
A SOFTWARE FRAMEWORK FOR SIMULATION-BASED SCIENTIFIC

INVESTIGATIONS

by

ADNAN M. SALMAN

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

March 2010

11

University of Oregon Graduate School

Confirmation of Approval and Acceptance of Dissertation prepared by:

Adnan Salman

Title:

"A Software Framework for Simulation-based Scientific Investigations"

This dissertation has been accepted and approved in partial fulfillment of the requirements for
the Doctor of Philosophy degree in the Department of Computer & Information Science by:

Allen Malony, Chairperson, Computer & Information Science
John Conery, Member, Computer & Information Science
Dejing Dou, Member, Computer & Information Science
Don Tucker, Outside Member, Psychology

and Richard Linton, Vice President for Research and Graduate StudieslDean of the Graduate
School for the University of Oregon.

March 20, 2010

Original approval signatures are on file with the Graduate School and the University of Oregon
Libraries.

III

Doctor of Philosophy

An Abstract of the Dissertation of

Adnan M. Salman for the degree of

in the Department of Computer and Information Science

to be taken

Title: A SOFTWARE FRAMEWORK FOR SIMULATION-BASED

SCIENTIFIC INVESTIGATIONS

March 2010

Approved:
Dr. Allen D. Malony, Chair

This thesis provides a design and development of a software architecture and

programming framework that enables domain-oriented scientific investigations to be

more easily developed and productively applied. The key research concept is the

representation and automation of scientific studies by capturing common methods

for experimentation, analysis and evaluation used in simulation science. Such

methods include parameter studies, optimization, uncerta'inty analysis, and

sensitiv·ity analys·is. While the framework provides a generic way to conduct

investigation on an arbitrary simulation, its intended use is to be extended to

develop a domain computational environment. The framework hides the access to

distributed system resources and the multithreaded execution. A prototype of such

a framework called ODESSI (Open Domain-oriented Environment for

Simulation-based Scientific Investigation, pronounced odyssey) is developed and

IV

evaluated on realistic problems in human neuroscience and computational chemistry

domains.

ODESSI was inspired by our domain problems encountered in the

computational modeling of human head electromagnetic for conductivity analysis

and source localization. In this thesis we provide tools and methods to solve state of

the m-t problems in head modeling. In particular, we developed an efficient and

robust HPC solver for the forward problem and a generic robust HPC solver for

bElT (bounded Electrical Impedance Tomography) inverse problem to estimate the

head tissue conductivities. Also we formulated a method to include skull

inhomogeneity and other skull variation in the head model based on information

obtained from experimental studies.

ODESSI as a framework is used to demonstrate the research ideas in this

neuroscience domain and the domain investigations results are discussed in this

thesis. ODESSI supports both the processing of investigation activities as well as

manage its evolving record of information, results, and provenance.

CURRICULUM VITAE

NAME OF AUTHOR: Adnan M. Salman

PLACE OF BIRTH: Azzoun Atmeh, Palestine

DATE OF BIRTH: November 21, 1965

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
University of Utah
An-Najah University

DEGREES AWARDED:

Doctor of Philosophy in Computer and Information Science,
2009, University of Oregon

Master of Science in Computer and Information Science,
2001, University of Oregon

Master of Science in Physics,
1997, University of Utah

Bachelor of Science in Physics,
1992, An-Najah University, Palestine

AREAS OF SPECIAL INTEREST:

Computational Science
High Performance Computing
Neuroscience

v

VI

PROFESSIONAL EXPERIENCE:

Graduate Research Fellow, Neuroinformatic Center, University of
Oregon, 2004 - present

Teaching Staff, Department of Computer Science, The Arab-American
University - Jenin - Palsetine, 2001 - 2003

Graduate Research Fellow, Physics Department, University of
Oregon, 1999-2001

GRANTS, AWARDS AND HONORS:

Best Paper Award, International Conference on Computational Science
(ICCS 2005), 2005.

Best Paper Award, International Conference on Computational
Science (ICCS 2007), 2007.

PUBLICATIONS:

A. Salman, A. Malony, M. Sottile, "An Open Domain-extensible
Environment for Simulation-based Scientific Investigation (ODESSI)",
in International Conference on Computational Science (ICCS 2009),
May 2009.

S. Turovets, P. Poolman, A. Salman, K. Li, A. Malony and
D. TUcker, "Bounded Electrical Impedance Tomography for
Noninvasive Conductivity Estimation of Human Head Tissues",
in Electrical Impedance Tomography Conference (EIT 2009), June
2008, Manchester.

A. Salman, A. Malony, S. Turovets, and D. Tucker, "On the
Role of Skull Parcellation in the Computational Modeling of Human
Head Conductivity", in Electrical Impedance Tomography Conference
(EIT Conference 2008), pp. 16-18 June, 2008, Dartmouth College,
New Hampshire.

vii

S. Turovets, P. Poolman, A. Salman, A. JVlalony, and
D. Tucker, "Conductivity Analysis for High-Resolution EEG", in
International Conference on BioMedical Engineering and Informatics
(BMEI) , 2008.

A. Salman, A. Malony, S. Turovets, and D. Tucker, "Use of Parallel
Simulated Annealing for Computational Modeling of Human Head
Conductivity", in International Conference on Computational Science
(ICCS 2007), Y. Shi et al. (Eds.), LNCS 4487, pp. 86-93, July 2007.

A. Salman, A. Malony, S. Turovets, A. Morris, and D. Tucker,
"Modeling Human Head Electromagnetics on the Cell Broadband
Engine," in Workshop on Solving Computational Challenges in Medical
Imaging, Seattle, 2007. (Poster)

A. Salman, S. Turovets, A. Malony, P. Poolman, C. Davey, J. Eriksen,
and D. Tucker, "Noninvasive conductivity extraction for high-resolution
EEG source localization", in Advances in Clinical Neuroscience and
Rehabilitation, 6(1), pp. 27-28, March 2006.

S. Turovets, A. Salman, A. Malony, J. Eriksen, and D. Tucker.
"Anatomically Constrained Conductivity Estimation of the Human
Head Tissues in Vivo; Computational Procedure and Preliminary
Experiments, in 7-th Electrical Impedance Tornogmphy (EIT)
Conference, 2006.

A. Salman, S. Turovets, A. Malony, J. Eriksen, and D. Tucker,
"Computational Modeling of Human Head Conductivity", in
International Conference on Computational Science (ICCS 2005),
V.S. Sundrem et al. (Eds.), LNCS 3514, pp. 631-638, May 2005.

A. Salman, S. Turovets, A. Malony, and V. Volkov, "Multi-cluster,
Mixed-mode Computational Modeling of Human Head Conductivity",
in International Workshop on OpenMP (IWOMP) , June 2005.

viii

ACKNOWLEDGlvlENTS

This dissertation would not have been possible without the help, support and

guidance of many people. First, I would like to express my deepest gratitude to my

advisor Dr. Allen Malony for his excellent guidance, caring, support and for setting

up an excellent environment for conducting research. His enthusiasm has been a

major driving force through out the years of this research. He was always available

to discuss ideas, read and response to drafts and questions even when he was

physically on a different continent. His oral and written responses were always very

helpful and appropriate. I appreciate his approach of letting me explore on my own

while maintaining his guidance to keep me focused.

I would like to thank my committee members Dr. John Conery, Dejing Dou,

and Don Tucker for their inputs throughout the process of completing this

dissertation. In particular, I would like to express my greatest thanks to Don Tucker

who provided me with many valuable ideas and discussions on the scientific part of

this research.

I am very thankful to all my colleagues at the NeuroInformatic Center and

the office manager Charlotte \Vise for providing such a great research environment.

In particular, many thanks to my colleague and friend Dr. Sergei 'I1uavets who

introduced me to the Human Head Modeling research and we continued to work

closely together through out the years. My greatest thanks to the system staff who

lX

maintained all the clusters up and running and being prompt in responding to

questions. I am also very thankful to Dr. Robert Yelle who provided me with the

chemistry example which I used in the evaluation part of this dissertation. Also, I

would like to thank my colleagues at the EGl Company for their significant

contributions to the scientific part of this dissertation, in particular, for providing

me with all the images and data which I used in this research. Especially, many

thanks for Colin Davey for his quick response when needed.

My greatest thanks to the faculty, staff and students at the computer science

department especially to Dr. Arthur Farley and Dr. Andrzej Proskursowski for their

assistance and guidance in getting my graduate study started and introducing me to

the research in computer science. My greatest thanks to Star Holmberg (the

graduate coordinator) for keeping me updated with the many rules and being there

when needed even after her working hours.

Most importantly, I would like to thank my parents, sisters, brothers,

parents-in-law and friends for their persistence unconditional support throughout

my life. To my wife Reema who walked with me step by step, I would like to

express my love and say, we succeeded together. To my sons Mohammed and Razi,

all of this is just for you.

The research in this dissertation was partially funded by a fellowship from

the Islamic Bank at Jeddah, Saudia Arabia through the ministry of higher

education in Palestine.

DEDICATION

To my mother

x

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

1.1 Motivation. .
1.2 Contributions
1.3 Dissertation Organization

II. SCIENTIFIC INVESTIGATIONS

2.1 Experimental Science .
2.2 Theoretical Science ..
2.3 Computational Science
2.4 Summary and Conclusions

III. NEUROUv'1AGING OF BRAIN DYNAMICS

3.1 Neuron Anatomy .
3.2 Neuron Interaction
3.3 Cerebral Cortex ..
3.4 The Origin of EEG and MEG Signals
3.5 Metabolism-based Neuroimaging
3.6 Electromagnetic-based Neuroimaging
3.7 High-resolution Neuroimaging
3.8 Summary and Conclusions

IV. HUMAN HEAD ELECTROMAGNETICS .

4.1 Maxwell's Equations
4.2 Quasi-static Approximation
4.3 Volume Conductor Models .
4.4 Finite Difference Discretization
4.5 Evaluations and Results

Xl

Page

1

1
6
8

9

10
14
16
34

36

38
39
47
49
51
55
57
66

70

71
72
75
99

107

Chapter

4.6 Summary and Conclusions

V. ELECTRICAL UdPEDANCE TOMOGRAPHY

5.1 Conductivity Estimation
5.2 Objective Functions .
5.3 Global Optimization Algorithms.
5.4 Conductivity Modeling - Simplex Search
5.5 Conductivity Modeling - Simulated Annealing
5.6 Skull Inhomogeneity ...
5.7 Summary and Conclusions .

VI. ODESSI DESIGN

6.1 Introduction.
6.2 ODESSI Requirements and Design.
6.3 Related Work .

VII. ODESSI DEVELOP1iIENT

7.1 Scientific Investigation Methods
7.2 Execution Model
7.3 Scientific Data Models ..
7.4 Building a Domain PSE .
7.5 Summary and Conclusions

VIII. ODESSI EVALUATION .

8.1 Computational Chemistry Domain.
8.2 Human Neuroscience Domain
8.3 Summary and Conclusions

xii

Page

. 115

118

120
123
125
126
137
156
162

165

165
168
174

181

187
212
225
234
239

243

244
253
265

IX. CONCLUSION. .. 267

Chapter

xiii

Page

BIBLIOGRAPHY .. 270

XIV

LIST OF FIGURES

Figure Page

2.1 The three interacting areas of scientific research 11
2.2 The steps of the scientific method 12
2.3 The structure of scientific investigations 13
3.1 The structure of a neuron consists of a soma, dendrites and an axon. 38
3.2 (a) When the action potential reaches the axon terminal, it triggers the

release of neurotransmitter substances into the synaptic gap (b) The
neurotransmitter substances then bind to the receptors in the postsynaptic
neuron. The binding causes a glial-activated channel to open. If the
binding causes N a+ channels to open, the N a+ flux into the cell alters the
membrane potential and produces an excitatory postsynaptic potential. If
the neurotransmitter substance causes CZ- channels to open, the CZ- flux
into the cell causes an inhibitory postsynaptic potential. 40

3.3 Neuron at rest (top). Propagation of action potential (bottom). Sodium
channels open when the membrane is sufficiently depolarized. The leading
edge of the action potential activates other sodium channels, and a wave
of depolarization is initiated. The refractory period forces the action
potential to travel only in one direction. The intercellular and extracellular
currents form a complete current circuit. 41

3.4 An equivalent dipole magnetic field, volume and primary currents, and
the equipotential lines. 46

3.5 The surface of the cerebral cortex. 48
3.6 Cerebral cortex: each equivalent current dipole is associated with an

area of the cortical surface and points normally toward the surface. It
corresponds to a synchronous sum of hundreds of millions of synaptic
activities. The image on the right is adopted from [105]. 50

4.1 A current dipole moment, q = I de, can be expressed in terms of three
orthogonal dipole moments. .. 105

4.2 Verification of the forward solver accuracy against analytics for a 4-shell
spherical model. 108

4.3 Simulating a hole in the skull. The potential distribution (left) and the
current (right). .. 109

4.4 Current and potential distributions due to a current dipole source in the
cortex; holes in the skull allow more current to flow through the skull and
reach the scalp, which increases the effective conductivity of the skull. .. 109

Figure

xv

Page

4.5 Speed-up of the forward solver for different problem sizes on 8-processor
(left) and a 16-processor (right) IBM machines. 112

4.6 PPE controls the time loop and SPEs do the actual computations. 113
4.7 Performance of the forward solver on the Cell Be. Comparison with a

shared memory implementation (left) and Speedup curve (right). 114
5.1 EIT measurements, small alternating current injected into pair of electrodes

and the response is measured at the rest of the electrodes. Data acquisition
set up (left) and the computational model (right). 119

5.2 In bElT one needs to know the average regional conductivities of a few
tissue types (Scalp, Skull, Brain). .. 120

5.3 Schematic view of the parallel computational system based on simplex
search optimization. 127

5.4 Results of the inverse search. Dynamics of the individual search (left)
and statistics of the retrieved conductivities for about 200 initial random
guesses(right). The actual number of the solutions shown is 71, their error
function is less than 1 J-lV. .. 129

5.5 Solution flow at the master controller. Inverse solution arrival to the
controller are marked. .. 130

5.6 The electrodes map on the scalp. Electrodes marked with red circles are
the current sources. Electrodes marked with green are execluded in the
inverse computation as outliers. .. 132

5.7 The distribution of Scalp, Skull and brain conductivities as obtained from
the inverse search. 133

5.8 Comparisons of the measured potentials, the calculated potentials using
the average conductivities from literature and the calculated potentials
using the retrieved conductivities. .. 134

5.9 SA-inner loop parallelism, path selection. 146
5.10 Two level parallelisms: A parallel simulated annealing algorithm on the

level of the intermediate loop, each task runs the forward calculations in
parallel. .. 148

5.11 Three level parallelisms: In addition to the parallel forward calculation,
each task computes the inner loop in parallel. 150

5.12 Solution flow at the master controller. Inverse solution arrival to the
controller are marked. " 152

Figure

xvi

Page

5.13 Anatomically parcellated-skull into 11 major bones. 154
5.14 Brain, Scalp and skull-mean conductivities as a function of the assumed

number of skull parts in the inverse search, the simulated data is generated
using 11-part skull. .. 154

5.15 Skull parcellation: a) An ll-parts anatomy-based parcellation of the skull
b) A 97-parts thickness-based parcellation c) A 5-parts thickness-based
parcellation formed by combining the parts in b. 157

5.16 Thickness computation: The thickness at point p located on the inner
surface of the skull is the smallest thickness computed by rays casted
from points located on the surface of the sphere.. " 158

5.17 Conductivity reconstruction: Retrieved conductivities and the parameter
A, using m-parts skull (m=1-5). 163

6.1 Architecture and components of ODESS1 framework. 168
7.1 The investigation script runs the execution manager in a thread and each

scientific method in a thread. Scientific methods request solution from
the execution manager in there execution life time. " 184

7.2 Parametric study specification. .. 193
7.3 Optimization specification interface: Optimization problem specifications

and setting the objective function (left). Selecting and customizing the
optimization method (right). 198

7.4 Sensitivity analysis specification interface 210
7.5 The simulation description editor: The name of the simulation, its 10

parameters and the execution sites where the simulation is available for
execution are specified. .. 236

7.6 The data object schema description editor, used to define the data object
structure and metadata. .. 238

7.7 The data object editor, used to create and edit a data object for a given
kind. The metadata editor (left), and the parameters editor (right). 239

8.1 NWChem simulation specification. .. 250
8.2 NWChem optimization specifications.. 251
8.3 The dynamics of 3 processes out of 12 processes of the parallel simulated

annealing method(left). The optimal objective function values for several
optimization runs using different configurations and input coeffecient files
(left). 252

8.4 Head modeling sensitivity analysis specifications. 258
8.5 Distribution of the electrode's sensitivity due to changes in the Brain,

CSF, Skull and Scalp tissue conductivities using several configurations. . 259
8.6 Tuning the forward-solver convergence parameters. 264
8.7 The potentials at the electrodes using 1mm resolution geometry vs. 2mm

resolution. .. 265

LIST OF TABLES

Table

xvii

Page

IV.1
IV.2
V.1
V.2
VIII.1

Skull conductivity .
Tissues parameters in 4-shell models [61].
Anatomy-based parcellation (size in voxels and conductivity in 81m.
Extracted conductivities and the parameter A.
SCF Energy optimal exponents from several runs

98
107
155
16~j

252

1

CHAPTER I

INTRODUCTION

1.1 Motivation

Computational science is now accepted as an important approach for scientific

investigation, and is considered equivalent in its discovery power to theoretical and

experimental science. It fuses mathematical modeling, scientific simulation, and

data-driven analysis with advances in high-performance computing (HPC) hardware

and software, communications, and data management to conduct computational

experiments that seek to capture reality in various domains. As a young third-leg of

scientific discovery, the evolution of computational science reflects not only the

application of increasing computational power, but the practice and sophistication

of scientific methods in a computational form. Early concerns were for access to

sufficient HPC, promoting research in parallel computing, computational grids, and

large-scale storage, since these were (and continue to be) seen as the vehicles for

"Grand Challenge" science. In addition to HPC technology access, computational

2

science also depends on innovations for scientific collaboration, tool/data sharing,

scientific data formats, informatics, and domain-specific integration. In response,

computer science research has explored problem-solving environments, web-based

portals/collaboraties, workflow management systems, visualization, databses and

ontologies, and many other areas, in support of computational science goals.

As the computational power, data storage size, and communications

bandwidth increase, scientists are creating more powerful methods, tools, and

environments for solving complex problems, based on computational science

advances. This is reflected in current scientific applications which are more highly

integrated, and combine data and compute-intensive processing with analysis

workflows and interactive visualization. It is also reflected in the evolution of

scientific problem solving from simulation of isolated, single models of phenomena

to simulations that couple multiple models to predict more comprehensive and

complex behavior. While many of the computer and computational science

challenges are based in technology integration, there are equally important concerns

of hovv to manage complexity in scientific investigation.

There is now a strong interest among scientists to move to the next frontier

of computation and information-based discovery, what is being called integmt'ive

science. Integrative science is based on the belief that scientific discovery in the

future will come from an increased understanding of the interrelatedness of scientific

domains and from building knowledge and tools for integrative problem solving.

3

Here the themes of multidisciplinary and interdisciplinary science are important.

Multidisciplinary refers to a type of integrative science where contributions from

several scientific fields are necessary to approach or solve a problem. Different in

intent, interdisciplinary refers to the relationship of more than one branch

(discipline) of scientific knowledge. Clearly, these two aspects of integrative science

are naturally related.

The goals of integrative science challenges the computational science research

community to provide new methods, frameworks, and infrastructure for addressing

multiclisciplinary and interdisciplinary concerns. Computational science is, in a

fundamental sense, a "bridging" discipline, initially between computer science and

certain scientific fields, but more so in the future between science domains

themselves. The key metric of success is scientific pmductivity. In computer science,

the concept of productivity is explicably tied to higher levels of abstraction - in

theory, languages, algorithms, and so on -- with the goal of "raising the level" of

problem thinking and problem solving. Certainly, science fields are not new to

leveraging core foundations, developing new instruments and methods, and

"standing on shoulders" to advance scientific knowledge. Productivity to a scientist

is measured in new science discoveries. The important general question is what

contributions in computational science would lead to more productive scientific

investigations in the future.

4

Despite the remarkable achievements and continued promise of

computational science, it is fair to say there continues to be an issue of how to

bridge science cultures ~ domain sciences and computer science - with respect to

the computational-based scientific problem solving environments that are built and

applied. The thesis argues that current approaches focus too strongly on the

computing technology and do not provide high-level support for the common

practices and methods of which a scientist is familiar. This raises the entry point for

creating new computational environments, because these lower-level tools must be

developed, and limits reuse of previously developed tools across scientific domains.

Furthermore, current approaches do not effectively support the capture of

domain-specific knowledge - processes and data for scientific investigation - such

that environments can be shared and extended within a domain, and can provide

high-level interfaces for multidisciplinary use.

The research problem considered in this thesis is how to design and develop a

domain-specific environment for simulation-based scientific investigation that will

result in productive science. The key research concept is the capture of standard

procedures to conduct and analyze (simulation-based) scientific experiments in a

modular, extensible, and reusable form. We call these procedures scientific methods

and think of the methods as generating a set of simulation experiments to run.

Common scientific methods include parameter studies, comparative analysis,

optimization, sensitivity analysis, and uncertainty analysis. These methods are the

5

basis upon which activities such as verification and validation, parameter tuning,

and simulation-based experimentation are built for domain application. These

processes that integrate different methods are the foundation of domain scientific

investigations. A scien#fic investigation then is a domain-specific discovery process

that applies one or more scientific methods in its lifetime. It defines the simulation

codes to use, the input data files, and post-simulation analysis and visualization.

The main research goals of the thesis in computer science are:

1. To support common scientific methods used in simulation-based science.

2. To contextualize methods for domain-specific scientific investigations.

3. To capture domain-oriented investigation processes in the environment.

4. To abstract the simulation system, thereby insulating the scientist from

concerns of HPC resource usage.

5. To pTovide a simulation experiment history for evolving scientific

investigations.

However, in isolation of a scientific domain, achievement and evaluation of these

goals will be poorly informed. In this respect, the thesis research is grounded in a

computational problem in human neuroscience - modeling of human head

electromagnetics for dynamic brain analysis. The experience developing methods

and tools in this science domain exposed many of the challenges to overcome to

delivering truly productive pToblem-solving technology.

6

1.2 Contributions

Thus, the contributions of this thesis are in two fold:

• Contributions related to a domain problem in neuroscience whereby new tools

and methods were used to solve a human head conductivity modeling problem.

• Contributions in developing a general environment for conducting and

managing simulation-based scientific investigations.

These contributions are listed below.

Contributions to head modeling in human neuroscience

1. Development of generic methods that enable improving conductivity

estimation of the human head. In particular the thesis focuses on the

challenges of the bounded EIT (bElT) inverse problem (Publications

[179,181,180,176]).

2. Provide a method to include skull inhomogeneity and other skull variation in

the conductivity modeling of the skull. (Publication [177]).

3. Provide computational tools that enable verification and validation of head

modeling. This includes an efficient HPC solution to the forward problem

(Publications [179, 181, 178]).

7

Contributions to scientific computational environments (Publication [175])

1. An architectural design (functional and system) for an environment to support

simulation-based scientific investigations based on a framework model that

abstracts common scientific methods, provides standard components for

investigation workflow operations, and enables investigation workflow to be

programmed.

2. An approach to capture common scientific methods in a general purpose

software form that can be specified for use in scientific investigations, and a

realization of the approach for a particular set of scientific methods in the

form of a scientific methods library.

3. A programming model for scientific investigations that provides an abstract

interface to scientific methods based on method parameterization, and a

realization of the model using a scripting language system.

4. A simulation optimization model that decides what simulations to conduct

based on the scientific method request and the current state of the

investigation results, and a realization in a simulation planning system.

5. A design of a scientific investigation management system that will maintain

the evolving record of a scientific study.

6. Application and evaluation of these techniques in the neuroscience domain

and computational chemistry.

8

1.3 Dissertation Organization

The dissertation is organized into 8 chapters. The first chapter provides a

background about scientific investigations and problem solving environments. The

second chapter provides a background of our domain problem in neuroscience.

Chapters three and four, describe our domain research in human head modeling.

Chapter six proposes a conceptual design of the framework for scientific

investigations. Chapter seven provides the development and implementation of the

framework as realized in ODESSI framework. Chapter eight provides an evaluation

of the ODESSI framework in head modeling and computational chemistry domains.

9

CHAPTER II

SCIENTIFIC INVESTIGATIONS

Modern scientific discovery involves the interaction between three areas of

scientific research: two traditional research areas, experimental science and

theoretical science, and computational science, a new third area that emerged in the

past t\VO or three decades. The purpose of scientific investigation is to answer

questions about how nature behaves under different conditions. This will enable

development of new technologies that serve our needs in addition to satisfying our

curiosity. Many questions needs answering in every domain; for example, physics

concerns finding answers to questions such as, what is the origin of the universe?

Neuroscience tries to answer questions like, what is consciousness? To answer these

kinds of questions, scientists in every domain use all scientific methodologies in an

integrative manner; i.e., findings obtained using one method drive advances and new

findings using the other methods, and advances in one scientific domain drive

advances in other domains. This cycle continues and science advances (Figure 2.1).

Nowadays, most modern scientific investigations involve computing as well as theory

10

and experiment. Figures 2.2 shows the elements of the basic structure of scientific

investigations.

In this chapter, our main focus is on the methods used in scientific

investigation in general, with a further emphasis on the computational science

methodology.

2.1 Experimental Science

Experimental science is a basic, traditional scientific research method. It is

always described in terms of the scientific method [1]. The scientific method consists

of five steps: (1) make an observation, (2) ask questions, (3) form a hypothesis, (4)

test the hypothesis via experimentation, and (5) evaluate data and form

conclusions. However, experimental science is more complex than simply applying

these steps. It involves collecting data using observational techniques. The main

characteristic of experimental science is that it investigates actual reality, not a

model of reality. Therefore, experimental science is always necessary to validate any

model (e.g., a mathematical model) of how accurately it describes the actual

science. Experimental science is primarily concerned with investigating individual

effects by performing controlled experiments and identifying and isolating specific

variables of some phenomena in a controlled fashion.

By controlling variables, scientists can investigate the effect of one or more

variables on a phenomenon in the search for cause-and-effect relationships in nature.

11

FIGURE 2.1: The three interacting areas of scientific research

The experiment is designed in a way that changes to some independent variable

cause changes in some dependent variables in a predictable way. In the following

discussion, we describe the basic steps of the scientific method as shown in

Figure 2.3.

Asking Questions First, a scientific investigator asks a well-defined, measurable

and controllable question about something that was observed. The question must

be about something that can be measured.

Form a hypothesis A hypothesis is one possible explanation that answers the

question. The key research is then to prove that a hypothesis is false. To do that, a

researcher must design experiments. It is important that the hypothesis is stated in

a way that it can be measured and evaluated.

12

obseNatio

Not consistent
Alter hypothesis

consistent

~
FIGURE 2.2: The steps of the scientific method

Test the hypothesis by experiment To test a hypothesis, an investigator

typically sets up a controlled experiment. Constructing an experiment involves the

following steps:

1. Variables. There are three categories of variables: dependent, independent and

controlled. Dependent variables are what will be measured; they are what the

investigator thinks will be affected during the experiment. Independent

variables are variables that can be varied during the experiment-i.e., those

variables that the investigator thinks may affect the dependent variables.

Controlled variables are those variables that hold constant during the

experiment. Since the investigator wants to study the effect of one particular

independent variable, the probability that the other factors are affecting the

outcome must be eliminated.

Verification and validation
Parameter sweep and tuning
Optimization
Uncertainty and sensitivity analysis
Comparative analysis

theory

Numerical methods

code

experiment

solver

Controlled experiment

Analytic solution

13

Simulation Investigation
Controlled
numerical
experiment

FIGURE 2.3: The structure of scientific investigations

2. Procedures. A procedure is the method that measures the dependent variable

as a function of the independent variables. Several factors are considered in

developing a procedure: for example, the appropriate values to use for the

independent variable and the number of times the experiments need to be

repeated to ensure that the results are consistent.

3. Predictions. The scientist predicts the effect of the independent variable on

the dependent variable. The prediction is a statement of the expected results

of the experiment based on the hypothesis. The prediction often takes the

logical form of an "if/then statement."

Data Evaluations Is the evaluation of the obtained data to determine whether or

not the experiment supports the hypothesis? Sometimes statistical tests or other

calculations are required to evaluate the significance of the results.

14

Conclusion If the experiment outcome supports the hypothesis, then the

hypothesis is accepted and it becomes a theory. A hypothesis is never accepted as

an absolute truth. It is accepted as long as there is no proof that it is false. If the

experiment outcome contradicts the hypothesis, then either the hypothesis should be

altered or a new hypothesis should be developed, and then the process is repeated.

Results communications Subsequently, the results are communicated to others

in a final report. The report typically includes how the experiment was conducted,

the purpose of the experiment, all required materials to carry out the experiment, a

description of the experiment setup, the number of experiments, the evaluation

criteria, and all the information necessary for others to repeat the experiment and

verify the results.

Although experimental science is necessary to validate any model, the types

of questions and investigations that can be pursued by this method are limited due

to the cost of many experiments, risk of life, and physical limitations of scale such

as time or space. In these cases, another approach such as theoretical or

computational science is necessary.

2.2 Theoretical Science

Theoretical science is another traditional area of scientific investigation. Its

main focus is in formulating a mathematical model that approximates actual reality

15

by applying a variety of mathematical techniques. The obtained mathematical

models must be validated or investigated by comparing the theoretical predictions

with experimental data. The mathematical model is assumed to be correct (theory)

as long as there is no experimental or observational data that violate it. Maxwell's

equation, which describes the electromagnetic fields in a volume conductor, is an

example of a theoretical formulation. Once a mathematical model is formulated, a

complex mathematical technique is used to obtain solutions in the form of a

mathematical formula. Often, several approximations are necessary to solve the

mathematical model for real problems. In many cases, even with approximations, it

is not possible to solve the set of equations. For example, the electromagnetic fields

inside the human head due to brain dipolar current sources are formulated in terms

of Maxwell's equation. To simplify the problem of solving Maxwell's equation, an

investigator must apply a quasi-static approximation, which reduces the problem to

solving Poisson's equation. However, considering the complex geometry of the

human head, it is still not possible to obtain an exact solution to Poisson's equation,

thus necessitating the approximation of the human head as multishell spheres. This

leads to the third type of scientific investigation: computational science. Normally,

the experimentor tries to validate the mathematics with experiments that lead to

acceptance, modification, or rejection of the mathematics.

16

2.3 Computational Science

Computational science is the newest emerging area of scientific research. It is

a methodology that allows the study of various phenomena in various domains by

applying computational and numerical techniques. It has become possible due to

tremendous advances in both computer hardware and software over the past few

decades. Computational science (sometimes referred to as scientific computing,

modeling and simulation or simulation science) has become a major part of every

scientific domain-e.g., chemistry, physics and biology.

Nowadays, computational science is accepted as a third methodology in

scientific investigations, complementing both experimental and theoretical science.

It is often used to explore or validate theoretical ideas. Computer simulation is

typically used to investigate phenomena that are too complex to be dealt with via

analytical methods or too expensive or dangerous to be studied through

experiments. Many traditional experiments that are used in scientific investigations

are now replaced with simulations such as wind tunnels or nuclear fusion. Other

important scientific domains involve time scales that are not possible to be

investigated through experiments-e.g., astrophysics or protein folding. Many

complex mathematical problems that were intractable in the past are being solved

by using computational techniques.

Computational science, which involves using computers to study scientific

problems, is highly related to theoretical science in that it provides solutions to

17

complex mathematical models that cannot be solved analytically. Similar to

experimental science, computational science is primarily concerned with creating

and using computer models as a method of making observations, conducting

controlled experiments, and defining or testing new theories. However, it is different

from experimental science in that it uses an approximate model of the world instead

of the world itself. Therefore, computational models must be verified and validated

to build confidence in the model and evaluate how accurately it represents the

science under investigation. So, computational science cannot replace experimental

or theoretical science, but it is their complement in scientific investigations. It

allows building models to make predictions of what might happen in the lab or in

the actual world.

The Cornell Theory Center provides the following formal definition of

computational science as a third methodology in scientific research: "A field that

concentrates on the effective use of computer software, hardware and mathematics

to solve real problems. It is a term used when it is desirable to distinguish the more

pragmatic aspects of computing from (1) computer science, which often deals with

the more theoretical aspects of computing; and from (2) computing engineering,

which deals primarily with the design and construction of computers themselves.

Computational science is often thought of as the third leg of science along with

experimental and theoretical science."

18

Computational science is not only a methodology of scientific research, it is a

scientific domain in its own right. It is often described as an interdisciplinary

approa,ch to problem solving that uses techniques from the disciplines of (1) a

domain science, (2) computer science, and (3) mathematics. Therefore, it can be

defined as that science at the intersection of the three domains, so advances in

computational science are therefore driven by advances in these domains. According

to SIAM [191], computational science is formally defined as follows:

"Computational science and engineering (CSE) is a rapidly growing

multidisciplinary area with connections to the sciences, engineering, and

mathematics and computer science. CSE focuses on the development of

problem-solving methodologies and robust tools for the solution of scientific and

engineering problems. We believe that CSE will play an important if not dominating

role for the future of the scientific discovery process and engineering design."

Application (Domain science) In computational science, the type of science

under investigation is referred to as application or scientific domain. We will use

both terms equivalently in this dissertation. For example, this dissertation addresses

one application, computational head modeling, which involves solving a specific

partial differential equation, known as Poisson's equation. Currently, computational

science is used in most of the traditional scientific domains. Some popular areas of

computational science include Atmospheric Science, Computational Chemistry,

19

Computational Physics, Computational Fluid Dynamics, Computational Biology,

and Nuclear Engineering. The list is much larger and continues to grow.

Algorithm (Mathematics) Computational science is similar to theoretical

science in that a scientific problem must be formulated mathematically to define a

mathematical model that tries to approximate the physical model. However,

computational science targets problems where the solution of the mathematical

model is too complex to be solved analytically. Therefore, one or more

computational models in a form of algorithms are normally derived by

approximating the mathematical model in a process called discretization. There are

many methods used to obtain a computational model from a mathematical model.

Some of the most common methods include the Finite Difference Method (FDM),

Finite Element Method (FEM), and Boundary Volume Method (BVM). Most

computational models use approximations and assumptions to help simplify the

mathematics in a mathematical model. The computational model must be tested

for how well it represents the mathematical model in a process called verification,

and the mathematical model must be tested for how well it represents the actual

science being modeled (physical model) in a process called validation. These

evaluations normally occur throughout the modeling process.

Simulation (Computer Science) Once a computational model (algorithm) is

defined, this model is implemented into a computer program (simulation). In

20

general, the simulations are implemented by programmers working collaboratively

with a domain scientist and a mathematician. Programming languages such as

FORTRAN, CjC++ or Python are popular choices for most scientific simulations.

In general, the simulation is implemented to run on an HPC running a variant of

the UNIX operating system. How accurately the simulation implements the

mathematical model is accomplished in a process called verification. Typically, the

model variables (input, output, parameters) are well-defined arguments in a

simulation where the user can set the input parameters and obtain the outputs after

executing the simulation (conducting a controlled numerical experiment).

2.3.1 Scientific Investigation In Computational Science

Once the simulation is implemented, several scientific investigations can be

performed on the simulation by conducting controlled numerical experiments.

Investigations in computational science are similar to investigations in experimental

science in that they involves the same five steps contained in the scientific method:

ask a question, develop a hypothesis, perform an experiment to test the hypothesis,

and draw conclusions. Performing a controlled numerical experiment in

computational science corresponds to performing actual experiments in

experimental science. Therefore, studying the cause-and-effect relationship is

accomplished by varying some of the simulation input variables and measuring the

response of the simulation outputs.

21

Also, computational science investigations differ from experimental science

investigations in that computational science investigates a model of the actual

science instead of the physical model itself. Therefore, before simulation can be used

in scientific investigations, confidence must be established in the verification and

validation processes by determining (1) how accurately the simulation implements

the computational model, (2) how accurately the computational model

approximates the mathematical model, and (3) how accurately the mathematical

model represents the actual science.

Verification and Validation. Verification and validation (V&V) [143, 188, 189]

[163] [164] processes aim to characterize confidence in the computational model

being used to represent the physical model. V&V has gained significant interest in

recent years[190, 218], and approaches and procedures are well described [164]. Here

we provide only a brief review

• Verification is formally defined as "the process of determining that a model

implementation accurately represents the developers conceptual description of

the model and the solution to the model" [143, 188]. Simply put, it deals with

assessing and quantifying the confidence in the simulation, that is, in getting

the equations right. It deals with the mathematics of the conceptual model

rather than the physics. There are two parts to the verification process:

22

Code veTijication - provides confidence that the solution algorithm

implemented in the code represents correctly the conceptual model.

Solution (calculation) veTijication, provides confidence that the

computational model (discrete solution) is an accurate representation of

the mathematical model by quantifying uncertainty.

The verification process normally compares the computational solutions to the

correct solution which is provided for well chosen analytic or manufactured

solutions. The confidence in the computational solution is acceptable when

the difference between the computational solution and the correct solution is

small. Also, the verification assessment process involves examining the

iterative, spatial and temporal convergence of the model.

• Validation is formally defined as "the process of determining the degree to

which a model is an accurate representation of the real world from the

perspective of the intended uses of the model" [143, 188]. Its main concern is

identifying and quantifying the uncertainties between the computational

model and the real world model, that is, are we solving the right equations.

Validation deals with the assessment of the physical accuracy of a

computational model based on comparisons between the computational

simulation and experimental data[164]. Therefore, the accuracy of the

23

validation process depends on both the accuracy of the computational model

as well as on the accuracy of the experimental data.

In both computational science investigations and verification and validation

processes, there are several methods and process that are common among all

domains and can be reused within the domain and across domains. We call these

methods scientific investigation methods. Some common scientific investigation

methods include parameter sweep, sensitivity analysis, comparative analysis and

optimization. In these processes, typically a scientist follows a process (often called

a workflow) involving experiment specification, simulation runs, and results analysis

and presentation. The process is then executed many times to generate outputs

under different conditions (different parameters or models) based on the desired

investigation. Post processing tools (e.g., visualization, statistical analysis, data

mining tools) are applied to extract knowledge from the results. General

methodologies can be found underlying scientific investigation across computational

science domains. We summarize some of the dominant methodologies below.

Sensitivity analysis. The study of how the uncertainty in the output of a model

can be a apportioned to different sources of uncertainty in the input factors is the

subject of sensitivity analysis [183, 182]. Input parameters of a mathematical model

are normally subject to many sources of uncertainty including errors of measurement

and absence or partial information about some of these parameters. In sensitivity

24

analysis, one tries to determine the most influential parameters that affect the global

model response. Those parameters that cause significant changes in the models

behavior should be sufficiently accurate prior to using the model. To accomplish

this, sensitivity analysis provides means to rank input factors to their importance

and so to optimize the necessary effort in getting those important factors accurate

by identifying which parameters must be investigated in more details and which

parameters can be removed or fixed to reduce the model number of parameters.

Uncertainty analysis. Uncertainty analysis involves probabilistic computation of

the objective function due to uncertainty of some parameters. The uncertain

parameters are treated as random variables and their values are taken from a

particular distribution. Uncertainty analysis main focus is to quantify the

uncertainty in the output. The number of simulations depends on the requirements

for determining statistical significance.

Parameter sweep. Ivlany scientific domains involve running simulation studies

structured as sets of experiments in which each experiment is executed with

different sets of parameters and data files. Parameter sweep analysis are used to

explore the parameter space for better understanding the model behavior under

different conditions before or during more complex analysis such a verification and

validation. It also underlies Monte Carlo simulations. Each execution of the

25

simulation application with distinct parameter sets is independent and can be

conducted concurrently.

Optimization Optimization is an important class of scientific investigation used

typically to either extract model parameters by comparing the model predictions

with measured data, or to optimize some quality metric. Typically it answers the

question what are the model parameters that produce an optimal results.

Comparative study Investigations are typical in computational science where

there are several mathematical models (governing equations) that describe the same

physical model under different set of approximations and/or there are different

algorithms in solving the same mathematical model. Comparative study is the

process to compare the result obtained using different models or algorithms using

some metric.

These are just some of the methodologies used in simulation-based scientific

investigations. They are common and thus can be applied across domains. Different

domains and scientific problem investigations in those domains may use different

combinations of methods. Our goal in this dissertation is to design and develop a

framework to support the creation of standard methods and their incorporation in

scientific investigations. In this way, our framework supports the reuse of method

modules in the development of new investigation tools targeted to domain problem

needs. Therefore, from a computer science perspective and in terms of scientific

26

investigation methods, a computational science investigation can be defined as

follows:

"A domain-specific discovery process that applies one or more scientific

investigation methods in its lifetime. It defines the simulation codes to use, the

input data files, and post-simulation analysis and visualization."

From a software engineering perspective, we can think of a computational

science investigation as a script that runs and manages all the necessary

computations in HPC. We call this script the domain investigation script.

2.3.2 Computational Scientist

Computational scientists are normally referred to as domain scientists or

engineers who use high-performance computing to advance knowledge in their

domain area of research. Typically, a computational scientist is a multidisciplinary

scientist who must have enough experience in a domain scientific discipline such as

physics or chemistry, and computer science, including enough experience in

computer architecture, HPC, data structures, networking, massive databases, and

visualization technologies in addition to expertise in numerical algorithms and

statistical analysis. Therefore, a computational scientist normally conducts research

at the intersection between a domain science, computer science and mathematics.

Due to this integration across scientific domains, computational scientists can now

27

approach large-scale problems that were once thought intractable [19:1.] by

integrating knowledge and methodology from all of these disciplines.

To be effective in this multidisciplinary environment, a researcher must have

a background in both applications, and supporting areas of computer science and

mathematics are also necessary. Our main goal in this dissertation is to provide a

computational environment that will make the computational scientist more

productive in conducting scientific investigation. Our domain problem in

neuroscience realizes the interactions between these domains and provides a

powerful example of conducting research in this multidisciplinary environment.

2.3.3 Computational Science and Computer Science

In computational science, a scientist conducts a scientific investigation to

gain a better understanding of science through the use and analysis of mathematical

models on computers. It is often highly associated with High Performance

Computing when the computations are being performed on large computer systems.

However, graphics, visualization and data storage are also important areas in

modern computational science problems. So, the computer science domain is at the

center of computational science. Its main focus is on the computer itself, aud it

involves writing software programs and the development of new hardware products.

Advances in computational science, as driven by computer science, develop in two

parts.

