due épaiction with
NODE in 2nd model
BEGIN
ROOT « root node of7"ost
if performance metric at ROOT transforms into the one at NObén
draw a delegation arrow connecting NODE to ROOT
end if
if metric at ROOT contributes to metric at NODEen
draw a composition arrow connecting NODE to ROOT
end if
for all subtreeg /2> of ROOTdo
NODF_INTERACT(T&O“, NODE)
end for
END

[1]

[2]

[3]

118

BIBLIOGRAPHY

CLIPS: A Tool for Building Expert Systemshtt p: / / ww. ghg. net/cli ps/
CLIPS. ht m

TAU Tuning and Analysis Utilities, http://ww. cs. uor egon. edu/
resear ch/ paraconp/t au/ t aut ool s/

Michael S. Warren and John K. Salmon, A parallel hashedTee N-body algorithm,
In the proceedings of Supercomputing 1993, pp. 12-21, 1993

[4] ASC |/ Alliances Center for Astrophysical ThermonucleaFlashes:

http://flash.uchicago.edu/website/home/

[5] A. C. Calder, B. C. Curtis, and others, High Performanea®ive Fluid Flow Simula-

[6]

[7]

[8]

[9]

tions Using Adaptive Mesh Refinement on Thousands of Proceds the proceedings
of Supercomputing 2000 (SC’00)

Henri E. Bal and Matthew Haines, Approaches for IntegiTask and Data Paral-
lelism, IEEE Concurrency, Volume 6 , Issue 3 (July 1998) Bagéd - 84

Greg Henry, David Watkins, and Jack Dongarra, A Pardieblementation of the
Nonsymmetric QR Algorithm for Distributed Memory Architeices, SIAM Journal
on Scientific Computing, Vol. 24 , 1: 284 - 311, 2002

P. R. Amestoy, I. S. Duff, J. Koster, and J. LExcellentfllly asynchronous multi-
frontal solver using distributed dynamic scheduling. SIAdurnal on Matrix Analysis
and Applications, 23:15-41, 2001.

S. MacDonald, D. Szafron and J. Schaeffer, RethinkimgRipeline as Object-Oriented
States with Transformations, In the proceedings of 9thriatigonal Workshop on
High-Level Parallel Programming Models and SupportiveiEmments (HIPS’2004),
pp.12-21

[10] Li Li and Allen D. Malony, Model-based Performance Dieggis of Master-worker

Parallel Computations, in the proceedings of Europar 2006.

[11] LiLi, Allen D. Malony, Knowledge Engineering for Autoatic Parallel Performance

Diagnosis, to appear in Concurrency and Computation: ieeaahd Experience.

119

[12] LiLi, Allen D. Malony and Kevin Huck, Model-Based Rela¢ Performance Diagno-
sis of Wavefront Parallel Computations, in High Perfornre@omputing and Commu-
nications, volume 4192 of Lecture Notes in Computer Scieppe200-209, Springer
Berlin / Heidelberg, 2006.

[13] B. Massingill and T. Mattson and B. Sanders, Some Alponi Structure and Support
Patterns for Parallel Application Programs, the 9th Patteanguages of Programs
Workshop, 2002

[14] F. Rabhiand S. Gorlatch, Patterns and Skeletons fa&ileband Distributed Comput-
ing, Springer-Verlag, 2003

[15] K. A.Huckand A. D. Malony, PerfExplorer: A Performanbata Mining Framework
For Large-Scale Parallel Computing, in the proceeds of 8620

[16] Michael S. Warren and John K. Salmon, A parallel hashettToee N-body algo-
rithm, In the proceedings of Supercomputing 1993, pp. 1,2t293

[17] I-Chen Wu, H. T. Kung. Communication complexity for pHel divide-and-conquer.
In Proceedings of the 32nd annual symposium on Foundationsropuater scienge
1991

[18] Robert SedgewickAlgorithms Addison Wesley, 2nd edition, 1988

[19] SvPablo, University of lllinois,http://waw. renci . unc. edu/ Proj ect/
SVPabl o/ SvPabl oOver vi ew. ht m[April 10 2005]

[20] B. L. Massingilland T. G. Mattson and B. A. Sanders. Saxigorithm Structure and
Support Patterns for Parallel Application ProgramsPtac. 9th Pattern Languages of
Programs Workshqf2002.