28

1. How to speed up computation?

2. How to make computational science researchers more productive?

The first part can be achieved by speeding up the hardware and/or by speeding up

the algorithms. Following Moor's law, the power of hardware and algorithms has

grown substantially in recent decades [161] [101]. On the other hand, increasing the

productivity of scientist can be achieved by speeding up programming and speeding

up the investigation processes. Progress in these areas has been slow in the past

several decades. For instance, the productivity in writing computer code has

increased by only a factor of 2-3 since 1960 [10l]. Therefore, the productivity of the

researeher is the main limiting factor in recent scientific advances.

Increasing the productivity of researchers in computational science can be

achie'led by moving the software to a higher level of abstractions. The

problem-solving environment ([73, 162, 101]) is an example of movement in this

direction. Problem-solving environments (PSE) are a traditional approach to

addressing domain-relevant concerns by incorporating all the mathematical,

algorithmic, and computational features necessary to solve a targeted class of

science or engineering (S/E) problems [73, 162].

The main goal of a PSE is to increase the productivity of scientists by letting

them describe a problem and its solution in terms of the S/E concepts and use a

highly-functional, integrated set of capabilities for modeling, analysis, and

29

visualization. PSEs have been developed for partial differential equations (PDE) [7],

linear algebra [151], chemistry [56], and other S/E areas.

However, the traditional PSE approach has three important drawbacks: 1) it

is difficult to create a new PSE, 2) PSEs are not developed to be reused, and 3)

PSEs are hard to extend with new capabilities or new science methods. One

response to strict PSE design is to identify domain-level functionality that is

common across related fields and build software tools that can be applied in

developing computational science environments [46]. Scientific development

environments take this idea further by offering rich components for data

management, analysis, and visualization in a programming framework for scientific

applications. For example, SCIRun [193] is a powerful environment for interactive

computational science which has been used to create integrated problem solving

environments in biomedical science [123].

In this dissertation we propose an environment to complements these

directions by abstracting common simulation-based scientific methods in reusable

components, providing a cross-domain framework for scientific investigation.

Web-based portals (e.g., the NEES [135] and BIRN [24] portals) and environments

such as ViroLab [210] address some of these issues by offering higher-level S/E

services (e.g., analysis, data management, simulation) while hiding backend

complexity. The ability to abstract and reapply scientific methods for new scientific

30

investigations or new scientific domains in these environments though is not

supported well.

On the other hand, there is wealth of toolkits for scientific methods used in

simulation. The DAKOTA toolkit [157] is a rich C++ toolkit that provides several

optimization algorithms, uncertainty quantification, and parameter estimation.The

Portable, Extensible Toolkit for Scientific Computation (PETSc) [152] is a suite of

data structures and routines for the scalable (parallel) PDE-based scientific

applications. The important aspect of these systems is their embodiment of a

known scientific methodology in a programmable form. The idea behind ODESSI's

approach is to provide a high-level scientific development framework that

parameterizes and configures scientific methods for domain specialization.

In the grid environments, workflow management systems[76] have an

important role in developing applications that utilize the grid available resources to

conduct scientific experiments. Several Grid-enabled workflow systems are evolved

in the past 10 years. Pegasus [52] is a framework that maps abstract workflow into

concrete workflow and it schedules the concrete workflow into distributed resources.

Thana [36] is a workflow data analysis distributed environment based on P2P, grid

services and web services interaction. Tavera [145] is a service-oriented workflow

system in bioinformatics where the components of the application are web services.

Condor/DAGMan [67] is a resource management system used to match grid

resources to tasks. Kepler [122] is an actor-oriented workflow system. WebFlow [6]

31

and GridFlow [110] and several other PSEs are developed to ease the development

of large scale scientific application from a pool of components assembled as a DAG

based workflow.

These environments have an important role in building a scientific

problem-solving environment that utilizes the necessary computational resources.

However, these environments support only conducting a single scientific experiment

or allow a parameter sweep through scheduling. What is missing in these

environments is an abstract layer to allow the design of scientific studies composed

of several experiments. The user is still required to conduct and manage these

studies manually.

Other environments are focused on providing interactivity via parallel

simulation through visualization and steering. SCIRun/UINTAH [193, 226] is a

popular bioinformatics problem-solving environment that allows rapid interactive

design of a scientific experiment. It also provides interactive visualization and

steering. CUMULVS [75] is middleware that allows a programmer to connect

remotely to a running simulation, receive visualization data, and steer user-defined

parameters. gViz [99] is a grid-enabled visualization tool. In these environments, a

scientist is still required to manually construct and manage the scientific

investigation as a composition of several scientific experiments.

In the grid environment, there is little work that supports computational

science investigations. Most of this work is limited only to parameter study or

32

parameter sweep by generating several instances of the program corresponding to

different parameters and executing these instances concurrently on the Grid or the

distributed environment. Nimrod and Cluster [47] are environments that are able to

generate and launch parameter study in the grid environment. They are built on

top of Globus. They also provide a high-level language for describing parameter

study creation. ILab [222] from NASA is a graphical tool that supports large

parameter study. ILab generates a single shell script for each run in the parameter

study. A single directory is created for the whole parameter study, and then a

subdirectory is created for each run where input files are moved to that directory

and then the scripts are executed. In the case of cluster computing, two scripts are

generated, the first script remote-copies the second script to a remote cluster and

then it executes there. Similar to Nimrod, AppLeS (Parameter sweep template) [29]

is a parameter sweep environment. Its main focus is on scheduling the application

on the grid resources in performing the parameter sweep. Similarly, Saleve [132]

provides a parameter sweep across distributed resources. P-GRADE [112] portal

integrates a parameter study with a workflow. It provides a parameter study by

considering the workflow as a black box that gets executed with many different

parameter sets. In P-GRADE the portal generates the workflow instances and

submits them for execution concurrently. Another environment that integrates

parameter study with workflow is SciDC [31]. MCell is a grid-enabled parameter

sweep application for a biology application [28].

33

In all of these environments the parameter sets are pregenerated and then

the response corresponding to these sets is computed. In an ongoing effort in [212],

they extend this by proposing an interactive parameter sweep where the user is able

to monitor and guide the parameter sets based on intermediate results. However,

this approach requires the availability of the user, which is impractical in

long-running simulations.

There is little work that supports other kinds of scientific investigations.

Nimrod/O [2, 3] is an optimization framework that supports identifying the

engineering design point by using several optimization algorithms. Sim-X [223] is an

ongoing effort to provide an interactive optimization tool that allows changing the

optimization criteria dynamically and exploring parts of the parameter domain

while the simulation is executing. Later, SimX was added to SCIRun PSE [224].

Again, interactive optimization is not suitable for problems that require long

execut.ion times.

Most of the research work above is limited to parameter study and in few

cases to optimization or stand-alone applications. These environments are closely

tied to some grid infrastructure. Our goal is to extend and generalize this work and

provide framework support to develop scientific investigations in a way that can

draw on standard methods. As discussed in Chapters VI VII VIII the ODESSI

framework will enable method implementation as programmable modules and their

coupling with a simulation planning capability. Parameter sweep, uncertainty

34

quantification, V&V, and comparative methods will be developed. Moreover,

ODESSI will provide additional support for investigation scripting and access to

database, analysis, and visualization utilities.

2.4 Summary and Conclusions

This chapter reviews the major methodologies used in scientific

investigations and discusses the need to increase the productivity of computational

scientists in solving simulation-based scientific problems in computational science.

Current attempts to increase the productivity in conducting scientific investigations

have proceeded mainly through building domain-specific environments. This

dissertation proposes a framework that makes building such a domain environment

easier by factoring out the common components of these environments (e.g.,

common scientific methods, simulation execution, data management) in a generic,

domain-independent framework that can be customized and extended with

domain-specific needs. Chapter VI discusses the design of such a framework.

Chapter VII discusses ODESSI as a realization of the framework. Chapter VIII

provides evaluation of the ODESSI framework on the head-modeling and chemistry

domains.

The inspiration behind the design of this framework is to increase our

productivity in conducting scientific research in the head-modeling domain.

35

Chapter III introduces our head-modeling research and the problems we are solving.

Chapters IV and Chapter V discuss our contributions and our research in this area.

36

CHAPTER III

NEUROIMAGING OF BRAIN DYNAMICS

The human brain is the central part of the nervous system and the most

complex structure in the human body. It processes information about the whole

body and organizes our daily life. Brain research has been conducted for a long time

for different purposes and in multiple domains, such as medicine and psychology.

The foundation of neuroscience is identifying the mechanisms underyling how the

brain functions, receives stimulation, and processes and stores information. An

important problem in neuroscience is observing and monitoring the dynamics of the

functional activities of the human brain. This knowledge is valuable in several

applications across multiple domains, including the study of neural processes and

the treatment of neurological disorders such as epilepsy, depression, and Parkinson's

disease.

When the brain is stimulated and information is being processed, neurons in

the brain active regions are activated. Activated neurons produce small currents

that generate more electric and magnetic fields, consume more energy, and cause

37

more local hemodynamic changes than inactive neurons do. Therefore, it is possible

to determine the brain active regions by measuring and interpreting these effects.

The science of measuring and interpreting the electric/magnetic fields from the

scalp is called electroencephalography (EEG)/Magnetoencephalograpy (MEG),

respectively. The EEG electric potential is measured with electrodes attached to the

scalp, and the MEG magnetic field is measured with magnetic detectors placed

outside the scalp. On the other hand, techniques such as Positron Emission

Tomography (PET) [35] and functional Magnetic Resonance Imaging (flVIRI)

[209, 155] are based on measuring and interpreting the metabolic and hemodynamic

changes associated with neural activity.

Each of these techniques has its own strengths and weaknesses. PET and

flVIRI typically produce brain functional images with high spatial resolution (1-3

mm in 3D) and poor temporal resolution (in the order of minutes in PET and about

one second in flv1RI). In contrast, electromagnetic-based techniques provide a high

temporal resolution (order of milliseconds) but poor spatial resolution (order of a

centimeter) and are less sensitive to deep sources (2D). Recent research is focused

on combining some of these techniques to improve the temporal and spatial

resolution of localizing brain activities [81, 195, 65]. Many factors are considered in

evalua.ting these methods, including noninvasiveness, low cost, efficiency, and more

important, reliability a.nd accuracy.

"

-....._~~.:..:....-..:.::"--"'-~--
-- -.~--~,"

Axon

,
I

Axon

Terminal
'''-.,

"
-........" .'

/ .
•J

38

FIGURE 3.1: The structure of a neuron consists of a soma, dendrites and an axon.

In this chapter, we review the mechanism of neurons' interactions and the

basics of these methods, with a focus on EEG measurements, their limitations,

comparisons between them, and how to achieve high-resolution functional brain

imaging.

3.1 Neuron Anatomy

The brain is comprised of many different cells including nev,rons and glial

cells. Neurons are the main cells that provide the fundamental functions of the

brain. They are longer and thinner than other body cells. The brain contains more

than 100 billon neurons, which form about 10% of the brain cells, two-thirds of

them in the cerebral cortex. Most of the brain cells (90%) are glial cells, which

don't carry signals but provide support functions for the neurons.

39

Neurons exist in different shapes and sizes. However, the main structure of a

neuron consists of a cell body (soma) with branching dendrites (receivers) and an

axon (transmitter) as shown in Figure 3.1. The soma contains the cell nucleus and

regulates the neuron functions. The neuron senses and receives information through

dendrites. The axon is a fiber that conducts information (electric impulses) to other

neurons or tissues. It is coated by an insulating myelin sheath, which increases the

speed of the signal and prevents signal decay. At the end of the axon is the axon

terminal tree.

3.2 Neuron Interaction

The complexity of brain information processing manifests in the way neurons

interact with each other. Neurons are electrically active cells. They interact with

each other through connection points called synapses (Figure 3.2). Each synapse

has two terminals. A presynaptic terminal corresponds to the axon terminal of the

presynaptic neuron, and a postsynaptic terminal corresponds to the dendrite of the

postsynaptic neuron. The region between the two terminals is called the synaptic

cleft·

Neurons communicate with each other and with other cells by

electrochemical signals (Figure 3.2). The chemical signals are in the form of

neurotransmitter substances, while the electrical signals are in the form of impulses

or action potentials that propagate along the neuron axon or dendrite. The sending

40

Syuaplic cliff/

Action Potential '",l
_\ __ .~ \.\ i

/'. ::" I:)::) ,
i·: 1

Vesicles - /"'>~/

Ntltlrolrnnsmilter .

Pre-synaptic Neuron

(a)

receptors Dendrites

-- - - j--------

(
/

Post-synaptic Neuron

,
,-

•• • • __ NCtll'olnll1smillcl'.. ~
Glial·ol:livnted dllll1nel ',.. ••• ..-- Nu~

--. I - ••~- ,.,---~---- 'J

./
.-~-.,.

~ Receptors
/

(b)

FIGURE 3.2: (a) When the Hcticm potential ren.ches the axon terminal, it
triggcrs the release of neurotransmi tter substances into the synaptic gap (b) The
neurotransmitter subst(l,nces tlwn bind to the receptors in the postsynaptic nc\uon.
The binding causes a glial-n.ctiv{).ted c!uulllcl to open. If the bincling causes N a+
channels to opell, the Na+ flux into the cell ~dters the ll1ClIlbnlllc potential and
produces ~U1 excitatory postsyna.ptic potentia.l. If the Ilemutransmitter substance
causcs CZ- cllculnels to open, tIle CZ- flux into the cell causes an inhibitory
postsynaptic potent.ial.

nemol1 relea.ses l1emotransmitter subst.a.nces into the synaptic cldt and the receiving

nemon binds with them as shown in Figme 3.2(a). Binding v"ith nemotransmitter

su bstances causes the genera.tion of postsynaptic potenti{).l (Figlll'e 3. 2(b)). If the

accumulation of all postsynn.ptic potentia.ls due to many synaptic activities exceeds

a threshold) the lleuron is activated ,:UIc1 fires an a.ction potential along its axon.

Arrival of the action potential at the nXOll terminal triggers tlJC release of

neurot.ransmitt.er subst.ances into the synapt.ic cleft.

41

Terminal

++++++++++++++++

~'~+';""";+-+';""";+-+';""";+-+';""";+-+';""";+-+';""";+-+';""";+-+';""";+-::v"

(Cell

~

Cell

K+ Na+

++++ - -I-l- ++++++
------+~------

Intercellular current Terminal
I

- - - - - - ++++ - - - - -
++++++----++++++

Extracellular current

FIGURE 3.3: Neuron at rest (top). Propagation of action potential (bottom).
Sodium channels open when the membrane is sufficiently depolarized. The leading
edge of the action potential activates other sodium channels, and a wave of
depolarization is initiated. The refractory period forces the action potential to travel
only in one direction. The intercellular and extracellular currents form a complete
current circuit.

Neurons receive signals asynchronously from one or many neurons and send

signals to one or many neurons through the synapses' connection points. Given that

there are 100 billion neurons and each neuron has thousands of synapses, this makes

the brain an extremely complex network. The following subsections discuss the

mechanism of these interactions in more detail.

3.2.1 Electrochemical Reactions

Like other body cells, a neuron cell has a membrane that divides the space

into two regions: the intracellular region and extracellular region. The complexity of

the neuron interaction with its surroundings and its behavior are determined by the

42

complex nature of the neuron membrane. The cell membrane is not uniform; for

example, some regions release neurotransmitter substances, while others bind with

them. Within the membrane, there are different kinds of ion-gated channels. These

channels are ion-selective. They open and close, responding to signals from the

surrounding environment. Voltage-sensitive channels open and close in response to

changes in the membrane potential, while ligand-gated channels open and close in

response to binding with some substances (such as neurotransmitter). When a

channel is open, the corresponding types of ions are allowed to cross the membrane

down their concentration gradient. The rate at which ions diffuse is determined by

the ion concentration difference and the electrical potential difference across the

membrane. These ion-gated channels allow a neuron to receive and transmit

electrochemical signals from/to another neuron or tissue in the form of action

potential and electrical impulse.

The main ions involved in the electrochemical interaction of a neuron are

sodium (Na+), potassium (K+) and chloride (CZ-), Figure 3.3. In the rest state of

a neuron (i.e., when no signal is transmitted), the extracellular concentration of

sodium and chloride ions is higher than their intracellular concentration while

intracellular concentration of potassium ions is higher than its extracellular

concentration. Ion concentration differences are maintained by the permeability of

the membrane and special ion-pumps. In the rest state, the permeability of the

membrane to N a+ is much lower than its permeability to K+ and a special

43

N a+ - K+ pump pumps three N a+ ions from the inside to the outside and two K+

ions from the outside to the inside in each cycle. When all forces are balanced, the

net potential difference across the membrane is -70 mV, where the interior of the

cell is more negative. This potential difference is called the rest state potential.

3.2.2 Postsynaptic Potential

Postsynaptic potentials are local changes in the membrane potential of the

postsynaptic terminal from the rest state potential. Dendrites are postsynaptic

terminals that have receptors and are rich with ligand-activated channels. These

channels open when the receptors bind with neurotransmitter substances and close

gradually with time.

Depending on the type of opened channel, the corresponding ions flux across

the membrane along their concentration gradient, causing local changes in the

membrane potential postsynaptic potential (PSP). PSPs are graded potentials whose

strength depends on the strength of the stimulus (the number of stimulated

receptors). If the result is a current flow into the cell (in the case of an opened

sodium channel), the membrane is depolarized (becomes more positive) and the PSP

is exc'itatory postsynaptic potential (EPSP). If the result is a current flow out of the

cell (in the case of chloride or potassium channels), the membrane is hyperpolarized

(becomes more negative) and the PSP is inhibitory postsynaptic potential (IPSP).

EPSP increases the chances that the neuron will fire an action potential, while IPSP

44

decreases these chances. A neuron fires an action potential when the membrane

sufficiently depolarizes (i.e., more than 15mV). One single EPSP cannot sufficiently

depolarize the membrane to start an action potential; however, the spatial and

temporal accumulation of multiple EPSP make such a depolarization possible.

3.2.3 Action Potential

A neuron transmits information to other neurons or tissues along its axon in

the form of action potentials. Action potential is a wave of electrochemical activities

that allow a signal to travel along the neuron axon (Figure 3.3).

The cycle of action potential is determined by the voltage-activated ion

channels. When a neuron is stimulated, excitatory and inhibitory postsynaptic

potentials arrive synchronously at the hillock (the region near the cell) from the

synaptic activities. If the sum of all PSPs (EPSPs and IPSPs) hyperpolarizes the

membrane, the action potential does not start and eventually the membrane

potential returns to the rest state potential. If the sum depolarizes the membrane,

Na+ and K+ channels open. Consequently, Na+ ions diffuse into the cell and K+

ions diffuse out of the cell along their concentration gradient. If the depolarization

isn't strong enough (less than a threshold of 15 mV), K+ outflow current

overwhelms the Na+ inflow current and the membrane repolarizes again. But if the

depolarization is strong enough (above the threshold of 15 mV), the Na+ current is

stronger, which causes further depolarization, which in return causes more N a+

45

channels to open. This sequence of depolarization drives the membrane potential to

rise up. This is the rising phase of the action potentials.

When all N a+ channels are fully opened, the membrane potential reaches its

peak dose to the Na+ equilibrium potential of 55 mV. This is the end of the rising

phase and the beginning of the falling phase in which N a+ channels start to close.

When some N a+ channels close, the membrane potential falls down, and this causes

more channels to close. This process continues until all N a+ channels are closed.

Since 1(+ channels are still open, the membrane potential overshoots and becomes

more negative than the rest state potential. When the 1(+ channels close the

potential eventually stabilizes to the rest state potential.

After each cycle of the action potential, N a+ and 1(+ channels require a

sufficient period to recover before they are able to open and dose again. This period

is called TefmctoTy peTiod. Absolute TefmctoTy peTiod is the period required for most

of the channels to recover. In this period the neuron can't fire new action potentials.

The Telative TefmctoTy peTiod is the period during which enough channels are

recovered to initiate a new action potential. However, in this case firing new action

potential requires a higher than normal depolarization stimulus (for example, 30

mV instead of 15 mV).

In summary, an action potential starts at the hillock then propagates as a

wave tllong the axon. The inward current at some points on the membrane provokes

the nearby regions to depolarize. This depolarization provokes its neighbor channels

46

.. ---

... _--_ ...

FIGURE 3.4: An equivalent dipole rnagndic held, volume and primary cUlTcnts,
and the cquip01"C'ntiaJ lines.

to open in a similar way and so on. Since tlIe very recently opened channels are in

their (\.])solu1".e refra.ctory period, this guarantees that the signal will travel in only

one direction along the axon where neighboring channels are not in their refractory

period.

No mat.tcr bow strong the stimulus is, the all1plitude of the action potential

n:~lllains the same. So a neuron either fires tIw hill action potenti<tl when the

IIwmbnUlt' depoJarizes beyond the threshold or i1" doesn't fire at all. However, the

number of 8,ctiOIJ potentials finxl per second can differ, a variable that. refkcts the

strength of t.he signal. Therefore, action potential is comprised of

freqllc;llcy-modulated signals.

47

3.2.4 Current Dipoles

While postsynaptic current propagates along the dendrites to the cell body,

the postsynaptic potential decays rapidly. The result, in the case of EPSP (the

opposite in the case of IPSP), is that the net external positive charge near the

synapse is largest and the net external positive charge near the cell body is smallest.

This creates an external voltage difference that, from a distance, looks like a current

dipole oriented along the dendrite [211, 89]. To prevent accumulation of charge, an

ohmic current called volume current in the surrounding tissues rises up and

completes the current loop as shown in Figure (3.4) [89].

A current dipole is a simple convenient mathematical abstraction that

represents a short spike of current. It is normally accepted to represent a biological

current source when a small region of active tissues is far from the measurement

sensors. Therefore, a current dipole representation is often satisfactory to explain

the relationship between neuronal activity and measured fields. Higher order dipoles

fall off quickly and their contribution can be ignored [211].

3.3 Cerebral Cortex

The cerebral cortex is the uppermost layer of the brain, referred to as "gray

matter" due to its color. Two to four mm thick, it is formed by neurons. The

surface of the cerebral cortex is folded in a complicated, convoluted fashion

48

FIGURE 3.5: The surface of the cerebral cortex.

(Figme :L'i). Two-thirds of the cortex ::;urface is buried in groovrs called s111ci. The

blimps on the surfn.cc n,re callecl gyT'U,S. The cerebml cortex is highly dcvC'lopec1 and

respollsible for thillking, language, unclersta.ncling, infonnation processillg, i\,ncl most

human activities. The cerebral cortex is divided into lobes. Each lobe ha,s mapped

brain fnnctionality. Tlle four mAjor lobes are Frolltcd, Pnrif'tal, Temporal a.nd

OCcipll.aJ. For example, the motor eorl·.ex is responsihk for the movement of it

specific part of the body. f\llost measured neural achvibes t.n,ke place in the cerebral

cortex: therefore, this is the most releva.nt part of the brain, as indicated by EEG

data.. The density of neurons ill t.lH:~ cerebral cortex is esbmated to be IOO,OOn

n8Ul"Oll/mrn2 Therdore, activation of Imm2 of the cerebml cortex means the

49

activation of about 100,000 neurons. Since each neuron has thousands of synapses,

this results in activating hundreds of million of synapses.

Neurons are pyramidal cells. Their cell bodies and dendrites are located in

the gray matter, while their axon extends to the white matter, where they connect

different cortical areas together and provide connections between the cortex and

other body parts. They are organized in groups, parallel to each other and pointing

normally toward the surface. When thousands of neighboring neurons are

simultaneously active, the sum of their postsynaptic potentials generates a localized

current parallel to the group. This primary weak current, called an impressed

current, can be strong enough to generate detectable fields on the scalp. The inverse

problem of EEG/MEG is to estimate this from external observations of the fields

outside the head.

3.4 The Origin of EEG and MEG Signals

It is believed and well accepted that the currents behind EEG and MEG are

those corresponding to current dipoles associated with postsynaptic activities. The

calculations in [89] reveal that a single postsynaptic potential produces a

current-dipole moment in the order of 20jAm (femto = 10-15). At least a

current-dipole moment in the order of 10 nAm is required to generate detectable

extracellular fields. Therefore, EEG and MEG signals are the results of the sum of

at least a million simultaneously activated synapses. This sum is possible for two

50

FIGURE 3.6: Cerebral cort.ex: eaclJ equivalent CUJTellt dipole is associated with an
area of t.he cortical surface and poi nts normally to\\'arc1 the surface. It coJTcsponds t·o

a synchronolls sum of hundreds of millions of synaptic (1ctivihes. The image 011 the
right is Adopted from [105].

reasons. First, the large time course of the PSP (order of 10-20 rns) a.llows currents

genemted by synchronized syna.ptic activities from neighboring nemons to

accumulate. Second, cortical nell I"OI1S, the main generators of EEG and l\'IEG, are

arranged parallel to each other anel point pf'lJwnclicular to tlw cortical surface [141]

(sec Figure 3.6). This structural arra.ngcment aIla-INs currents from groups of

thousands of 1Iellrons to accumlilate rather t1lan ccwcel out. For instance, one lnm2

of the cOlticnl surface contains a.bout 100,000 n8111"01IS with thousa1lds of synapses

per nemon. TIJerefore, activation of a smaJI area of the cortex can produce

measurable EEG and :MEG signals. Based on data from measllrements, it is

51

estimated that activation of 40 mm2 of the cortex can produce an equivalent dipole

of 10 nAm [89, 32], which is sufficient to produce measurable EEG and MEG signals.

Even though an action potential amplitude (70-110 m V) is about ten times

larger than a PSP potential (1-10 mV), it is believed that action potentials have

small or no contribution to the scalp fields. This is due to their short time course of

about less than .3 ms, which makes asynchronous accumulation of currents from

neighboring neurons unlikely. Therefore, an equivalent current dipole corresponding

to a region of millions of synchronized and simultaneous PSP activities is a

satisfactory, acceptable model for representing the current source behind EEG and

MEG signals.

3.5 Metabolism-based Neuroimaging

These techniques are based on measuring and interpreting metabolic and

hemodynamic changes associated with the brain active regions. PET is a type of

nuclear medicine imaging. It is used to visualize the locations of biochemical

changes such as metabolism in the body. The PET technique uses a tiny amount of

radioactive organic substances (tracers or probes) to evaluate the metabolism of the

brain. When a radioactive isotope (such as oxygen or carbon) is injected into the

blood stream, it is consumed by the metabolically active regions. When the

radioactive material decays it produces a neutron and a positron. The positron and

electron annihilate and produce two gamma photons in opposite directions. These

52

photons are then detected by a PET scanner and the position of their source is

determined. These positions are then used to construct images of dynamic changes

in the spatial distributions of the tracers.

The main advantage of this method is its ability to determine the active

brain regions with high spatial accuracy. These images have a spatial resolution as

high as 2rnrn. However, this method has several main drawbacks: (1) the limitation

of temporal resolution, usually a few minutes, by the dynamics of the processes

being studied and photon-counting noise; (2) the use of radioactive material; and

(3) its expensive apparatus and operation.

A more recent noninvasive technique is flVIRI. fMRI is based on the

assumption that functional activation of the brain can be detected with MRI via

direct measurements, blood-volume changes, or changes in the concentration of

oxygen. The most common fMRI technique that has been used in neuroscience

research is the Blood Oxygen Level Dependent (BOLD) method [144, 121, 16]. The

BOLD method is based on the assumption that neurons don't store reserves of

energy and oxygen, so active neurons require more oxygen from the bloodstream

more quickly, as compared to inactive neurons. Therefore, the blood supplies active

neurons with oxygen at a higher rate compared to inactive neurons. The difference

in magnetic susceptibility between the oxygenated and deoxygenated blood can be

detected using an IvIRI scanner in which the ThIRI signal is triggered by the

53

metabolic demands of increased neural activity. The oxygenation levels can then be

imaged as a correlation to the neural activity.

Compared to PET, fIVIRI operates at finer spatial and temporal resolutions.

It can produce images with spatial resolutions as high as one mm, and a temporal

resolution of approximately one second. Further, it is fully noninvasive and is

relatively less expensive. Although fIVIRI provides improved temporal resolution

compared to PET, it is still limited by the relatively slow hemodynamic response

(approximately one second) when compared to electrical neural activation (which is

measured in milliseconds). In addition to this limitation, interpretation of fl'v1RI

data is limited by the complex relationship between the BOLD changes detected by

the fIV[RI signal and the underlying neural activities. Brain regions of BOLD

changes do not necessarily correspond to neural activities. It might be influenced by

nonneural activities.

Due to these improvements over PET, fMRI gained significant attention and

generated high expectations in the neuroscience community [16], becoming the most

widely used method in cognitive neuroscience. By the year 2008, over 19,000 articles

were published about fIVIRI. For instance, Gazzaniga and Heatherton [74] described

it as a "biological revolution" in psychology. However, there are a growing number

of criticisms that address the method's limitations [166, 207]. Most concerns are

about the indirect relation between the fMRI signal and neural activity [94]. For

example, Heeger and Ress [94] discussed this relation and pointed out the weakness

54

of the "linear model," which interprets the strength of the f]\;lRl signal as

proportional to local neural activity that has been averaged over a space and time.

They evaluated the linear model and concluded that it is a reasonable

approximation, but only for some recording sites in some brain areas under certain

experimental protocols. Further, they discuss the dependency of f]\;IRl results on the

acquisition technique (BOLD results differ from non-BOLD methods).

Another article [54] discusses several neuroscientists' concerns about the use

of fMIll, and the reliability and validity of the conclusions based on the fMRl data.

The articles quoted several researchers referring to fl...,1RI image data as "gross,"

claiming that the localization of cognitive functioning is not consistent with the

notion that brain activity is distributed in neural networks [54]. Some researchers

even questioned the quality of the images produced by flvIRI.

A recent Nature article [121] provides a review of the method and its

limitations, arguing that flvIRl is not and will never be a mind reader, as proponents

suggest, nor is it as worthless or worthy of condemnation as some have argued. The

author indicates that the extreme positions on both sides result from a poor

understanding of the actual capacities and limitations of the method. He points out

that the limitations of the method are primarily due to the circuitry and functional

organization of the brain and much less to limitations imposed by the existing

hard\vare or the acquisition methods. Also, he indicates that the fl...,1Rl signal

cannot differentiate between function-specific processing and neuromodulation and

55

may confuse excitation and inhabitation. Therefore, the interpretation of the fJ\tIRI

result is still controversial.

3.6 Electromagnetic-based Neuroimaging

EEG and MEG techniques directly measure the electric potential at the

scalp and the magnetic field outside the head, respectively, produced by the neural

activity in the brain. These methods are fully noninvasive and provide superior

temporal resolution in the order of the neural activities, allowing monitoring of

brain dynamics in the order of milliseconds. Unfortunately, the spatial resolution is

limited by the spatial sampling (number of measuring electrodes), the effect of

volume conduction on the signal, and the ill-posed nature of the electrostatic inverse

problem (the inference of the current source generators of the measured EEG or

MEG data) to one em. Further, these methods are less sensitive to deep current

sources in the brain.

As mentioned before, the origin of EEG and MEG signals is due to the

primary and secondary postsynaptic currents. The primary (impressed) current

flows in the dendrites from the synaptic activities to the soma, while the secondary

(volume) current flows throughout the volume conductor [77]. The primary and

secondary currents complete a closed current loop.

While both primary and secondary currents contribute to scalp potential and

magnetic field, the main contribution to the scalp potential is from the volume

56

current. For this reason, scalp potential is highly sensitive to volume-conduction

properties such as tissue conductivities, structural variation of the skull [205, 149],

conductivity anisotropy and inhomogeneity [125, 214]. Consequently, the electric

potential suffers attenuation and spreading while propagating from the cortical

sources to the scalp. For instance, the potential is reduced from the millivolts range

at the cortex to the microvolt range at the scalp[34]. Therefore, it is possible that

focal sources in the brain could be averaged in the scalp. This effect, called bluTr'ing

effect, is the main drawback of the EEG technique. On the other hand, the main

contribution to the magnetic field is from the primary currents. Therefore, the

magnetic field is less sensitive to the volume-conduction properties~in particular,

the low-resistive skull's propensity for allowing more sensitivity to deeper sources.

Since we are more interested in the primary currents and the volume-conduction

effect has less influence on the magnetic field, MEG becomes an attractive

alternative technique.

Although, MEG overcomes some of the EEG limitations, it suffers from its

own limitations. First, the method is insensitive to sources that are oriented

normally to the scalp surface[88]. Therefore, MEG senses activities only from

neurons in the fissures of the cortex. Second, the magnetic field outside the head is

very small, in the order of femto Tesla (10-15 Tesla) [89], which requires

sophisticated sensing technology (superconducting SQUIDs), an expensive operating

team, and a less comfortable procedure for the subject, which limits-long term

57

monitoring[89]. In contrast, typical EEG scalp potential is in the order of J-LV and

thus can be measured using low-cost scalp electrodes and a high-gain amplifier,

resulting in a comfortable procedure that allows long-term monitoring.

For these reasons, MEG doesn't provide major advantages over EEG.

Nowadays, MEG and EEG are viewed as complementary rather than competing

modalities. Several recent studies are focusing on combining the two methods[48],

and most recent MEG research facilities are equipped with EEG as well.

3.7 High-resolution Neuroimaging

Electrical activation in the brain is a spatiotemporal process, which means

its activity is three-dimensionally distributed and evolves with time. It is desirable

to localize the brain's functional activities with high spatial and temporal

resolutions. The temporal resolution of fl\!IRI is limited to one second and can't be

improved due to the physical constraint of a slow blood hemodynamic. On the other

hand, EEG and MEG are the only available techniques that can measure the brain's

functional activity with high temporal resolution. However, their spatial resolution

remains on the order of a em due to several factors, including [211]:

1. I-lead modeling errors

2. Source modeling errors

3. EEG measurement noise (instrumental or biological)

58

The standard is that spatial and temporal resolutions should be at least better than

5 mm and 5 ms [14]. Therefore, If the spatial resolution of EEG method can be

improved to the order of mm by improving these factors, high-resolution

neuroimaging can be achieved.

The brain response to stimulation is detected in terms of complex EEG data

measured on the scalp. The problem of calculating the locations and orientations of

the brain active sources that best explain the measured EEG data is called the

inverse problem. This is a challenging ill-posed problem in neuroscience. A

well-posed problem in neuroscience is the jorward pTOblem. The forward problem

calculates what EEG or MEG datasets would look like for a set of source

configurations. Accurate solutions of the EEG forward and inverse problems are

required for high-resolution mapping of brain electric activity based on the EEG

measurement technique. One of the main objectives of this dissertation is to

improve the accuracy of the forward problem solution by improving the accuracy of

the head model.

3.7.1 The EEG Forward Problem

The EEG forward problem determines the scalp potentials, given the current

sources distribution in the brain and the head volume conduction properties. It is a

well-posed problem and has a unique solution, governed by the quasi-static

approximation of Maxwell's equations-Poisson's equation [153, 140]. Its solution

59

defines the relationship between the neural electric sources (modeled as dipole

current sources) and the scalp EEG electrode measurements. It is common to

formulate this relationship mathmatically in terms of the so-called transfer- matrix

or lead .field matr-ix (LFM) or gain matr-ix (G).

The electric potential ¢(1') at position l' on the scalp, generated by a single

dipole q = qeq with magnitude q and orientation eq located at position 1'q in the

brain, can be obtained by solving Poisson's equation. Poisson's equation is linear

with respect to the dipole moment (magnitude and orientation) and nonlinear with

respect to its position. It is convenient to separate dipole magnitudes from their

positions and orientations for reasons related to the inverse problem, as clarified in

the discussion below. Therefore, the scalp potential can be written as,

¢(T) = g(1', 1'q , eq)q, where g(1', 1'q , eq) is the potential at position l' produced by a

dipole with unit magnitude and orientation eq = qjq, located at position 1'q . q is

the magnitude of the dipole.

For A1 dipole sources, the electric potential at position l' is the linear

superposition of the contributions from each dipole,

!vI

¢(1') = L9(1',1'qi,eqi)qi,

where rqi, eqi, qi are the location, orientation and magnitude of dipole i, respectively.

This expression can be rewritten in the form of a dot product of two vectors,

60

where g is a M-vector containing the potentials generated by M-dipoles having unit

magnitude, and S is a M-vector that contains the magnitudes of the dipoles. In this

formulation, g describes the current flow from each dipole to the measuring

electrode. Then, for N electrodes and Jill dipoles, the potentia.ls at the electrodes

generated by the dipoles in a matrix form are:

where G is the gain matrix, which relates the set of 1\11 dipoles to the set of N

sensors. Each column of G relates a dipole to the set of sensors called an lead field

or scalp topography. This model corresponds to a single EEG time-sample. The

model can be extended to include multiple time-samples when considering

time-evolving activities in a straightforward way. In this case, S becomes a

time-series matrix in which the time-series for each dipole is represented by the

columns of S, and the time-series for each electrode is represented by the columns of

the time-series matrix <P.

In this formulation, the forward model is called the "fixed" dipole model

because the locations and orientations of the dipoles are fixed and assumed to be

known apriory. The only varying parameters are the magnitudes of the dipoles.

This is adequate, based on the fact that the dipoles that produce the measured field

61

are oriented normally toward the cortical surface §3.3. In general, a noise matrix E is

added to the model and then the forward model becomes,

<P = GS + E. (IILl)

The forward problem solution, based on realistic geometry and the use of the

FDM-ADI algorithm, is the topic of Chapter IV.

3.7.2 The EEG Inverse Problem

The goal of the EEG inverse problem is to find an estimate for the locations,

orientations and strength of the brain current source generators that can explain the

measured EEG data. The problem is severely ill-posed for two reasons: (1) The

solution is nonunique because there are an infinite number of source configurations

that could explain a given EEG data set, and (2) the solution is unstable because it

is highly sensitive to small amounts of noise in the measured data.

A brain current source generator is typically modeled as an electric current

dipole uniquely specified by six parameters (three to specify the position and three

to specificity the moment). However, the number of parameters can be reduced if

some a priori constraints are placed on the sources as discussed below. Over the

years, many methods have been formulated to overcome the ill-posed nature of the

problem. These methods have been based on assumptions about the number of

62

dipoles in the model and whether some of the dipole parameters are assumed to be

known and remained constant. These methods can be categorized into two general

approaches: the parametTic approach and the imaging approach [48, 15, 82, 150].

The main difference between the two approaches amounts to whether a fixed

number of dipoles are assumed a priori or not.

The Parametric Approach

The parametric approach, also called the equivalent dipole model, is based

on the assumption that scalp EEG measurement is generated by one or a few

current dipoles (less than 10) whose locations and moments (a total of six

parameters for each dipole) are unknown. Then these parameters are estimated

such that they produce scalp potential that best matches the measured EEG data.

Considering the noise-free forward equation,

the goal of the inverse problem is to find estimates for the sets rqi, eqi and

magnitudes, S, that best explain the EEG data <P. The easiest and most

straightforward approach is to specify the number of dipoles M a priori, then

minimize the difference between the EEG data and the scalp potentials computed

from assumed source parameters by using the forward model. The difference

measure between the computed and measured data sets, in terms of the least square

63

distance, can be defined as,

Then a nonlinear global minimization is carried out to ascertain the global

minimum of the cost function E(rqi, eqi, S) using a nonlinear search algorithm. The

search for the global minimum starts with a specified set of parameters as a seed

and proceeds iteratively. This involves solving the forward problem at each step.

Different optimization methods can be applied to solve the nonlinear optimization

problem-e.g., a multistart simplex search, genetic algorithms, or simulated

annealing.

Various strategies can be applied based on the number of dipoles, which

parameters need to be fixed, and whether to consider the time-series of the EEG

data or just a snapshot. Several variations found in the literature include [165] [49]

(1) the single fixed dipole model, a variation in which the dipole location is fixed

while its orientation and strength are variables; (2) the single moving dipole, in

which the location and the moment are variables; (3) the single rotating dipole

model, in which the location is fixed over a selected period and the orientation is

allowed to vary within the period; (4) the multiple-dipole model, in which several

dipoles are used to represent certain anatomical regions of the brain; and (5) the

dynamic model, which takes into consideration the time-series of the dipole

64

magnitude and the time-series of the scalp potentials. Further constraints on the

dipole orientations, whether fixed or variable, can be added as well.

The major drawback of the least square method is that the number of dipoles

must be specified a priori. Underestimating the number of dipoles causes the results

to be biased by the missing dipoles. On the other hand, overestimating the number

of dipoles causes the dipoles to fit any data, which makes it hard to differentiate the

true dipoles; the solution becomes undetermined, incurring a performance penalty

due to increasing the number of dimensions, and increasing the chances of the

solution becoming trapped in local minima. Overcoming this outcome requires other

approaches, such as beamforming methods. Several other parametric-based methods

have been developed, including BESA, MUSIC, RAP-MUSIC, and FINES. A recent

review about these techniques can be found in [82].

The Imaging Techniques

The imaging approach is also called the Distributed Source Model or

Distributed Inverse Solution. In this approach the primary current sources are

assumed to be current dipoles distributed to fixed locations within the brain

volume. Since it is widely accepted that most EEG current source generators are

restricted to the cortex, the dipoles are often restricted to the cortex with an

orientation pointing normally toward the surface [15, 89]. Achieving high-resolution

neuroimaging requires use of a very large number of dipoles (order of thousands or

65

tens of thousands) to cover the large area of the convoluted cortical surface. Since

the number of unknowns (number of dipoles) is in the order of thousands, while the

number of sensors are only a few hundred (at most 256), the problem is severely

underdetermined and thus requires imposing constraints on the allowed dipole

distributions. Methods based on this approach apply imaging techniques to estimate

the magnitudes of these dipoles such that the produced scalp potentials best explain

the data. As formulated in section §3.7.1, the scalp electric potentials due to these

dipoles and the current dipole magnitudes are related by the forward equation,

<I> = GS + E, (III.2)

where, in the case of a single-time slice, <I> is a column vector gathering the

potentials at N scalp electrodes, S is a Ai-vector of the magnitudes of the cortical

dipoles, E is a perturbation noise vector, and G is aNM lead field matrix. Every

row in G is a lead field corresponding to a current dipole (the solution of the

forward problem at the scalp electrodes).

Given N-vector scalp EEG measurements <I> at N electrodes and the lead

field matrix G (computed a priori using dipoles with unit magnitudes), the goal of

the inverse problem is to invert Equation III.2 and find an estimated solution of the

dipole moments magnitudes, S.

66

Since the only variables are the magnitudes of the dipoles S, and the scalp

potential is linear with respect to them, the problem is linear and the inverse

problem is reduced to find a solution of a linear inverse problem for unknown

magnitudes (vector S). This is a well-known formulation for numerous image

reconstruction problems. Methods for solving this problem take regularizing

schemes into account to overcome the ill-posed nature of the problem. Various

methods and variations are developed based on this technique, including minimum

norm estima.tes and their generalizations, LORETA, sLORETA, eLORETA,

VARETA, S-MAP, ST-MAP, Backus-Gilbert, LAURA, Shrinking LORETA,

FOCUSS (SLF), SSLOFO, and ALF. A survey of these methods and comparisons

between some of them can be found in [82, 15,48]. Of these methods, LORETA is

one of the most widely accepted. From the formulation of the inverse problem, we

see that no matter how sophisticated the inverse technique, the accuracy of the

inverse problem depends on, and is limited by, the accuracy of the forward solution.

Part of this dissertation's focus is to provide sophisticated HPC computing tools

and methods to improve the solution of the forward problem-in particular, the

conductivity model of the head tissues, especially the highly resistive skull.

3.8 Summary and Conclusions

Neurons are the basic elements of information processing in the human brain.

Active neurons are electrically and metabolically active. They generate electric and

67

magnetic fields and consume energy and oxygen more than inactive neurons.

Achieving high-resolution neuroimaging requires that the locations of brain active

regions be determined in high spatial and temporal resolutions (order of mm and

ms). Two kinds of techniques are used to accomplish this.

1. Direct techniques (EEG/MEG) are based on measuring the electric and

magnetic fields associated with the active brain regions by using sensors

directly on the scalp. Then the source generators of the fields are inferred

from the measurements.

2. Indirect techniques (PET/flvIRI) are based on inferring the brain active

regions by measuring the metabolic and hemodynamic properties of the brain.

Indirect techniques provide high spatial resolution (order of mm), but suffer from

low temporal resolution (minutes in the case of PET and a second in the case of

flvIRI), which can't be improved due to the physical constraints of slow metabolic

and hemodynamic responses. On the other hand, direct techniques provide excellent

temporal resolution (order of ms), but the spatial resolution is poor (order of em)

due to head-modeling errors and source-modeling errors, as well as sampling and

noise in EEG measurements.

The advantages of EEG are its superior time resolution, noninvasiveness, low

cost, and comfort for subjects, which allows long-term monitoring; therefore, EEG

can provide a unique window on the dynamics of brain functions if spatial resolution

68

is improved. Spatial resolution can be improved by improving the accuracy of the

aforementioned sources of error. Current advances in EEG technology allow spatial

sampling of up to 256 electrodes, which improves the interelectrode distance to

about 1.25 cm. Applying modern signal processing methods increases the accuracy

of solving the inverse problem and source modeling.

However, no matter how sophisticated the inverse procedure, the accuracy of

source localization will be limited by the accuracy of the forward solution. The

accuracy of the forward solution depends on the accuracy of the volume conduction

model and the numerical method. Up until recently the human head was

approximated as a three- or four-shell spherical model where each shell corresponds

to a specific head tissue (e.g., brain, skull and scalp). Advances in structural

imaging techniques such as MRI and CT provide accurate geometry that defines the

boundaries of the head tissues with accuracy better than 1mm; consequently,

forward solutions based on realistic geometry have recently become common.

In addition to improvements in the geometrical model, an accurate

conductivity model of the head tissues-especially for the skull, which is most

resistive to measurements-has become equally or more important. Until now, lack

of accurate knowledge about head-tissue conductivities, especially the highly

resistive skull, has been the main source of errors in head modeling. Skull

conductivity is particularly problematic given the developmental variations in the

skull from infancy through adolescence and the variations across subjects. Without

69

an accurate model of the skull, even advanced inverse efforts cannot achieve

precision with EEG data, as the error of source localization due to conductivity

uncertainty may reach a few centimeters [96].

One major goal of this dissertation is to provide tools and methods that can

be used to improve the spatial resolution of EEG-based source localization. In

particular, our focus is to improve the forward calculation that predicts the scalp

potentials associated with a specific brain active region. We accomplished this by

providing two methods. The first method is a technique to estimate the

conductivities of the tissues associated with the subject's realistic geometry

obtained from MRI or CT images. To accomplish this, we solved what is called the

conductivity inverse problem or the bounded Electrical Impedance Tomography

(bElT) V. The second method is an improvement in the skull model that involves

including skull inhomogeneity in the forward calculation IV. In addition to these

methods, we provided methods of analysis to investigate and quantify the effect of

the model input parameters. Further, we factored out these methods into a general

purpose extensible environment for scientific investigations. This environment can

be used to conduct similar investigations in other domains or on a different model

within the domain.

70

CHAPTER IV

HUMAN HEAD ELECTROMAGNETICS

Fundamental problems in neuroscience involving experimental modalities like

EEG and MEG are naturally expressed as tomographic imaging problems. The

difficult problems of source localization and impedance imaging require modeling

and simulating the associated bioelectric fields. The source localization inverse

problem involves estimation of the current sources in the brain that generate

EEG/MEG signals. The conductivity inverse problem involves the estimation of the

head tissues' conductivities that explains measured data induced by known currents

injected from the scalp. Before such estimations can be made, we must solve the

forward problem. The forward problem is well-posed and has a unique solution

governed by Poisson's equation, the quasi-static approximation of Maxwell's

equations. Solving the forward problem starts from a given set of current source

configuration, the geometry of the head tissues and their conductivities. Then the

potentials at the scalp electrodes and the magnetic field can be calculated by

solving Poisson's equation. Since solving either of the inverse problems involves a

71

large number of forward calculations, it is important that the computational

method of the forward problem is accurate, stable, and fast.

4.1 Maxwell's Equations

Assuming n is a volume conductor with an arbitrary shape under

investigation, f n , is the boundary of the volume conductor. The current density

within the volume induces electric and magnetic fields E and B that can be

measured on the surface of the conductor. Assuming the conductivities 0" and the

electrical current sources S are known, the electric and magnetic fields inside the

volume are fully described by Maxwell's equations,

and the continuity equation,

VxH

VxE

V·D

V·B

p,

0,

(IV.I)

(IV.2)

(IV.3)

(IVA)

(IV.5)

where E and H are the electric and magnetic fields, D is the electric displacement,

B is the magnetic induction, P, and J are the electric charge and current densities.

72

Since biological tissues behave as electrolytes ([153]), the relations between the fields

are,

D

B

J

EE,

/-lH,

(TE,

(IV.6)

(IV.7)

(IV.8)

where the parameters E, /-l and (T denote permitivity, permeability and conductivity

of the medium. In general, these parameters are tensors for the anisotropic medium

and scalar for the isotropic medium.

4.2 Quasi-static Approximation

In the case of EEG/MEG and the properties of human head tissues, it is

possible to simplify Maxwell's equations in a form that is easier to solve. In the first

approximation, the time-dependent terms can be ignored since the relevant

frequency spectrum in EEG and MEG signals obtained from measurement is

typically below 1kHz and most studies deal with frequencies between 0.1 and 100Hz

[89]. In the second approximation, the capacitive component of the tissues'

impedance and the inductive effect can be ignored because the conductivities (T of

the tissues are in the range of 2.0S/m for CSF tissues to .00lS/m for the skull [194]

[153] (89]. If we ignore the time-dependent terms in equations IV.l and IV.2 and

73

assume the magnetic permeability /-l is constant and equal to the vacuum

permeability, Maxwell's equations become,

\7xH

\7xE

J,

o.

(IV.9)

(IV.I0)

Equation IV.I0 implies that there is a scalar field V (electric potential) such that E

is the negative gradient of V,

E = -\7V

Taking the divergence of equation IV.9, we get,

\7 . J = \7 . \7 x H = 0,

(IV.11)

(IV.12)

since the divergence of the curl of any vector field is zero. The total current density

J inside the volume is the sum of the primary (impressed) current J s and the

volume ohomic (or return) current J o = (TE,

(IV.13)

The primary current is the source current obtained from the neural activity. The

volume current is the ohmic current resulting from the effect of the electric field on

moving the charges in the volume conductor. (T denotes a second-rank tensor.

74

Taking the divergence of IV.13 and using equation IV.12, we get,

(IV.14)

Finally, if we use E = - 'VV in equation IV.14 and assume Neumann boundary

conditions, since no current flows out of the head, it follows that the electric

potentials solve the following boundary value problem,

'V. (o-'VV)

n· o-'VV 0, on ro. (IV.15)

Equation IV.15 is Poisson's equation in 3D. It defines the relationship between a

current source and the potential at any position within the volume. In a similar

way, expressions for the quasi-static magnetic field can be obtained. But in this

dissertation we consider only EEG data.

In this approximation, the potentials generated by a given current source

depend only on two things: (1) the magnitude, location and orientation of the

current sources; and (2) the characteristics of the volume conductor, such as the

geometry of the tissues and their electrical properties. In terms of these things, the

forward problem can be stated as follows: given the positions, orientations and

magnitudes of current sources, as well as geometry and electrical conductivities of

75

the head volume [2, calculate the distribution of the electrical potentials V on the

surface of the head (Scalp) that satisfy the boundary conditions.

In finding the solution of the source localization problem, one performs many

forward calculations for different current source configurations until an optimal

configuration is found that the calculated and measured EEG data best match.

Therefore, the accuracy of the inverse problem is highly dependent on the accuracy

of the forward problem, and the accuracy of the forward problem depends on the

accuracy of the volume conductor characteristics.

4.3 Volume Conductor Models

When the electric potential propagates from current sources in the brain,

through the head tissues to the measuring sensors, it is affected by the medium.

This effect, called volume conduction effect, is the main source of inaccuracy of the

forward solution. To improve the forward solution accuracy, one must define and

model the volume conductor characteristics (the electrical conduction properties).

The main characteristics are the geometry that defines the boundaries between the

tissues and the conductive properties of the tissues such as inhomogeneity and

anisotropy. A complete, fully realistic volume conductor model is not expected in

the meantime. However, specification of the main characteristics and quantification

of their effect on the forward solution are important factors in improving the

solution accuracy.

76

Several models have been developed to solve the forward problem. In these

models, the human head consists of multiple tissues-e.g., brain, skull, eSF, and

scalp. Even though the forward problem is well-posed, an exact analytical solution

is available only for simple geometries such as multishell spherical models. Solution

for complex realistic geometries is only available numerically and its accuracy is

limited by the characteristics of the volume conductor, which are either poorly

known or too difficult to be modeled. For this reason, simplifications of one or more

properties are necessary. These simplifications usually involve the geometrical model

of head tissues and their conductive properties.

Improving the forward solution and consequently the inverse solution

depends significantly on improving these simplifications. Different methods enforce

different levels of simplification. For example, it is not possible to include tissue

anisotropy or inhomogeneity in the widely used BEM solver or multishell spherical

modeL

In the following sections, we review the literature on the volume conductor

description of the head. This includes evaluation of the effect of geometrical and

conductivity models of the main head tissues on the forward and inverse problems.

4.3.1 Spherical Models

The simplest possible volume conduction model of the human head consists

of a single homogeneous sphere [64]. However, this model assumes that the electric

77

properties of all head tissues are uniform and isotropic, which is far from reality

given the significant difference between skull conductivity and other tissues (a factor

of 20). As a first improvement to this model, multishell models are introduced. In

these models the head is approximated as concentric spherical shells representing

tissues with homogeneous isotropic properties. The most widely used multishell

model is the three-shell spherical model representing the three major head tissues,

brain, skull and scalp [169], [171] [42] [22]. It has been studied experimentally using

a skull soaked in saline and the results show good qualitative agreement with a

variety of general observations of EEG data [140, 221]. For further improvement,

models that include CSF tissue in a four-shell spherical model become common as

well [61], [43] and five-shell models are also investigated [203].

These models capture the major head tissue layers, and their simple geometry

allows solving Poisson's equation analytically [11] [184]. Solving the forward

problem becomes an evaluation of a semi-analytic function, which involves the

computation of a truncated infinite series. For further efficiency improvement, other

variations are introduced such as using a single-spherical model that approximates

the multishell spherical models [22]. Also, to address conductivity anisotropy in

these models, one can use a semi-analytic solution that allows conductivity in the

tangential direction to be different from conductivity in the radial direction [51][50].

However, these models have obvious limitations. The human head is not

spherical and the head tissues do not have uniform thickness and conductivities [45]

78

[203, 204]. For instance, the brain white matter and the skull conductivies are

inhomogeneous and anisotropic [215]. Further, the skull contains holes and other

variations that have a significant impact on the accuracy of the solution

[44, 103, 33], in which a hole in the skull causes an error of up to 2 cm [21]. For

example, an error of 10-20 % [41] [167,40] in the scalp potentials and 1-2 em in

source localization [167, 168, 102, 225, 147] can be obtained due to the geometry

factor alone. Further, it was found that using a realistic model, the error in source

localization is reduced from 2-3 cm to 1 cm [53] when using spherical models.

Another study using a realistic head-shaped model indicated that the sphere model

is not a,ccurate for computing the magnetic fields corresponding to deep sources or

sources in the bottom region of the skull [89:1 [186]. Including these important

characteristics in multishell spherical models is not possible.

4.3.2 Realistic Models

Structural imaging modalities such as magnetic resonance imaging (MRI)

and computational tomography (CT) can provide images that define the boundaries

between the head tissues with resolution better than 1 mm. Forward models based

on geometrical information obtained from these images are called realistic head

models [103, 225]. They have recently become standard, as they capture accurate

geometry of the head and allow the inclusion of various conductive properties of the

tissues such as anisotropy and inhomogeneity. These models provide better forward

79

solution accuracy compared to spherical models. However, their computational

complexity and requirement become higher as well.

To deal with the complex geometries, PDE solvers use Boundary Element

(BE) [88] [18, 69], Finite Element (FE) [200] [12, 204], or finite difference (FD)

methods [107, 199, 89, 21]. The main computational idea behind these methods is

to reduce a continuous problem with infinitely many unknown field values to a finite

number of unknowns. This is achieved by discretizing the solution region into

elements. Then the conductivity values are assigned to each element.

Application of these approximation methods to the governing equations for

the specific modality eventually yields a system of linear equations of the form

AX = b, which must be solved to obtain the potential at the scalp X, where b

corresponds to the electrically active sources and A is the stiffness matrix. The

solution techniques can be broadly categorized as direct and iterative solvers. The

choice of a particular solution method is highly dependent upon the approximation

technique employed to obtain the linear system, the size of the resulting system, and

the accessibility of computational resources [5].

Boundary Element Method

The Boundary Element Method (BEM) [88] is the earliest realistic head

modeL It is widely used due to its computational performance. The idea behind

BEM is the transformation of the volume partial differential equation to an integral

80

equation over the surfaces that bound the volumetric tissue compartments, using

Green's theorem [17, 198, 133]. This formalism reduces the dimensionality by one

dimension, which increases the method performance. BEM uses geometrical

information from structural images to define the interfaces between different tissue

types within the volume. Typically, in head modeling, nested volume topology is

used and the volume conductor consists of three surfaces: brain-skull, skull-scalp

and scalp-air. The regions between the surfaces are assumed to be isotropic and

homogeneous. Then the given boundary conditions are used to fit the interface

value into the integral equations. When the surfaces are digitized into triangles the

integrals are turned into sums. Then the solution is obtained by solving the

resulting dense linear system of equations.

The main attractive feature of BE:l'oil is its low level of computational needs in

finding the potential at the scalp surface. Since the problem is 2D, the number of

elements is relatively small and direct inversion techniques are used. After the

matrix inversion, only matrix multiplication is required to compute the potentials

for a different source configuration. However, the main problem with BEM is that it

is restricted to the case of homogeneous and isotropic conductivities and does not

allow including other structural variations such as skull holes [126]. Another

drawback of BEM is that the resulting linear system of equations is dense. This

means if a large number of elements (triangles) is used to improve the accuracy [69],

the memory requirement becomes high. However, advances in memory technology

81

overcome this limitation. Further, a variation of the method for repeated

computation of the forward solution in the computation of the inverse problem

using interpolation can be as efficient as spherical models [59]. The BEM limitations

motivate the use of Finite Element and Finite difference methods in head modeling

mainly to include skull inhomogeneity and anisotropy.

Finite Element Method

In the finite element method (FEM), the entire volume conductor is

descreteized into small elements[12, 27]. The elements can have various volumetric

shapes such as a tetrahedron or cube. Different properties can be assigned to these

elements, which allows including complex characteristics of the volume conductor

such as conductivity anisotropy [125, 217, 91] and inhomogeneity, and also allows

including other structural variations such as holes [92]. Including these

characteristics improves the accuracy of the forward solution. However, there is a

performance penalty for this flexibility since FEM digitizes the 3D space instead of

2D in the case of BEJVI, the number of elements is much higher, and the size of the

stiffness matrix becomes larger. Therefore, direct inversion techniques are not

possible and an iterative procedure is required to invert the matrix. Improving the

performance requires the use of various approaches to domain decomposition, which

produces elements with variable sizes. Another problem of FEM is that mesh

generation for a 3D highly heterogeneous segmented image with irregular

82

boundaries (e.g., the human head) is a difficult task. The process involves a

significant degree of preprocessing and smoothing of the initial geometry through

manual means, which introduces another potential source of error. A fully

automated process of image segmentation and mesh generation is unavailable at

present. Another important consideration is how to model a dipole source in FEM

[187]. In case of a point current dipole the singularity of the potential at the source

position is treated with a "subtraction dipole model" in which the total potential is

divided into the analytically known singularity potential (a dipole in an infinite

homogeneous domain) and the singularity free potential, which then can be

approximated numerically [187] [23] [206][216, 217]. To address these difficulties, the

Finite difference method provides a simpler approach, but with higher

computational requirements.

Finite Difference Method

The FDM method is based on replacing the derivatives in PDE by finite

differences. In FDM head modeling, the head is tessellated in a regular cubic grid,

where each cube has the same size. Using the FDM method with a regular cubed

grid is generally the easiest method to code and implement. It is often chosen over

FEM methods for simplicity and the fact that an MRI/CT segmentation map is

also based on a cubed lattice of nodes [119, 208, 131, 136]. Therefore, meshes are

easy to construct (once segmentation is accomplished) as the cubic/rectangular

83

elements can be "mapped" directly from the voxels of the medical images (3D MRI

scans). Many anatomical details (e.g., olfactory perforations and the internal

auditory meatus) or structural defects resulting from trauma (e.g., skull cracks and

punctures) can be included as the computational load is based on the number of

elements and not on the specifics of tissue differentiation. Thus, the model of

geometry accuracy can be the same as the resolution of MRI scans (e.g.,

1 x 1 x 1mm). In contrast, in the FEM approach, simplification of the geometry is

unavoidable as a result of mesh generation, which can be too difficult and introduce

errors.

The number of forward calculations for different source configurations can be

reduced significantly by using the reciprocity principle [87]. In a study by [131], the

researchers conduct a performance study of several FDM-based methods, successive

over relaxation, preconditioned conjugate gradients and an algebraic multigrid for

solving the EEG forward problem. They found that an algebraic multigrid is

computationally the most efficient. Similar to FEM, FDM allow incorporating

anisotropy of the tissue [87] [173,174].

SUilllnary and Discussion

Realistic head models have recently become standard, as they provide major

improvement over the spherical models. BEM is based on solving the surface

integral equation instead of the volume partial equation, which reduces the

84

dimensionality to 2D. This makes it efficient in terms of computational

requirements. However, they are restricted to the only case of an electrically

homogeneous, isotropic and closed tissue compartment. In contrast, FEM and FDJVI

are based on digitizing the whole volume conductor into small volumetric elements,

which allows assigning different a conductivity value for each element and

consequently including various modeling properties such as inhomogeneity and

anisotropy. The price of this flexibility is performance. In FDM and FEM the

stiffness matrix is much larger and can't be solved by a direct method. Typically,

iterative techniques such as successive over relaxation, conjugate gradients and

algebraic multigrid are used [131, 97]. The drawback of the iterative techniques is

that the solver has to be reapplied for each source configuration. Therefore, FE}'/I

and FDM are computationally inefficient in solving the inverse problem in which an

iterative solver needs to be used for each dipole. However, using the reciprocity

theorem overcomes this inefficiency [170, 87].

Since in FDM, the 3D space is a regular cubed space, where the

computational points lie fixed, while in FEM the computational points (the vertices

of the elements) can be chosen freely, FEM requires much fewer points to represent

the irregular interface between the different tissue compartments. This makes FEM

more efficient than FDM, as the number of elements is much smaller (.5M compared

to 5M). However, constructing an FEM mesh from the segmented high resolution

MRI image is a difficult task. It can be inaccurate due to the difficulty in

85

differentiating the boundaries between different tissues in a structure with complex

geometry such as the head. On the other hand, in FDM the regular cubed images

map directly to the computational grid without any effort. Typically,

preconditioning techniques are used to improve performance in solving the linear

system [220].

For these reasons our choice was to use the FDM-based alternating direction

implicit (ADl) method. The method is implicit since it requires linear systems

solutions and alternates since it alternates on the three directions (x, y, z). We chose

the ADl method because solving the system requires a number of uncoupled

tridiagonal solutions that require little memory and can be executed concurrently

on different processors.

4.3.3 Conductivity Model

The use of realistic geometries, obtained from structural imaging such as CT

and MIll, is now standard in the forward calculation. However, this knowledge alone

is not sufficient to describe the volume conductor accurately because EEG signals

are highly sensitive to tissues' conductive properties [92, 90, 125, 147, 205, 127, 154].

This sensitivity is due to the volume current (Ohmic current, J = a-E), which is the

main source of EEG signals. The volume current is highly dependent on the

characteristics of the medium. Therefore, accurate knowledge about the electrical

properties of head tissues is equally or more important than the geometrical

86

information [140]. The regional conductivities of the tissue compartments are

largely unknown or poorly known, especially for the skull, given their development

variations within a subject and their variations across subjects. In contrast, :MEG is

insensitive to the tissues' conductivities since the sources of .lVIEG signals are the

primary currents [146]. Multishell spheres and BEM models inherently assume each

tissue conductivity is uniform and isotropic (anisotropic spherical models exist that

allow different radial and tangential conductivities), ignoring conductivity variation

within the tissue. Hence, in these models only the ratio between the conductivities

of adjacent compartments is required. This is why most of the early work was

focused to obtain the ratio of the conductivities instead of the absolute values, as

discussed below. On the other hand, knowledge about absolute conductivity values

can be included in FDM and FEM models, which allow modeling inhomogeneity

and anisotropy and provide more accurate volume conductor description.

In general, the conductivity of a biological tissue is related to the body fluid

concentration level in its content [115]. Tissues with higher concentration of fluid

are more conductive because body fluid is rich in salt and so in ions, which are the

carriers of the current. Cell-free fluids such as urine and CSF have the highest

conductivity [140], while compact bones have the lowest conductivity.

In the following subsections, we discuss the electrical properties of the head

tissues in general, focusing on the skull.

87

Brain

The brain consists of neurons and glial cells. Neurons are the basic

information-processing cells. Their cell bodies and dendrites are located in the gray

matter, while their a.xons extend into the white matter. Most of the gray matter is

located in the cerebral cortex, which forms the upper layer of the brain. The inner

part of the brain consists of white matter. White matter consists of nerve fibers

(bundles of a.xons) that connect different parts of the cortex together, and the

cortex with other peripheral parts. Since ions can move easier along a fiber nerve

than perpendicular to the nerve, the conductivity in the direction along a nerve is

higher than in the direction perpendicular to the nerve. Measurements show that

the ratio between the conductivity along the nerves to the conductivity across the

nerves is 9:1 [138, 84]. Therefore, the conductivity of white matter is anisotropic

and should be included in the volume conductor for better accuracy

[91, 125, 217, 85, 87, 158, 84]. On the other hand, gray matter is homogeneous and

isotropic tissue.

The recent Diffusion Tensor Magnetic Resonance Imaging technique

(DT-IVIRI) [19] provides directional information about the diffusion tensor of water.

Since ions move easier with the water flow, it is assumed that the conductivity is

higher in the flow of water direction. Therefore, it is possible to infer the

conductivity tensor from the water diffusion tensor [202].

88

Some experimental data about the conductivities of white matter and gray

matter for humans and animals are available. Latikka et. al. [117] measured the

resistivity of white matter, gray matter and CSF obtained from nine tumor patients

(6 males and 3 females ranging in age from 32 to 87) during surgery. Their results

show the average resistivity of white matter is 3.91 ohm m (conductivity of .256

Sjm), the average resistivity of gray matter is 3.51 (conductivity of .284 Sjm) and

the average resistivity of tumor depends on the type of tumor and range from 2.3 to

9.7 ohms m (.43 to .1 Sjm).

In many head modeling systems the brain is modeled as a single tissue in the

popular three-layer models (scalp, skull, brain). However, this approximation is

inadequate. The conductivity of the brain is inhomogeneous since the gray matter is

about twice as conductive as the white matter, and the conductivity of the white

matter is anisotropic. Spherical and BEM models inherently ignore brain anisotropy

and inhomogeneity, while FDM and FEM models allow including anisotropic

information and inhomogeneity in the forward calculation.

CSF

Cerebrospinal fluid (CSF) is a colorless liquid that fills out the space around

and within the brain and throughout the nervous system. Its main function is to

provide support and protection. It acts as a shock absorber for the brain and

89

provides other support functions such as circulating nutrients and removing waste

from the nervous system.

Since CSF is a body fluid, its conductivity is expected to be homogeneous,

isotropic, and higher than other body tissues. Also, it is expected to decrease with

age as it gets dryer. Baumann et. al. [20] measured the conductivity of CSF taken

from 7 patients across a frequency range 10 H z-10kHz. The measured conductivity

was 1.45 81m at room temperature and 1.79 at body temperature. Currently, this is

the typical value used for the conductivity of CSF tissue in head modeling. In

another study, Latika et al. [117] measured the conductivity of CSF from two

patients with brain tumors during surgery at frequency 50kHz. Their results show

an average CSF conductivity of 1.25 S/M, lower than Baumann's results. In head

modeling the scalp potential is insensitive to CSF conductivity, as it doesn't vary

and typically is fixed.

Skull

The low skull conductivity, compared to other tissues, makes the scalp

potentials highly determined by this parameter.

Until now the skull conductivity has been poorly known and the object of

research in simulation and experiment. Published data are not consistent and cover

a wide range of values. The lack of accurate skull conductivity estimates is

particularly problematic, given the developmental variations in the human skull

90

from infancy through adolescence. Without an accurate skull model, even advanced

inverse efforts cannot achieve precision with EEG data. Current advances in EEG

dense array electrode technology, the availability of up 256 electrodes, and the

accurate geometrical construction of head tissue make the accuracy of the forward

solution (and therefore the inverse problem) mostly limited by the conductivity

modeling of the skull. Symmetric forward models such as multishell spheres and

BEM require only the ratio of the conductivities scalp:skull:brain to be correct.

That's why most of the head-modeling studies in past decades were focused on

getting the skull:brain ratio correct. However, in FE]\/I and FDM, more structure

can be modeled, such as inhomogeneity and anisotropy; therefore, absolute

conductivity values of each tissue are necessary.

Several sensitivity studies were conducted to evaluate the influence of skull

model parameters on the accuracy of the forward and inverse solutions. The

outcome of these studies is that inhomogeneity, anisotropy, and other skull

variations, such as holes, must be included in the skull model. Using the FENI

model, Pohlmeier [154] studied the effect of skull conductivity variations on source

localization and showed that it is necessary to include the skull three-layer model

and the local variations of skull conductivity. In their study, conductivities of the

lower and upper layers of the skull were assumed to be equal. However, another

study [33] using spherical three-dimensional resistor mesh indicated that differences

resulting from using three different layers for the skull instead of 1 layer are small,

91

while introducing a hole in the skull causes changes in the potential by a factor of

11.5 and the largest error in the source localization. Benar et. al. [21] obtained

similar results. When they introduced a hole in the skull they found a localization

error up to 2 em for radial dipole and a reduction in the source localization error by

a factor of 10-20% "vhen the skull conductivity was doubled. Using the FEM model,

Marin et al. [125] investigated the influence of skull anisotropy on the forward and

inverse problems. Their results show that the conductivity of the skull in the radial

orientation has more effect on the forward and inverse solution than the tangential

direction. Using the FEM model, Wolters et al. [215] found that skull anisotropy

has a smearing effect on the forward solution and has more effect on the potentials

generated by deeper sources. Using an FEI\l model, Ollikainen et a.l. [147] studied

the effect of skull inhomogeneity on the source localization. Their results indicate

that source localization errors of about 1 em can be encountered if the

inhomogeneity of the skull conductivity is not considered. In [92, 90], they studied

the influence of conductivity changes on the magnetic field and the electric scalp

potential Their results indicate that the magnetic field is insensitive to variation in

conductivity, while the scalp potential is highly sensitive to tissue conductivities

(both dipole localization and dipole strength). Using a 3-shell spherical model,

Eshel [60] conducted a correlation study between matching skull thickness

asymmetry and scalp potentials. Their results show that skull thickness asymmetry

92

can create nonnegligible asymmetries in the potential measured on the scalp above

homotopic points of the two hemispheres.

Anatomy and structure. The human skull consists of 8 cranial bones and 14

facial bones joined together by sutures. Skull bones can be classified into two kinds

according to their material: compact (dense) bones and spongy (cancelous) bones.

In general, the local conductivity of a bone is highly related to the concentration of

fluids in the bone [115]. Regions with higher fluid concentration are expected to be

more conductive than regions with lower concentration. Sutures are composed of

materials that are highly rich with fluids. Spongy bones contain higher

concentration of fluids (marrow) compared to compact bones. Therefore, sutures are

expected to be highly conductive, and the conductivity of a spongy bone is expected

to be much higher than the conductivity of a compact bone. Even more, the

conductivity of a composite bone (a bone made of a combination of spongy and

compact bones) is expected to be highly dependent on the fraction of the spongy

bones in the composite. Indeed, these general observations are confirmed by

experimental measurements of the conductivity of live and dead

skulls[118, 9, 8, 197].

The cortical part of the skull consists of three-layer bones, called tr-'ilayer

bones. A trilayer bone is formed of a spongy middle layer (thickness 3.8-5.1 mm)

sandwiched between two compact-bone layers (thickness 1.7-4.3 mm). The

concentration of fluids in the lower compact bone layer is higher than in the upper

93

compact bone layer, so the lower layer is expected to be more conductive than the

upper layer and the middle layer to be much more conductive than the outer layers.

This is confirmed by an experimental study on a live and dead skull [9], where the

conductivity of each layer is measured separately. A long bone is generally a

composite bone formed from spongy inner bones surrounded with a shell of compact

bones. The thickness at the middle of a long bone is mostly made of compact bones

with a small amount of spongy bones; while at the end of the bone, it is mostly

made of spongy bones with a narrow shell of compact bones.

In addition to variations in bone type, structural variations within the skull

such as openings and thin regions have a large impact on the effective conductivity

of the whole skull. These holes and openings are filled with nerves and body fluids,

which provide the current easier paths to pass through the skull and consequently

increase the effective conductivity of the whole skull. The structural variations

effect becomes significantly important in infants and young children, where the skull

is not completely developed [63]. Using a realistic FEM model, ling [108] studied

the effect of holes on EEG data. His results show that the strongest effect on EEG

occurs when the dipole is located below the center of the hole for radial dipoles and

when the dipole location is just below the border of the hole when the dipole is

tangential. Due to these structural and anatomical variations, it is expected that

skull conductivity is highly inhomogeneous and anisotropic.

94

Experiment data. Experimental data show considerable variation in skull

conductivity. Gabriel [70, 71, 72] summarizes the results of earlier tissues' dielectric

properties. In a study on samples obtained from a dead skull, law [118] found that

compact bones have the lowest conductivities, sutures have the highest

conductivities, and the conductivity of trilayer bones is linearly proportional to their

thickness. The study suggests that trilayer bones' conductivity might be determined

by their thickness. The conductivity of a uniform material is not expected to

depend on its geometry. But in the case of a composite material, such as a trilayer

skull, it is possible to be related. This can be explained because if the thickness of

the spongy middle layer bone increases proportionally more than that of the

compact layers in the thicker part of the skull, the conductivity of the thicker region

is expected to be higher than that of the thinner samples. These general

observations are confirmed in a more recent study [197].

Later, Akhtari [9] measured the conductivity of individual skull layers and

the bulk skull at several locations, using the live skulls of four subjects. Their

results show that the three layers of the skull have different conductivities: the inner

layer conductivity is higher than the outer layer conductivity, and both have lower

conductivity than the middle spongy layer by a factor of three to six. Further, all

conductivity values of the skull are lower than what has been previously published,

and the conductivity of each layer is not uniform. Also, the results show that

95

conductivity of the bulk skull has a weak dependence on thickness. However, the

study has only a few points (3-4), which is insufficient for drawing conclusions.

A recent intensive study on 388 live skull samples by Tang [197] indicates a

strong dependence of the conductivity of a sample on the fraction of spongy bones

in its content. Also, these results confirm the linearity relationship, obtained earlier

by Law, between conductivity and thickness for trilayer bones. Similar to Law's

results, Tang's results show that sutures significantly increase local conductivity.

Further, the conductivities of the suture in their results are higher than those

obtained by Law. This is explained due to the fluid content of their live samples

compared to the saline content of a dead skull.

Until recently most of the brain research assumed a brain-to-skull

conductivity ratio of 80 based on measurement obtained by Rush and Driscoll

[169, 17:1] on a dead skull hydrated with saline. Since dry skull is effectively an

insulator, the effective conductivity of the skull is proportional to the conductivity

of the fluid with which it is permeated. Therefore, Rush and Driscoll found that the

conductivity ratio of the permeating fluid (saline) to the soaked skull was 80. This

number became the standard parameter in the forward computation for decades. In

1983 the same results were suggested by Cohen [38] in a combined analysis of the

(EEG) and(MEG) recordings evoked by the same stimulus.

Completely different results were obtained later in two studies by

Oostendorp [148]. One study was in-vitro on a dead skull and the other one was

96

in-vivo on two subjects using scalp current injection and electrodes at 32 positions.

In the in-vivo study, they used scalp current injection and BEM for the forward

calculation. Then they constrained skull conductivity as a fraction of brain

conductivity and fit the data to only one parameter to find the conductivity of the

skull. Their result indicates a brain-to-skull conductivity ratio of 12-20. In their

in-vitro study on a, dead skull soaked in saline, the average conductivity of the skull

was .015 Sim at frequency range 100Hz to 10kHz.

Hoekema [96] questioned the validity of the previous studies on skull

conductivities due to exposure to the air (even for a few minutes) and lack of

temperature control. Avoiding these drawbacks, they measured the mean

conductivity of 5 live skull parts that were temporarily removed during epilepsy

surgery at body temperature and high humidity conditions using 32 electrodes. A

finite difference model was used to compute the Ell' inverse problem. Their results

show higher conductivity than previous results of value ranges from .032 to .08.

Using scalp current injection, Goncalves [79, 80] conducted an in-vivo study

on 6 subjects. They obtained a wide range of brain-to-skull conductivity ratios.

Their results were model dependent. V\Then they used a 3-shell spherical model in

the forward calculations, the average brain-to-skull conductivity was 72. However,

when they used realistic geometry and BEM, the ratio was 20-50.

In a study on 5 epilepsy patient children, Lai [116] found the effective

brain-to-skull conductivity ratio in the range of 18-34 with an average of 25.5. In

97

their study, they simultaneously recorded scalp and cortical electrical potentials

during subdural electrical stimulation. The inverse cortical potentials distribution

was then computed from the scalp-recorded potentials using a 3-shell spherical

model. Then the brain-to-skull conductivity ratio was estimated by minimizing the

difference between the recorded cortical potentials and the computed cortical

potentials.

In a similar study by Zhang [227] on 2 children, both epilepsy patients, they

found a brain-to-skull conductivity ratio of 18. In this study, intra-cranial electrical

stimulation was delivered using a pair of electrodes in the implanted subdural grid.

The response was measured using EEG on the scalp. Subsequently, the

brain-to-skull ratio was found by finding the best match between the computed and

the measured scalp potentials, using the FEM forward solver.

Frequency and capacitive dependence. Several studies show that the

conductivity of the skull depends on the frequency [70, 71, 72] and can affect the

forward and inverse calculations considerably [194]. The frequency dependence of

the conductivity of three layers of a live and dead skull was studied by Akhtari [8].

Their results indicate a frequency dependence that follows a power law for frequency

in the range 10-90 Hz. However, the fitted parameters depend largely on the sample

and whether the skull is dead or alive. The conductivity frequency dependence was

also observed in the study by Tang [197], but the dependence was weaker for the

EEG frequency range.

98

TABLE IV.I: Skull conductivity
Publication Region Conduct. Samples Methods Freq. T

81m Hz Co
Law Suture .0123-.074 4 dead, 100
199~~ Compact bone .0047-.0078 2 soaked in

Trilayer bone .0100-.028 14 .9% saline
Oostendorp Uniform 0.015 1 Dead 1e5 37
2000 0.013 2 In vivo 10-lk 37
Akhtarai Top compact 0.0023 4 Dead, 10-90
2000 Spongy 0.0077 soaked

Bottom compact 0.0033 in saline
Bulk 0.003

Akhtarai Top compact 0.0062 4 live 10-90
2002 Spongy 0.021

Bottom compact 0.0049
Bulk 0.0095

Hoekema Uniform .032-.08 5 Live 10 37
2003
Tang Std trilayer 0.013 58 Live 1-4e6 36.5
2008 Qusai trilayer 0.0069 110

Std compact 0.0038 62
Qusai compact 0.005 53
Dentate suture 0.017 41
Squamous suture 0.0078 64

Akhtari [9] studied the validity of the quasi-static approximation of ignoring

the capacitive effect of the skull tl'ilayer bones. Their results show that this

approximation is adequate. These results confirm previous results obtain by

Stinstra [194]. Therefore, the three-layers model of the skull can be modeled as a

series of three resistors.

99

4.4 Finite Difference Discretization

As mentioned before, the MRI's segmented image can be used directly as the

volume conductor model for the FDM method since the image voxels map directly

to the regular cubic FDM grid. In contrast, the FEM method requires the creation

of a tetrahedral mesh from the MRI image that defines the boundaries between

different tissues. The accuracy of the FEM method is limited by the accuracy of

constructing such a mesh, which is hard in complex geometry of the human head.

Therefore, we chose the FDM-based method to solve Poisson's equation. The

alternating direction implicit fillite difference method (ADI) is an attractive FDM

approach for solving elliptic and parabolic PDE. In ADI, solving the system requires

a number of uncoupled tridiagonal solutions, which require little memory and can

be executed concurrently on a multiprocessor machine. In this section, we descretize

Poisson's equation in the multicomponent ADI scheme. In §4.4.1 we desceretize the

right-hand side, the current source term, and in §4.4.2 we disceretize the left-hand

side, the laplace operator.

4.4.1 Alternating Direction Implicit (ADI) Method

In numerical analysis, a common concept used for solving an elliptic problem

is to add a first-time derivative to the PDE and then to solve the resulting parabolic

equation until a steady state is reached. At the steady state, the time derivative is

zero and the solution corresponds to the original problem. Based on this concept

100

and assuming the source term, \7 . J s = Is, Poisson's equation with the time

derivative term is,

a¢at + \7. O"(x,y,z)\7¢(x,y,z) = Is. (IV.16)

Then we used the iterative Multi-Component Alternating Directions Implicit (ADI)

algorithm [4] to solve this equation. The method is a generalization of the classical

Douglas-Rachford ADI algorithm [55], but with improved stability in 3D. It is

unconditionally stable in 3D for any value of the time step. To describe the

electrical conductivity within arbitrary geometry, we used the method of embedded

boundaries. In this method, the object with arbitrary geometry is embedded into a

cubic computational domain with zero conductivity in the complementary region.

Therefore, no current is allowed to flow out of the physical area and the Neuman

boundary condition is naturally satisfied. The idea of the iterative ADI method is

that the solution of Equation IV.15 is the steady state solution of the corresponding

time-dependent Poisson equation.

The finite-difference scheme is used over the solution domain by using a

rectangular grid with spatial spacings of hx, hy , hz in the x, Y, z direction,

respectively, measured in meters, and T in the time direction, measured in seconds.

Using the notation Xi = ihx, Yj = jhy , Zk = khz and tn = nT for integer values of i,

j, k and n, the electrical potential at a grid point, (i,j, k), at time, tn, is written as,

¢~jk = ¢(Xi' Yj, Zk; tn)' The idea of the ADI method is that at every iteration time

step the spatial operator is split into the sum of three lD operators, which are

101

evaluated alternatively at each sub-step. For example, the difference equation in x

direction of Equation IV.16 is,

(IV.17)

of the partial derivative,

6 (--1,11+1) _ 1 [(--1,11+1 --1,11+1) (--1,11+1 --1,11+1)]
.7; 'Pi - h

x
2 O"i+l/2 'PHI - 'Pi - O"i-l/2 'Pi - 'Pi-l ,

); ('11+1) 1 [(--1,11.+1 --1,11+1) (--1,11.+1 --1,71,+1)]
uy qJj = h 2 0")+1/2 'Pj+l - 'Pj - O"j-l/2 'Pj - 'Pj-1 ,

Y

); (--1,71,+1) _ 1 [(--1,71,+1 --1,71,+1) (--1,71,+1 --1,11.+11]
U z 'Pk - h

z
2 O"k+l/2 'Pk+l - 'Pk - O"k-l/2 'Pk - 'Pk-1, .