[21] B. L. Massingill and T. G. Mattson and B. A. Sanders. &ais$ for Parallel Applica-
tion Programs. IProc. 6th Pattern Languages of Programs Workshig99

[22] E. Cesar, J.G. Mesa, J. Sorribes, and E.Luque. ModMsgter-Worker Applications
in POETRIES. InProc. of the 9th International Workeshop on High-Level Pata
Programming Models and Supportive Environmeg604.

[23] Gary Shao, Fran Berman, Rich Wolski. Performance Efet Scheduling Strategies
for Master/slave Distributed ApplicationBiternational Conference on Parallel and
Distributed Processing Techniques and Applicatichse, 1999.

[24] Sartaj Sahni. Scheduling Master-Slave MultiprocesSystemsIEEE transactions
on Computerd 996; 45(10):1195-1199.

120

[25] R. L. Graham. Bounds on Multiprocessing Timing AnorealSIAM Journal on Ap-
plied Mathematic4969; 17(2):416-429.

[26] P. Brucker, C. Dhaenens-Flipo, S. Knust, S.A. KravdtoerF. Werner. Complexity
results for parallel machine problems with a single sedaurnal of Scheduling002;
5:429-457.

[27] A. Grama, A. Gupta, G. Karypis and V. Kumar. Analyticablleling of Parallel Pro-
grams. Inintroduction to Parallel ComputingAddison-Wesley, 2003,

[28] T. Fahringer and C. S. Jr. Aksum: a tool for multi-expeent automated searching
for bottlenecks in parallel and distributed programsPtoceedings of SC2002002.

[29] John Mellor-Crummey and Robert Fowler and Gabriel Maand Nathan Tallent.
HPCView: A Tool for Top-down Analysis of Node Performandde Journal of Su-
percomputin2002; 23:81-104.

[30] N. Carriero and D. Gelernter. How to Write Parallel Piangs: A Guide to Perplexed.
ACM Computing Surveyl989 21(3):323-357.

[31] D. A. Waterman, A Guide to Expert SystenReading, MAAddison-Wesley, 1985.

[32] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hatigsworth, R. B. Irvin, K. L.
Karavanic, K. Kunchithapadam, T. Newhall. The Paradyn IRAf@erformance Mea-
surement Tool. IREEE Computerl995; 28(11):37-46.

[33] J. C. Yan. Performance tuning with AIMS — an Automatedtiomentation and
Monitoring System for multicomputers. IRroc. 27th Hawaii International Confer-
ence on System Sciencpp.625-633, 1994.

[34] CLIPS: A Tool for Building Expert System#it t p: / / ww. ghg. net/ cl i ps/
CLI PS. ht m . [April 10 2005]

[35] P. C. Bates. Debugging heterogeneous distribute@systising event-based models
of behaviorACM Trans. on Computer Systed95; 13(1):1-31.

[36] TAU - Tuning and Analysis Utilities, University of Oreq, htt p: // ww. cs.
uor egon. edu/ r esear ch/ paraconp/ t au/ t aut ool s/ [April 10 2005]

[37] T. Fahringer and C. S. Jnio. Modeling and detectinggrenfince problems for dis-
tributed and parallel programs with JavaPSLPhoceedings of SC2002001

[38] APART IST Working Group on Automatic Performance Ansiyl Real Tools,
http://ww. fz-juelich.de/ zam RD/ coop/ apart/ [April 10 2005]

121

[39] A. Espinosa, Automatic Performance Analysis of Patalfrograms, PhD thesis,
Computer Science Department, University Autonoma de Bameg Barcelona, Spain,
2000

[40] Allen D. Malony and B. Robert Helm, A theory and architege for automating per-
formance diagnosis:uture Generation Computer SysteB@1; 18:189-200.

[41] Wagner Meira Jr., Thomas J. Leblanc, and Virgtlio A. fim&ida. Using cause-effect
analysis to understand the performance of distributedrprog. InProceedings of the
SIGMETRICS symposium on Parallel and distributed tob®98

[42] Jeffrey Vetter. Performance analysis of distributpglacations using automatic clas-
sification of communication inefficiencies. IRCM International Conference on Su-
percomputing 2002.