Such a scheme is accurate to O(T
2

) + O(h; + h~ + h;). In contrast with the classic

ADI method, the multi-component ADI uses the regularization (averaging) for

evaluation of the variable at the previous instant of time. Rearranging

Equation IV.17 we obtain,

Substituting 6x (¢?+1) into Equation (IV.18),

(IV.18)

~n+l L T [(~n+l ~n+l) (~n+l ~n+l)]
'+'i T h

x
O"HI/2 '+'Hl - '+'i - O"i~I/2 '+'i - '+'i-l

102

1(n n ~n)"3 1Ji + 1Jj + '+'k

+T[ls - Oy(1Jj) - oA1Jk)],

where O"Hl/2,j,k = (O"i,j,k + O"Hl,j,d/2 is the conductivity at ihx + 1/2. The

conductivity at the points between the grid points. Similar expresions for the y and

z components can be obtained. Rearanging Equation IV.19,

I T ()] ~n+l T ~n+l T ~n+l _ ~n [I J: (~n) J: (~n)
--h O"i+l/2+O"i.-l/2 '+'i +-hO"i+l/2'+'i+l +-hO"i-l/2'+'i-l - '+'ijk+ T s-Uy '+'j -Uz '+'k .

x x x

(IV.19)

The left hand side of Equation IV.19 is a tridiagonal system in the (n + 1) time

step, while the right hand side is evaluated in the n time step. Let,

T
di = 1 - -';:(O"HI/2 + O"i-l/2) ,

x

T
ai = -';:O"i+l/2,

x

T
Ci = -';:O"i-l/2,

x

Then Equation IV.19 can be written,

~n+l + d ~n+l + ~n+l - bn
ai'+'i+l i'+'i Ci'+'i-l - i' (IV.20)

103

Assuming the dimensions of the computational grid are N x , Ny, N z , then the NyNz

tridiagonal systems can be solved concurrently. Similar expressions for the y and z

components can be obtained,

~n+l d ~n+l ~n+l - bn
aj'f'j+l + j'f'j + Cj'f'j-l - j.

a ~n+l + d ~n+l + C ~n+l = bn
k'f'k+l k'f'k k'r'k-l k·

(IV.21)

(IV.22)

The above three equations are to be solved in the above order. For example, in

evaluating bjt we use the updated value of ¢? which is actually ¢f+l, not the value of

¢f in the previous time step. Is is the current source discretized in the §4.4.2. These

are tridiagonal equations which can be solved iterativily using Thomas algorithm

(tridiagonal algorithm).

4.4.2 Current Source Model

The right side of Poisson's equation, 'V . J s, represents the current density of

the sources. Applying the divergence operator to the vector field J s [86],

. 1 i'V . J s = hm V J.n ds = Is,
V--+O av

we obtain the current density Is in (Alm3). The surface integral represents the net

current (in A) leaving or entering the volume V. By definition, the current direction

104

is that of positive charge movement. Therefore, the integral is positive when a net

current leaves the volume (current source), negative when a net current enters the

volume (current sink), and zero when the leaving and entering currents are equal

[140]. In another way, a current source adds positive charges to the extracellular

volume and a current sink removes positive charges from the extracellular volume.

Since there is no pile up of charges inside the brain, the total current sources and

the total current sinks are equal.

As discussed before, the currents behind EEG/MEG signals are those due to

postsynaptic potentials. In case of EPSP, the current sink corresponds to removal of

positively charged ions from the extracellular environment (sodium ions) at the

apical dendrite, while the current source corresponds to injection of positively

charged ions at the cell body. If we consider that a volume element V encloses a

current sink at position rl, then the surface integral of the current density is -I. As

the volume V goes to zero, the total current remains -I, but the division by the

volume gives a singularity. Therefore, the current density at rl can be written in

terms of the dirac delta function as -1c5(r - rl), where c5(r - rd replaces the limit

limv->o {T. By similar reasoning the current source at position r2 at the soma can be

written as 1c5(r - r2). In the case of IPSP the current source is at the apical

dendrite while the current sink is at the soma. Current sources and sinks are

monopole because they correspond to one end of the current, assuming the other

end is unknown. Hence, in terms of monopoles, the right-hand side of Poisson's

105

(k+1 ~/ .•tt
.------+/-+-------.r...'.'.'

/
"(i-1)j ~/'I'--__ 1----.lL-..j---lI>!' (i +1)jk

/

•...........

;/(k-1)ij

FIGURE 4.1: A current dipole mOlllAlJt, q = I de, can be (~xprrsscd in tr.nllS of
three orthogonal dipole moments.

equation hecomes,

In this expression, the delta function rpplaces the limit, 1i1l1v_o {r, 'where V is the

VOIUlllC around the mOllopole. \iVhen taking the limit in the FDM dcscritization the

volume goes t.o the volUTlle of th0. voxcJ that contains t.\w monopole, 11 = h.t . hy . hz ·

Therefore, th(~ delta function in :3D is,

if r = r '

if r --=1= r '

where h:r, hfj' and hz are the mesh spacing. In the hEIT illverse problem, the

locatio]}s of the cunent sink rl anel cmrent source r2, anel t.he ma.gnitude of t.he

injection current 1 are given. Therefore, t.he right-haml side of Poisson's equation

(Equation IV.15) is modeled as two current monopoles.

106

In EEG source modeling, the distance between the two monopoles is small

compared to the observation distance and the two monopoles look like a current

dipole source. Therefore, the current source and the current sink are typically

represented by a current dipole with a position chosen at halfway between them.

Similar to an electrostatic dipole, the current dipole moment q is defined by a

vector qe, which is directed from the current sink to the current source with

magnitude, q = Ilqll = I d, where d is the distance between the two monopoles,

therefore, q = I de. In EEG source analysis, the dipole moment is given and the

current density is 1= qjd. Then, in terms of the dipole moment, the right-hand

side of Poisson's equation is,

if r = r sO'uTee

---q- if r = rsink
dhxhyhz

o otherwise

In EEG source analysis, it is convenient to express the dipole moment q in terms of

its cartesian components, q = qxex + q'Ye'Y + qzez , which allow encoding the dipole

direction as well as its magnitude in the FDM model. In this formulation, given a

dipole moment, qijk, at position ijk, it can be expressed in terms of three

orthogonal dipole moments along X-, Y-, and z-axises in terms of monopole sources

at (i +- 1)jk, i(j + 1)k, ij(k + 1) and monpole sinks at (i - 1)jk, i(j - 1)k, ij(k - 1),

respectively. Then the current source term can be expressed in terms of these

107

TABLE IV.2: Tissues parameters in 4-shell models [61].
Tissue type (l(n 1m 1) Radius(cm) Reference
Brain 0.25 8 Geddes(1967)
Csf 1.79 8.2 Daumann(1997)
Skull 0.018 8.7 Law(1993)
Scalp 0.44 9.2 Burger(1943)

dipoles as shown in Figure 4.1,

2h2q~ h (OU+ 1)i' - °U--1)il) Ojjl,kl.,1 + 2h ~Y2h (O(j+1)jl - O(j-1)j')O·ii',kk'
x y z x"y z

+2h q~ h2 (O(k+1)k l - O(k-l)kl)Oii',jjl,
x Y z

where oxx l is the Kronecker delta function. Similar expressions for the y-, and z-axis

dipoles can be writen.

4.5 Evaluations and Results

We have built a finite difference forward problem solver for Equation IV.I5

based on the multicomponent alternating directions implicit (ADI)

Algorithm §4.4.1. In the following subsections, we discuss the verifications of the

forward solver in §4.5.1. Then we discuss some applications and use of the forward

solver in §4.5.2. In §4.5.3 we discuss parallelizing the forward solver and porting it

onto the cell broadband engine [104].

108

40~············:···t.4;.:L ,. L:~~=~~

> 20~"""':""'" A1"UK6 t'············,·············o : ~

=l

ui
:iii a ·I.·I'WI""'······ .. , ..•
"E
~
ll. -20~·········o···········;··········,············,········..··IItU

-40~·· ·, · ,.. ,.. , ·;· · ··, ,V

-600=-----:2=0--4=0--6=0:------=80:---1~0::-0 -~12:::-0 ----:-'.140

Electrode Number

FIGURE 4.2: Verification of the forward solver accuracy against analytics for a
4-shell spherical model.

4.5.1 Forward Solver Verification

The forward solver was tested and verified against a 4-shell spherical model,

as well as low (4mm) and high (lmm) resolution human MRI data. For comparison

purposes, we considered that spherical geometry consists of four tissue types. Their

values were set to those in the spherical model (Table IV.2). Then we computed

potentials at standard locations for the 129 electrodes configuration montage on the

spherical model and compared the results with the analytical solution [61] available

for a 4-shell spherical model in Figure 4.2. One can observe good agreement, save

for some minor discrepancies (average error is no more than a few percents) caused

by the mesh orientation effects (the cubic versa spherical symmetry).

4.5.2 Forward Solver Application

Having a forward solver that supports realistic geometries allows us to

perform a series of computations for the electrical potentials and currents inside a

109

Hole

FIGURE 4.3: Simulating a hole in the skull. The potential clistrihutioll (left) and
the C1Il'l'Cnt (right).

FIGURE 4.4: Current and pot.ential distributions due to a current dipole sourcc in
thc cortex; ho18s in t.he skull allow IllorC current to flow through the skull and reach
t.he sntlp, \\'hich increascs the effective conductivity of the skull.

hunw.ll head with a surgical or t.raumatic opening in the skull (Figure 4.3). 'INc

fOllncl t.hat generA-IJ)' Jow resolution (64 x 64 x 44 voxels) is llot enough for accurate

description of the current and potpntials dist.ribution through the head, as the

coarse cliscreti7,ation creates artificial shun t.s for currents (lllainly in thf' skull). \i\,lith

increased resolution (128 x 128 x 88 or 256 x 256 x 176 voxcls) our nlocleJ hi'Ls hrcn

shown to be capable of capturing the fine det.ails of cuncnt/potent.ial redistribution

110

caused by the structural perturbation. However, the computational requirements of

the forward calculation increase significantly.

Also, we used the forward solver to simulate the EEG data corresponding to

a dipole current source placed on the cortical surface. Figure 4.4 shows the current

and potentials distributions through out the volume conductor. As the figure shows,

holes in the skull allow more current to penetrate the skull and reach the scalp,

which increases the effective conductivity of the skull. This indicates how important

it is for a head model to capture the holes in the skull, contrary to spherical and

BElvI models, where holes are inherently ignored.

It is also worth noting, that the ADI algorithm can be easily adapted for

solving PDEs describing other tomographic modalities. In particular, we have used

it in other related studies-for example, in simulation of photon migration (diffusion)

in a human head in near-infrared spectroscopy of brain injuries and hematomas.

4.5.3 Parallelizing the Forward Solver

A typical head modeling scientific investigation-e.g., solving the source

localization inverse problem, solving the conductivity inverse problem and

performing sensitivity analysis-involves intensive execution of the forward problem.

Therefore, an efficient portable forward solver is necessary to enable such

investigations. Improving the performance of head-modeling investigations can be

achieved by improving the performance of the forward solver and by finding

111

concurrency in computing the forward solution. In this section, we describe the

forward solver parallelism in shared memory architecture and also we ported it onto

the cell broadband engine for potential access to cell blade clusters. The goal here is

to make the forward solver as efficient as possible and as portable to different

computing resources as possible. In Chapter VI, we provide the design of a generic

framework that can use any available computing resources to perform scientific

investigations.

The ADI algorithm consists of a time iteration loop in which each time step

is split into three substeps §4.4.1. In each substep a tridiagonal system of equations

is solved along either X,Y or z direction. For instance, in the first substep the spatial

operator acts only on the x direction. So all NyNz equations along the x-direction

are independent and can be solved concurrently. Similarly, in the second substep, all

NxNy equations along the v-direction and, in the third substep, all NxNy along the

z-directions are independent and can be solved concurrently. However, at the end of

each substep all equations must be solved before proceeding to the next substep.

Therefore, at the end of each substep all processors must be synchronized before

proceeding to the next substep.

Shared Memory Architecture

Para.llelization of the ADI algorithm is straightforward in shared memory

architecture, where the time loop runs sequentially and then in each substep all

112

Number of processors
11 2 3 4 5 6 7 8 9 4 6 8 10 12 14 16

Number of orocessors

4

6

16 - Ideal
.- 64x64x44

14 128x128x88
-« - 256x256x176

12

§- 10
"C

i 8
VI

IBM-8P

3

2

9r;========;-~-~-~~~
- ideal

8 ._~. 64x64x44
'"0''' 128x128x88

7 - «- 256x256x176

Q. 6
::I

~ 5
8-
VI 4

FIGURE 4.5: Speed-up of the forward solver for different problem sizes on
8-processor (left) and a 16-processor (right) IBM machines.

processors cooperate in solving the independent tridiagonal systems of equations

concurrently. The parallel algorithm pseudo code is shown below:

While (not termination condition)

Solve NyNz systems of equations

Barrier

Solve NxNz systems of equations

Barrier

Solve NxNy systems of equations

Barrier

The forward solver was parallelized using OpenMP. The performance

speedups for 64 x 64 x 44, 128 x 128 x 88 and 256 x 256 x 176 sized problems on the

IBM p655 (8 processors) and p690 (16 processors) machines are shown in

Figure 4.5. The importance of understanding the speedup performance on the

113

Porting the forward problem to the Cell BE

One time Iteration step

SPEs compule in x-, y- and z-diredions !OPE checks
convergence

FIGURE 4.6: PPE controls the time loop and SPEs do the actual comput.ations.

cl us1".(·j' compute servers is to allow flexible allocation of resources betweeu inverse

an(] forw(),rd proc<::'ssiug.

Cell Broadband Engine

The Cell Bro(),dband engine[104] is an example of a heterogeneous rnulticore

processor. It. includes Olle PowerPC processor (PPE) and eight synergistic

processors (SPEs). The PPE serves as a general plHpose lJlultithre(),dec1 processor

am] fls a scbeduler for t.he computat.ioll on t.he SPEs.

'JIle have ported the FDJVI ADI algorithm to the Cell Broadband Engine. We

used all IBI'vl SDK2.0 programming environrnent. Om implementat.ion vvas t.ested

and v<llic1atecl agaiust a 4-shelJ spherical model on Play St.ation 3. Om result.s show

a d(-~c(:Il(- performance compared to a. shared memory implementation Oil the p655

referellce cluster. Port.ing the ADI a.Jgmit.hm t.o t.he Cell BE is achieved as shown in

FigUf(' 4.6:

114

80
Execution time on the
Celll8E and P690

6

-9- resolutIon (ao 3
)

-.- resolution (150~1

4
r,lu ntl er of S Es

Speedup as the number
of SPEs increased

2

2

0.4
::!
'0
'U

'"a.
If)

6

160

Cell·;5SPU
9

I

l
,If,.,'

pi
sf

"_oi*' P6.80-6CPU

80 100 120 HO
Problem S,ZO (cubed)

IIJ

70

20

60
'",

~50
o

~40
~

Eho,.::

FIGURE 4.7: Performance of the forward SOIVCI on the Cell De. Comparison with
a ~hared memory irnpl<~mentation (left) and Speedup cmve (right.)

1. TIH' PPE processor execllt(~S U](' tirrw iteratiotl loop and checks the

('onvcrgClJce cOlJdition at the end of every tim!' step.

2. Eaeh time iteratiolJ ~tep is split into three sub~t·eps. In the first substep all

SPEs cooperate in solving t.he inclepeuclent N!)Nz x-directiotl tridiagonal

s.\'stems (EquatiolJ IV.21).

3. Similarly, in tlj(~ ~econd nud third substeps, a.ll SPEs solve the jV,;f\Tz ami

N,Ny tridiagonnl systems in y ami z directiolls.

4. At tbe end of the second and third substeps, all SPEs arc sj'ncluonized. The

syllduoniz;ation after the first subst',ep is not required, as the comj)\lt-,ationa.J

grid is decomposed (-)1011g the z;-clircction,

5. '1'1](' computation procccds on oue bar of the computat.ional grid (1,1. a time.

115

6. Overlapping computation with DJ\iIA transfer is achieved using three buffers.

\Vhile the computation proceeds from one buffer, a DMA transfer from the

already computed buffer is posted. At the same time a DMA transfer is posted

to bring data that are needed for the next computation to the third buffer.

The Cell forward solver implementation was tested on PS3 for several

problem sizes. As shown in Figure 4.7, the performance on PS3 is competing with

an openMP implementation on the IBM p655 using the same number of CPUs,

especially for larger problem sizes. However, due to the memory limitations of 250

ME on the PS3, we can process head of dimensions only up to (1203
).

4.6 Summary and Conclusions

We have built an efficient and robust 3D Poisson solver based on a finite

difference ADI algorithm for modeling electrical problems in heterogeneous

biological tissues. We focus in particular on modeling the conductivity properties of

the human head.

Developing an accurate head model has been and still is under active

research. Recent advances in the geometrical head models and the use of realistic

geometry have been very important. However, they are insufficient as long as the

conductivity model is not accurate. In the meantime, the most important factor in

head modeling is to obtain an accurate conductivity model of the skull. Published

116

data about skull conductivity values cover a wide range and are highly controversial,

as summarized in Table IV.I. These large variations in skull conductivity values

expose the complexity of the skull structure.

The reasons behind these variations can be related to two main factors.

First, these data are obtained for different subjects with different ages, and it is

expected that the conductivity of the skull will vary across subjects and will vary

with age within the same subject. This is expected because the skull gets dryer with

age and skull variations change with age and across subjects. The second factor is

related to the procedure of measuring or estimating skull conductivities.

The main two procedures used in estimating or measuring the conductivity

of the skull is in-vitro and in-vivo. In in-vitro measurements, the conductivity of

samples of dead skull soaked in saline or samples from live skulls are measured. The

measurement procedure and condition-e.g., temperature and humidity-are expected

to afff:d the results. Also, the conductivity of live skull is expected to be different

from the conductivity of dead hydrated skull because live skull contains natural

body fluid while dead hydrated skull contains saline. In the in-vivo conductivity

estimation using a scalp current injection, it was observed that the conductivity is

highly model-dependent. Different results are obtained when different head models

are used for the same data. Even more significant, in simulation it was shown that

scalp potential distributions can be obtained using 3-shell and 4-shell models with

different brain-to-skull conductivity ratios [140].

117

Therefore, it is not surprising to observe significant variations in published

data about skull conductivity values. To ascertain the accurate volume conductor of

a subject, one must determine the subject's own geometry and conductivity values.

Obviously, a noninvasive approach must be used. In the meantime, EIT impedance

imaging provides the best approach to use.

In all previous in-vivo studies, some kind of oversimplification of the problem

was used. In all the studies, the inverse impedance-mapping problem was

oversimplified to fit only one parameter. In most studies, spherical models are used

and in the rest a BEM is used. Spherical models inherently ignore the geometrical

variation of the skull. Both spherical and BEM models treat the skull as a single

uniform tissue and ignore all the important structural variations of the skull,

including holes.

In this dissertation, we provide the necessary computational tools and a

volume conductor model that supports capturing the main skull variations,

including skull holes and structural variations. We leveraged HPC to overcome the

compntational performance instead of oversimplifying the problem. The next

chapter formulates the inverse impedance mapping problem and the inclusion of

skull variations by parcellation.

118

CHAPTER V

ELECTRICAL IMPEDANCE TOMOGRAPHY

Electrical impedance tomography (EIT) [26] [98] is a widely used

non-invasive imaging method. In this method, the conductivity or the permitivity of

a body tissue is determined from electrical measurements on the surface. Data

acquisition is performed using array of conducting electrodes attached to the surface

of the subject's skin surrounding the body part under the study and a small

alternating current are applied to some of the electrodes. The resulting electrical

potential on the rest of the electrodes are measured. The process is repeated for

several different configurations (Figure 5.1). Then it is possible to estimate the

internal conductivity distribution of the body part from the boundary data by

solving the EIT inverse pTOblem.

EIT as an imaging method is based on the fact that the conductivity or

permitivity of biological tissue varies between tissue types and depends on other

factors such as temperature and physiological factors. The method is sensitive to

changes in tissue electrical conductivity. Therefore, it is possible to construct a map

119

FIGURE 5.1: EIT meFlsuremeuts, small ah(~rnating current injected into pair of
electrodes and the respouse is measured at t.he rest of the electrodes. Data fl.cquisit.iou
sri"· up (left) nnd t.he computationa.l model (right).

of t.he conductivity of the regiOl] of t.he body propped hy t.he cunent. The \lletllOd

relnJ.iVC'ly has poor rcsolll bon compared t.o other imaging met.hods silch IvIn..r or CT.

1'11(' resolu t.ion is highly cout.rolled hy the Il umber of electrodes. But. EIT is t.he ouJy

mctllUd thcl.t measures conductivity direct.ly nne! it is inexpensive and fast. EIT Iw.')

sevend a.pplication includes det.cction of skin and breast cancer [192], localizatioll of

epilep I.ic foci 113] [lOU] and moni tOl'iug Iungs function [66].

In head modeling the geometry of t.he head is typically constraints to a few

t.isSlIE' types imposed by the segnwnt.cd ?\'IRI data. The aim of estirnating the hmcl

tissuc conduct.ivities ill t.he head modeling is to (:]"cat.e eU} accurate forwm'd model for

the EEG source localization whilc in EIT t.he ilim is t.o reconst.ruct a conductivity

image to differentiat.e between t.issue t.ypes. Therefore, in hea.d modeling Ol]C nceds

to know the a.verage regional conclnctivities of a few tissue types, for example, sC<J.lp,

120

FIGURE 5.2: III bELT one needs to kllOW the average regional (:olldnchvities of a
few tissue types (Scalp, Skull, Brain).

skull, (:(~rebrospinal fluid (CSF) amI brain (Figure 5.2) cOlltrary to EIT where oue

ne0ds to reconstruct the back eud cOllcluc:tivity irrli:lge. This significitlltly reduces the

dimensionality of the panuneter space in the inVf~rse search as well as the number of

itemtions in convergillg to a global millilllum. We Cctl! this n)(:~thod bounded

Elc(:t'rir;allmpedancc Tonwgmphy (bElT) and W8 use this approach 1..0 estimate tlw

c:olldlH'hvitics of the lwctc! tissues using FDI'vI forward solver.

5.1 Conductivity Estimation

III EIT and bELT the cunent paths through the tissues are not well c!CfillCcI.

The ('uncut propagat(~s though diffusive ionic interaction in the body tissues.

Therefore, recovering the body conductivity distribution from tbe bOlllldary

poteuti,"ls is a non-linear inverse problem. Further, tbc bELT and EIT inverse

121

problem are ill-posed in the sense that small errors in the measured data can cause

large errors in the estimated conductivities and the solution becomes unstable.

EIT is based on the principle of the back end image reconstruction. The goal

is to reconstruct the internal conductivity or permitivity distribution efficiently and

as accurately as possible in two or three-dimensional models. The EIT image

reconstruction problem is mathematically formulated as an optimization problem

where a suitable objective function F(a) is minimized. The objective function is

typically composed from two parts. One part corresponds to the goodness of the fit

between the computed potentials using the forward model and the measured data.

The second part is to overcome the ill-posedness of the problem which includes

additional a pTioTi information to regularize and stabilize the solution [113[[120].

Typically, the standard Tikhonov regularization methods as described in [25] are

used. Then a deterministic approach based on the Least Square Method is usually

used to minimize an objective function of the form F(a),

(V.1)

where a is the unknown internal conductivity vector, Umeas'Ured(a) is the vector of

measured potentials on the boundary of the object, Ucomp'uted(a) is the vector of

computed potentials with respect to a using the forward model (normally FEM), ex

122

is a regularization parameter and L is a regularization matrix connecting adjacent

elements of different conductivities.

To solve Equation V.l, an iterative minimization method such as

Newton-Raphson method is commonly used for its fast convergence and good

reconstruction quality. However, the method is a local minimization method and it

is likely to be trapped in local minimum and normally additional regularizations are

used to restore stability. The stability of the method is highly dependent on the

choice of the parameter a and the initial values of the conductivities.

The general formulation of the inverse problem in bElT is the same as in EIT

where the problem is formulated as a minimization problem of a suitable objective

function that measures the goodness of the fit between the computed potentials and

the measured potentials. However, since the number of parameters in bElT inverse

problem is few, the procedure for bElT conductivity extraction is different. In bEIT

a stochastic global minimization algorithm such as Simulated Annealing can be used

to minimize the objective function. To overcome the ill-posdness of the problem,

additional a priory information can be used in a form of constraints. The

mathematical formulation of the bElT problem can be described as follows. From

the assumed distribution of the head tissue conductivities O"ij, and the given

injection current configuration, 5, it is possible to predict the set of potentials

measurement values, ¢, given forward model F, as the nonlinear functional,

¢JP = F(a(x, y, z)).

123

(V.2)

Then an appropriate objective function is defined, which measures the error

between the measured, V and predicted 1Y', and a search for the global minimum is

undertaken using advanced nonlinear optimization algorithm under imposed

constraints. In the following sections we discuss the candidate objective functions

that can be tested and the non-linear optimization algorithms we used in our

research.

5.2 Objective Functions

The objective function quantifies the difference between the numerically

computed potential values and the measured data. There are several metrics that

can be used to measure the difference between two sets of data. These metrics can

be used as objective functions. In this section we describe these metrics as reference

in the rest of the dissertation. All our simulated analysis is based on the L2 norm

metric. However 1 it is beneficial to study other metrics when working with real data.

Root Mean Square Error (L2 norm) L2 norm is the most popular metric that

is used to quantify the difference between two sets of data. This measure is

computed by taking the average of the square differences between each computed

value and its corresponding measured value. The root mean-square error is simply

124

the square root of the mean-squared error and it takes the mathematical form,

(

N) 1/2
E = ~ ~ (¢f - 1~)2 , (V.3)

where N is the number of measuring sensors (electrodes), ¢i and Vi are computed

and measured potentials, respectively, at sensor i.

Relative Root Mean Square Error (rRMS) rRMS is based on the relative

difference between the computed and the measured data instead of the absolute

values. The rRMS fitness function is based on the standard relative mean square

error,

relE = (VA)

Magnitude Factor (MAG) and the Relative Difference Measure (RDM)

The Magnitude Factor MAG and the Relative Difference Measure RDJI;I metrics are

defined in [126] and commonly used to compare between two sets of data,

MAG
~::1(Vi)2
~~1(¢i)2 '

RDM

125

where ¢i and Vi denote two sets of potentials at the electrodes. The AIAG measures

the gain between two sets of data. The RD1\!I measures the pattern variation

(shape) independent of the magnitude. Two equal data sets gives MAG = 1 and

RDM=O.

5.3 Global Optimization Algorithms

Global optimization is the problem to find the globally best optimal solution

of a model in the presence of multiple local optima. The optimization problem can

be stated as follows: Find the values of the best optimal parameters that optimizes

(minimizes or maximizes) the objective function and subject to some constraints.

The maximization of a problem can be treated as the minimization of its negative.

The optimization problem takes the following form,

Optimize(F(x)) subject to l < x < u,

where l, u are the lower and upper bounds and F is the objective function to be

optimized. Finding a local minimum to a problem is considered to be

straightforward using some local optimizer. However, finding the global minimum is

a challenge. A significant amount of research has been done in the past few decades

and several algorithms are developed. Some of the popular algorithms are Genetic

Evolutionary Algorithms, Tabu Search and Simulated Annealing.

126

In the study of this thesis, early in our work we chose Simplex Search

algorithm using multi-start technique for its rapid prototyping to test the feasibility

of our approach. Simplex search performed well in extracting up to four tissue

conductivities §5.4.2, However, it failed to extract more than six tissue

conductivities (required to improve the accuracy of the forward solver) in a

reasonable amount of time. Therefore, we opted Simulated Annealing algorithm for

its proven robustness in several applications. Choosing the best optimization

algorithm for a particular problem is problem dependent, and the best way to

choose an algorithm is to try them all[213]. This is one motivation behind

developing ODESSI framework, discussed in Chapter VI, to allow a scientist to

experiment with different algorithms and objective functions in ease. In sections

§5.4 and §5.5 we discuss the algorithms, the computational environments and the

results based on the simplex search and simulated annealing optimization.

5.4 Conductivity Modeling - Simplex Search

To solve the nonlinear optimization problem in Eq. V.1, early in our work we

employed the downhill simplex method of NeIder and Mead as implemented by

Press et al[156]. To avoid the local minima, we used a statistical approach. The

inverse procedure was repeated for hundreds sets of conductivity guesses from

appropriate fisiological intervals, and then the solutions closest to the global

minimum solution were selected using the simple critirea E < Ethreshold. We

127

conductivity
guesses

conductivity
values

measured
scalp poten~ials

conductivity
solmion alld error

solution
potentails
and error

FIGURE 5.3: Schematic view of the parallel computational system based on simplex
search optimization.

parallelized the simplex search using a multi-start technique as described in section

§5.4 and good speedup was achieved.

5.4.1 Computational Design

The solution approach maps to a hierarchical computational design that can

benefit both from parallel parametric search and parallel forward calculations.

Figure 5.3 gives a schematic view of the approach we applied in a distributed

environment of parallel computing clusters. The master controller is responsible for

launching new inverse problems with guesses of conductivity values. Upon

128

completion, the inverse solvers return conductivity solutions and error results to the

master. Each inverse solver runs on a compute server. Given N compute servers, N

inverse solves can be simultaneously active, each generating forward problems that

can run in parallel, depending on the number of processors available. The system

design allows the number of compute servers and the number of processors per

server to be decided prior to execution, thus trading off inverse search parallelism

versus forward problem speedup.

At our group (at the time of conducting these studies), we had access to a

computational systems environment consisting of four multiprocessor clusters.

Clusters Glusti, Glust2, and GlustB are 8-processor IBM p655 machines and cluster

Glust4 is a 16-processor IBM p690 machine. All machines are shared-memory

multiprocessors running the Linux operating system. The clusters are connected by

a high-speed gigabit Ethernet network. In our experiments below, we treated each

machine as a separate compute server running one inverse solver. The forward

problem was parallelized using OpenMP and run on eight (Glusti-B) and sixteen

(Glust4) processors. The master controller can run on any networked machine in

the environment. In our study, the master controller ran on Clust2.

129

CSF: 1.7903
CSF

Scalp

.. --
00 0.5 1 1.5 2

Retrieved Conductivity, Ohm-1m-1

80,-------~---....,..----,---------,

Skull

70 Brain

20

10

60

~ 50
c::
~ 40
C"
f
u.. 30

Skull: 0.01800o.•.•.•. '•...............-.-...•.•.....•...................
o 100 200 300 400

Number of Iteration in Simplex Search

2rr----.,..---....,..----~--_

E
g 15H·I······I·.... :············- .,...
~
:2:g 1·
"0
c::
ou
~ 0.5 Scalp: 0.4400
VI

~ I"'''-~--_· - -.,...,..__ .. _!;l!l!i[)'-q,~5_0.!>_. _

FIGURE 5.4: Results of the inverse search. Dynamics of the individual search
(left) and statistics of the retrieved conductivities for about 200 initial random
guesses(right). The actual number of the solutions shown is 71, their error function
is less than 1 J.LV.

5.4.2 Results

First we evaluated the feasibility and performance of the inverse solver using

simulated data. Then we performed a numerical study to extract three tissues with

realistic data.

Simulated Data

In the inverse search the initial simplex was constructed randomly based

upon the mean conductivity values (Table IV.2) and their standard deviations as it

is reported in the related biomedical literature. In the present test study we did not

use the real experimental human data, instead, we simulated the experimental set of

the reference potentials V in Equation V.1 using our forward solver with the mean

conductivity values from Table IV.2, which had been assumed to be true, but not

l:
o
t;
l:
::;,
U....
o......
W

80

40

Clust4-16P

Clust3-8P

2 4 6 8 10 12 14

Inverse solution arrival time. seconds x 10
4

130

FIGURE 5.5: Solution flow at the master controller. Inverse solution arrival to the
controller are marked.

known a priory for a user running the inverse procedure. The search was stopped

when one or two criteria were met. The first is when the decrease in the error

function is fractionally smaller than some tolerance parameter. The second is when

the number of steps of the simplex exceeds some maximum value. During the

search, the conductivities were constrained to stay within their pre-defined plausible

ranges. If the simplex algorithm attempted to step outside of the acceptable range,

then the offending conductivity was reset to the nearest allowed value. Our

procedure had the desired effect of guiding the search based on prior knowledge.

Some number of solution sets included conductivities that were separated from the

bulk of the distribution. These were rejected as outliers, based on the significant

larger square error norm in Equation V.l (e.g., the solution sets were filtered

131

according to the criteria E < Ethreshold). We have found empirically that setting

Ethreshold = Ip,V in most of our runs produced a fair percentage of solutions close to

the global minimum.

The distribution of the retrieved conductivities is shown in Figure 5.4 (right).

The fact that the retrieved conductivities for the intracranial tissues (CSF and

brain) have wider distributions is consistent with the intuitive physical explanation

that the skull, as having the lowest conductivity, shields the currents injected by the

scalp electrodes from the deep penetration into the head. Thus, the deep

intracranial tissues are interrogated less in comparison with the skull aDd scalp. The

dynamics of an individual inverse search convergence for a random initial guesses is

shown in Figure 5.4 (left). After filtering data according to the error norm

magnitude, we fitted the individual conductivities to the normal distribution. The

mean retrieved conductivities o-(n-1m-1) and their standard deviations

fw(n-1m-1) are: Brain (0.24/ .01), CSF (1.79 / .03), Skull (0.0180/ .0002), and

Scalp (0.4400 / .0002) It is interesting to compare these values to the "true"

conductivities from Table IV.2. We can see excellent estimates for the scalp and

skull conductivities and a little bit less accurate estimates for the intracranial

tissues.

Finally, in Figure 5.5 we present the dynamics of the performance of the

inverse search in our distributed multi-cluster computational environment. Four

curves with different markers show the dynamics of the inverse solution flux at the

132

__--... 50

47
./...."

................
"

102

103 ..~-

109 46

FIGURE 5.6: The electrodes map 011 the scalp. Electrmles ma.rked with reel circles
are the current sources. Electrodes llIc1rked with green c\.re execlllClpd in the inverse
COlli putation 8S ou tliers.

master controller. One can sep thaJ. Clust4 on average returns t.he inverse solution

twice as fast as the other clusters, as would he expected. NotE\ however, the time to

inverse solution also depends on both forward speed atld convngence rate. The

markers seateel at the "zero" error function line represent solutions that contribute

to the tinal solut.ion distribution, vvith the rest. of the solut.ions reject.eel as outliers.

In 8vcmgc, the throughput was 12 minutes per one inverse solut.ion for

128 x 128 x 88 I\HU resolution.

Prirnilinary Results with Real Data

Having the inverse solver testeel by simulating tlle experimentc,,] set. of

potentials using the forward solver with mean condllCtivitv values obtained hom the

literature, in this section we present the preliminary results using experimental data

obtaill('d by a set of electrodes 011 a human subject. The data. was recorded at

133

46-109
60,-----------, 15,-----------,

Skull
u ~ 0.046
s ~ 0.028

00 0.05 0.1 0.15
Conductivity (0- 1 m- 1

)

Scalp

u ~ 0.187

s ~ 0.094

20

40

oo 0.5 1 1 1
Conductivity (Q- m-)

30,-----------,
Brain

20 u ~ 0.722
s ~ 0.085

10

00 0.5 1
Conductivity (.0- 1 m- 1

)

FIGURE 5.7: ThE-' distriblltioll of SC(l.lp, Skull and brain conductivities as obtained
fr011l the' inverse search.

Eh-~ctri(,R,J Geodesics Inc (EGI)[57] using 129-chR,nnels net as shown in Figure 5.G

and EGI Photognwllnetry S.\'steIll [57]. Two challIleb (109 46) used for injecting

1JLA current. One channel (129) used c\.S reference and the rest 126 channels

silllulti:UleOllsly R,cquire the response to the injected cnrrent. TIle geometry of the

tiss1J(~S is obtained from a CT SCR,n segmented into three tissues (Scalp, Skull and

Drain). In this study WE-' used low-resolu!".ion geometry (2mm). Figure 5.7 shows the

distrilmtion of the retrieved conductivities. As we see in the plot. tIle skull

conductivity is less accurate. In Figurc' 5.8 we shm\! a comparison of the measnred

potentials at. the eh~ctrodes witll the pot-cutials obtained ut>ing t.he forward solver

with t he retrieved conductivit.ies. In addition 1 WE-' have plotteel the potentials for t.IH~

mean conduct.ivities found in the related biomedical li1eraturc. As we see in the plot

the pattem of the obtained potentials ma.tches the data. On the other hand, the

vn.lues of the' potentials at. some elcc1Todes disagree with data. Further, our results

134

sources 46-109

180 0 Real. Results 128
0 Sim 128

~ 100

ro 0
'"§

8 •
Q)

.
0n.. 0
Q)

180
0

:5
0
(/)

.D«
100

0

••. .
0

10 20 50

FIGURE 5.8: Comparisons of the measured pot.entials, t.ile calcu1<l,ted pot.ent.ials
using t.he average conductivities from lit.erat.ure and the calculated pot.cntiab using
the ret.rieved conductivities.

show, the slmll/brain conductivit.ies rat.ion is about 15 R.S hel.'; been observed in ot.her

study.

Since it. is impossible t.o obt.8,in conductivity values from experimenta.l

measurmncnt.s all a hUl1l8,n subject, am criteria t.o v8,lidat.e the results is by

comparing t.he)"(:sults obtained using difterent current. illject.ion pairs. vVe repeated

t.he SRlllC analysis for different. cnrrent. inject.ion pairs. The results COlTcspouding t.o

differeut pairs do not. match each other well. The mismat.ch is expected due to

several sources of uncertaint.ies comiug hom 1) enors in t.he measmw] cla.t.a. 2)

simplificat.ion of modeling t.he head as R. volume condllctor (ignoring skull

inhomogeneit.y and ot.her skull va.riar.ions, ignoring anisotropy, using lo,,\' resolution

geomet.ry, and so ou) and 3) t.he ill-posed ness of the problem itself.

135

5.4.3 Discussion

The aim of conducting the simulation study in this section is to prove the

feasibility of our approach. It was believed that this approach is not possible

because most of the injected current will be shunted in the scalp. Our simulation

results indicate the validity of bElT method to estimate the subject's own tissue

conductivities. However, the accuracy of the results is highly influenced by several

factors related to the accuracy of the measured data, the accuracy of the forward

solver, and how to overcome the ill-posed nature of the inverse problem. Improving

the accuracy of the results can be achieved by improving the accuracy related to

these factors as summarized below:

• Improving the accuracy of the measured data by improving the data

acquisition system, increasing the amount of injected current, and applying

sophisticated signal processing tools to filter the data from the noise.

• Increasing the spatial sampling accuracy by increasing the number of sampling

electrodes (e.g., from 128 electrodes to 256 electrodes).

• Increasing the number of current injection pairs, (e.g., from 4 current injection

pairs to 60 or more current injection pairs) and then to apply statistical

approach to extract the most likely set of conductivities that provide best

match to all measured data.

136

• Improving the forward model, by including anisotropy and inhomogeneity in

the model of the anisotropic and inhomogeneous tissues (In particular for the

skull tissue as discussed in Section).

• Improving the optimization algorithm for the inverse problem that better find

the global minimum and can extract larger number of tissues to be included in

forward model which allows modeling more features.

• Incorporating a priori information in the form of constraints to guide the

search toward the feasible regions in the inverse problem.

One goal of this dissertation is to provide the computational tools and

methods necessary to improve the computational aspects of this problem. However,

if we increased the numbers of tissues to more accurately describe the volume

conductor such as including inhomogeneity or anisotropy, the convergence rate and

probability of the simplex algorithm diminishes quickly. Six tissues are enough to

reduce the probability of convergence to less than 10% and of finding optimal

solutions to much less. Therefore, a new more robust algorithm that can extract

more number of tissues is needed. In section §5.5 we describe a HPC computational

environment based on parallel simulated annealing algorithm which overcome the

limitations imposed by simplex search and allows us to find the global minimum

more accurately for larger number of tissues. In section §5.6 we provide a method to

137

include inhomogeneity into the skull model while keeping the number of tissues

tractable.

5.5 Conductivity Modeling - Simulated

Annealing

Two factors argue for a new approach. First, experimental studies reported

that the skull tissue is anisotropic and highly heterogeneous and cant be modeled as

a uniform tissue 4.3.3. Second, if we increased the number of segmented tissues to

more accurately model skull inhomogeneities, the convergence rate and probability

of the simplex algorithm diminishes quickly 5.4.3 Therefore, we replaced the simplex

method with a simulated annealing algorithm that can discover conductivities up to

thirteen segmented tissues. We have parallelized the conductivity search problem

and evaluated its convergence and scalability attributes on the SDSC DataStar

machine. We have also prototyped an alternative parallelization strategy and tested

its scalability potential. In this section we describe the computational environment

design we used. In §5.5.2 we describe the two-level parallelism design and in §5.5.2,

we describe the three-level parallelism.

138

5.5.1 Simulated Annealing Algorithm

Simulated annealing (SA) is one of the most powerful optimization

techniques. It is based on a rvronte Carlo simulation that simulates the physical

process of annealing to obtain perfect crystals [128]. The original Metropolis [128]

simulation was proposed to find the equilibrium configuration of a collection of

atoms at a given temperature that minimizes the system energy. Many years later

in 82 Kirkpatrick et al [114] was the first to propose simulated annealing as an

optimization algorithm to solve combinatorial problems. Simulated annealing can

be considered as a modification to the hill climbing algorithm by adding a stochastic

decision and a cooling schedule. In hill climbing algorithm, a trial solution is

generated from the current solution by mutation and only if it performs better, it

replaces the current solution. Similar to hill climbing, in simulated annealing the

trial solution is always accepted if it performs better. However, it still can be

accepted with some probability if it performs worse than the current solution. This

stochastic decision allows the algorithm to escape from the local optima. The

acceptance probability is a function of the system temperature and it decreases over

time,

P = exp(- fj,FIT),

where fj,F is the increase in the cost function and T is the temperature in the

simulation (a parameter that controls the acceptance probability of the worse

139

solution). Initially when T is high the algorithm accepts inferior moves with higher

probability. However, as the system cools down the system accept inferior moves

with smaller probability. The simulated annealing algorithm consists of three

Algorithm 1: Sequentional simulated annealing algorithm.
input : Initial Temprature To and initial Point X o
output: Xoptimal

T = To, X = X o, F = Cost(Xo)
while T > 0 do

for i f- 0 to Nt do
for j f- 0 to N s do

for k f- 0 to N do
X k f- purturb(X,k)
Fk f- Cost(Xk)

D.F f- Fk - F
if D.F < 0 then accept X k and update Xoptimal

else accept X k with propability ex exp(D.F/T)

adjust-maximum-step-Iength
check-termination-condition
reduce temparature T = rT

nested loops 1

TernpemtuTe cooling: The outer loop controls the temperature cooling; the

temperature is reduced by a factor of r after executing Nt search-radius loops.

Many other cooling schedules are proposed in the literature and finding the best

cooling schedule is considered one of the disadvantages of the SA. The advantages

and disadvantages of SA algorithm are discussed in [106].

140

Neighbor-hood Sear-ch rad'ius: In combinatorial problems the neighborhood trial

solutions of a solution is generated by a small mutation to the current solution.

However, in a continuous problem the distance in the search space defines the

neighborhood of the current solution. Therefore, in a continuous problem the

neighborhood solutions of a solution are those solutions that can be reached within

a certain radius in the search space. The size of the search radius determines the

characteristics of the search. Large radius causes the search to be explorative and

less likely to converge to an accurate solution. On the other hand, small radius

causes the search to be exploitive and less likely to explore the search space well.

Therefore, normally an adaptive mechanism is used to adjust the search radius such

that early in the search, it is large (explorative) and it decreases as the search gets

closer to the solution (exploitive). Several approachs are proposed to adjust the

search radius adaptively. These include using Gaussian distribution [106] or Cauchy

distribution [196]. In these approaches the standard deviation of the distribution is

the temperature parameter. Therefore the search radius is large when temperature

is high and the radius decrease as the temperature decreases. Another approach,

which we used in our implementation, is proposed by COl'ana's [39]. In this

approach the search radius is adjusted based on the rate of the accepted to the

rejected moves. The advantage of Corana's approaches is that the objective function

is considered in the adjustment. Based on this algorithm, the trial solutions Xo is

generated from the current solution x as follows,

141

x; = Xi + randO * Yi,

where randO is a random number between 0 and 1, and Yi is the search radius in

direction i. Yi is adjusted at the end of the neighborhood search loop as follows,

Vi' = Yi * g(p),

g(p) =

1 + cp- O.6
0.4

(1 + c°.4-p)-l
0.4

1

if p > 0.6

if p < 0.4 ,

otherwise

wherc c is an adjustment parameter (suggested to be 2), p is the ratio of the

accepted moves to the rejected moves. When the number of accepted moves

increases the search radius will increase and when the number of rejected moves

increase the search radius will decrease. The above setting is to keep the ratio of the

number of accepted moves to the number of rejected moves between .4 and .6.

Gontml po'int: The inner loop considers new moves in all directions by perturbing

the control point in all direction. The perturbation is constraint between 0 and the

maximum step length in each direction.

rn'ansitions that lower the cost function are always accepted, while transitions

that raise the cost function are accepted with probability based on the temperature

and the size (cost) of the move (Metropolis criteria). The acceptance of the uphill

142

moves allows the system to overcome local minima and make the algorithm

insensitive to the initial starting values. The simulated annealing converges when

the minimum become stable that does not change for more than epsilon after

several temperature reduction loop iterations. The complete algorithm is given in

Algorithm 1. The choice of suitable initial temperature, search radius and the

cooling schedule are highly problem dependent and normally are chosen empirically

and they have a significant impact on the performance of the algorithm. A short

summery of some of the effort to guide the parameter selection is discussed in [172].

5.5.2 Parallelizing Simulated Annealing

One of the main disadvantages of simulated annealing algorithm is its

performance in finding the global optima like other global optimization algorithms.

Therefore, many approaches are proposed to parallelize it. In this section we review

some of this effort, which is mainly focused on continuous problems. As discussed

before the sequential simulated annealing starts the search at high temperature and

reduces it slowly until the system is frozen. At each temperature, a local search in

the neighborhood of the current solution is performed until equilibrium. The range

of the neighborhood is adjusted adaptively. A simple approach to parallelize SA is

to decompose the domain into subspaces. Then a sequential SA instance is assigned

to each subspace. However, this approach is not suitable for continuous problem as

each subspace still has infinite possible solution. Even in combinatorial problems, it

143

Algorithm 2: Parallel simulated annealing algorithm on the intermediate
level

input : Initial Temprature To and initial Point Xo
output: XoPtima,Z

T = To, X = X o, F = Cost(Xo)
N task = Ns/Number of tasks
while TtO do

for i +----- 0 to Nt do
X best = X, F bset = F

for j +----- 0 to Ntask do
for k +----- 0 to N do

X k +----- purturb(X, k)
Fk +----- Cost(Xk)

!:iF +----- F k - F

if !:iF < 0 then accept X k and update X best

else accept X k with propability ex exp(!:iF/T)

NIPI communication
adjust-maximum-step-length

NIaster task gets each task best point
Update Xoptimal

check-termination-condition
1\1aster task Brodcast XoPtimal

X = Xoptimal, F = Foptimal

reduce temparature T = rT

is not always possible to decompose the domain, consider for instance a scheduling

problem. There are two general approaches to parallelize SA, a single-move

acceleration approach and a parallel moves approach. In single-move acceleration

approach a trial solution is generated and the objective function at this solution is

evaluated in parallel. This approach can be efficient if the objective function is

costly and can be parallelized efficiently. However, the degree of parallelism will be

limited to the objective function parallelism. In the parallel moves approach or

144

multiple-trial approach, several trial points are generated and evaluated in parallel.

Further, we discuss our new algorithm to parallelize the inner loop.

In our research work we combined these approaches in a hieratical

computational environment and in Chapter VI we show how ODESSI framework

supports these parallelism for arbitrary simulation without any effort on the

scientist part. In the following we discuss two parallel moves approaches. The first

one is based on parallelizing the temperature loop while the second is based on

parallelizing the search radius loop. Also, we discuss our new algorithm to

parallelize the inner loop.

Temperature Parallel Simulated Annealing Temperature parallel simulated

Annealing (TPSA) proposed by Kimura and Taki [111] to solve combentorial

problems. The motivation behind this approach is to overcome the low performance

that can result due to bad temperature scheduling. In this approach the algorithm

can run in parallel without a need for temperature scheduler. Miki et al [129]

extended TPSA algorithm to continues SA algorithm and they uses adaptive

neighborhood search radius. In TPSA, processors are assigned different

temperatures Tp and each processor executes a sequential SA using its assigned

temperature. Then two processor having adjacent temperatures exchange their

solutions with certain probability at intervals of the annealing time as follows:

145

1. If the solution at higher temperature is better than the one at lower

temperature, the solutions are exchanged.

2. Otherwise, the solutions are exchanged with a probability that depends on the

difference in the temperature and the difference in the cost function.

P(T, E, T ' , E') = { 1

exp-~J~E

if ~TAE < 0

otherwise

The idea is to perform the search at lower temperature for better solutions to guide

the search around good solutions and to perform the search for inferior solutions at

higher temperature (more explorative).

Concurrent neighborhood search In this approach discussed in [172], the

processors cooperate in the search of the neighborhood of the current solution.

Starting with the same initial solution, all processors start a search in the

neighborhood of the current solution independently. When a worker accepts a new

solution it reports to the master. The master waits the other workers to complete

their current trials and then updates all workers with the best-accepted solution

obtained among all workers. This approach is classified as a single markov chain SA

because all workers are working on the same chain (a single move is selected from a

number of moves reported by the workers). In [109] they used this approach and we

used their approach in our implementation as discussed bellow.

146

xyz

accept(lY "~eject(O)

x{JZ

/\
xyz

/\

xyz

/\
xyz xyz

/\ /\
FIGURE 5.9: SA-inner loop parallelism, path selection.

Inner loop parallelism To create greater potential parallelism, it is possible to

enumerate all possible perturbation paths around the control point, increasing the

number of candidate points from N to 2N , and breaking the serialization introduced

in the inner loop when the next perturbation point depends on the acceptance or

rejection of the prior point. This llew algorithm effectively multiplies the degree of

parallelism by 2N / N with a potential performance gain of N. In this algorithm, the

simulated annealing criteria in selecting the path are preserved (we just computed

all possible paths concurrently). Therefore, this algorithm guarantees to produce at

least as optimal results as the former, but it requires significantly more resources to

achieve greater performance.

If N is the number of variables, then there are 2N distinct possible paths,

and the possible path ranks are 1 - (2N - 1). Each path can be described by the

147

binary representation of its rank. For example, for three tissues we have 8 possible

paths which can be specified by their binary representation (001,010, ... ,111). The

position of a bit in a path corresponds to the direction at which the control point is

perturbed and its value corresponds to whether that move is accepted or not. For

example, assuming the control point is P = (x, y, z) the path (101) corresponds to

the following sequence a) The first bit from the left (1) corresponds to PI is

generated by perturbing P in the x-direction and the move is accepted, so the

control point P becomes H b) the second bit from the left means P2 is generated by

perturbing P = PI in the y-direction and the move is rejected, so the control point

remains P = H c) the third bit from the left (1) corresponds to P3 is generated by

perturbing P = PI in z-direction and the move is accepted, so the control point P

becomes P3 .

Then all possible candidate points (2 N) are generated and the objective

function values at these points are evaluated in parallel. To compare between the

solution obtained by this algorithm with the original algorithm, we used N random

number [7'1, ... ,7'N] such that 7'1 is used to perturb in 0 direction and so on. Next

we need to select the path that preserves the simulated annealing Metropolis

criteria, the reject/accept depends on the difference of the cost function between the

control point P and the candidate new point, also it depends on the Temperature.

We implemented this by building a tree as shown in the Figure 5.9 for three tissues

example. The master task constructs the tree with all possible paths (the cost

148

Initialize
X=XO, T=TO

(... ,\})

r... lH
Perturb Forward Compute cost,rconductivity H solution accept ~r reject

IJ

~EJ¢ Check HUpdate
Optimal convergence

FIGURE 5.10: Two level parallelisms: A parallel simulated annealing algorithm on
the level of the intermediate loop, each task runs the forward calculations in parallel.

function is computed in advance at all these nodes). Then the simulated annealing

criteria is applied to the left child node if not accepted we go right. The selection

algorithm is shown in Figure 3.

Algorithm 3: SA inner loop path selection.
input : Control Point P
output: New Control Point P, P best

for k f- 0 to N do
PtTY = P -t left
if accept(PtTy) then

l P = P -t left
update Hest

else
L P = P -t right

5.5.3 Computational Design

As discussed before §5.5, several tissues must be modeled to describe an

accurate volume conductor (e.g., inclduing inhomogeneity and anistropy). However,

increasing the number of tissues, increases the computational complexity. Our

149

interest is to determine the tradeoffs between number of tissues, simulation

time-to-solution, and conductivity model accuracy. For this purpose, we computed

the scalp potentials for thirteen preset tissue conductivities and tested how well the

model performed as the number of tissues varies. To address the increased

computational demands, we parallelized the conductivity search. In this section we

describe the computational design we adapted based on the two- and three-levels

parallel simulated annealing algorithms described in sections §5.5.2 and §5.5.2.

Since the forward solution is the highest cost component of the conductivity

and source modeling, we parallelized the forward solver using OpenMP §4.5.3. Here,

we also parallelized the simulated annealing algorithm along the search radius,

based on the MPI-based methods described in [109] . Figure 5.10 shows a high-level

view of the parallel simulated annealing approach, with the intermediate loop

distributed across several nodes (1 task per node), each running parallelized forward

calculations. All tasks start with the same initial values, but with different random

generator seeds. Each task perform a random search around the control point by

perturbing the control point in all direction. The perturbation is constrained to be

within the maximum step length. At the end of the search radius loop, the master

task gathers every task best solution and updates the optimal solution and all nodes

communicate to adjust the maximum step length. At the end of the temperature

reduction loop all tasks updates the control point with the optimal solution.

150

Initialize
X=XO, T=TO

(... ,(}
(... 3)

rooo ~

¢ Perturb Forward Compute cost,
conductivity f-<-l solution accept or reject

1-/
f-"

~8 ¢ Check HUpdate
Optimal convergence

FIGURE 5.11: Three level parallelisms: In addition to the parallel forward
calculation, each task computes the inner loop in parallel.

Most of the performance numbers reported in the next section are for the

parallel-simulated annealing algorithm in Figure 5.10. Choosing twelve tasks and

16-way forward solves allows the amount of parallel execution to reach 192

processors. There does not appear to be much benefit in increasing the number of

tasks beyond twelve and the OpenMP performance flattens beyond sixteen

processors. To create greater potential parallelism, we decided to enumerate all

possible perturbation paths around the control point as described in §5.5.2. This

new algorithm (shown graphically in Figure 5.11) effectively multiplies the degree of

parallelism by 2N / N with a potential performance gain of N. The numbers in

Figure 5.11 for each case indicate the different types of parallelism. Interestingly,

the nature by which this algorithm was created guarantees to produce at least as

optimal results as the former, but it requires significantly more resources to achieve

greater performance benefits.

151

5.5.4 Results

We conducted a series of experiments to test both the convergence properties

and the performance of the conductivity modeling based on parallel simulated

annealing. All experiments were performed on the San Diego Supercomputing

Centere DataStar system [185], a cluster of shared-memory nodes consisting of

16-processor IBM p690 and 8-processor IBM p655 machines. All results presented

below were performed using 8-way OpenMP tasks running forward calculations each

on a separate p655 node.

As mentioned earlier, we preset thirteen tissue conductivity values (eleven

skull parts, scalp, brain) and ran experiments to test the conductivity model

accuracy on fewer tissue numbers. We started with eleven tissue to verify

convergence to acceptable values. The simulated annealing search starts with initial

random conductivities selected from the biomedical ranges and stops when one of

three criteria is met as described in the computational design. Our results verify the

ability of simulated annealing to extract eleven tissues with good accuracy and

precision. Figure 5.12(left) shows the dynamics of the ll-tissue inverse search

convergence, giving the temperature cooling, the cost function, and one tissue's

conductivity. This calculation was done on a single 8-processor p655 node in our lab

and took approximately 31 hours to complete.

Having verified convergence for a large number of tissues, we decided to limit

the number of tissues to five (three skull parts, scalp, brain) to test the performance

152

12 12
.0

10 10

~ 8 8
::>
0 a.
! ::>

§ 6 6 'g
Q)

'5 a.
l.l

(f)

'"III 4 'I

2 2

0 02000 0 2 4 6 8 10 12
Number of nodes (p655, 8-way)

Temperature

Cost Function

Conductivity

1000 1500

Iteration Step

FIGURE 5.12: Solution fiow at the master controller. Inverse solution arrival to
tllC' controller are marke(l.

pl'Operties of the parallel simulated Clllllealing il,lgorithm. This "vill allow liS also to

contrast performance with the earli<:r simp\<:x outcome. The executioll time am1

pcd'orlllallce speedup for a 2mm rrsolll tiOll pl'Oblenl from one to twelve tasks (each

task fIlll Oll a i:S-proccssor p655 uode) is shmvu ill Figure 5.12(right). The speed lip is

almost line~lr with the number of llodes. Three experiments were rim on (',cch datil,

poiut to show the performance' variation due to the random muuber gcucrat.or

sequence.

Evell though we have excelleut. speedup, the degree of parallelism is limited.

The sncond version significantly iucreases parallelism by generrltiug N nlmlOIll

muul)('rs, oue for perturbing th" coutrol point in each direction, and gE'llCratecl all

possible points by enumcrating tllC' perturbatiou ill a.ll directions. Theu the cost

fuuction at these points is evaluated ill parallel. After computing all possible paths,

the simulated annealing crit.cria is applied. In theory this parallelism call speedllp

153

the computation by a factor of N. In addition, we can get further speedup by

selecting the best point from all points that was computed and not only from those

points on a simulated annealing path. This speedup is due to speeding the

convergence. For verification purposes, we compared this new algorithm with the

former for a problem where the conductivities of three tissues are found. We used a

single task and two processors for the forward calculation. Thus, in the former

algorithm, the parallelism degree is two. In the new algorithm, the parallelism is of

degree sixteen (23 perturbed points by two processors in the forward calculation),

allowing two 8-processor p655 nodes to be used, with a speedup potential of three

(the number of tissues). Our experimental results show an overall performance

improvement of 1.98. The best point selection gives a convergence speedup of 8%,

while the inner loop parallelism produces a speedup of 1.77. We believe better

speedup can be achieved by eliminating communication overheads. For larger

numbers of tissues, the number of processors needed to realize the potential

parallelism in the new algorithm increases by a power of two. When this resource

scaling is unavailable, the method can be throttled to use a smaller degree of

perturbation fan out.

Effect of Skull Inhomogeneity

Having evaluated the robustness and scalability of the simulated annealing

based computational environment, we were able to start conducting scientific

154

FrOlllal Occipil.11 Zygom:llic (k11 [Ull! right) Pmicl<u (lefl <llld righl)

I'

Tempor'll (lerl <lilt! flgh[) SphCI10id Chin lIna Spine

FIGURE 5.13: Anatomically parcellatecl-skull into 11 major bmws.

~:E::4~
~.03 , Skull-mean = 0.021---

9

Brain = 0.25

5 7
Skull number of parts

3

S! 002.f-::"::-,,?~rl':-:-=-=-~~~===,,,~~~~:...:..::,~
(J) ---<>--- 16-46

16-76
~=====*====1======p====l---f;J-16-109

46-76
--v-- 46-109
- _. sim ulated
-A- Mean

0.8c
'ro
OJ 0.5

0.25

0
1

FIGURE 5.14: Bra.in, Scalp awl skull-mean conductivities a.s a function of the
assumed number of skull p8,rts in tl1(: inverse s(:8,rch, the simulated data is generated
using ll-pcut skull.

investigations to lJE'tter understand the characteristics of the head modeling. The'

first investig8,tion we conducted is to study the eHect of skull inhomogeneity on the

extracted conductivities. To do so, we generated the' sinllllated data using ll-parts

anatomicallY based parcellation as shown in Figme 5.13. Each part represents a. .

major skull bmw. "Ifile parcdlatecl the skull by implementing a Matlab tool that

allows us to inl.emc:tivcly chop parts of the skull. vVe considered 8 cranial hones amI

155

,

\

\ I \
.,.

\1
, -

FroMal Occipital Zygomatic Pari tal Temporal sphenoid Chen&spine
(1) (2) (L(3)8;R(4») (L(5)&R(6» (L(7)&R(8) (9) (10)&(11)

22077 17470 1654 23532 15099 5589 17984
0.004 O.OOR 0.012,0016 0.02, 0.02Ll 002R,0.032 OO:IG 0.04,0.044

TABLE V.l: Anat.omy-based prucellat.iolJ (sizp in voxcls and conductivit.y in S1m.

3 facinJ bOlles. The com]uc:t.ivity of each part is assumed t.o be homogeneous. The

bones fwd their si7,8s arc":' shown in Table V.l.

Usiug tbe forward SOIVCl, "1,\1(' generated five different. simulated

meflslUed-clata set.s correspond to five dif[erut current. illjection pairs by assignillg a.

com]uct.ivity value (shown in Table V.1) for each part. Tbe skull weigbt.ed-rnean

conductivity is .021 Sand t.he skull weighted-st.andard cleviation is .0147 S. Then

using t.he inverse solver, we ret.rieved t.he coneluctiviti(~s assuming the skull is

uniforlll, 3, 7, alld 9-pal'ts. The assumed 3-parts skull was formed from bones

{(2,6,7), (3,11,12), (4,5,8,9,10)}, the 5-pu,rts skull from bones {2,3,(4,5,8,9,10), (6,7),

(11,12)}, 7-parts {2,3,(4,5), (6,7), (8,9), 10, (11,12)} and 9-parts { 2,3,(4,5),

6,7,8,9,10, (11,12)}. FiglUe 5.14 shows the ext.racteel braill, scalp alld skull

weightcd-1l1eCUl conductivit.ies (t.he weights are dIe part's sizes) llsing 5 different

current injection pairs as a func:tioll of skull llumber of parts. As we S(;C in the figure

the extract.ed conductivities approa.ch the simulated ones as we parcellate the skull.

The red circles line in the figure is t.he average tissue conduct.ivit.y using a.ll current

156

injections pairs. The skull weighted-mean conductivity is computed using the

following formula,

1 m

O"skull = 2:m s. L O"i X Si,
i=1 ,. i=1

where S,; and O"i are the size of the skull part i (in voxels) and its extracted

conductivity (in Semens), and m is total number of parts. The error in the

extracted conductivity is calculated using the following formula,

p

E R = ~L 10"retrieved - 0"simulated I.
P i=1 0"si.mulated

(V.5)

Error up to 140% can be produced assuming skull is uniform for a synthetic data

generated assuming a skull conductivity variation of 70% (Coefficient Of Variation

= stdev/mean) and shown in Figure 5.14. Also, as we see in the figure, the error

caused by assuming the skull is uniform depends on the location of the current

injection pairs relative to the skull parts.

5.6 Skull Inhomogeneity

The most important factor in head modeling is to obtain an accurate

conductivity model of the skull. Published data about the skull conductivity values

cover a wide range and highly controversial as summarized in table IV.I. These

large variations in the skull conductivity values expose the complexity of the skull

157

FIGURE 5.15: Skull j)("nccllation: ct) An 11-pa1'ts anatomy-basr.d parcdlation of
the ~kull b) A 97-parts thickncs~-b(\.')ed parcellittion c) A 5-parts thickne~s-based

]Ji:ucellatioll formed by combining d\(· parts ill b.

structure. I-Iovvever, these studies provide a valuable mllount of infonrl<\tion. For

illSUtnCe, all measurement. studies agree on severa,] general observations a.bout the

sknll: 1) sutmes arc highly conductive 2) the spongy middle layer of a trilayer bone

is more conductive COilJpctred to the outer t-:-wo layers 3) the inner layer of the

trilayer bOlw is more conductive thew the outer layer 4) the conductivity of the

trila-yer is related to its thickness. These common general observations about the

skull can be usee! to construct morc accura.te skull conductivity model. Combined

with a.ccura.j.(~ geometrical information; the lise of EIT scalp cmrent injection; a.nd

advanced numerical solv('rs will provide oppor1.unity t.o creMe an a.ccun'lte lllodel of

the head volume conductor. In this s('ction we forrrmlate a method to include skull

inhomogeneity and we incorporated a priori knowledge from experimental studies r,o

reduce the necessary nllmber of paramet.ers needed in t.he inverse search.

It is natural to assume t.hat anatomically different part.s of the skull have

different conductivity values, and experiments bear this out §4.3.3. Thus, it is

158

FIGURE 5.16: Thickness comput.ation: The thickness aJ point· p locat.ed on Hw
inner sudCl.ce of the skull is the sma.llest t.hickness computed by rays casted from
point.s IOCCl,tcd un the slll'face of the sphere.

important t.o charact.eri7,e the skull inhomogeneities as much as possible in the

conductivity modeling. However, incre(lsing the number of modeled tissues also

increases search and complltational complexity. Our interests arc to determine the

tradeotfs of t.issue dimcnsionality, sinlllhtion time-to-solution, and condnctivity

model clccmacy.

Om approach t.o include skull inhomogeneity, is to anatomically parcellate

the skull into thrce dificrent type tissues: trilaycr bones, compact bOlles and sutures.

The COIl1)XlCt bones call be further)xl,rcellated based 011 their ana1'.oll1ical properties,

and tJwir location relat.ive to the elect.rodes. Sutures and compact bones parcels arc

treated as seperatc tissues in the inverse solver. For the trilayer bOlWS, we used the

lineari1y relationship bet.ween thickncss and conductivit.y to obtain thc

inhomogeneity in the conductivity from the inhomogeneity in thickness. The

inho!llogcneity in thickness can b(~ obt.aincd from tIle imaging moclali1'Y such as IVIIU.

Therdm'e, variatiolls in conductivity is captured from the variation ilJ thickness.

159

Mathematically, the conductivity at point r in the trilayer bones is given by,

(Ttrilayer (r) = A/ttrilayer (r), (V.6)

where (Ttrilayer, ttrilayer are the trilayer bones conductivity and thickness at point r,

and A is the proportionality constant. In principle we need to compute the

thickness at every point on the skull trilayer bones surface. To simplify the

computation, we approximated the thickness at each point by the mean thickness of

a trilayer parcel that contains the point. We accomplished this by parcelating the

tI·ilayer bones of the skull into N parcels. Then we computed the mean thickness of

each parcel. The conductivity of each tI·ilayer bone parcel is given by,

(V.7)

where (Tirilayer is the conductivity of a trilayer parcel i and t~rilayer is its mean

thickness. The parcel mean thickness is computed by averaging the thickness at

several points uniformly distributed on the parcel inner surface. As N gets larger

the thickness gets closer to the continuous values. The goal of the inverse search is

to find 1) the proportionality constant parameter A 2) the conductivities of the

compact bones parcels 3) the conductivity of the sutures parcels and 4) the

conductivities of the other tissues (brain, scalp). In other word, the predicted

potentials on the scalp Equation V.2 becomes,

£P F(i=l..,M)
'f' = O'bTa,in, O'sca,lp, O's'1Lt'1L1'e, O'compact, O'tTila,yeT ,

160

(V.S)

where M is the number of parcels in the trilayers bones. The conductivity of the

trilayer bones is computed using the proportionality constant A and the thickness.

The thickness can be obtained from the imaging modality. This means that the

inverse search needs to find only one parametr (the constant A) to determine the

conductivites of the trilayer bones. When the inverse solver varies the constant A, it

first computes the conductivities of trilayer bones parcels using Equation V.7 , and

then the predicted potential on the scalp is computed using Equation VS.

We investigated this method on the cranial part of realistic skull obtained

from CT scan. First, we parcellated the cranial part of the skull into N parts as

shown in Figure 5.15(b), Out of the N-parts we constructed m-parts parcellations

(where m < N) by distributing the N-parts into m-bins thickness histogram, and

then we reunite the parts that fall into each bin with a given thickness value to map

it back to the skull and form a new m-parts parcellation pattern. Figure 5.15(c)

shows a 5-parts parcellation.

Skull Thickness Estimation We computed the skull thickness at point p

located on the inner surface of the skull by casting several rays from points

distributed uniformly on a surface of a sphere as shown in Figure 5.16. The sphere

is centered at the center of the head with a radius smaller than the radius of the

skull. After several trials we chose the radius to be about .25 the radius of the skull.

161

Each ray enters the skull at the same point P and leaves the skull at some point Pray

on the outer surface of the skull. The thickness tray at point P computed using each

ray is the geometrical distance between P and Pray. Then the thickness at point P is

the smallest thickness obtained by all rays. The idea behind this approach is to

explore several angles in penetrating the skull at point P . We verified this approach

by manually computing the thickness at several points.

5.6.1 Skull Inhomogeneity Results

To reduce the number of parameters in the inverse search while including the

inhomogeneity in the skull model, we considered the observed linear relation

between thickness and conductivity for the trilayer bones. We restricted our study

on the cranial part of the skull. The conductivity of the facial bones is fixed at .018

81m through out this study. The reason is that it is hard to define and compute the

thickness of these bones and facial bones are mostly compact bones that the relation

between thickness and conductivity doesn't apply. Additionally, their impact on

EEG is less than cranial plates. We note here that assuming the linearity relation

between the conductivity of the cranial bones and their thickness is equivalent to

introduction of a priory information (which comes from the experiment) and

effectively reduction of the unknowns, in this case all conductivity carrying

information is presented by the coefficient of proportionality A, while the rest is

given by the local geometry (thickness).

162

We investigated the effect of thickness accuracy on the extracted tissues

using the inverse solver. We first approximated the skull thickness inhomogeneities

by parcellating the skull cranial part into 97 parts. The mean thickness of each part

is computed by averaging the thickness at about 20 points uniformly distributed

through the part. We generated the synthetic data (simulated measured data) such

that the linearity relation between thickness and conductivity is applicable for the

trilayer bones by assigning for each part i of the trilayer parts a conductivity of

(Jj = A/t'i, we chose A = 1.2345m. The facial part of the skull is assumed to be

uniform with conductivity .0188. The brain and scalp conductivities are pre-set to

.255 and .448. Then using the inverse solver we extracted the conductivities of the

brain, scalp, facial bones, and the constant A assuming m-parts parcellation for

m = 1,2,3,5,6 As we'see in the figure, the extracted conductivities and

proportionality constant A are closer to the preset values as we consider

parcellations with larger number of parts effectively smaller deviation in thickness.

Table 5.6.1 showes the extracted conductivities and their error and the standard

deviation in computing the average thickness.

5.7 Summary and Conclusions

In this chapter we introduced a method called bound Electrical Impedance

Tomography (bElT) for reconstructing the conductivities of the human head tissues

and we provided an efficient computational environment that proved the feasibility

163

~'''l···''~··· .,..;.~ ...~=~: ... ·1

t,,,l·m.~=:~ ..mJ
L.t .S-:.: :0"":...1
'''t····>;;;=~~;~·····1
0123456

Skull-Cranial Number of Parts

FIGURE 5.17: Conducti\rity reconstruction: Retrieved conductivities amI thc
parameter A, using m-parts skull (lll=] 5).

Synth. Retr. Retr. Retr. Retr. Retr.
(06) (4) (5) (6) (8)

Brain 0.25 0.240 0.227 0.242 0.248 0.247
Scalp 0.44 0.tl30 0.461 0.470 0.447 0.439
Face 0.018 0.0180 0.()l02 0.0148 0.0186 0.(H06

A 0.1284 0.1295 0.233 0.147 0.180 0.136
Cond error .2551 0.1056 0.0405 0.0173
Thick error .4181 0.374 0.34 0.3238

1.'ABLE V.2: Extracted conc1uchvitics and the jJfimmrt.er A.

of the bElT approach. The simulated iUlllcaling algorit.hm proved t.o be robust and

st.able iu exl-,mcting up to 13 tissues without any sign of failure. Iu all the testing we

performed iu t.his chapter, t.he simulated annealing runs never failed t.o converge.

Also, vve COlHluc(-.ec1 a scnsit.ivity analysis to study the infiUt~nce of t.he skull

inhomogeneit.y on the accura.cy of the extracted coucluctivitics. The results indicate

that. iguoring skull inhomogeneity anel other skull variation can introduce <:t.n order

164

of magnitude error. Further, we introduced a method to include skull inhomogeneity

while keeping the number of parameters in the inverse search tractable.

However, when working with real data several other factors have influence on

the robustness and accuracy of the solution. These factors are related to the

accuracy of the measured data, the accuracy of the forward model and the ill-posed

nature of the inverse problem. Understanding and quantifying the contribution of

error from each source is necessary to prioritize the research and weight these

factors according to their contribution to the error.

This kind of analysis requires solving the forward model many times. In

Chapter VI we provide the design for a generic HPC framework that make

conducting this investigation easy. For instance, in this framework the

parallel-simulated algorithm can be run on local machine that uses available

distributed resource to provide solutions to the optimizer without the need to run

the simulated annealing itself on large clusters. The framework factors out the

simulation execution and the objective function evaluation from the optimization

method itself. This separation enables testing with different algorithms such as

Genetic algorithms without altering the objective function or the simulation

execution interface. The framework also, allows conducting sensitivity analysis and

experimenting with different forward models.

165

CHAPTER VI

ODESSI DESIGN

In scientific domains where discovery is driven by simulation modeling there

are found common methodologies and procedures applied for scientific investigation.

ODESSI (Open Domain-extensible Environment for Simulation-based Scientific

Investigation) is an environment to facilitate the representation and automatic

conduction of scientific studies by capturing common methods for experimentation,

analysis, and evaluation used in simulation science. Specific methods ODESSI will

support include pammeter st'udies, optimization, uncertainty quantification, and

scnsit'lvity analysis. By making these methods accessible in a programmable

framework, ODESSI can be used to capture and run domain-specific investigations.

6.1 Introduction

Computational science is now accepted as an important approach for

scientific investigation, broadly considered equivalent in its discovery power to

theoretical and experimental science. It is typically conducted through

166

mathematical modeling and scientific simulation, leveraging access to advanced,

high-performance computers (HPC) to run computational experiments (simulations)

that seek to model reality in various domains. The evolution of computational

science reflects both a growing need for computational power and increased

sophistication of simulation methodology. Early concerns were on access to

sufficient HPC resources, motivating research in parallel computing, computational

grids, and large-scale storage. More recent research work in computational portals

and workflows attempts to simplify resource access as well as provide programming

support for coordinating simulation and analysis tasks. With computational

horsepower becoming more ubiquitous, there is now growing interest in enhancing

the discovery process of scientific investigations. In general, how productivity in

computational-based science can be improved in practice will depend greatly on

software environments that raise the level of investigation creation, execution, and

management.

In scientific domains where discovery is driven by simulation there are

common methodologies and procedures. An environment that can capture the

shared standard practices and support their reuse across domains could improve

productivity in scientific investigation creation and application. Methods such as

parameter studies and tuning, optimization, uncertainty and sensitivity analysis, are

generally used across simulation fields. Application of these methods in simulation

studies typically require executing the simulation many times with different input

167

parameter sets and data files. The environment could capture the common scientific

methods in modules that can be contextualized for domain-specific use. The

modules would hide the details of backend execution (implemented by the

environment infrastructure), while providing an interface for their programming as

part of an investigation workflow. The environment could also support other aspects

of scientific investigations, including the management of input and output data, the

specification of parameters, the post-processsing of results, and the generation of

reports. The benefit is to provide a high level of service and automation to the

computational scientist to enhance their work throughput and management.

In this chapter we describe our research work to create and apply an

environment for supporting scientific investigation called ODESSI (Open

Domain-extensible Environment for Simulation-based Scientific Investigation,

pronounced "Odyssey"). The environment will facilitate the representation and

automation of scientific studies by capturing shared methods for experimentation,

analysis, and evaluation used in simulation science in a framework that can be

programmed and specialized for domain investigations. ODESSI will be evaluated

and demonstrated for scientific studies in the neuroscience domain involving

computational modeling of the electromagneticproperties of the human head.

168

ODESSI

Scientific Methods Scientific Domains

FIGURE 6.1: Architecture and components of ODESSI framework.

6.2 ODESSI Requirements and Design

The goal of ODESSI is to provide a productive environment that assists

domain scientists in the development and application of their computational

investigations. To this end, the main requirements are:

1. Support common types of scientific methods that occur in several domains

and provide a means to apply the methods in a scientific investigation.

2. Provide a programming framework that allows methods and investigations to

be developed and applied. The scientific methods should be realized in such a

169

modular manner to allow method extension and reuse. The scientific

investigation should be programmable in a flexible manner.

3. Enable access to high performance computing for purposes of productive

simulation studies, while abstracting and hide the complexity of the

underlying interactions with the compute resources. The goal here is to

insulate the scientist from concerns of HPC resource usage, instead allowing

them to focus on the process aspects of the domain investigation.

4. Provide support for persistent and evolving scientific investigations.

The ODESSI environment shown in Figure 6.1 was designed to support these

requirements. The key concept of the ODESSI approach is the capture of standard

procedures to conduct and analyze (simulation-based) scientific experiments in a

modular, extensible, and reusable form. We call these procedures scientific methods

and think of the methods as generating a set of simulation experiments to run.

Common scientific methods include parameter studies, comparative analysis,

optimization, sensitivity analysis, and uncertainty analysis. These methods are the

basis upon which activities such as verification and validation, parameter tuning,

and simulation-based experimentation are built for domain application. These

processes that integrate different methods are the foundation of domain scientific

investigations. A scientific investigation is a domain-specific discovery process that

applies one or more scientific methods in its lifetime. It defines the simulation codes

170

to use, the input data files, and post-simulation analysis and visualization. If

ODESSI can capture key scientific methods in easy-to-use modules, the level of

productivity in the development and execution of scientific investigations may

increase. We will focus our discussion on this aspect of the design.

Logically, ODESSI represents methods internally as mod'ules consisting of

two Palts: a specification and a template. The specification identifies the context

necessary for the execution of the modules, including the simulation program to be

run and parameters. The template is the software construction of the module with

abstract classes for operation of the specific scientific method. In this respect, the

template embodies the method procedures for the generation of domain simulation

experiments. A module is instantiated by an investigation script, setting the

specification context and initializing the module state. \Vhen a method module is

executed, it generates an experiment schedule (static or dynamic) that is passed to

the ODESSI planner.

It is the responsibility of the ODESSI planner to conduct the necessary

simulations on behalf of the invoked method. It is possible multiple methods are

concurrently active, each with its own planner. The planner interfaces with the

external simulation system to run a simulation experiment. It determines which

experiments to execute based on the specified simulation schedule. If a method uses

information from earlier experiments to determine future experiments, its module

uses a dynamic schedule which is applied within the planner. The planner attempts

171

to optimize schedules by interrogating the ODESSI investigation history to

determine when simulation experiments have previously been conducted. A record

is maintained in the ODESSI investigation history of every completed simulation

experiment, containing complete metadata for the investigation and method

specification.

Below, we discuss ODESSI main components. From the user perspective,

ODESSI is able to run a large number of simulations that form a domain scientific

investigation. Domain scientific investigation is organized from one or more

scientific investigation methods in addition to input data files, statistical and

visualization tools.

ODESSI architecture consists of following main components (refer to figure

6.1):

Front end. Using the front end, a user can program a domain investigation using

ODESSI scientific methods and other external packages by providing a domain

investigation script. Each scientific method will have a schema that describes the

strategy or the algorithm of the investigation method. The user will be able to

specify how the scientific methods are to be instantiated, including how simulation

programs and data are to be incorporated. The front end allow the user to interact

with ODESSI through the following functionality:

172

• Investigation sCTipting is the means by which the scientist programs ODESSI

to perform a domain investigation by providing a domain script. We use

Python as the scripting language.

• The data coupleT interface allows the user to provide domain data files to be

stored in the investigation database and used in the investigations.

• The simulation co'upleT interface allows the user to describe the simulation

programs to be used, for instance, the name and path of the simulation

executable, the input and output argument names, their data types, and any

environment variables. In addtion, the simulation coupler captures the host

names and passwords for running the simulation programs.

• Scient~fic investigation methods are input through the front end. They are

specified using a schema that can be used to generate a method module in the

ODESSI method library.

Package interface. ODESSI support interfaces with other packages needed to

perform results analysis (e.g., Matlab, R, SciPy), data mining (e.g., R, WEKA), or

visualization (e.g., JFreeChart, MayaVi). These packages can also be used in

monitoring the execution of the experiments.

173

Simulation System interface. ODESSI interface with the computing resources

through the simulation manager component. This interface allows ODESSI to run

and control the execution of several instances of a simulation either locally or on

remote machine. Also, ODESSI is able to interface with multiple different

simulations to conduct more complex investigations such as model-to-model

analysis, or analysis across multiple simulations. The simulation manger component

employs several workers and a database where each worker controls an instance of

the simulation and a database to cache solution for reuse. The simulation manager

component act as a server that serves simulation solutions given input parameters.

Scientific methods library. This library contains different algorithms or

implementations that implement the scientific investigation methods. For example,

several algorithms can be used to implement optimization such as simplex search or

genetic algorithms or several procedures can be used in the senstivity analysis.

Planner. Based on the provided scientific method description document, the

module generator selects and configures the scientific method and generates a plan

to be executed. Planners typically require the response of the simulation for

different sets of parameters. Planner gets the simulation response by sending

messages to the simulation manger module.

174

Scripting engine. The scripting engine controls and coordinate the interactions

between ODESSI different parts through executing the investigation script.

6.3 Related Work

The general theme of the ODESSI approach is to manage complexity in

domain-specific scientific investigations by providing a programmable framework

with high-level services for domain contextualization and use.

Problem solving environments (PSE) are a traditional approach to

addressing domain-relevant concerns by incorporating all the mathematical,

algorithmic, and computational features necessary to solve a targeted class of

science or engineering (SjE) problems [73, 162].

The main goal of a PSE is to increase the productivity of scientists by letting

them describe a problem and its solution in terms of the SjE concepts and use a

highly-functional, integrated set of capabilities for modeling, analysis, and

visualization. PSEs have been developed for partial differential equations (PDE) [7],

linear algebra [151], chemistry [56], and other SjE areas. However, the traditional

PSE approach has three important drawbacks: 1) it is difficult to create a new PSE,

2) PSEs are not developed to be reused, and 3) PSEs are hard to extend with new

capabilities or new science methods.

One response to strict PSE design is to identify domain-level functionality

that is common across related fields and build software tools that can be applied in

175

developing computational science environments [46]. Scientific development

environments take this idea further by offering rich components for data

management, analysis, and visualization in a programming framework for scientific

applications. For example, SCIRun [193] is a powerful environment for interactive

computational science which has been used to create integrated problem solving

environments in biomedical science [123]. ODESSI complements these directions by

abstracting common simulation-based scientific methods in reusable components,

providing a cross-domain framework for scientific investigation.

Grid computing and workflow systems research take a different tact by

focusing on how to allocate and coordinate the use of computational resources (both

systems and software/tool components) to create and run scientific applications

such as GridLab[83]. Grid-enabled workflow systems such as Pegasus[52]' Ttiana

[36], and Kepler [122] are powerful tools being applied in computational science

projects. However, their support for multi-experiment simulation workflows is still

rudimentary and is not easily programmed for cross-domain use or execution on

non-grid platforms. Web-based portals (e.g., the NEES [135] and BIRN [24] portals)

and environments such as ViroLab [210] address some of these issues by offering

higher-level S/E services (e.g., analysis, data management, simulation) while hiding

backend complexity. The ability to abstract and reapply scientific methods for new

scientific investigations or new scientific domains in these environments though is

not supported well.

176

On the other hand, there are wealth of toolkits for scientific methods used in

simulation. The DAKOTA toolkit [157] provides several optimization algorithms,

uncertainty quantification, and parameter estimation. The Portable, Extensible

Toolkit for Scientific Computation (PETSc) [152] is a suite of data structures and

routines for the scalable (parallel) PDE-based scientific applications. The important

aspect of these systems is their embodiment of a known scientific methodology in a

programmable form. The idea behind ODESSI's approach is to provide a high-level

scientific development framework that parameterizes and configures scientific

methods for domain specialization.

Our framework design is driven by our domain problems in neuroscience as

described in the previous section. There is no single system that provides all the

functionality needed to conduct those studies. However there are related

environments that provide some of those requirements.

Dakota toolkit [157] is a rich C++ toolkit that provides several optimization

algorithms, uncertainty quantification and parameter estimation. It has been

demonstrated in several engineering design problems. However, Dakota is focused to

provide an engineering design environment for a single program. Dakota is not

intended to support distributed workflow in a distributed computing environment.

Also, Dakota only considers the model parameters in the analysis and doesnt

include the state parameters which are necessary to optimize for the tradeoffs

between the solution accuracy and simulation performance. This is important for a

177

class of scientific problems where the simulation execution time is a major factor in

solving the problem.

In the grid environments, workflow management systems[76] have an

important role in developing applications that utilize the grid available resources to

conduct scientific experiments. Several Grid-enabled workflow systems are evolved

in the past 10 years. Pegasus [52] is a framework that maps abstract workflow into

concrete workflow and it schedules the concrete workflow into distributed resources.

TI>iana [36] is a workflow data analysis distributed environment based on P2P, grid

services and web services interaction. Tavera [145]is a service-orieted workflow

system in bioinformatics where the components of the application are web services.

Condor/DAGMan [67] is a resource management system used to match grid

resources to tasks. Kepler [122] is an actor-oriented workflow system. WebFlow [6]

and GridFlow[llO] and several other PSEs are developed to ease the development of

large scale scientific application from a bool of components assembled as a DAG

based workflow.

These environments have an important role in building a scientific problem

solving environment that utilize the necessary computational resources. However,

these environments support only conducting a single scientific experiment or allow a

parameter sweep through scheduling. What is missing in these environments is an

abstract layer to allow the design of scientific studies composed of several

178

experiments. The user is still required to conduct and manage these studies

manually.