[43] Vampir, http://ww. pal | as. conl e/ product s/ i ndex. ht m [April 10
2005]

[44] R. Bell, A. D. Malony, and S. Shende. A Portable, Extbtesiand Scalable Tool for
Parallel Performance Profile Analysis. Rroc. EUROPAR 2003 conferendeNCS
2790, Springer, Berlin, pp. 17-26, 2003.

[45] Fahringer, Thomas; Gerndt, Michael; Mohr, Bernd; Wdttlix; Riley, Graham.
Knowledge Specification for Automatic Performance AnaySPART Technical Re-
port FZJ-ZAM-IB-2001-08, August 2001.

[46] Peridot Automatic Performance Analysis for Hitachi &R0, htt ps: // wwww.
lrr.in.tum de/ ~gerndt// peridot/ [April 12 2006]

[47] G. Blelloch and G. Narlikar. A practical comparison oftfddy algorithmsParallel
Algorithms, Series inDiscrete Mathematics and Theoré@manputer Sciencevol. 30,
1997.

[48] F. Aurenhammer. Voronoi diagrams: A survey of a fundatakgeometric data struc-
ture.ACM Comput. Suryvol. 23, no. 3, pp. 345-405, 1991.

[49] EXPERT - Extensible Performance Tobt,t p: / / www. f z- j uel i ch. de/ zan!
koj ak/

[50] T.Fahringer and C. S. Jnior, Aksum: a tool for multi-erpent automated searching
for bottlenecks in parallel and distributed programs, mBnoceedings of SC2002

[51] M. E. CrovellaandT. J. LeBlanc, Performance Debuggisigg Parallel Performance
Predicates, in the Proceedings of ACM/ONR Workshop on Rdrahd Distributed
Debugging, 1993

122

[52] T. Suzuoka and J. Subhlok and T. Gross, Performanceggiigy based on scalability
analysis, technical report, Carnegie Mellon Universi894

[53] Wagner Meira Jr., Parallel Performance Understangiagntegration of Modeling
and Diagnosis, PhD thesis, University of Rochester, 1996

[54] J. Kohn and W. Willams, ATExpert, Journal of Paralledabistributed Computing,
vol. 18, 1993, pp.205-222

[55] R. Rajamony, Prescriptive performance tuning: e approach, Ph.D thesis, Rice
University, 1998

[56] R. Rajamony and A. L. Cox, Performance debugging sharethory parallel pro-
grams using run-time dependence analysis, in the procgedirSIGMETRICS 1997.

[57] S. V. Adve, Using information from the programmer to ilment system optimiza-
tions without violating sequential consistency, techhieport, Rice University, 1996

[58] B. R. Helm and A. D. Malony and S. F. Fickas, Capturing aatiomating perfor-
mance diagnosis: the Poirot approach, technical reportgdsity of Oregon, 1993

[59] Eduardo Csar, Jos G. Mesa, Joan Sorribes and Emilio é,uijlodeling Master-
Worker Applications in POETRIES, in the proceeding of HIFD2

[60] F. Song , F. Wolf , N. Bhatia , J. Dongarra and S. Moore, Algebdra for Cross-
Experiment Performance Analysis, in the proceedings oPIQB04

[61] K. Karavanic and B. Miller, A Framework for Multi-Exetion Performance Tuning,
in the On-line Monitoring Systems and Computer Tool Interability, edited by T.
Ludwig and B. Miller, Nova Science Publishers, Inc., pp. 32004

[62] The ASCI sweep3d Benchmark, http://ww. Il nl.gov/asci_
benchmar ks/ asci /i mted/ sweep3d/

[63] D. Abramson , I. Foster , J. Michalakes and R. Sosic, fReldebugging: a new
paradigm for debugging scientific applications, in The Camioations of the Associ-
ation for Computing Machinery, vol. 39, no. 11, pp. 67-77R6@9

[64] The ASCI SPHOT Benchmarkhttp://ww. |1 nl.gov/asci/ purple/
benchmar ks/ | i m t ed/ sphot/

[65] Joseph C. Giarratano, Gary D. Riley. Expert Systemsicirles and Programming.
Course Technology; 3rd edition, 1998.