Other environments are focused to provide interactivity with the parallel

simulation through visualization and steering. SCIRunjUINTAH [193, 226] is a

popular bioinformatics problem solving environment that allows rapid interactive

design of a scientific experiment. It also provides interactive visualization and

steering. CUMULVS [75] is a middleware that allows a programmer to connect

remotely to a running simulation, get visualization data and steer a user defined

parameters. gViz [99] is a grid enabled visualization tool. In these environments

scientist is still required to construct and manage the scientific investigation as a

composition of several scientific experiments manually.

In the grid environment, there is little work that supports computational

science investigations. Most of this work is limited only to parameter study or

parameter sweep by generating several instances of the program corresponding to

different parameters and executing these instances concurrently on the Grid or the

distributed environment. Nimrod and Cluster [47] are environments that are able to

generate and launch parameter study in the grid environment. They are built on

top of Globus. They also provide a high level language for describing parameter

study creation. ILab [222] from NASA is a graphical tool that supports large

parameter study. ILab generates a single shell script for each run in the parameter

study. A single directory is created for the whole parameter study and then a sub

179

directory is created for each run where input files are moved to that directory and

then the scripts are executed. In case of cluster computing two scripts are

generated, the first script remote copies the second script to remote cluster and then

it executes there. Similar to Nimrod, AppLeS (Parameter sweep template) [29] is a

parameter sweep environment. Its main focus is on scheduling the application on

the grid resources in performing the parameter sweep. Similarly Saleve [132] provide

a parameter sweep across distributed resources. P-GRADE [112] portal integrates a

parameter study with a workflow. It provides a parameter study by considering the

workflow as a black box that gets executed with many different parameter sets. In

P-GRADE the portal generates the workflow instances and submits them for

execution concurrently. Another environment that integrates parameter study with

workflow is SciDC[31]. MCell is a grid-enabled parameter sweep application for a

biology application [28].

In all these environments the parameter sets are pre-generated and then the

response corresponds to these sets is computed. In an on going effort in [212] they

extend this by proposing interactive parameter sweep where the user is able to

monitor and guide the parameter sets based on intermediate results. However, this

approach requires the availability of the user which is not practical in long running

simulations.

There is little work that supports other kinds of scientific investigations.

NimrodjO [2, 3] is an optimization framework that supports identifying the

180

engineering design point using several optimization algorithms. Sim-X [223] is an on

going effort to provide an interactive optimization tool that allow changing the

optimization criteria dynamically and explore parts of the parameter domain while

the simulation is executing. SimX is later on added to SCIRun PSE [224]. Again

interactive optimization is not suitable for problems that require long execution

time.

"Most of the research work above is limited to parameter study and in few

cases to optimization or standalone application. Our goal is to extend and

generalize this work and provide framework support to develop scientific

investigations in a way that can draw on standard methods. As discussed below, the

ODESSI framework will enable method implementation as programmable modules

and their coupling with a simulation planning capability. Parameter sweep,

uncertainty quantification, V&V, and comparative methods will be developed.

Moreover, ODESSI will provide additional support for investigation scripting and

access to database, analysis, and visualization utilities.

181

CHAPTER VII

ODESSI DEVELOPMENT

Simulation-based scientific investigation in computational science involves

several aspects and challenges. These aspects can be broadly classified into three

categories, 1) the execution of the simulation on system resources, 2) applying

scientific methods and procedures using the response of the simulation, and 3)

managing domain data and investigation runs. These aspects generally interact

with each other in conducting a scientific investigation in an integrative manner.

Typically, a scientific investigation involves selecting one or more domain data sets,

apply one or more scientific methods, and require executing the simulation a large

number of times with the potential of long execution time. Each one of these

aspects has its own complexity and challenges and integrating them in conducting a

scientific investigation is a challenge in its own. Increasing the productivity of

scientists in conducting scientific investigations can be achieved by raising the level

of abstraction in these aspects and raising the level of intergration among them.

182

Several general purpose systems and tools have been developed to handle a

single aspect. Tool kits such as Dakota [157] are focused on applying a scientific

method on a simulation, but ignore the domain data aspect. Systems such as

Condor [68] are focused on the execution aspect of the scientific investigations

primarily. Data management systems and knowledge bases as provided in BIRN [24]

are concerned with the domain data aspect. Integrating these aspects in scientific

investigation is still, for the most part, done manually. Recently several scientific

communities realize the need to integrate these aspects in a single environment

which results in developing domain-specific environments such as ViroLab.

Although these work well as domain-specific, standalone applications, the

environments are not designed to be reused by other domains.

The goal of ODESSI is to provide a generic framework that realizes and

integrates the common aspects of scientific investigation that occur in most

scientific domains. ODESSI achieves this goal by factoring out the shared concerns

of scientific investigations, capturing them as components in the framework, and

combining the components as necessary for specific use. Since ODESSI can be

extended with domain-specific aspects, a domain computational environment for

scientific investigation can be built on top of ODESSI. In this chapter we describe

the implementation of the conceptual design of ODESSI framework as described in

Chapter VI. From ODESSI's perspective, a computational science investigation is a

script that runs and manages all the necessary computation on HPC. It applies one

183

or more scientific investigation method in its lifetime. It defines the simulation

codes to use, the input data files, and post-simulation analysis and visualization.

We call this script, the domain investigation sCTipt.

ODESSI is realized on a set of Python objects that implement the

components shown in Figure 6.1 in Chapter VI. These objects form a set of

interacting threads that cooperate during the execution of the investigation script

7.1. An investigation script instantiates the necessary objects that implement

scientiflC methods that it uses, and these then interact through messages once

started. Simulation programs are invoked through the Python system interface. The

investigation script consists conceptually of three main sections. In the first section

the user specifies the simulations under investigation by providing their names,

input/output parameter names and data types, initial values for input parameters,

and the specification necessary to execute the simulation including selecting and

getting the necessary data files. The simulation specifications are used to create a

simulation manager object that can request simulation solutions. In the second

section, the scientific investigation methods are customized, instantiated and

launched for execution. Each scientific investigation method is executed in a

separate thread. Each scientific method object derives from a base Planner object,

adding the method specific functionality that it is intended to provide. The third

section is concerned with bookkeeping and post-processing the results.

184

Simulation

Domain Database

DB Man

Execution
Manager

ImailboxJ

Planner

mailbox I

Optimization

Investigation Script
__. - __ - - 1 J Domain Manag~~----ot>1~~---~1

~ Scientific Methods -II Simulation Manager

Solution(input, Olltput)

Request(input, output)

FIGURE 7.1: The investigation script nms the execllLion lllUllager in a l.lJrt'ad
('wei each scientific method in a thre8.el. Sci<:>ntific methods request solution from the
execution l1ln.nager in there execution life time.

An importcUlt pmt of the ODESSI implementation is the usC' of asynchronolls

messaging betvveell threads. Dup to the potential for long execution times during

simulation runs, it is preferable to llse nn asynchronous execution model to allow

threads to execul~e independently wit.hou t. ca.using all ot.hers to block. Threa,ds ill

ODESSI are based on the process model from the Erhng langm\.ge [10], We llsed a

Pytholl-Lwsed implementation of the Erlang process and message passiug model

provided by the Python "eR.ndygralll" pR.ckage [95]. Erlang is based on tIlE' Actor

model of concurrent processes that int.eract viR. asynchronous message passing. Ea.ch

proc<:>ss has a meSSR.ge mailbox into which messages from other processes are

185

delivered as shown in Figure (7.1). The receiving process can check its mailbox at

any time and extract messages one at a time. Messages are matched with a handler

which is invoked to perform some action based on the contents and type of the

message. The Erlang programming model guarantees that messages are handled in

the order they are received.

Simulation, scientific methods, and data objects are described using the

Traits-UI dynamic user interface. Traits and Tl:"aits VI are open source Python

packages from Enthought[58]. Traits packages provide an easy way to give types to

variables with bounds checking. This is helpful to catch bugs in scientific computing.

Also, Traits support reactive programming model which is oriented around data

flows and propagation of change. This model is useful in writing scientific

applications, in which arrival of new data triggers change on other variables. This

model can be used in implementing real-time monitoring of the scientific method

execution. TI'aits-UI provides a graphical representation of an object which allows

automatic generation of dialogs to edit the attributes of Python objects. It provides

a rich list of editors and the mechanism to build interactive user interface. This

structure maps well to scientific applications in general and to ODESSI environment

in particular where the specification of scientific methods, domain data, and the

simulation are represented as objects, These objects can be viewed and edited

directly with TI'aits VI editors. The graphical representations view of the object in

Traits-VI reflects the structure of the objects which makes it easier to extend.

186

Since one goal of ODESSI environment is to provide rapid prototyping

environment for simulation-based scientific investigation, an interactive Graphical

User Interface (GUIs) is desired. Creating such a user interface through a toolkit

doesn't integrate well with general purpose environment such as ODESSI since the

objects are likely to be changed and extended frequently. Further, creating first a

graphical interface and then writes the callbacks of the graphical objects cause

messy mixed up between the model, control and the view of the model and limits

the extensibility of the environment. The Traits-UI method of interface construction

has been helpful in addressing these issues.

ODESSI provides three entities that can be instantiated in the investigation

script: the Simulation Manger entity, the Scientific Investigation Method entity, and

the Domain Manager entity. The Simulation Manger is the entity that controls and

manages the execution of a simulation. It acts as a server that provides solutions

given sets of input parameters. Each instance of a simulation manger controls a

single simulation. Multiple simulations can be controlled by multiple instances of

the simulation manager. A simulation manager object can serve multiple requests

from different threads. Scientific investigation methods provide the scientific

investigation procedures that are common in several scientific domains such as

optimization and sensitivity analysis. When a scientific investigation method is

instantiated, it gets executed in a thread that interacts with other threads. The

Domain Manager is the entity that manages a scientific domain. This includes

187

getting and setting domain data objects, and domain simulation objects. In the

following 3 sections we describe in details these entities.

7.1 Scientific Investigation Methods

Computational simulation has become the preferred methodology for

conducting scientific investigations in many domains (e.g., aircraft design,

electronics, chemistry, physics). The common requirement to these domains is the

availability of affordable computing power in terms of hardware, computational

models, and scientific investigation methods. Scientific investigation in

computational science involves the application of several methods such as

optimization and sensitivity analysis. These methods are used to explore the model

parameter space, to rank the parameters according to their significance, to extract

optimal model parameters, and to verify and validate the results. Typically, there

exist several algorithms for each scientific methods (e.g., several optimization

algorithms) that can be applied, and generally the quality and performance of these

algorithms are highly dependent on the model under investigation. Which means an

algorithm may perform well on a particular problem, but poorly on a different

problem, and vice versa. Further, for each algorithm, the user must specify a set of

parameters empirically which usually involves a tradeoff between the quality and

the performance of the algorithm. Also, as science evolves, new algorithms and new

scientific methods are always developed. Due to the large number of options,

188

scientist are faced with the problem of choosing the best algorithm and the optimal

configuration parameters that provide the optimal performance and the highest

quality of investigation for their model.

The conventional approach of scientific investigation is by developing

standalone application using software libraries for each investigation. While this

approach achieves the desired goal, it has several limitations. First, it is time

consuming and limits the productivity of the user since several applications must be

developed and maintained for several investigations. Second, the user must

reengineer the application when the underlying model is changed, the investigation

methods are changed, the method algorithm is changed, or when experimenting

with new algorithm. These changes are common and frequent in a rapidly evolving

field like computational science. Third, the user must develop tools or customize

(which can be hard in general) existed tools to utilize the distributed computing

power in executing the simulation because the execution time of most scientific

application is long. These factors limits the productivity of scientist and more

important it limits the quality of science, since scientists might get satisfied with

any satisfactory results without experimenting other methods or algorithms which

might provide better quality or performance. These limitations argue for better

approach in conducting scientific investigation.

Our approach to scientific investigation is to factor out the common scientific

methods in a generic framework where they can be applied on arbitrary simulation

189

and reused by different domains. This approach is extensible where new methods

can be added independent of the simulation. Further, the specification and the

execution of the scientific method are separated, this separation allow rapid

customization of the method using other tools such as Traits-DI, and also, allow

saving the specification with the result which provide provenance information. The

separation of the method execution in its own thread allow multiple methods to be

executed concurrently while sharing simulation execution which results in better

utilization of system resources. This approach allows a scientist to experiment with

different methods and configuration parameters to investigate the underlying

scientific model rapidly. This will increase the productivity of scientist and results

in improving the quality of science.

In this section, we describe how the scientific methods are implemented,

customized and executed as part of a scientific investigation. We demonstrates our

approach using three common scientific methods, 1) optimization based on a parallel

simulated annealing algorithm, 2) parameter sweep and 3) linear regression based

sensitivity analysis. ODESSI currently supports these methods and can easily be

extended with more methods and procedures. In ODESSI, a scientific method gets

executed in its own thread spawned by the main thread in the investigation script.

The scientific method is implemented as a module of three classes: Specification

class, Interface class, and Logic class. These classes are described below.

190

Specification class. A specification class provides a template for the user to

customize the scientific method. The specification class gets instantiated,

customized and passed to the scientific method interface class in the main thread.

The specification class object can be specified either through the constructor in the

investigation script or using a Traits-VI [201] dynamic GVI editor or both. When

the custom argument of the specification class constructor is True, a Traits-VI user

interface pop up and allows the user to customize the parameters. For example,

Figures 7.27.3 shows a demo of Traits-VI pop up to customize a parametric study

and optimization methods. When the GVI interface pop up all parameters of the

simulation inputs appear with their initial values. Then the user can customize

these parameters through the VI interface. The investigation script blocks until the

user finishes customizing the method.

Interface class. An interface class provides an interface for the user to instantiate

and executes the scientific method in an independent thread. An interface class

takes an instance of the method specification class and a simulation manager object.

Its purpose is to manage the interaction between the investigation script and the

scientific method which is executed in a separate thread. The investigation script

interacts with a running scientific method by calling methods provided by this class.

Currently the interface class provides three methods, go, stop, and geLresults. The

go and stop methods starts and stops the execution of the scientific method. A call

to geLresult blocks until the execution of the scientific method completes and the

191

results are returned to the investigation script. These methods are inherited from a

lVIethodlnterface base class. Further functionality of this class can be added such as

monitoring the execution of the scientific method and visulizing intermediate results.

Scientific method logic class. The scientific method logic class implements the

algorithm or the procedure of the scientific method. It must have a Planner class as

a base class. This class gets instantiated and executed in its own thread by the

scientific method interface class. The scientific method specification and the

execution manager object are obtained in the initialization. The scientific method

uses two methods inherited from the Planner base class to get solutions of the

simulation, TequesLsolution and geLsolution. The request-solution method has three

arguments, a tag to identify the returned solution, a dictionary of input parameter

names and their values, and a list of the output parameter names. Not all the

inputs of the simulation need to be specified. Any unspecified input will take its

initial value as specified in the investigation script. The get-solution method is used

to get one returned solution for each call. It takes no arguments and returns a list of

three items, a tag corresponding to the request tag, a dictionary of the input

parameters and their values and a dictionary of the output parameters and their

values. If there is no solutions returned yet, the get-solution method blocks until a

solution is arrived. All scientific method logical classes must have an abstract base

class called Planner. The planner class provides the interactions between the

scientific method and the execution manager. An instance of the execution manager

192

that controls a simulation is passed to the Planner class in the instantiation of the

scientific method. The Planner base class acts as a stub for the scientific method

logic class. Therefore, the scientific method logic code is completely separated from

the communication code and is not of the user concern who desire to add new

scientific method. Once simulation are initiated, the Planner object does not

guarantee the order of return of solutions. This is our design decision as many of

the scientific methods are I\/Ionte Carlo based and the order is not important.

However, the Planner class includes an optional feature to enforce simulation

dependencies if necessary. When the the Planner req'uesLsolution method called, it

delivers the parameters as a message in the execution manager mailbox. "Vhen the

geLsol'ution method called, it extract a message from the its mailbox and return the

message to the caller.

In the following subsections we describe the scientific investigation methods

currently supported by ODESSI. One long-term objective of ODESSI is to provide a

rich list of scientific methods that are common in most scientific domain.

7.1.1 Parametric Study Methods

Parametric studies are used to explore the parameter space for better

understanding the model behavior under different conditions before or during more

complex analysis such as verification and validation or sensitivity analysis. They are

pursued to explore the effect of one or more parametric change on the simulation

103

xl t..I x" t..I x3 t..I x4 .J

PillJrnl~ters Spec

~ISitnlj)ling: Idndom
------------'

From value: 1,10
To v'duc. 1-3-.0--------

"''.llue: I
Step I' --------

Numb',r points 13
Random normal

;::::==============
Mean: 10.0

std: 1-
1
),-(,---------

Ol(CltKel

FIGURE 7.2: Parametric stndy specification

01ltPllt to study ca.llse-ctnel-effect rclatiouships. It also llnc1crlics I\loute Carlo

simulations and can be used in computing derivatives aud tl1E' sillllllntion outpllts

re4I1ir<~d by other analysis or applications. Typica.lly, a parametric study is a

neccss;\.ry step before any investigatiou. III parametric s1'.udies, one applicatioll is

executed many times witb different sets of input param('ters. These mns Me

indep(~lldellt and can be executed coucurreutly, ODESSI simplifieti this killC! of

analysis by automating the time consuming, mauual execution of the simulation ou

distributed computiug resources and gathering the results efficiently iu n.n easy to

I1SP S('t'llctUl'C' were further analysis cau be applied. ODESSI can utilize any lllunber

194

of distributed resources in performing this computation without any requirement on

the user part. Currently, ODESSI provide several parameter space sampling

methods. The list of choices can easily be extended.

Line space. In line space sampling of a parameter, the user specifies the

start/end values and the number of sampling points n. Then ODESSI generates the

n-sample points with uniform interval between them, and computes the simulation

response at these points. The following is an example of linespace specification,

Param('x', fromvalue=10, tovalue=20, npoints=10,

sampling='linspace')

Log space sampling. Log space sampling is used to sample a parameter on a log

scale instead of a linear scale. Log space sampling is similar to line space sampling

except the startIend values are the exponents of the base (e.g. from basestuTt to

baseend). Log space sampling is useful when exploring parameters on a wide range

(e.g. from .001 to 1000000),

Param('x',fromvalue=1, tovalue=3, npoints=10, base=10,

sampling='logspace')

Range. In range sampling the user specifies the start/end values of a parameter

and the uniform distance between the points (step). Then ODESSI generates the

necessary number of points that cover the range,

195

Param(JxJ, fromvalue=l, tovalue=3, step=2, sampling='range')

Random. In random sampling, the user specifies the start/end values of a

parameter, the number of sample points, and the sampling distribution with the

corresponding distribution parameters. For example, in case of random normal

sampling the user specifies the mean and the standard deviation. ODESSI currently

support uniform and normal sampling. Other random distributions can be added in

a straightforward manner. Random sampling is necessery in senstivity and

uncertainty analysis.

If more than one parameter is specified in a parametric study as described

above, then a multi-dimensional cube is formed. Each axis of the cube corresponds

to a parameter. Then ODESSI computes the response of the simulation at every

point in the cube. For example, if parameter x is specified to take 10 linespaced

values and parameter y is specified as a 'range' which results in 5 values, then a

square is formed, and the simulation response is computed at all 5 x 10 = 50 points.

If n parameters are specified with each parameter takes m values, the results is

computing the simulation m n times which can be very large. Therefore, distributed

compnted is required to conduct this kind of analysis even for simulation with

relatively short execution time (less than a minute).

ODESSI uses the default values of the parameters as specified in the

simulation specification for any unspecified or partially specified parameters.

Unspecified parameters take their default values and unspecified start/end values

196

take the lowerjupper bounds as specified in the simulation specification. If the

mean of a normal random sampling is not specified odessi uses the center value (the

value at the middle of the start and end values). If the standard deviation is not

specified odessi uses the average distance between the mean and the lower and

upper bound divided by three.

These sampling options can easily be extended to support other sampling

strategies, such as, to perform parametric study along arbitrary line in the

parameter space, or around a pre-selected point, or at points selected from a user

specified list. In addition to the ability to specify these parameters in the

investigation script as described above, the user can invoke the parametric study

module with the optional argument (custom = tf'ue). This causes a GUI interface to

popup which displays all simulation input and output parameters with their default

values, and their lower and upper bound. Using the GUI interface, the user can

customize these parameters easily without reading any user manuals. Figures 7.2

shows a GUI user interface popup when running a parametric study on two different

simulations. Chapter VIII provides more concrete examples.

7.1.2 Optimization

Global optimization is the problem to find the globally best optimal solution

of a model in the presence of multiple local optima. The optimization problem can

be stated as follows: Find the values of the best optimal parameters that optimizes

197

(minimizes or maximizes) a multi-dimensional objective function and subject to

some constraints. The maximization of a problem can be treated as the

minimization of its negative. The optimization problem takes the form:

Optimize(F(x)) s'ubject to 1 < x < U, where x is the model N-dimensional

variables vector. These variables are independent and a change in a variable cause a

chang{~ in the model response. F is a cost or objective function that depends on the

model output. 1 and U are the lower and upper bound vectors. The N variable

input parameters define the optimization search space. An optimization algorithm

searches the model input parameter space for the set of parameters that optimizes

the objective function. In general the objective function of realistic problems is

non-linear, and the search space contains many local minima's and possibly IIlultiple

global minima.

Optimization problems occur in every scientific domain. One important class

of optimization problems are inverse problems. The aim of an inverse problem is to

determine the values of the underlying model input parameters that explain a given

observed data. Therefore, in these problems the objective function is the difference

between the observed data and the model output. The complexity in these problems

is due to the noise in the measured data and the numerical noise in the model

output (e.g. due to discretization). This results in unclear global minimum and so

the optimization problem must to be solved several times with different starting

point or different configuration of the optimization method. Typically, in these

198

rvktllod Parameters l)bJectivc Flille

brain tJ esf tJ slwll u sC.:llp u

Nallle' Ibrilin

Lower bound: 1-0,-0-5--------

Upper bOllnd: 11. 0

Init v,}llIe' 1-1)-1-2--------

COIlSlfainlS

I-S)(-U-II-.,-l-r,l-in-&-,&-,5-)(-1I1-1,-.-sc-'l-Ip-

Method PClranlctl?rs Ot~"cll'.'C Flinc

Ivkthod: SA

T 150

Rt: 10 8

Nt: 13

Ns: 112

Silllanlleps: 100001

Check 12

1\1<1' eval: 7000

Urillio: lOG

Lratlo: 10,4

OK Canee! OK Cancel

FIGURE 7.3: Optimization specification interface: Optimization problem
specificatiolls (1lHl setting tl]e objpcti\'(~ fUllction (left). Selecting and cnstomizing
thp optimization method (right).

kinds of probkms and in most science a.nd engineering optimization problems, the

evaluation of tlJe objective function is the costly step and tlJe perfornw.]](:e is totally

dominates by this step.

Several optimi:;;mtioIl algorithms arc ckvcloped over the past few decades.

However, the performancc of an optiJJJi7.ation algorithm is problem-depellClent anel

varies from one problem to another. Aetna.!ly, it is believed that there is no

optirnizatioll algorithm exist that can perform well on every optimization problem.

One algorithm might perform the best on a particular problem, but the worst on a

199

different problem. Therefore, choosing the best optimization algorithm for a

particular problem is a problem in its own. Further, each optimization algorithm

requires setting several configuration parameters to tune the performance and the

quality of the algorithm. Typically, setting these configuration parameters involve a

tradeoff between the quality and the performance of the algorithm. One goal of

ODESSI design is to allow experimenting with different algorithms and with

different configuration parameters for each method rapidly without developing new

application for each case. This allow users to make a better choice of the best

method with the best configuration parameters for their particular problem.

ODESSI allows the user to specify the optimization problem, the

optimization method, and to customize the optimization method either through the

investigation script or using the dynamics Trait-UI editor as shown in Figure 7.3. In

the "Parameter" tab in Figure 7.3, the user can specify which parameters to include

in the optimization, their lower and upper bounds and their initial values. Also, the

user can impose constraints on the parameters which allow the optimization

algorithm to avoid searching the regions that violate the constraints. In the

"Method" tab the user can select the optimization method to use and configure the

method parameters. The figure shows the configuration parameters of the simulated

annealing algorithm as described below. In the objective function tab, the user can

specify· the Python code for the objective function.

200

Using only this simple interface, the user can experiment with a variety of

different scenarios including, different initial values, lowerjupper bounds,

constraints, objective functions, optimization algorithms, optimization algorithm

configurations. Also, the user can experiment with different optimization

parameters and fix other parameters at specific values. ODESSI will take care of all

the necessary computations on distributed resources without any requirement on

the user side. Same experimentation can be performed on other models without

writing or changing any code.

Currently, ODESSI support optimization with simulated annealing

algorithm. The parallel simulated annealing algorithm implemented in ODESSI, is

described in details in Chapter V. In the following we provide a short review with

the focus on how to set the algorithm configuration parameters.

Simulated Annealing Algorithm

Simulated annealing (SA) algorithm is based on a Monte Carlo simulation

that simulates the physical process of annealing. It can be considered as a

modification to the hill climbing algorithm by adding a stochastic decision and a

cooling schedule. Similar to hill climbing algorithm, the trial solution is always

accepted if it performs better, but inferior solutions can be accepted with some

probability as well. This stochastic decision allows the algorithm to escape from the

local optima. The acceptance probability is a function of the system temperature

201

and it decreases over time, P = exp(- FIT), where F is the increase in the cost

function and T is the temperature in the simulation (a parameter that controls the

accepta,nce probability of the worse solution). Initially when T is high the algorithm

accepts inferior moves with higher probability. However, as the system cools down,

moves to inferior solution are accepted with smaller probability. The simulated

annealing algorithm consists of three nested loops

Temperature cooling: The outer loop controls the temperature cooling; the

temperature is reduced by a factor of r after executing Nt search-radius loops.

Other cooling schedules are proposed in the literature.

Neighborhood Search radius: In a continuous problem the neighborhood of a

solution are those solutions that can be reached within a certain radius in the search

space. The size of the search radius determines the characteristics of the search.

Large radius causes the search to be explorative and less likely to converge to an

accurate solution. On the other hand, small radius causes the search to be

exploitive and less likely to explore the search space well. Therefore, normally an

adaptive mechanism is used to adjust the search radius such that early in the

search, it is large (explorative) and it decreases as the search gets closer to the

solution (exploitive). In our implementation, the search radius is adjusted based on

the rate of the accepted to the rejected moves as propose in [39]. In this approach,

202

when the number of accepted moves increases the search radius increases and when

the number of rejected moves increases the search radius decrease.

Control point: The inner loop considers new moves in all directions by

perturbing the control point in all direction. The perturbation is constraint between

oand the maximum step length in each direction. Transitions that lower the cost

function are always accepted, while transitions that raise the cost function are

accepted with probability based on the temperature and the size (cost) of the move

(Metropolis criteria). The simulated annealing converges when the minimum

become stable that does not change for more than epsilon after several temperature

reduction loop iterations. The complete algorithm is given in Algorithm1. The

choice of a suitable initial temperature, search radius and the cooling schedule are

highly problem dependent and normally are chosen empirically and they have a

significant impact on the performance of the algorithm. Below is a short summery

on how to guide the parameters (shown in Figure 7.3) selection [172] .

• maxiter: This is the maximum number of model evaluation. The algorithm

returns the best optimal value obtained so far when the number of model

evaluations reaches this number.

• simanneps: This is the convergence criteria of simulated annealing. Simulated

annealing converge if the change in the accepted solution remains less

simanneps for a "check" temperature reductions iterations.

203

• T: This is the initial value of the temperature. It is used to control how fast

the simulated annealing search proceed. High T values, results in acceptance

of most uphill moves (like random search-exploration of the search space).

'When initial temperature is low, uphill moves are mostly rejected.

• Tt: This is the temperature scheduling; the temperature is reduced by this

factor at the end of the temperature loop. Large rt result in reducing the T

slowly, which means the search proceed slowly and explores the search space

better. Lower rt value means reducing the temperature faster which results in

faster converegence but maybe to a local minimum. rt must be between 0 - 1.

• 1Vt : The number of loops before temperature reduction. High values results in

better exploring the current search area, but more computations.

• n s : Number of loops before adjusting the search radius. The search redius is

adjusted such that half of the moves is accepted.

• vm: The initial maximum step length. vm is adjusted at the end of the radius

search loop. When simulated annealing select a trial point the point will be

within the search radius.

• cstep,lratio and uratio: These parameters are used in adjusting the maximum

step length (search radius) at the end of the ns loop. The algorithm adjust

the maximum stepp value for each direction based on the number of accepted

moves and number of rejected moves 5.5. For instance, to keep the ratio

204

between the accepted to rejected moves between .4 and .6, we set the laratio

to .4 and uration to .6. §5.5 for more details.

• Check: The number of temperature loops to check for converengence. If the

change in the optimal point is less than simanneps then the algorithm

terminates.

ODESSI allows running multiple scientific methods or multiple instances of

the same method concurrently assuming the availability of sufficient computational

power. In ODESSI concurrency can be achieved in two ways, 1) by applying the

scientific method multiple times with different parameters and/or different initial

values and 2) by parallelizing the scientific methods itself. Since ODESSI provide

the mechanism to utilize any amount of computing resources, maximum

performance can be achieved by applying both types of concurrency and so it is

desired to parallelize the scientific methods to increase the degree of parallelism.

Once the method is customized and launched for execution, the method requests

model solution from the execution manager whenever it needs a solution. ODESSI

uses a parallel version of the simulated annealing as described in section 5.5.2.

7.1.3 Sensitivity Analysis

A modern scientific simulation typically has many input parameters, but in

practice the simulation response is dominated by only a few of them. The response

can be highly sensitive to small changes in some of them and insensitive to changes

205

in others. The study of how the variation in the output of a model can be

apportioned to different sources of uncertainty in the input parameters is the

subject of the sensitivity analysis [183, 182]. The goal of the analysis is to quantify

the sensitivity of the model output due to uncertainties in the input parameters or

model assumptions.

The outcome of a sensitivity analysis is a ranking of the model input

parameters according to their significance/contribution to the model output. This

information is valuable for multiple purposes: 1) improving model robustness by

identifying the critical regions of the parameters space and uncovering errors in the

model, 2) prioritizing the most influential and relevant parameters to focus research

on improving the uncertainties, 3) simplifying the model by reducing the number of

parameters which allow more efficient computation for other investigation (e.g.

optimization) by fixing the values of the insensitive parameters, 4) clarify the

interaction between the input parameters which allow better understanding of the

model behavior, and 5) rule out the investigator bias. In general, sensitivity analysis

is useful for any process that needs to know the most influential parameters on the

model output variability such as in verification and validation processes. A formal

definition of global sensitivity analysis that captures these goals.

Senstivity analysis (SA) is the study of how the variation in the output
of a model (numerical or otherwise) can be apportioned, qualitatively or
quantitatively, to different sources of variation [183] .

206

In the literature, one finds several sensitivity analysis techniques. The

earliest and most intuitive techniques are local methods. Local methods provide

estimation of the effect of local variations in an input parameter on the model

output. Thus, their main concern is with input parameters that are known with

certainty. Local methods are based on the partial derivative computations of the

model output with respect to a model input parameter. This derivative is used as a

sensitivity measure. These methods provide informatics results for linear models

and only when the input uncertainties are locally restricted to a narrow region.

They suffer strong limitations when the models simulate nonlinear phenomena and

when the response cover a wide input parameters range, which is the typical case for

science and engineering phenomena.

Recently, most sensitivity studies are focused on global methods. These

methods analysis the entire range of variation of uncertain input parameters (they

analyse the whole parameter space). They are based on random-sampling Monte

Carlo techniques which allow the computation of each parameter's contribution to

the model output variance. Therefore, our main focus is on the global sensitivity

analysis approaches. Global sensitivity methods are typically classified into two

categories, regression-based methods, and variance-based methods.

1. Regr-ession-based methods: Correlation coefficients measure the linear effect of

changes in the input parameters on the model response. Therefore, they can

be used as a measure of global sensitivity. The Standardized Regression

207

Coefficients (SRC) are exactly the correlation coefficient between the

dependent and the independent variables. They are based on a linear

regression of the output on the input parameters. However, in case of general

nonlinear and nonmontonic models, the sensitivity ranking results of these

approaches can be misleading. Therefore, these approaches are useful when

the model has strong linearity.

2. VaTiance-based methods: In these methods, the variance of the model output is

decomposed into factors induced by the input parameters. This decomposition

is usually referred by ANalysis Of VATiance (ANOVA). The most common

decomposition is Sobol' decomposition which produces global sensitivity

indices. Sobol's indices provide satisfactory results for the general nonlinear

and nonmonotonic models.

In this dissertation we focus only on the Standardized Regression Coefficients

(SRC) global sensitivity analysis which ODESSI currently support, other

approaches are to be added.

7.1.4 Standardized Regression Coefficient (SRC)

The Standardized Regression Coefficients (SRC) method is based on multiple

regression analysis of the model output on the input parameters. Each SRC

coefficient quantify the change in the model output per unit change in an input

variable when all other variables are held fixed. It provide a measure of the strength

208

of the linear dependence between the dependent variable and an independent

variable. The SRC method provides a good approximation of the global sensitivity

measure when the underlying model possess strong linearity. One advantage of the

method, is its relatively low computational cost compared to other global methods

since their performance is independent of the number of input parameters. The

SRC method consists of three steps: 1) a multivariate samples of size n of input

parameters, Xi, i = 1, ... , k, is generated using some sampling method, 2) the model

output, Y, is computed by running the simulation with inputs given by the samples,

3) the output vector Y and each input parameter vector (Xi) are standardized, so

that they have a variance of one and a mean of zero, by subtracting the mean and

dividing by the standard deviation, Y = (Y - Y)/Sy and Xi = (Xi - XJ/Si' where

the hat denote a standardized variable, and 4) a multiple linear regression of the

standardized output, Y, on the standardized inputs X is applied,

Yi = f30 +L f3/i ij + Ci,

j

where ,6j , j = 1,··· , k (k being the number of input variables) are the standardized

regression coefficients to be determined, and Ci is the residuals. The least square

method is one common way to determine the coefficients f3j by minimizing the sum

of the square of residuals, ~i Ci. Once the f3j are determined, they provide a

measure of the influence of an individual input variables X j on the variance of the

209

output Y. Since each standardized regression coefficient represents a change in the

model output per standard deviation change in an input variable, the coefficients

are the same regardless of the independent variable units or scale. Some statistical

packages such as Rand Nlatlab provide fJj automatically in addition to the ordinary

unstandardized coefficient bj (the coefficient of regression performed on on

unstandardized variables). fJj and bj coefficients are related by the formula,

fJj = (sx)sy)bj , where Sy and SXj are the standard deviations of the dependent and

independent variables. Since fJj are multidimensionality averaged measures, they are

considered global measures. However, to explore the parameters space a large

number of samples must be used.

'When using the SRC method it is important to consider the level of the

model linearity. The fraction of the model linearity is given by the model coefficient

where Yi denotes the estimate of Yi obtained from the regression model. R~

represents the fraction of the vaJ'iance of the model original data explained by the

regression. The validity of the SRC measure is conditional on the value of R~. The

closer R~ to one, the better is the results. For linear models, R~ is equal to one, but

for nonlineaJ' models, it is less than one. In practice if R; is less than .7, SRC as a

210

PClrClm~l~rs D[}i~div~Fullr:

xl

ParMilClcrs Spec

)(4 x5

From valll~ 1-10,0

To vilille 1'1-0,-0-------

rvlCZUl 13,5
sid 1-0,-1)-'-----

NUIii points 11000

DI(C ilnccl

FIGURE 7.4: Sensitivity analysis specification interface

meaS1ll'e of spnsitivity is considered invftlic!. For example, if R~ = .8, then the model

is 80S<, linear which mean 80% of the variance ill the output is explained bv the

regression model, but the rest 20% arc ignored.

7.1.5 Sensitivity Analysis Using ODESSI

ODESSI cunently supports the SRC-basecl sensitivity analysis. Since

sensitivity analysis is defined for i1 single valued output, the user first defines an

objecr.ive fUllction that depends on the simulation Oll tput. Figure 7.4 shows the uscr

interface to customize the sensitivity (walysis method. Dudcr the "Pammcters" tab

211

the use can selects the parameters under investigation from all available model

input parameters. For each parameter, the user specifies the upper and lower

bounds, the distribution to be used in sampling the parameter and the

corresponding parameters associated with the distribution. Also, in the

"Parameters" tab, the user can specify the number of samples to be used in the

analysis. Typically, at least 1000 samples are necessary to conduct a useful analysis.

Larger number of samples will cover the space better, and produce more accurate

results. Currently ODESSI supports only uniform and normal random sampling.

Other sampling methods can be added as discussed in §7.1.1

Once the objective function and the model input parameters are specified.

ODESSI generates the matrix as discussed in section §7.1.4. Each row corresponds

to computing the model at the inputs. Each column corresponds to sampling a

parameter from the specified distribution. The first n-column in the matrix

corresponds to the n-input parameters, and the rest corresponds to the objective

values. After computing the matrix using the execution manager on distributed

resources, ODESSI interfaces with R package and computes the multidimensional

regression fit for each objective value and returns to ODESSI the parameters with

their corresponding senstivity coefficient corresponding to each output.

Using this simple interface only, the user can conduct sensitivity analysis and

study the sensitivity of the model output to different input parameters under

different scenarios. All distributed computing required to compute the matrix and

212

the interfaces required to use other packages such matlab or R are completely

abstracted out. Further, once we add other sensitivity analysis methods, the user

will be able to experiment and compare the results obtained using different

methods. ODESSI allow conducting this analysis concurrently with other analyses

such as optimization or other instance of the sensitivity analysis but with different

setting such as different sampling distribution, or different lower and upper bounds,

or different mean and standard deviation.

7.2 Execution Model

Scientific simulations use high resolution computational models to achieve

accurate modeling of real world problems. This results in long execution time which

typically ranges from minutes to hours. Simulation-based scientific investigation

requires solving the simulation many times (thousands of times) for each

investigation. Each investigation is usually repeated multiple times to experiments

with different parameters. As a result, tens or hundreds of thousands executions of

the simulation axe required to conduct several investigations to provide answers to

scientific questions. However, most of these computations are independent and can

be done concurrently on distributed resources. Concurrency in these computations

can be achieved in two ways, 1) by concurrent execution of multiple scientific

methods and multiple instances of the same scientific method (with different

parameters) , and 2) by parallelizing the scientific investigation method itself.

213

Therefore, any computational environment for scientific investigations must

support distributed computing. As mentioned before, and shown in Figure 7.1,

ODESSI supports distributed computing by explicit separation between the

execution of the simulation and the scientific investigation methods and then couple

them together through the Simulation Manager entity. This design has several

advantages:

• Abstraction of computation. Developers of new scientific methods do not

need to worry about distributed computing, all they need to do is to invoke a

method provided by the base class of the scientific method which allows them

to focus on the logic of the method rather than on the execution aspect.

• Separation of concerns. Modification to the execution model does not

require any modification to the scientific methods and modification to the

method does not require modification to the execution or data models.

• Better utilization of system resources. All scientific methods in an

invitigation share the use of resources, and so synchronization in a parallel

methods will not cause resources to be idle

• Robustness. Failure of a node can be handled by the execution layer instead

of failure of the scientfic method.

214

• Scalability. When new resources are added to the environment (purchasing

new computer), nothing need to be modified to use them, all is needed is to

register the new resources with ODESSI.

• Interoperability. The architecture and operating system of the resources are

not of concern to ODESSI, once the simulation is compiled and can run on the

new a resource, the resource can be used by ODESSI, whether the resource is

a PC, MAC, linux box, cluster, GPGPU device, or cell-broadband engine. All

these heterogeneous resources can be utilized in conducting scientific

investigations.

• Reuse and sharing of previous solution. The execution layer can employ

a database to store previous simultion executions and reuse these solution

upon request by any method.

In this section we describe how to specify and describe a simulation object.

Then we describe the implementation of the simulation manager object that is used

to manage and control the execution of the simulation.

7.2.1 Simulation Specification

A simulation manager object controls the execution of a single simulation. A

simulation object is created by specifying the simulation characteristics such as the

simulation name, the simulation input/output parameter names, their data types

215

and their initial values. In addition to simulation characteristics, the execution

characteristics are specified. These include information about the resources for

execution such as the execution site address, the simulation binary path on each

site, and the working directory on each resource. The simulation object is defined in

terms of its input and output. Conceptually the simulation inputs can be classified

into three kinds: data file inputs corresponding to data files, constant parameter

inputs corresponding to complex data types such as arrays or tables, and variable

inputs corresponding to atomic data types. Data file and constant parameter inputs

can not be varied during the execution of a scientific investigation method since

investigation methods are defined for atomic data types such floats or doubles. The

variable inputs are the independent parameters that can be varied in conducting

controlled numerical experiments, for instance, to perform sensitivity analysis or

optimization.

Data files are always passed to the simulation by moving the data file to the

executions site working directory and the name of the file is passed as a constant

parameter. Data structures such as arrays or tables are passed to the simulation as

text. ODESSI provide default generic translator functions that translate

multiclimensional arrays and tables structures to text which can be written to a

pipe. The default translator for multidimensional arrays translates array object to a

string assuming row order C style arrays. The table structures default translator

writes the rows of the tables separated by the end line character. ODESSI also allow

216

users to define their own translators in case the simulation expects different format,

for instance, further header information, column order alTays instead of row order

arrays, or other user defined structures that are not defined in ODESSI. Before

ODESSI passes the input parameters to the simulation, it checks if a user defined

translator is provided, if so it uses it, otherwise it uses the default translator.

Default translators for atomic data types are the trivial ones, which convert the

data type to a string with the specified precision in case of float and doubles. The

following script code snippet demonstrates the design in a more clear way.

"forward' ,

This line specifies the binary executable name of the simulation, This line specifies

the binary executable name of the simulation,

{'geom':('datafile', str), 'tol':('atom', float),

'maxiter' :('atom' int), 'brain' :('atom', float),

'skull': ('atom', float), 'scalp': ('atom', float)}

This line defines the input parameters data types, the 'geom' parameter is defined

as a data file, so the 'geom' input parameter expects a file name. ODESSI handle

this type by moving the file to the working directory and passes the file name as

parameter to the simulation. The rest of the parameters are atomic parameters with

their specified types. These atomic parameters are to be used in the investigations

to conduct, for example, sensitivity analysis or optimization or any other scientific

217

investigation method. In this definition we recognize that 'tol' and 'maxiter' are

independent variables associated with the simulation itself, they are not associated

with any other variables. On the other hand, the variables, 'skull', 'scalp' and

'brain', are atomic variable associated with the geometry data file (the 'geom'

parameters) in which different geometry can have different set of associated

parameters, for instance, we might have a geometry that has four tissues (brain, csf,

skull and scalp). In this case we need to redefine the simulation and add the fourth

parameter. This solution is acceptable when we consider conducting a rapid

investigation on a simulation for a specific study. But, it becomes inconvenient

when building a domain investigation environment which requires defining the

simulation only once. The solution to this problem as described in section [] in the

context of building a domain investigation environment is by defining a data object

type. The data object type contains a list of parameters associated with the data

object in addition to other information (e.g. metadata). Once the data object is

selected the simulation input parameters list is extended with the data object

associated parameters. In this case the simulation is needed to be defined only once.

{'pots':('table', [('id', int), ('pot', float)],

'numiter' :('atom', int)}

This line defines two simulation output parameters, the first one is a table with two

named columns, the first column has a name, 'id' and an integer data type, and the

second column has a name 'pot' and a float data type. The second output

218

parameters have a name 'numiter' and integer data type. ODESSI uses numpy [139]

arrays for managing tables and arrays. So the 'pots' will be returned to the

scientific method that requested the solution as a numpy array that can be used in

evaluating an objective function, computing a metric, performing visualization, or

any other kind of analysis.

sim dvalues {'geom' :'some_geom_file.txt', 'tol' :.0015, 'maxiter':300,

'brain': .25, 'skull': .018, 'scalp': .44}

This line sets the default values of the input parameters. The default values are

passed to the simulation when the simulation started, and then only the parameters

that are changed from the previous execution are sent to the simulation. Further,

any missing parameters in the request for a solution take its default value.

Similarly, the upper, lower and precision values are defined for every atomic

parameter. Then these specifications are passed to the simulation constructors to

create a simulation object.

simobj Simulation(name = sim_name, input= sim_inputs_types,

output= sim_output_types)

Although these specifications can be specified in the investigation script

directly as shown above, in section §7.4 we show that they need to be specified only

219

once and stored in the domain database for reuse. Also, a Traits-Ur cur interface is

used to edit these specifications.

7.2.2 Simulation Manager

The simulation manager class is the user interface to the execution manager

class. A simulation manager object is created in the main thread by the

investigation script as shown in Figure 7.1. A simulation object and other optional

features are passed in at the initialization. When a simulation manager object is

created, it spawns a thread and starts the execution manager. The simulation

manager class currently provides three methods, stop, start and get-report. The

geLreport method provides some information about the execution, such as the

average execution time, the number of reused solutions and the number of actual

solutions. "More features can be added to this class to monitor the execution of the

simulation.

The execution manager manages and controls a single simulation. It acts as

a server that provides the simulation response given input parameters. The

execution manager is an internal class and is not modified by the user. Typically it

gets instantiated and runs in its own thread by the simulation manager and the

Planner base class requests solutions from the execution manager.

----------------_._---------

220

7.2.3 Execution Manager

Threads request solutions from the execution manager by delivering

messages to its mailbox. The Simulation manger extracts a message from the

mailbox, handles the request and then delivers the solution to the requested thread

mailbox. In handling the request the simulation manager employs a pool of workers

for simulation execution and a solution cache database manager thread that

maintains a history of solutions for reuse. The interaction mechanism between the

simulation manager thread, the database manager thread, the workers and the

requesting processes is described below.

1. If the next message in the mailbox is a solution request, the execution manager

thread delivers the request to the DB manager mailbox to query if the

solution is already exist and it proceed to handle next message in the mailbox.

2. If the message is a successful solution from a worker, then it delivers a copy of

the message to the database manager mailbox to update the database with

the solution and delivers a copy to the requesting process mailbox.

3. If the message is a query success from the database manager, then it delivers

the message to the requesting process.

4. If the message is a query failed message from the database manager, then it

delivers the message to the least loaded worker process mailbox.

221

5. If the message is a quit message from the main thread, then it delivers a quit

messages to the workers and database manager and waits until they quit and

it quite.

Dynamically spawning new workers or terminating workers for load balancing can

be implemented in a straightforward manner. If the number of pending requests is

large, then it spawns new workers if there are available resources. If some workers

are idle for some time then it terminates some of the workers. Fault tolerance can

be implemented easily, for example if a worker is timed out then the request can be

resubmitted to another worker.

7.2.4 Workers

The execution manger starts a pool of worker threads, where each worker in

the pool corresponds to the execution of a simulation on a resource. For the workers

to be able to interact and control a simulation, a slight modification to the

simulation interface is required. This can be achieved either through a very simple

modification to the main function of the simulation or through a wrapper around

the unmodified simulation. The communication protocol between ODESSI workers

and the simulation is very simple, where the simulation (or simulation wrapper)

responds to four messages. The "param" message allows parameters to be specified

for a run. The "go" command initiates a simulation run. The "result" command

222

requests outputs be retrieved from the simulation. The "stop" command asks the

simulation to terminate. These commands take the following format:

[param] [input-parameter-name] [input-parametr-value]

[go]

[result] output-parameter-name

[stop]

We chose this approach instead of passing the parameters through the

command line and make a system call because in typical scientific domains, the

simulation needs a large input files. Therefore, restarting the application every time

a solution is requested can be inefficient especially if we conduct investigations that

need thousands of simulation runs with the same input data file set and only some

parameters needs to be varied as our domain problem.

The worker maintains information about the current state of the simulation

parameters. It only sends the parameters that are different from the current state

parameters of the simulation. Normally scientific investigation methods vary a

subset of the parameters and assume the rest of parameters to take the default

values. The workers update the missing parameters with their initial values as

specified in the investigation script.

Currently ODESSI support three types of communication with the

simulation. When the simulation runs locally the worker communicate with the

simulation through pipes. When the simulation runs on different cluster, but on the

223

same file system, the named-pipes are used. In this case the worker creates the fifo

files and pass their name to the simulation as argument. It removes these files

before it quit. When the simulation runs on remote site, the worker communicates

with the simulation through socket. This is implemented by running a simple server

on the remote cluster, the server starts the application upon the worker request, and

then the server forward all the commands to the application and returns all the

responses from the simulation to the worker.

Also, ODESSI supports executing a simulation on a Portable Batch System

(PBS). In this case, a multi-threaded server runs on the front node and accepts

connections from ODESSI workers. Each connection handled by a thread to service

one ODESSI worker. For each connection, the front server handler thread generates

a shell script to run an inner server on the inner nodes and submits it to the PBS

scheduler. After submitting the shell script the handler thread listens Oll a port

number for connections. The port number is passed to the inner server as an

argument. Then the inner server connects to the front server on the provided port

number and provides it with its address and port number. The front node thread

that handles the connection connects to the inner server and request running the

simulation on the node. The inner server runs the simulation on the inner node and

interacts with the simulation through pipes. The threads on the front server use

select to communicate the parameters and the solution between the inner server and

the ODESSI worker.

224

Remote servers can be started and terminated by ODESSI using utility such

as pexpect. Data files can be moved using scp and pexpect as well. Currently we

use ssh with public and private keys to start the remote server.

7.2.5 Database Manager

The database manager manages a repository where simulation solutions can

be obtained. \iVhen the database manager is started it creates a table in the

ODESSI database. The name of the table is the simulation name if it doesnt exist

in the database. The table fields correspond to the input and output parameters as

specified in the investigation script and their names are exactly the names of the

parameters. If some parameters are data files, then only the name of the data file is

stored. If a table with the same name already exists, then it compares the fields of

the table with the input/output parameter names. If they are the same, then it uses

that table. Otherwise, it generates a new table. The message interface is very

simple for the database manager, composed of query and update messages

corresponding to data lookups and additions.

The database manager retrieves messages from its mailbox. If the message is

a query message, it updates the missing input parameters in the message with their

corresponding initial values and then it looks up the data base. If the query is

success then it delivers the solution as success to the mailbox of the execution

manager. Otherwise it delivers a query failed message.

225

7.3 Scientific Data Models

A data model is an important part of any problem solving environment. The

main purpose of scientific data models is to manage, share and archive domain data

and to provide support for software application for investigation and visualization.

Scientific data may come from a variety of sources (e.g., remotely sensed data,

experiment, simulation) in a variety of formats which includes multi-dimensional

arrays, tables, and scalar and vector fields. Even from a single data source, multiple

data sets can be obtained. Each data set typically contains several independent

variables (e.g., time, spatial, spectral) and many dependent variables. Therefore,

different domains typically have different data management requirement and thus

several data models exists to satisfy these needs. Examples of domain specific

models includes GML (Geography markup Language) [78], GRIB(Grids in Binary)

and many other XML based languages, such as Chemical Markup Language

(CMLJ [37], JVIolecular Dynamics Markup Language[130], Micro-Array and Gene

Expression Markup Language (MAGL-ML) [124], Genome Annotation Markup

Language, Numerical Data Markup Language (NDJVIL) [134], Protein Extensible

Markup Language (PROXIML) and many more. More recently, there exist several

domain independent data models includes, HDF (Hierarchal data Format) [931,

CDF[30]/netCDF[137, 160] (Common Data Format), FITS(Flexible Image

'Il'ansport System) [62] , XSIL (eXtensible Scientific Interchange language) [219]. The

226

common goal of most scientific data models is how to present and manage

multidimensional arrays, tables of records, images and their associated metadata.

The traditional approach of handling scientific data is through data file

structure. This approach is generally inefficient in storage, access, ease of use, data

sharing and interoperability across applications or platforms, in particular, for large

and complex data sets. Further, the extensibility of such approach is limited. Any

process that accesses the data requires developing software that can manage the

arbitrary data. While a reliable investigation environment should support the file

approach for rapid prototyping and analysis, the environment should support some

type of modern data models for accessing domain data for the purpose of building

domain investigation environment. To handle this issue, there should be an abstract

layer that interfaces between the data and the investigation tools where arbitrary

data objects can be created and managed, and new investigation tools can be added

independent of the domain.

Therefore, in the context of scientific investigation environment there is a

need for a data model that reflects the structure of the data and how the data can

be found, selected and accessed. Building such a reliable scientific investigation

environment requires some kind of database model that realizes modern database

management system, but is able to handle scientific data sets and applications. It

should be easy to use, support large data sets, accommodate multiple data structure

and be extensible where new data structures can be added. Such a domain data

227

model should provide a simple way for accessing self-describing data and should

handle multiple simulations and application requirement such as investigation,

visualization and data analysis. Also, the data model should be independent of the

scientific domain. Modern data models put a considerable attention on metadata

support for the management of data. Metadata provide the mechanism to formulate

queries to select a data object of interest for analysis and investigation. Metadata

can be classified into four categories according to their use:

• System metadata. The data that describes the structure of the data. It

provides information on how to access the data structures such as data types,

dimensionality, shape, endianess and size.

• Attribute metadata. A user defined metadata that provides information

about the data object itself. It is sometimes referred by the data object

attributes which is used to find and select the data object.

• Relationship metadata. A user defined metadata that provides information

about the relationship between a data object and other data objects in the

form of references.

• Descriptive metadata. A user metadata that provides further description

about the data object, such as comments from the user who collected the

data. This kind of data is typically in the form free text, for instance, to

describe how the data is collected or what can be done with the data.

228

Relational database management systems provide a modern successful solution for

data management in business domain. However, due to the structural nature of

scientific data, they do not provide an effective solution. The relational model does

not handle multidimensional, hierarchical structures that are common in scientific

data sets efficiently. Further, relational databases do not provide sufficient

performance for the size, complexity and computational requirement of scientific

data. On the other hand, relational database models are successful in metadata

management. Therefore, it is sometimes used to manage the metadata while

keeping the actual data in other form (e.g., data files).

In summary, we need a data model with the associated software that allows

finding and selecting data objects from a domain data sets easy. The data object

should be self describing which allow accessing and sharing the data for scientific

investigation, data analysis and visualization. The goal is to simplify the data

management part of the scientific investigation which allows scientist to focus on the

science aspect of the investigation. The HDF5 (Hierarchical Data Format) [?] data

model and its Python PyTables API[159] provide a powerful data model that allows

us to store other domain investigation constructs such as simulation description,

resources, and simulation runs provenance. In the following subsection we describe

the main characteristics of the HDF5 data model and PyTables packages. The data

management component of ODESSI with a scope to provide an easy way of

229

constructing a domain specific scientific investigation environment is described in

section §7.4.

7.3.1 Hierarchical Data Format (HDF5)

The Hierarchical Data Format (HDF) is a self-describing file format with a

software library that provides an API for storing and retrieving datasets with their

associated metadata information. HDF5 was developed for transfer of various types

of scientific data among heterogeneous machines and designed to address data

management in science and engineering. It provides access to basic atomic and

composite data types and simplifies the file structure to include two types of object,

Datasets and Groups. Datasets are multi-dimensional arrays of records where the

elements are based on atomic and composite data types. The data array can be

extended in all possible directions along all dimensions. The size of a data set is not

required to be known in advance and data can be written in smaller blocks. Groups

are container structures which can hold other groups and datasets. HDF5 files start

with a root group, and objects are identified by their pathnames with respect to the

root similar to UNIX directory structure. This result in a hierarchical data formats.

Metadata associated with a group or a data set is stored in the form of

named attributes (name/value pair) attached to the HDF5 object. Metadata

information including endianess, size, shape, architecture and user defined attributes

are always stored with the data. More complex structures representing complex

230

data including images and tables can be defined using the HDF5 basic objects:

datasets, groups and attributes. Further, HDF5 provide dataspace objects that

represent selections over dataset regions. HDF5 index table objects efficiently using

B-trees, which make it, works well for time series data (e.g., EEG records, network

monitoring). The user of the HDF5 data format does not need to know about the

technical low level of the data representation. The user needs to operate only on the

higher level structures.

HDF5 has a powerful, simple, efficient and flexible data model that supports

files larger than 2 GB with unlimited size of objects stored in them and parallel

I/O. The data is represented internally in memory and externally on storage device.

The goa.l of the internal representation is to maximize performance while the goal of

the external representation is for data sharing, compact storage, and efficient I/O.

The HDF5 library stores compressed and uncompressed data sets. It is designed to

take advantage of the power and features of today's HPC computing systems.

For these reasons, we chose HDF5 file format model to store domain data

objects and other domain objects (e.g., simulation description as described below)

to enable building a domain investigation environment.

7.3.2 PyTables

PyTables [159] is a Python object-oriented package built on top of HDF5

library and numpy package [139] for managing hierarchical and large data sets.

231

PyTables doesn't provide a complete wrapper of the HDF5 library. However, it

provides an efficient, flexible and easy to use tool to manipulate large data table and

array objects in a hierarchical data organization. A PyTable table is a collection of

records whose records are stored in fixed-length fields. PyTables array objects are

analogous to tables with all of their components are homogeneous. They can be

extended along single dimension and the array rows can have variable length.

Pytables data can be retrieved and post-processed with another HDF5 application

and so the HDF5 interoperability and sharing features are preserved.

PyTables support several features includes, 1) variable sized tables and large

number of rows, 2)multidimensional and nested tables cells (a table column can be

made of other columns), 3) table indexing for efficient search, 4)support for

numerical arrays (numpy, numeric, and numarray), these objects are generally used

by many data analysis and visualization tools as well as ODESSI, 5) enlargable

arrays and access slices of the data sets, 6) Support of a hierarchical data model, 7)

Support of user defined metadata, beside supporting system metadata, 8) the

ability to read/modify a large portion of generic HDF5 files objects, 9) Support

data compression and high performance I/O and 10) Support of files larger than

2GB with architecture-independent format.

232

7.3.3 ODESSI data coupler

In this section we describe the domain data coupler to ODESSI environment

as shown in the design diagram. Domain data objects are defined in terms of a data

object class. Currently ODESSI support two types of data objects,

multi-dimensional array objects and table object. A variety of complex scientific

data structures can be defined in terms of these structure. The multi-dimensional

array has a homogeneous data types while columns in the table object can have

different data types. Data objects are instances of the DataObject class. Each data

object is defined in terms of five attributes:

Kind attribute. The kind attributes are domain controlled vocabulary used to

annotate the domain data objects with semantic information. It is used in the

search for a particular object. More sophisticated approach through the use of

ontology and sematic query in the context of conceptulizing the domain can be

used. However, the ontology and sematic queries are not the focus of this

dissertation and we leave this area as a future extension to ODESSI environment.

Numerical data. Numerical data (e.g., array or table) is implemented as a

numpy array object. The system metadata that provides information about

accessing the data structure (e.g., data types, shape, endianess) is stored as part of

the numpy array object and they can be qured using the numpy package.

233

Metadata attribute. The user defined metadata is a dictionary of (name/value)

pairs attach to the object. A data object of a specific kind can be located by

formulating a query in terms of the objects' metdata.

Parameters list. Each data object can have a list of variables that can be varied

to conduct scientific investigations to study their effect on the simulation output.

This approach is necessary as generally the set of variable depends on the data

object. One example from our head modeling domain, is that the scalp potential

dependes on the head tissue electrical properties and so the head tissues properties

can be varied to study their effect. The number and kind of head tissues can be

different from one geometry to another as segemented from MRI image. For

example, for the same subject we could have a geometry that consists of three

tissues (skull, brain, scalp) or four tissues tissues (adding csf). Similary, in studying

the propagation of light in biological material, the set variables depends on how the

tissue under study is segmented into a number of hetrogeneouse segments, each with

different optical properties (e.g., refraction and absorption coefficients for each

seqgm€nt).

Reference. The data object location in the domain data hierarchy, this reference

is used to get the object from the HDF5 file. The refernce is similar to the UNIX

directory path name.

234

Since ODESSI interacts with a simulation through files or pipes in a loosly

manner, the data object (array or table) must be written to a file, and then the file

copied to the execution directory, or passed through a pipe to the simulation. Since

(in general) there is no standard way of the format of the scientific data file object

expected by simulations, the data object must be translated into a form that is

expected by the simulation. ODESSI allows the user to provide a translation

function that translates the data object to the form accepted by the simulation as

explained in the simulation coupler section. Alternatively the user can provide a

wrapper function to the file prduced by the generic methods provided by data

object class. The data object class provide two generic methods to read/write data

objects from/to a data file. When the write method writes a data object, the file

consists of a header section and a data section, the header section contains the

metadata and parameters and the data section contains the actual data.

Domain data objects are stored in an HDF5 file. Each data object is stored

as a leaf in the HDF5 hierarchy. The Metadata, kind and the parameters list are

stored as attributes to the data objects.

7.4 Building a Domain PSE

Several scientific disciplines are now focusing on developing domain

environment for scientific invetigation. The focus of these environment is on how to

allocate and coordinate the use of computational resources (both system and

235

software) to create runs, manage scientific domain investigations, manage the

domain data, and experiments results in an easy to use environment. Environments

such as ViroLab[210], NEES[135] and BIRN [24] address some of these issues by

offering higher-level services (e.g., analysis, data management, simulation) while

hiding backend complexity. The ability to abstract and reapply scientific methods

for new scientific investigations or new scientific domains in these environments is

not supported. The scope of ODESSI framework is to enable building such domain

investigation environment by abstracting the common components of such

environment in a reusable framework that can be applied on other domains. This

includes simulation execution, domain data management, applying common

scientific methods and procedures, and investigation provenance.

In ODESSI the scientific domain is presented as a HDF5 file, where the

simulation description, data objects descriptions, and simulation runs are stored and

managed. The ODESSI framework provides the simulation execution engine, the

common scientific methods to be applied in the investigation, and the domain data

managements. In addition, ODESSI can be extended with other domain-specific

methods and procedures. The HDF5 file format guarantees interoperability with

other applications, platforms and languages. ODESSI specific objects (objects that

are meaningful only to ODESSI) in the HDF5 can be ignored by other application.

In the following we describe the domain management component of ODESSI which

includes simulation description, data objects and other domain related objects user

236

?': Edit properties - 0 x......,

Domain Sirnulalion Re:;ourcc Dilla

I::D ~ ~ [!] G
Add 0 iecl Define ObJecr Add Resourcc Add Simulation Edil Simulalion

'~
..........

',T,T..r.."lr:r.. UI1"1' ,41 '

P"r,:lI11ClerS Exec Sitl~s

-
N:l/no::: I,W,:ChclI1_scf

Simid: IW:ChCIll_scf ~I

~G.l g 01 ~
A

10 Name Type L,YNer BoullC Upper BOUIK Proc Value -

Innll! ~ IFe_s_14 ('atom'. floc 0001 1000000 4 0.041889

I"IPUt Fe s'". 15 ,'atom' floc 0001 1000000 4 0.012567

Input Fe s 10 ':'atom'. floc 0001 1000000 4 7, 37t..77

01< I Cancel
I

FIGURE 7.5: The simulation description editor: Tll(~ nC\.llle of the sin1llhtion, its
10 pan-tllleters H,nd the execution sites \vllCrc the simulation is available for execution
H,re specified,

interface. All dOlllain objects arE' specified a.nd euited using Traits-VI editors, which

docs not require tbe user to have any experience with HDF5 API or PyTables ABI.

Tile domain HDF5 file is orgaui7,cd in foUl' groups under the root group amI

mC\.l1a.gecl by ODESSI domainDB c:lass as described belov\!o

Simulations group. This group is a cOllta.iner that cont.ains the descriptions of

the domain simulation objects as described in section ~7,2.1. Each simulation object

is uniquely identified by a simulation id which is used to retrieve the simulation

237

from the domain database for execution in the investigation script. Figure 7.5 shows

the Traits-UI editor provided by the domainDB manager. The editor is used to

specify the simulation executable, its input/output parameters and their data types,

lower/upper bounds, and default values. In the second tab of the editor the user can

specify the executable binary path, working directory, and the environment

variables on each resource. The simulation menu provides other functionality for

editing, deleting and adding simulation objects. Alternatively, the simulation object

can be defined and manipulated using the domainDB methods into the investigation

script as well.

Data group. Under this group, the domain data hierarchy is stored. The ODESSI

domainDB manager provides a method to define a data object schema. The data

object schema (implemented as a Python class) defines the object kind that labels

the object with semantic information (e.g., geometry, potential, temperature). Also,

the data object schema defines the metadata associated to all objects of the same

kind. A query about a data object is formulated in terms of these metadata. Each

data object schema is uniquely identified by the kind attributes (no two schemas

can have the same kind). Figure 7.6 shows the Traits-UI editor used to define and

edit data objects schemas (instance of the data object schema class).

Once the schema of a data object is defined, data objects with the kind

defined in the schema can be added by instantiating the data object or using the

data object Traits-UI editor as shown in Figure 7.7. In addition to the schema

238

OK Canccl A.pply II

'?": Edit properties - '0 X
'-'

Domain SimulZltion Resourcc DZltct

0 I~ 121 ~ U
Add Objcct Define Object Add Resource Add Sirnulcttion Edit Simulation

1'fO I~';'" ...
I

,

ObJcct Dati'l Type
...

~J
,-

ObJect I, iml Geometry
Objl'ipe. ,t;,li :1

D'2sc the geometry of tilc~ ileZld Tal-Ie

rlktZl Data Dim: ~ Atom

53 01GJ Dtype: integ-'r :1 -

Attribute Ty'pe

Isul) race strin~1

sub ';Iendre strin~1

data fo,mal st,in~1

sub, a~loO' inteo.::jer

r'llh fl-'.-'IY·I' ,-.f ~.; n ~
I I

FIGURE 7.6: The data object schema de~cript.ion edit'or, used to deJiui' the data
object structure and metadata.

metadnJ,a. 1'he user can acid other metadata associated to a particular object" bu1'

these lIletada-t.a. will 1101'. be used in the query for an object. They provide extra

infol'lllation 8,bout t.he object Figure' 7.7 (left) shows the metac\nta editor. In

addi1'ion, to the object killcl and rnet.aclata, each data object caD have a list of

varia.blcs. These variables extend the simulation inpnt parameters and can be usrc\

t.o illvcstigatc the effect on the simulat.ion output. Figme 7.7 shows the dR.t.a object

parameters list editor.

239

_ CJ X

.J ~

1.0

,0

Edit properties

1'0 N;;lt'lE= T'~DoJ ll;\'>

Inr.ul bl~lln ('t'lLvm'.II,x'll ,(rS

tl\J:;ul skull '.';'110111' flvrJl .(lvl

lllpill xtllp C";:;ll)oT IIc..1 05

c:.=...:=.:....c= 1~

~

_ CJ X

:lSiiln

J\SCII

Edit propo::rtles

r.:.-,

\..lr;(el

FIGURE 7.7: The data ohject editor, used to create am1 edit a data object. for a
givPll kine!. The metaclata editor (left), i:md tIle parameters edit',or (rigllt).

System resources group. This group conta.ins infonna.t.ion about system

resources includillg the machine addrcss, login name, and passwords. Further

information about the system resources neccssa,ry for executing the simula.tion ca.II

be added in this group.

Invetigations group. Uncler this group the domain runs and investigations aI'('

storl'd. Each r11f1 is identified by a ntn icl. The d(~sCTiptioll of the scientific methods

llscd in the investigatioIl and the simulation icl can be stor8(1 as pm't. of provena,nce

management.

7.5 Summary and Conclusions

The maill aspects of scientific investigation in computational science can]w

classific'd into three categories 1) the applicatiun of scientific met.hods includes tlw

240

specifications and execution, 2) the execution of the simulation and 3) the domain

data management. ODESSI achieves the design goals and requirements by factoring

out these aspects and then integrates them in a loose manner. This design makes

ODESSI environment extensible and open. It is extensible, in the sense that new

methods can be added independent of domain data, simulations, or the execution of

simulation. Also, the simulation can be specified independent of the scientific

methods. It is open, in the sense that scientific methods can be customized to meet

the domain problem requirement.

The ODESSI design provides explicit separation between methods'

specification and execution. A scientific method is captured in fl., module of three

classes: specification class, interface class, and method logic class. The interface

class is concerned with executing and monitoring the scientific method in its own

thread. It provides methods to interact with the running scientific method (e.g., to

monitor the execution and visualize intermediate results). The specification class

allows the user to customize the method. The logic class does the actual

computations. All these classes have base classes that provide some basic common

functionality. The specification base class allows storing the method specifications

with the results as part of provenance management. The interface base class

provides methods to launch the method for execution in separate threads and to

stop and start executing the method. The logic base class abstracts the interaction

of the method from the simulation execution. This separation has other advantages.

241

For example, it allows building GUI interface to edit the method specification

without mixing between the view and the model.

The separation of the execution of the simulation from the scientific method

has several benefits. First, adding a new scientific method will not involve any

concern of how to execute the simulation on distributed resources which makes the

environment extensible. Second, no modification is required on the existed scientific

methods when the underlying system architecture changes. Third the scientific

method can automatically take advantage of any increase in the available

computational power without any modification. The separation between domain

data and scientific methods allow developing methods independent of the domain

data structure which enable reuse of the methods across several domains and

developing general purpose scientific methods.

This chapter provides the main design decisions and technology choices to

implement the conceptual design of ODESSI framework that satisfies the main

requirement. Scientific investigations can be conducted by executing a scientific

investigation scripts that defines the domain data files, the simulations to use, and

apply one or more scientific methods. Domain data objects can be obtained from

the domain data base by requesting data objects from the domain manager.

Scientific methods can be instantiated, customized and executed in their own

threads. Multiple scientific methods and multiple instances of the same scientific

method can be executed concurrently. The simulation solutions from previous

242

executions can be reused. The next chapter will show how the ODESSI framework

can be applied for real scientific investigations.

243

CHAPTER VIII

ODESSI EVALUATION

In this chapter we used ODESSI to conduct several scientific investigations in

two different domains, the human neuroscience domain and the computational

chemistry domain. For the computational chemistry domain we used ODESSI to

extract the model parameters and to conduct several parametric studies to

understand the precision of the model output. In the human neuroscience domain

we used ODESSI in tuning the model convergence parameters, extracting the model

parameters, studying the effect of the geometry resolution, studying the model

output sensitivity to several input parameters, and managing domain data.

The investigations in this chapter demonstrate how easy it is to apply

ODESSI to arbitrary simulation and conduct various kinds of investigations

leveraging HPC. Also, they show how ODESSI integrates the three aspects of

scientific investigations: the execution of the model, the management of domain

data, and the application of scientific methods. The provided investigation scripts

realize the integration of these aspects in conducting scientific investigations. This

244

design factors out the computational parts of the scientific investigation which

allows scientist to focus on the science aspect of computational science.

8.1 Computational Chemistry Domain

One fundamental problem in computational chemistry is the calculation of

the eletronic structure for a given molecule. The electronic structure is often

represented by molecular orbitals, which are determined during the computation of

the electronic energy. This is done using a non-linear iterative approach called the

self-consistent field (SCF) method. Once computed, several properties of the

molecule can be calculated such as electron density and electrostatic potential. The

molecular orbitals are typically expanded as a linear combination of a basis set. A

basis set is a set of mathematical functions used to approximate the atomic orbitals

of a molecule. In quantum chemistry the calculations are performed within a finite

set of basis functions centered at each atom within the molecule.

The atomic orbitals that correspond to a set of functions which decay

exponentially with distance from the nuclei are called Slater Type Orbitals (STO).

They take the following general mathematical form,

STO = N exp(-ar),

245

where N is a normalization constant, a is the orbital exponent, and r is the radius

in Angstroms. The computations using Slater orbitals are expensive, To simplify

the computation, generally each STO is approximated as linear combinations of

Gaussian TIJpe Or-bitals (GTO). There is no major difference in these two methods

when computing the molecular orbitals of small molecules. But major discrepancies

occur for larger molecules of 30 and more atoms. GTOs are computationally

efficient, and typically lead to a significant computational saving but less accurate.

GTOs take the following mathematical form,

Today, there exist hundreds of Gaussians-type basis sets. The smallest set of these

functions required to represent all electrons on each atom (such that for each atom

in the molecule a single basis function is used for every orbital) is called the

minimal basis sets. The accuracy of the GTO approximation depends on the

number of Gaussian functions used in the approximation. The more Gaussian

functions used, the better GTOs approximate the STO. It is desired to determine

the optimal exponent coefficients ~ of the Gaussian functions that minimizes the

SCF energy of the molecule.

We used ODESSI to determine the optimal exponents, ~, of four Gaussian

functions that minimizes the SCF energy of the iron atom (Fe). It is straight

246

Listing VIII.1: NWChem input file (left) and its parameterization (right)

Title "Calculation of Fe"
Start Fe_basis
echo
charge 0
geometry autosym noautoz u ni ts angstrom
Fe 0.00000 0.00000 0.00000

end

def write_nwchem_if(params, nwchem_in):
nwinput == """

Title "Calculation of Fe"
Start Fe_basis
echo
charge 0
geometry autosym noautoz units angstrom
Fe 0.00000 0.00000 0.00000
end

ecce_prin t ecce. out ecce_print ecce. out
basis : lao basis" spherical print basis " ao basis" spherical print

Fe library , 'Wachters+f ' , Fe library , 'Wachters+f ' ,
Fe s Fe s

1.00000 1.0 %(Fe_s_l) s 1.0
Fe p Fe p

1.00000 1.0 %(Fe_p_l) s 1.0
Fe d Fe d

1.00000 1.0 %(Fe_d_l) s 1.0
Fe g Fe g

1.00000 1.0 %(Fe_g_l) s 1.0
END
scf

vectors input scf. movecs3
nopen 6
uhf
maxiter 99

end

END
scf

vectors input %(movecs)%s
nopen 6
uhf
maxiter %(maxiter) s

end
% (params)
F = open (nwchem_in, w)
F.write(nwinput)

forward to find the exponents of other functions by repeating the same calculations,

once ODESSI has been set up for the problem with iron.

We used the NWChem package [142] to augment the "Wachters+f" basis set

with additional Gaussian functions (s, p, d, g). This is done by computing and

minimizing the SCF energy with respect to the exponents of the Gaussian functions.

This is a good example of how ODESSI can connect with a simulation without the

need to modify its source code.

NWChem is a computational chemistry package made up of various

functional modules, including SCF energy modules. NWChem package takes an

247

Listing VIII.2: Wrapper function to run NWChem program

def nwparse_out(outfile):
for line in open(outfile, 'r').readlinesO:

if 'Total SOF energy = ' in line:
return line. spli t ('=') [1]. strip ()

return J nan J

def run_simul(infile, outfile):
p = os. system ("nwchem %s l>%s" % (infile, outfile))

def nwchem_sim () :
params=dict(Fe_s-1=1.0, Fe_p_l=l.O, Fe_d_1=1.,

Fe_g_1=1.0, maxiter='99', movecs='scf.movecs')

nwehem_inf = 'nwchem. in '
nwchem_outf ='nwchem. out'

while True:
line = raw_input O. strip O· split 0
command = line [0]

if command = 'stop': break
elif command = 'param':

param_name, param_value = line [1], line [2]
if param_name in params. keys ():

params [param_name] = param_value
eli f command = ' go ' :

write_file (params, nwchem_inf)
run_simul (nwchem_inf, nwchem_outf)

e Ii f command = ' res u It' :
outparam = line [lJ
out value = nwparse_out (nwchem_outf)
print 'result', outparam, out value
sys. stdout. flush ()

if __nalue __= ' __main __ ':
nwehem_sim ()

input file that contains directives on how to run a module. An example of a

NWChem input file used in the computation of the SCF energy of the Fe atom is

shown in Listing VIII.1(left). Typically, a chemist writes the input file that specifies

the science under investigation. Then the same input file is used to conduct several

investigations by varying parameters to study their influence on the output of the

model under the study.

248

To allow ODESSI to vary these parameters in applying scientific methods,

the input file is parameterized by writing a formatted string to a file.

Listing VIII. 1(right) shows the parameterized input file of Listing VIII. 1(left). In

this example, we parameterized the exponents of four Gaussian functions (Fe sl, Fe

pI, Fe d1, and Fe gl), the coefficients' file name (scf.movecs), and the maximum

number of iterations (maxiter). Similarly, the output of N\VChem program is a text

report that contains a large amount of information. Typically, one needs to parse the

output file for the desired information. Since we only interested in the SCF energy,

we only need to parse the output file for the SCF energy and return the result.

Listing VIII.2 shows the Python wrapper program used to accept and

respond to commands from ODESSI workers. It quits when it receives the command

"stop". When the received command is "param", it updates the parameters

dictionary with the received parameter values. 'Nhen the command is "go", it

writes the nwchem input file and executes the NWChem program with the input file

as argument. When the command is "result" it parses the output file for the SCF

energy and returns the SCF energy to the worker. The wrapper OIl the clusters gets

executed by the ODESSI server running on the clusters. The server communicates

the parameters and the results between ODESSI workers and the wrapper.

The next step is to specify the wrapper program as the simulation under

investigation to ODESSI. It can be specified directly in the investigation script or

by using the domainDB manager which saves the specification for later use. By

249

Listing VIII.3: Invitigation script to run chemistry optimization
db = DomainDBlnter (database = 'nwchem, h5')
sim = db,getSimulation('nwchem_app_scf')

clusters = ['nicl', 'nic2', 'nic3']
sm = SimmMan(workers=18, sim=sim, useDB = False, clusters=clusters, db=db)

vars [, Fe_s .. l ' , , Fe_p_l ' , , Fe_d_l ' , , Fe_g_l']
Ib {'Fe_s_l' :0,001, 'Fe_p_l' :0,001, 'Fe_d_l' :0,001, 'Fe_g_l' :0,001}
ub {' Fe_s_l ' :800000, , Fe_p_l ' :800000, , Fe_d_l ' :800000, , Fe_g_l ' :800000}
prec {'Fe_s_l': 3, 'Fe_p_l': 3, 'Fe_d_l': 3, 'Fe_g_l': 3}
init {'Fe_s_l' ;3854,0, 'Fe_p_l': 3,9, 'Fe_d_l': 875,0, 'Fe_g_l': 987,0}

simout = [' scfenergy ']
o bj = SCFEnergy 0

opl = Optimization (method="SA", simman=m, "names = vars, vlb Ib,
vinit = init, vub = ub, vprec prec,
sim_outputs = simout, objfunc obj)

opl,go()

op2 = Optimization (simman=m, sim_ou tpu ts=simout, 0 bj fu nc=obj, custom=True)
op2 ,go ()

print opl.resultsO
print op2,resultsO

class SCFEnergy:
def __ i niL _ (s elf) :

pass
def __ caIL_(self ,simout):

objvalue = simout['scfenergy']
if (str(objvalue)) = 'nan':

return 1 ,0
return objvalue

using the GUI interface as described in §7.4 and shown in Figure 8.2, we only need

to fill out a form. Under the parameters tab we specified the six input parameters

(Fe_iLl, F _p_l, F_d_l, F _g_l, movecs, and maxiter) and the output parameter

(sefenergy). For each input parameter, we specified its data type, precision, default

value, and its upperflower bounds. In this example, the data types of the "movecs"

and maxiter" parameters are "datafile" and "int". The data types of the other

parameters are "float" (Python float is equivalent to C double). When the data type

is "datafile", ODESSI copies the file to the remote execution site working directory

2[)0

P,:Uilmeter'; Exec Sites

1.0 Name Type
:.........................: ...

IIpl"'l . "
F,- s- I ('atom'. float)

Input Fo? cI I "atorn'. f1,)at'

Inpllt Ir,i'lKit",r ':'alom' in!:'

I,-,pllt Fe p ,:'atolll'. floatr

I,-,put F,e,
'~I ('atom' float'

[I",put I-n 1)'/ i?C: S ('e1atafil>?'. st(1

Output scfello?rl;J:i i'atol',",' flo;;,1:1

Lm'ier BOline Upper BOlille

.0001 1000000

.(201)1) I 10lJOOOO

99 SI9~~

.0001 1000(01)

.0001 1000000

~I

~ 0 § [1J1
Pr8>C Value

4 257539,0

.:I 41.4526

99

.:I 167 8.40

.:I I 0')00000

scf.mcivoKs

II

-.:.J

01< Cancel I

FIGURE 8.1: NWChem simulation specification.

and passes its name as a parameter. For the output p<ua.rneter, we specified its data

type and precision. Ulleler the resolUc(~S tab vVC specified information abou I'

executing 1-.11(' simulation on each resource which includes, the resource mIme, the

working directory namc, a.nd the simulation binary pr1th Oll e<.\,ch n~somcp..

Once the simulation is specified, we a.rc reaely t.o conduct various kinds of

investigations leveraging ODESSI's a.bilit.y to run multiple simula.tioll

silllultaneously. It should be noteel t!l<\t N\iVChell1 is enabled for para.llcl execution

and ODESSI could nUl the simulations ill parallel mode. Listing VIII.3 shows the

251

r,:!cthod F'"rarnctcr~, Objtxtivc Func

Var name • Fe_s_1 ... ·.1 ~ I

Luwer Bound: 10.001

Upper Bound Ir-S-O-OC-10-C-).0-------

Initia.1 Valuc 111242.651

Prccissioll 1-4---------

Optimize f7

cOllstraillt~.

e iEnwtV Li~1J

Ol(Cancel

FIGURE 8.2: NWChem optimization specifications.

investigrttion slTipts that. we used in condIlcting optimization study t.o fine! the

opt.imal exponents of the four Gaussia.n functions. In the first line we p;et the

simulation object tha.t we specified before. In the second line, we created a

simulation nw.nagcr object tha.t is IIsed b.v methods to get simulation solution In

t.his eXR.mplc, the simulation manR.ger is specified to employ 18 workers that can

start and control 18 instances of the simulation Oll three clusters n:ic1, nic2, a.ml

nic3. ER.ch nne is a p655 8-way machinE' mns the AIX operating system. \Varkers

stmt simuli1.tion instances on clusters in a round robin [(\'shinn. So in this example,

ea.ch duster nms (j instance of t.he simulcttion. Even though we only have the

sequential versioll of NvVChem installed on these clusters, using ODESSI we were

252

-126233.---~-~-~-~-~------,

-1262.34

-1262.35~ '\../\.,.

-126236

f-1262.37

w-126238
u.

&l126239

-12624

-126241 r--. rnovecs 1

1262 42 ~ -+- movecs 2
I movecs 3 :

-126243
0

5
10 15

Optimization run
20 25

FIGURE 8.3: The dynamics of 3 processes 0111. of 12 processes of the parallel
simulawd annealing metllOd(left). The optimal objective function values for sevcral
optimization runs using diffcrcnt confignriltions and inpllt coeffecicnt files (ldt).

TABLE VIlLI: SCF Er18rgy optimal exponents from several runs

Rlln H's 1 Fe d 1 Fe p 1 Fe g 1 SCF Energy cocn.
10 423.70 195.96 6.53 2.0904 -1262.:35797i3968383 1
14 423.65 195.82 6.54 635713.1 -1262.3571i31644812 1
17 42:3.64 196.28 11266.22 149955.1 -1262.:35060:3950666 2
20 386.09 3737.05 5.92 312.3.:3569 -1262.350i317304612 2
21 424.:33 15736.35 26.25 783696.03 -1262.:348615i3i33747 2
28 424.82 195.02 7.041 37607.46 -1262.424367113445 3

able to utili7,e all the available power in conducting investigations. Actually, if th('

amount of available power is increased, we can just. add more inst.ances of the same

method or apply other mcthods.

In the second section of the investigation script, we specified and started two

instances of the optirui/',Htion module. The two instances run concurrently amI share

the same simulation manager. In this example, each instance mns thc parallel

simulated annealing method with a degree of parallelism of 12. This gives a tote,]

degree of parallelism of 24 which makes the 18 workers fully utilized even if some of

the processes in the paralle] method arC' waiting for synchronization (below we

253

investigated this issue further). The user defined objective function for this example

is shovvn in Listing VIlL3. Since we are only minimizing the simulation output,

nothing needs to be passed in the initialization. The objective function returns the

simulations' output when it is valid. If the simulation output is invalid (a nan

number) then it returns 1.0 which is a too large number since all energy values are

negative.

We ran the investigation script several times experimenting with different

configuration of the simulated annealing algorithm, different initial values, and

different coefficient files. Figure 8.3(left) shows the dynamics of three out of 12

processes of the simulated annealing algorithm. Figure 8.3(right) shows the optimal

values of the SCF energy obtained in several runs, each run with different

configuration parameters. The optimal exponents corresponding to some of these

runs are shown in Table VIlLI.

The study in this section demonstrates how easy it is to set up ODESSI to

work with an arbitrary model and once done how easy it is to conduct scientific

investigations leveraging distributed computing without any requirement on the

user side.

8.2 Human Neuroscience Domain

The ultimate goal of our research in head modeling is to estimate the

locations of the active brain regions given measured electroencephalogram (EEG)

254

recordings. Called the sour-ce localization problem, its accurate solution will provide

an opportunity to analyze cortex dynamics at high temporal and spatial resolution.

To review, the source localization problem has two parts:

1. For-ward pTOblem: given electrical sources (e.g., cortex dipoles), tissue

geometries and conductivities, determine head volume and scalp electrical

potentials.

2. Inver-se pTOblem: given an accurate forward solution, find optimal sources to

match measured scalp potentials.

An accurate forward solver requires knowledge of the head tissues geometry

(obtained from MR or CT images) and their conductivities. To determine the

conductivities of the head tissues, we must solve the conductivity inverse problem.

Here, a small current is injected in a subject's head and the response is measured on

the scalp using bounded Electrical Impedance Tomography (bElT) technology. A

search for optimal conductivities parameters can then be performed using the

forward simulation compared to the measured potentials. Once the conductivities

are found for an individual, a distributed dipole linear inverse solver can be built for

EEG localization V.

There are several challenges in this research. From the start, the source

localization problem is ill-posed, since EEG measurements are made on (up to) 256

sensors and there may be thousands of cortex dipoles active. In addition, there are

255

multiple sources of measurement error and modeling uncertainties that ultimately

contribute to the accuracy of the solution as well as the performance. Measurement

errors include the quality of MR/CT images, electrode and dipole registration,

injected current level, and the EEG electrode data. These errors lead to modeling

inaccuracies which propagate uncertainty in the solution results and also can affect

computational efficiency. These include discretizing the PDEs, adjusting the

computational grid resolution, and accurately segmenting the head tissues. Further,

selection of parameters and modeling algorithms in the forward and inverse solvers

also influence the final result.

How can we understand the quality of our source localization solutions and

their use in dynamic brain analysis when dealing with multiple sources of

measurement error and modeling uncertainties in constructing electromagnetic head

models? Our desired scientific investigations involve computational processing and

simulation to generate candidate models, as well as verification and validation to

determine the effects of uncertainty and the robustness of solutions.

8.2.1 Simulation and Domain Data Objects Specifications

Although ODESSI allows the user to specify the simulation, data objects and

scientific methods directly in the investigation scripts, it is more efficient and

productive to save these object in a domain database to be reused and shared with

256

other user (e.g., the lab who supplies the data). The domain database management

component of ODESSI, described in detail in §7.3, is used for this purpose.

First we created a head modeling domain database managed by the ODESSI

domainDB manager and then we defined three data object schemas. The first

schema defines the geometry data object, the second schema defines the sensors

data objects and the third one defines the measured data objects. Different labs

provide these objects. The image processing lab, for instance, provide the geometry

after processing the MRI/CT image. The EEG lab provides the sensor positions

and the current injection data. One goal of the domain database component of

ODESSI is to allow different labs or researcher to update the domain database with

out human interaction. Once these schemas are defined, users can add data objects

by filling out a form. In the geometry schema we defined the kind attribute to be

"Geometry". For the sensors schema the kind attributes is "Sensors", and

"CInjection" is the kind attribute for the data sets obtained from current injection

data. The schema metadata attributes are used to query objects from the domain

database. Data objects can extend the schema metadata attributes. However, the

extended attributes are object-specific metadata and can not be used in the query

for an object. Then we specified the simulation using the simulation user interface.

Once the simulation object is specified and the domain data objects are added to

the domain database, we are ready to conduct several investigations using different

objects from the domain database.

257

Listing VIllA: senstivity analysis script
#specijy the domain db
db = DomainDBlnter (database = 'head_modeling. h5')

#get a domain model to be used in the analysis
sim = db.getSimulation('ADI')

#define a simulation manager object, that uses 16" workers
sm = SimMan(workers=16, clusters=['mist 'J, sim=sim, db = db)

#get the geometry jrom the domain db
geom = db.getObject('Geometry', query="fname='SomeName' and gresolution=I")
sim . setParam (, geom " geom)

#get a. sensors net that is registered to the geometry
elecs =, db.getObject('Sensors', query="geometry = '%s' "% geom.name)
sim. setParam (, sensors', elecs)

#define sampling jor each parameter
sl = SParam(name=' skull', fromvalue=.OOI,
s2 = SParam(name=' brain', fromvalue=.05,
s3 = SParam(name='scalp', fromvalue=.05,
s4 = SParam(name=' csf', fromvalue=1.4,
s5 = SParam(name = 'maxiter', value=800)
s6 = SParam(name = 'tol', value=0.00015)

tovalue=.I,
tovalue=l,
tovalue=l,
tovalue=2.2,

dist=('normal' ,.018,.005
dist=('normal', .25, .06
dist=('normal', .44, .13
dis t =(, normal', 1.78,.13

sens = Sensti vi ty (params=[sl, s2, s3, s4, s5, s6], simman==sm,
num_samples=1000, custom=True)

sens. go ()
sens. results ()

8.2.2 Sensitivity Analysis

In head modeling it is important to understand the sensitivity of the scalp

potential to a variety of model uncertainties. One important analysis is to study the

sensitivity of the scalp potential due to the conductivities of the head tissues.

Quantifying this sensitivity can help in prioritizing the research and reducing the

number of model parameters in other studies (e.g., optimization).

In this section we applied ODESSI for regression analysis to study how the

uncertainty in each electrode potential can be apportioned to uncertainties in the

inputs. In this analysis, we only considered the head tissue conductivities. A

258

P.,r,l111Clcrs 0I1JI~cll',1CFlII1(

>;.kull br.:ll0 scalI) csf Ill.1X II cr 101 ~]f:

P,II,lmCtCrs. S;..K:(

S"mplin£!: _'_10'_11_,'1 : I
F,om '.'"Iu;' 10.001

,--------------
To '/.lluc: 0.1

vatu' I

Me'" 10.016
,,,1 '10-00-5------------

NUfll POilUS 11000

o L.,nccl I

FIGURE 8.4: Head trlodelillg sClIsitivity rUIH.lysis specifica.tions

multivariate sarllpl<e of 1000 poillts of tIl(: head tissue conductivities is gell(~rated.

The conductivity of eadl hea.d tissue is sampled from the lIonnal distrilJuholl wiLll

nWCI.1I equal to tIle average a.ccepted vClIue hOIll the literature and tlw st,uH!n.rcl

d(~viation is chosen snch tlmt the dista]J<.:c bctweell tlJ0 lI}(~a.n cOllduct.ivity and UIC

lower r1l1d upper bounds is a,bout Ull'(~(·' sta.nda.rd devia.tions. Listing VIllA s!Jo"vs

tlw invest.igation script we used to eOllduct this analysis. The paraJlJet<~rs can !J0

sp<'cified either through t.he script or using t.he UI interface as shown in Figure 8A.

\tVitlJ ODESSI it is easy to repeat this analysis fOJ' different. conf'i.gl.lratioJls.

Figl\J'C 8.5 shows the results of the analysis usiJJg t.hree difi'ercnt current injection

pairs and two differeut geometry resolut.ion (lmm amI 2mm).

Figure 8.5 shows distributions of til(-' electrodes sensitivity due t.o challges in

tissuc conductivities llsing diHcrent. configurntiow:>. Positive sensitivity coefficicllts

259

20 Source = 26 Sink = 90 Resolution = 2mm

10

OL------

Soul-ce =46 Sink = 109 Resolution =2mm

SoulTe = 15 Sink = 72 Resolution = 2mm

20

1_10

o

20

10

ol---l$~

Sour e =46 Sink = 09 Resolution = 1mm

1o
Scalp

1 -1o
Skull

1 -0.2 0 0.2 -1
CSF

o
Brain

20

10

o
-1

FIGURE 8.5: Distribution of the eJectrode's sensitivity due to changes in the Brain,
CSF, Skull 8Jld Scalp tissue conductivities using severa,! configmations.

correspond to electrodes near the currcnt source while negative coefficiellts

conespond to electrodes neal' tlw sink. From the distributions wc sec that the

potentia'!s at all electrodes are inseni:iitiw to variation of the CSF tissue. This can

bp reasolled to the fact that the CSF tissue size is small and the variation in its

conductivity is small. The second imporUtnt observation ii:i that the potentials are

sensitive to changes of the braill conductivity. This observation contradicts the

belief that most of the cunent is slmntccl in the scalp. Therefore, we believe it is

260

possible to explore the brain with EIT technology. 'Ve explain this sensitivity due

to the fact that the brain is a big tissue and the holes in the skull -which our

forward solver captures- allow the current to go through the skull (contrary to

spherical models). The third observation is that the potentials are highly sensitive

to changes in the skull and scalp conductivities as expected, since the current

sources are on the scalp. These observations are confirmed using lowjhigh geometry

resolution and different current injection pairs. Identifying and ranking the

sensitivity of the electrodes due to model input variables are very important in our

research. For instance, the conductivity of the CSF tissue can be considered

homogeneous and be fixed at the literature accepted value. Also, the contributions

of the electrodes potentials in computing the objective function can be weighted

based on their sensitivity in the conductivity inverse problem.

ODESSI made conducting this analysis simple, which allowed us to

experiment with different geometry resolution and different current injection pairs

to build confidence of our results and make solid conclusions. 'Ve parameterized the

sensitivity testing template in ODESSI and interfaced the simulation code. Once

configured, the investigation required thousands of simulations to generate the

results. These simulations were fully automated by ODESSI.

261

8.2.3 Conductivity Modeling - Optimization

In our early programming of the conductivity inverse problem, we used a

simplex search method with an isotropic forward model. \fv'e soon realized that the

simplex algorithm was not robust enough for our problem, and the isotropic solver

lacked required precision. In both cases, the code had to be modified to incorporate

improved methods. With ODESSI, we were able to set up the problem, conduct and

adjust the optimization parameters by only interfacing with the optimization

method module. In addition we were able to conduct other investigation.

Listing VIII.5 shows the investigation script we used to conduct optimization

studies to extract the conductivities of the human head. In the scripts, we first

specified the domain database where domain data and simulation specifications are

stored and can be retrieved. Once we get all domain data objects from the domain

database, we created a simulation manager object which is running in its own

thread. The simulation manager object can use any available distributed resources

to run the simulation and return solutions to methods who requested the solutions.

Since each data object has a set of associated parameters that can extend the

simulation input parameters, the simulation list of parameters will be extended with

the data object once specified. If the data object extended parameters are irrelevant

to a particular simulation, then they just can be ignored in the analysis. In the

script VIII.5 we described each line in more details.

262

ListinO' VIII.5: ontimization scrint
db = DomainDBInter(database = 'head_modeling.h5') #specijy the domain db.

#get a domain simulation object to be used in the analysis
sim = db. getSimulation (,ADI')

#Get the geometry oj a subjects' head
geom = db.getObject('Geometry', query='fname='SomeName' and gresolution==l')

#extend simulation parameters with the data objects' list oj parameters.
sim . setPar am (, geom " geom)

#get a sensors net that is registered to the geometry
sens = db. get 0 bj ect (, Sensors', query=' geometry = %s '% geom. name)
sim. setParam (, sensors', sens)

#crea.te a simulat'ion manager object that use a pool oj 12 workers.
sm = SimMan(workers=12, c!usters=['mist'], sim=sim, useDB=False, db=db)

#get a meas'llred data set that is registered to the sens net
measured = db.getObject('Clnjection', query='sensors==%s' % sens.name)

#provide an objective junction to be optimized
ofun = CondObjFunc (measured)
simout = ['potentials']

varibles =
lower _bounds
upper _bounds
prec
iniLvalues

['skull' ,
{' skull' :0.001,
{'skull' :0.1,
{'skUll': 4,
{' skull' :0.05,

'brain', 'scalp', 'csf' 1
'brain':.05, 'scaJp':.05, 'csf':1.2}
, brain': 1.0, , scalp': 1.0,' csf' :2.2}
'brain':3, 'scalp':3, 'csf':3}
'brain':0.58, 'scalp':.55, 'csf':1.4}

#invoke the optimization module.
opl = Optimization (method=' 'SA", simman=sm, vnames = variables, vlb=lower-bounds,

vub = upper-bounds, vi nit = init_values, vprec = prec,
sim_outputs = simout, objfunc = ofun , custom = True)

opl. go ()
rl = optl. results ()

#start executing oj the optimization methods
#get the results when done

The design of ODESSI allows the user to experiment with different objective

functions without modifying the simulation code or the environment. The objective

function is a user supplied Python callable that provides the objective function to

be optimized. The optimization method calls the objective function and passes a

dictionary of the names and values of the simulation outputs. To use other data in

computing the objective function, the objective function can be implemented as a

Python class that implements the built in methods _jniL_ and __calL. The

263

ListinG' VIII.6: objective function for conductivitv modelinG'
class CondObjFunc:

def __ iniL_(self, data):
self.M = data

def __ calL_ (self, sil11out):
#compute the objective value
D = sil110ut [' potentials' J)
s = sqrt(sul11«D[: ,1] - self .M[: ,1])**2)/(len(D)))
return s

__init_ is where the user provides data that can be used in computing the objective

function. The __calL method is called when an object of the class is called as a

function. In this example, the provided objective function is shown in

Listing VIII.5. In this case the __iniL_ method takes the measured data object as an

argument in the initialization. Then when it is called, it computes the difference

between the measured data set and the computed data set.

8.2.4 ADI Forward Solver Parameter Tuning

Our forward model is based on solving the time-dependent Poisson equation

and considering the steady state solution as the static solution. The convergence of

the forward solver depends, on two parameters. The time step, which controls the

speed of reaching the steady state, and the convergence tolerance which specifies the

level of accuracy. We used ODESSI to tune these parameters by performing a

parametric study for different current injection pairs and different sets of

conductivities. Figure 8.6 shows a sample from this study. As the tolerance

264

15 15

g •• · eleclrode 39
eleclrode 39 III10 Ii

0 a ~ H 10 • I8 8 • • • •• • • • • • 8 8 g 0 0 0 0 0 . .•0 , ...·.• n ..
5· electrode 6

II I.{' g> > 0 0 0 0 . 0 0 0

6 6 i
~ a Cii a

~
Q)

* electrode 790 ID- ""
electrode 71

0 D- o • • I
0 0 . -5

0
• 0.. 0

electrode 71

! j! 8 I I • g ,
~ •• 8 g ,

• I
i II •• . 0 0 0 . 0 0 • • 0 •

·10 0 g o " -10 1o ~ ~ · R
I

·15 -15
10" 10-1a 0.2 04 0.6 0.8 10' 10" 10-~ 10"

time step Tolerance

FIGURE 8.6: TLmiug the forwaru-solver convergence par",llwters.

increases the solution fa.ils to converge. For very small time step, the solver

terminates prematurely_

8.2.5 Geornetry Resolution Error

Tlj(-~ geometry of the head tissues is obtained from imaging such AS MRI or

CT scaDS. Geometry obtained from high resolution (11nm) MR.I captlllcs mon~

clet".ils about the head tissues, such a.s wholes in the skull. However, the

computational time is significant. vVe use" high resolution image to constl'Uct Imver

resolution geometry by eliminating every otlJCr plane from the high resolution

image. Thell we used ODESSI to evaluat.e the error caused by this approxima.tion.

RDM and l\JAG metrics are llsed to compare between the solutions obt.ained using

the two geometries. Our results show that the average RDM is ",bout .8 n.ucl the

avem.ge MAG is a.bout .1. Therefore, the 2n"m geometry can be used for

visualizat.ion anu testing. However, we have to use the high Imm resolution t.o

265

300,------.----;:::=====:::::=;1

- 200>
::l.

III 100
~..
c
<lJ

~ -100

o

~ 0

o

--2-mm re olution
··0 1-mm esolution

... 0 0

-200
0
1.--------'5'-0----1.....0-0---1

lectrode ID

FIGURE 8.7: Tht' potclIhals <It Uw electrodes using Imm resolution geometry vs.
2mm r~soll1hOIl.

obta.in a.(:("lIrat~ conductivity recollstructioll. Here ODESSI a.llows us to cxpNilllent

\vith the mrtrics for c:olllpmisoll. Figure 8.7 SIIOWS the potential at 1.11(' elcctrod~s

llsing Imm and 2mm geometry resolutions.

8.3 SUlumary and Conclusions

In this dIOpter we tls~d ODESSI to wncJuct several scieutinc investigations in

two different. dml1a.ins, the human llcurosciellc(' doma.iIl (l,nd the computational

chemistry domain. For 1.110. cornputatioIlu.l chemistry domain we used ODESSI to

extract the model parameters and to (;onduct: several parametric studies to

ullderstand the precision of the model output. III the IlUlllall ncurosciellce dOHlain

we llsed ODESSI in tuning the model COlivergence pamlllet.ers, extractillg tl](' model

266

parameters, studying the effect of the geometry resolution, studying the model

output sensitivity to several input parameters, and managing the domain data.

The investigations in this chapter demonstrate how easy it is to apply

ODESSI to arbitrary simulation and conduct various kinds of investigations

leveraging HPC. Also, they show how ODESSI integrates the three aspects of

scientific investigations: the execution of the model, the management of domain

data, and the application of scientific methods. The provided investigation scripts

realize the integration of these aspects in conducting scientific investigations. This

design factors out the computational parts of the scientific investigation which

allows scientist to focus on the science aspect of computational science.

267

CHAPTER IX

CONCLUSION

The main contributions of this dissertation are in two areas.

First, the thesis research resulted in new methods for the computational

modeling of human head electromagnetics. The quality and accuracy of forward

modeling for simulating electrical fields in the human head volume was improved by

the inclusion of skull imhomogeneities and other skull variations. The approach was

based on skull parcellation and structural properties obtained from experimental

studies. The performance of forward modeling was improved through multi-core

(shared memory and accelerator-based) parallelization. Further, the research

resulted in an innovative approach for the bounded ElT (bElT) inverse problem to

estimate head tissue conductivities. Parallel search methods were used to improve

performance and enable verification and validation of head modeling solutions.

Second, the thesis research contributed to field of scientific computational

environments. An architecture was designed (functional and system) for an

environment to support simulation-based scientific investigations founded on a

268

framework model that abstracts common scientific methods and provide standard

components for problem solving. An approach to capture common scientific methods

in a general form was specified for use in scientific investigations, and the approach

was realized for a particular set of scientific methods captured in a scientific

methods library. A programming model for scientific investigations that provides an

abstract interface to scientific methods based on method parameterization was

designed and implemented using a scripting language system. A simulation

optimization model was created that decides what simulations to conduct based on

the scientific method request and the current state of the investigation results. A

scientific investigation management system that maintains the evolving record of a

scientific study was specified.Lastly, the environment and techniques were evaluated

in two application domains: human neuroscience and computational chemistry.

The thesis research pursued principles of separation, abstraction, and

integration in three aspects of simulation-based scientific investigations: simulation

execution, domain data and investigations management, and the application of

scientific methods. Factoring out the application of scientific methods allows the

capture of common scientific methods in a general purpose software library which

can be applied cross simulation concerns and can be extended independent of the

domain data or the execution model. Factoring out the simulation execution allows

the environment to leverage available computing resources to meet simulation

demands, independent of the data model or the scientific methods. It also allows

269

the reuse and sharing of previous simulation results. Factoring out the domain data

allows the application of the environment across multiple domains while enabling

domain specificity of scientific procedures. Through the use of scripting approaches

to program scientific investigations, the research further demonstrated how the

execution, specification, and logic of a scientific method can be explicitly separated.

This allowed for customization of scientific methods from generic specification, for

instantiation of domain data objects from data schemas, and for the defininition

and reuse of simulation designs.

The thesis delivered a working prototype of a framework for simulation-based

science in the ODESSI environemt. The principles and design approach were

reflected in the evaluation of ODESSI for computational chemistry and human

neuroscience domains. The investigations studied included optimization, sensitivity

analysis, and parametric analysis, required intensive computation on distributed

resources, and delivered significant results in each field.

270

BIBLIOGRAPHY

[lJ Scientific method. http:/ len. wikipedia. org/wiki/Scientific...m.ethod.

[2J D. Abramson, A. Lewis, and T. Peachey. Nimrod/o: A tool for automatic
design optimization. In The 4th International Conference on Algorithms &J
Architect'uTes for Parallel Processing (ICA3PP 2000), Hong Kong, China,
2000.

[3J D. Abramson, A. Lewis, T. Peachey, and C. Fletcher. An automatic design
optimization tool and its application to computational fluid dynamics. In
Supercomputing '01: Proceedings of the 2001 ACM/IEEE conference on
Supercomputing (CDR OM), pages 25-25, New York, NY, USA, 2001. ACM.

[4J V. Abrashin, A. Egorov, and N. Zhadaeva. On the convergence rate of
additive iterative methods. Differential Equations, 37:867-879, 2001.

[5] C. Acar and N. G. Gencer. Forward problem solution of esi using fern and
bern with quadratic isoparametric elements. In the First Joint BMESEMBS
Conference, Atlanta, 1999. Omnipress.

[6J E. Akarsu, G. Fox, VV. Furmanski, and T. Haupt. Webflow: high-level
programming environment and visual authoring toolkit for high performance
distributed computing. In Super'COmputing '98: Proceedings of the 1998
ACM/IEEE conference on Supercomput'ing (CDROM), pages 1-7,
Washington, DC, USA, 1998. IEEE Computer Society.

[7] RAkers, E. Kant, C. Randall, S. Steinberg, and R Young. Scinapse: A
problem-solving environment for partial differential equations. Compo Sci. and
Eng." 4(3), 1997.

[8] M. Akhtari, H. Bryant, D. Emin, W. Merrifield, A. Mamelak, E. Flynn,
J. Shih, M. Mandelkern, A. Matlachov, D. Ranken, E. Best, M. DiMauro,
R. Lee, and W. Sutherling. A model for frequency dependence of
conductivities of the live human skull. Brain Topogmphy, 16(1), 2003.

[9] M. Akhtari, H. Bryant, A. Mamelak, E. Flynn, L. Heller, J. Shih,
M. J\landelkern, A. Matlachov, D. Ranken, E. Best, M. DiMauro, R Lee, and
W. Sutherling. Conductivities of three-layer live human skull. Brain
Topography, 14(3):151-167,2002.

271

[10] J. Armstrong. Programming Erlang: Software for a Concurrent World.
Pragmatic Bookshelf, 2007.

[11] J. Ary, S. Klein, and D. Fender. Location of sources of evoked scalp
potentials: Corrections for skull and scalp thicknesses. IEEE Transactions on
Biomedical Engineering, 28(6):447-452, 1981.

[12] K. Awada, D. Jackson, J. \Villiams, D. Wilton, S. Baumann, and
A. Papanicolau. Computational aspects of finite element modeling in eeg
source localization. IEEE Trans. Biomed. Eng., 44:736-752, 1997.

[13] A. P. Bagshaw, A. D. Liston, R. H. Bayford, A. Tizzard, A. P. Gibson, A. T.
Tidswell, M. K. Sparkes, H. Dehghanin, C. D. Binnies, and D. S. Holder.
Electrical impedance tomography of human brain function using
reconstruction algorithms based on the finite element method. NeuroImage,
20(2):752-764, Oct 2003.

[14] S. Baillet and L. Garnero. A bayesian approach to introducing
anatomo-functional priors in the eeg/meg inverse problem. IEEE Transactions
on Biomedical Engineering, '44(5):374-385, 1997.

[15] S. Baillet, J. IVlosher, and L. R.M. Electromagnetic brain mapping. IEEE
Signal Processing Magazine, 18(6):14-30, 2001.

[16] M. Banich. Cognitive Neuroscience and Neuropsychology. Houghton Mifflin"
New York, 2004.

[17] A. Barnard, 1. Duck, and IvI. Lynn. The application of electromagnetic theory
to electrocardiography: 1. derivation of the integral equations. Biophysics
Joumal1967, 7((5)):443-462, 1967.

[18] A. Barnard, 1. Duck, M. Lynn, and VV. Timlake. The application of
electromagnetic theory to electrocardiography. Biophys. 1., 7:433-462, 1968.

[19] P. Basser, J. Mattiello, and D. LeBihan. Mr diffusion tensor spectroscopy and
imaging. Biophysical Jomnal, 66:259-267, 1994.

[20] S. Baumann, D. Wozny, S. Kelly, and F. ~Meno. The electrical conductivity of
human cerebrospinal fluid at body temperature. IEEE Trans. Biomed. Eng.,
44(3):220-223, 1997.

[21] C. G. Benar and J. Gotman. Modeling of post-surgical brain and skull defects
in the eeg inverse problem with the boundary element method. Clin.
Neurophysiol, 113:48-56, 2002.

272

[22] P. Berg and M. Scherg. A fast method for forward computation of
multiple-shell spherical head models. Electroencephalogmphy and Clinical
NeuT"Ophysiology, 90:58-64, 1994.

[23] O. Bertrand, M. Thevenet, and F. Perrin. 3-d finite element method in brain
electrical activity studies. Technical report, TKK-F-A689-HUT, 1991.

[24] The biomedical informatics research network (birn).
http://www.birncommunity.org/.

[25] A. Borsic. Regularization methods for imaging fTOm electrical meaSUTement.
PhD thesis, Oxford Brookes University, 2002.

[26] B. H. Brown, D. Barber, and A. D. Seagar. Applied potential tomography:
possible clinical applications. Clin. Phys. Physiol Meas, 6(2):109-121, May
1985.

[27] H. Buchner, G. Knoll, M. Fuchs, A. Rienacker, R. Beckmann, M. Wagner,
J. Silny, and J. Pesch. Inverse localization of electric dipole current sources in
finite elements models of the human head. ElectT"Oenceph Clin. NeuT"Ophysiol,
102:267-278, 1997.

[28] H. Casanova, T. Bartol, J. Stiles, and F. Berman. Distributing mcell
simulations on the grid. Int. 1. High Perform. Comput. Appl., 15(3):243-257,
2001.

[29] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS parameter
sweep template: User-level middleware for the grid. pages 75-76, 2000.

[30] Common data format (cdf). http://cdf . gsfc .nasa.gov/.

[31] D. B. Cedn3s and E. Hernandez. Parameter sweeping methodology for
integration in a workflow specification framework. In ICCSA {1J, pages
360-371, 2007.

[32] R. chapman, R. Ilmoniemi, B. S., and R. GL. Selective localization of alpha
brain activity with neuromagnetic measurements. ElectroencephalogT. Clin.
NeuTOphysiol., 58:569-572, 1984.

[33] N. Chauveau, X. Franceries, B. Doyon, B. Rigaud, J. Morucci, and P. Celsis.
Effects of skull thickness, anisotropy, and inhomogeneity on forward eeg/erp
computations using a spherical three-dimensional resistor mesh model. Human
Brain Mapping, 21(2):86-97, 2003.

273

[34] N. Chauveau, X. Franceries, B. Doyon, B. Rigaud, J. Morucci, and P. Celsis.
Effects of skull thickness, anisotropy, and inhomogeneity on forward eegjerp
computations using a spherical three-dimensional resistor mesh model. Hum.
Brain. Mapp., 21:86-97, 2004.

[35] S. Cherry and M. Phelps. Imaging brain function with positron emission
tomography. Bra'in Mapping: The Methods, 1996.

[36] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M. Shields,
1. Taylor, and 1. Wang. Programming Scientific and Distributed Workflow
with Triana Services. ConcuTTency and Computation: Practice and ExpeTience
(Special Issue: WOTkfiow in GTid Systems), 18(10):1021-1037,2006.

[37] Chemical markup language (cml). http://www.ch.ic.ac.uk/rzepa/cml/.

[38] D. Cohen, B. Cuffin, K. Yunokuchi, R Maniewski, C. Purcell, G. Cosgrove,
J. Ives, J. Kennedy, and D. Schomer. Meg versus eeg localization test using
implanted sources in the human brain. Ann. Neuml., 28:811-817, 1990.

[39] A. Corana, M. Marchesi, C. Martini, and S. Ridella. Minimizing multimodal
functions of continuous variables with the “simulated annealing”
algorithm. ACM Trans. Math. Soltw., 13(3):262-280, September 1987.

[40] A. Crouzeix, B. Yvert, O. Bertrand, and J. Pernier. An evaluation of dipole
reconstruction accuracy with spherical and realistic head models in meg. Clin.
Neumphysiol., 110(12):2176-2188, 1999.

[41] B. Cuffin. Effects of head shape on eegs and megs. IEEE Trans Biomed. Eng.,
37:699-705, 1990.

[42] B. Cuffin and D. Cohen. Magnetic fields of a dipole in special volume
conductor shapes. IEEE Trans Biomed. Eng., 24:371-381, 1977.

[43] B. Cuffin, D. Cohen, K. Yunokuchi, R Maniewski, G. Cosgrove, J. Ives,
J. Kennedy, and D. Schomer. Tests of eeg localization accuracy using
implanted sources in the human brain. Annals of neuTOlogy, 29:132-138, 1991.

[44] B. N. Cuffin. Effects of local variations in skull and scalp thickness on eegs
and megs. IEEE Trans. Biomed. Eng., 40:42-48, 1993.

[45] N. Cuffin. Eeg localization accuracy improvements using realistically shaped
head models. IEEE Trans Biomed. Eng., 43, 1996.

274

[46] J. Cuny and et al. Building domain-specific environments for computational
science:a case study in seismic tomg. Int. Joumal of SupeT. App. and High
Speed Computing, 11(3), 1997.

[47] A. D., J. Giddy, and 1. Kotler. High performance parametric modeling with
nimrod/G: Killer application for the global grid?, 2000.

[48] F. Darvas, D. Pantazis, E. Pantazis, Kucukaltun-Yildirim, and 1. R.M.
Mapping human brain function with meg and eeg: methods and validation.
Mathematics in Bmin Imaging, 23:289-299, 2004.

[49] J. De Munck. The estimation of time varying dipoles on the basis of evoked
potentials. ElectToencephalogmphy and Clinical NeuTophysiology, 77:156, 1990.

[50] J. de Munck and M. Peters. A fast method to compute the potential in the
multiphere model. IEEE Tmnsactions on Biomedical EngineeTing,
40(11):1166-1174, 1993.

[51] J. de Munck, B. van Dijk, and H. Spekreijse. Mathematical dipoles are
adequate to describe realistic generators of human brain activity. IEEE Trans.
Biomed. Eng., 35(11):960-966, November 1988.

[52] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su,
K. Vahi, and M. Livny. Pegasus: Mapping scientific workflows onto the grid.
LectuTe Notes in ComputeT Science: Grid Computing, pages 11-20, 2004.

[53] 1. Ding and B. Lai. Low resolution brain electromagnetic tomography in a
realistic geometry head model: a simulation study. Phys. Med. Biol.,
50:45-56., 2005.

[54] D. Dobbs. Fact or phrenology? Scientific American Mind, April 2005. http:
Ilwww.seientifieameriean.eom/artiele.efm?id=faet-or-phrenology.

[55] J. Douglas and H. Rachford. On the numerical solution of heat conduction
problems in two and three space variables. Trans. Am. Math. Soc.,
82:421-439, 1956.

[56] Extensible computational chemistry environment.
http://eeee.emsl.pnl.gov/.

[57] Electrical geodesics, inc. http://www.mes.anl. gov/petse/petse-as/.

[58] Enthought. http://www . enthought. eom/.

275

[59] J. Ermer, J. Mosher, S. Baillet, and R. Leahy. Rapidly recomputable eeg
forward models for realistic headshapes. Phys. Med. Biol., 46(4):1265-1281,
2001.

[60] Y. Eshel, S. Witman, 1'.11. Rosenfeld, and S. Abboud. Correlation between skull
thickness asymmetry and scalp potential estimated by a numerical model of
the head. IEEE Trans. Biomed. Eng., 42:242-249, Mar 1995.

[61] T. Ferree, K. Eriksen, and D. Tucker. Regional head tissue conductivity
estimation for improved eeg analysis. IEEE Trans. Biomed. En,g.,
47(12):1584-92, 2000.

[62] Denition of the flexible image transport system (fits).
http://fits.gsfc.nasa.gov/standard30/fits_standard30.pdf.

[63] L. Flemming, Y. \\Tang, A. Caprihan, M. Eiselt, J. Haueisen, and Y. Okada.
Evaluation of the distortion of eeg signals caused by a hole in the skull
mimicking the fontanel in the skull of human neonates. Clin. Neurophysiol,
116(5):1141-1152, 1984.

[64] E. Frank. Electric potential produced by two point current sources in a
homogeneous conduction sphere. Applied Physics, 23(11):1225~1228, 1952.

[65] W. J. Freemana, S. P. Ahlforsb, and V. Menon. Combining fmri with eeg and
meg in order to relate patterns of brain activity to cognition. Journal of
Psychophysiology, 73:43-52, 2009.

[66] 1. Frerichs, P. Braun, T. Dudykevych, G. Hahn, D. Genee, and G. Hellige.
Distribution of ventilation in young and elderly adults determined by electrica
impedance tomography. Respir Physiol Neurobiol, 143:63~75, 2004.

[67] J. Frey, T. Tannenbaum, M. Livny, 1. Foster, and S. Tuecke. Condor-g: A
computation management agent for multi-institutional grids. hpdc, 00:0055,
2001.

[68] J. Frey, T. Tannenbaum, M. Livny, 1. Foster, and S. Tuecke. Condor-g: A
computation management agent for multi-institutional grids. hpdc, 00:0055,
2001.

[69J M. Fuchs, M. Wagner, and J. Kastner. Boundary element method volume
conductor models for eeg source reconstruction. Clin. Neurophys.,
112:1400-1407, 2001.

[70] C. Gabriel, S. Gabriel, and E. Corthout. The dielectric properties of biological
tissues: Part i. literature survey. Phys. Med. Biol., 41:2231-2249, 1996.

276

[71] S. Gabriel, R. Lau, and C. Gabriel. The dielectric properties of biological
tissues: Part ii. measurements in the frequency range 10 hz to 20 ghz ' Phys.
Med. Biol., 41:2251~2269, 1996.

[72] S. Gabriel, R. Lau, and C. Gabriel. The dielectric properties of biological
tissues: Part iii. parametric models for the dielectric spectrum of tissues.
Phys. Med. Biol., 41:2271-2293, 1996.

[73] E. Gallopoulos, E. Houstis, and J. R. Rice. Computer as thinker/doer:
Problem-solving environments for computational science. IEEE Comput. Sci.
Eng., 1(2):11-23, 1994.

[74] M. Gazzaniga and T. Heatherton. Psychological Science: Mind, Bmin, and
Behavior. W. W. Norton & Company, New York, 2003.

[75] G. Geist, J. Kohl, and P. Papadopoulos. Cumulvs: Providing fault-tolerance,
visualization and steering of parallel applications. In Environment and Tools
jor Pamllel Scientijc Computing Workshop (Domaine de
Faverges-de-la- Tour), Lyon, France, 1996. IEEE Press.

[76] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble,
M. Livny, L. Moreau, and J. Myers. Examining the challenges of scientific
workflows. Computer, 40(12):24-32, 2007.

[77] P. Gloor. Neuronal generators and the problem of localization in
electroencephalography: Application of volume conductor theory to
electroencephalography. Clin. Neurophysiol., 2:327-354, 1985.

[78] Geography markup language (gml).
http://en.wikipedia.org/wiki/GeographyJMarkup_Language.

[79] S. Goncalves, J. de Munck, J. Verbunt, R. Heethaar, and L. da Silva F.H. In
vivo measurement of the brain and skull resistivities using an eit-based
method and the combined analysis of sef/sep data. IEEE Tmnsaetions on
Biomedical Engineering, 50(9):1124-8, Sept 2003.

[80] S. Gon<;;alves, J. de Munck, J. Verbunt, F. Bijma, R. M. Heethaar, and
F. da Silva. In vivo measurement of the brain and skull resistivities using an
eit-based method and realistic models for the head. IEEE Transactions on
Biomedical Engineering, 50(6):754~767, June 2003.

[81] J. Gotman, E. Kobayashi, A. Bagshaw, C. Benar, and F. Dubeau. Combining
eeg and fmri: a multimodal tool for epilepsy research. Magn Reson Imaging,
23(6):906-20, 2006.

277

[82] R. Grech, T. Cassar, J. Muscat, K. P. Camilleri, S. G. Fabri1, M. Zervakis,
P. Xanthopoulos, V. Sakkalis, and B. Vanrumste. Review on solving the
inverse problem in eeg source analysis. NeuroEngineering and Rehabilitation,
5(25):1-33, November 2008.
http://www.jneuroengrehab.com/content/5/1/25.

[83] GriclLab. http://www.gridlab . org/.

[84] D. Gullmar, J. Haueisen, M. Eiselt, F. Giessler, L. Flemming, A. Anwander,
T. Knosche, C. Wolters, M. Dumpelmann, D. Tuch, and J. Reichenbach.
Influence of anisotropic conductivity on eeg source reconstruction:
Investigations in a rabbit model. IEEE Trans. Biomed. Eng., 53: 1841-1850,
2006.

[85] H. Hallez, P. Van Hese, B. Vanrumste, P. Boon, Y. D'Asseler, 1. Lemahieu,
and R. Van de Walle. Dipole localization errors due to not incorporating
compartments with anisotropic conductivities: Simulation study in a spherical
head model. International Journal of Bioeleetromagnetism, 7:134-137, 2005.

[86] H. Hallez, B. Vanrumste, R. Grech, J. Muscat, W. De Clercq, A. Vergult,
Y. D'Asseler, K. Camilleri, S. Fabri, S. Van Huffel, and 1. Lemahieu. Review
on solving the forward problem in eeg source analysis. Journal of
Neu'loEngineering and Rehabilitation, 4(46), 2007.

[87] H. Hallez, B. Vanrumste, P. Van Hese, Y. D'Asseler, 1. Lemahieu, and
R. Van de Walle. A finite difference method with reciprocity used to
incorporate anisotropy in electroencephalogram dipole source localization.
Physics in Medicine and Biology, 50:3787-3806, 2005.

[88] M. HamaJainen and J. Sarvas. Realistic conductivity geometry model of the
human head for interpretation of neuromagnetic data. IEEE Trans Biomed
Eng, 36:165-171, Feb 1989.

[89] M. S. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V.
Lounasmaa. Magnetoencephalography theory, instrumentation, and
applications to noninvasive studies of the working human brain. Rev. Mod.
Phys., 65(12):413-497, 1993.

[90] J. Haueisen, C. Ramon, M. Eiselt, H. Brauer, and H. Nowak. Influence of
tissue resistivities on neuromagnetic fields and electric potentials studied with
a finite element model of the head. IEEE Trans., Biomed. Eng., 44(8), 1997.

278

[91] J. Haueisen, D. Thch, C. Ramon, P. Schimpf, V. Wedeen, J. George, and
J. Belliveau. The influence of brain tissue anisotropy on human eeg and meg.
NeuTOimage, 15:159-166, 2002.

[92] J. Hauesien, A. Bottner, H. Nowak, H. Brauer, and C. Weiller. The influence
of conductivity changes in boundary element compartments on the forward
and inverse problem in electroencephalography and magnetoencephalography.
Biomed. Tech., 44(6):150-157, 1999.

[93] An introduction to hdf5.
http://www.hdfgroup.org/HDF5/doc/H5.intro.html.

[94] D. J. Heeger and D. Ress. What does fmri tell us about neuronal activity?
Nature Reviews NeuTOscience, 3:142-151, 2002.
http://www.nature.com/nrn/journal/v3/n2/full/nrn730.html.

[95] M. Hobbs. Candygram. http://candygram.sourceforge. net/.

[96] R. Hoekema, W. G.H., L. F.S.S., van Veelen C.W.M., van Rijen P.C.,
H. G.J.M., A. J., and van Huffelen A.C. Measurement of the conductivity of
skull, temporarily removed during epilepsy surgery. Brain Topography,
16(1):29-38, 2003.

[97] R. Hoekema, K. Venner, J. Struijk, and J. Holsheimer. Multigrid solution of
the potential field in modeling electrical nerve stimulation. Computers and
Biomedical Research, 31:348-362, 1998.

[98] D. S. Holder. Electrical Impedance Tornography: Methods, History and
Applications. Taylor & Francis, 2004.

[99] J. Hong, D. H. Jeong, C. D. Shaw, W. Ribarsky, M. Borodovsky, and C. G.
Song. Gvis: A scalable visualization framework for genomic data. In
K. Brodlie, D. J. Duke, , and K. 1. Joy, editors, EuroVis, pages 191-198.
Eurographics Association, 2005.

[100] R. Hopfengartner, F. Kerling, V. Bauer, and S. H. An efficient, robust and
fast method for the offline detection of epileptic seizures in long-term scalp eeg
recordings. Clin Neurophysiol, 118(11):2332-43, Nov 2007.

[101] E. houstis, J. Rice, E. Gallopoulos, and R. Bramley. Enabling technologies for
computational science. Kluwer academic publishers, 2000.

279

[102] G. Huiskamp, J. IvIaintz, G. \Vieneke, lVI. Viergever, and A. van Huffelen. The
influence of the use of realistic head geometry in the dipole localization of
interictal spike activity in mtle patients. Biomedizinische Technik., 42:84-87,
1997.

[103] G. Huiskamp, lVI. Vroeijenstijn, R van Dijk, G. VVieneke, and A. Huffelen.
The need for correct realistic geometry in the inverse eeg problem. IEEE
Tmns. Biomed. Eng., 46:1281-1287, Nov 1999.

[104] Ibm cell broadband engine software development kit.
http://www.ibm.com/developerworks/power/cell/.

[105] Neurons in a column. http://domino.watson.ibm.com/comm/pr .nsf I
pages/rsc.bluegene_cognitive.html.

[106] 1. Ingber. Simulated annealing: Practice versus theory. Mathl. Comput.
Modelling, 18(11):29-57, 1993.

[107] J. Jin. The Finite Element Method in ElcctTOmagnetics. John Wiley & Sons,
New York, 1993.

[108] L. Jing. Effects of holes on eeg forward solutions using a realistic geometry
head model. Journal of neuTal engineering, 4(3):197-204, 2007.

[109] H. J.S., N. RR, and A. F.C. Simulated parallel annealing within a
neighborhood for optimization of biomechanical systems. Biomech, 2005.

[110] C. Junwei, S. Jarvis, S. Saini, and G. Nudd. Gridflow: Workflow management
for grid computing. ccgrid, 0:198, 2003.

[111] K. K. and T. K. Time-homogeneous parallel annealing algorithm. In The 13th
IMACS World Congress of Computation and Applied Mathematics, 1991.

[112] P. Kacsuk, Z. Farkas, G. Hermann, and T. Kiss. Workflow-level parameter
study support for production grids. In O. Gervasi and lVI. Gavrilova, editors,
Computational science and its application - ICCSA 2007. International
conference. Part III. Kuala Lumpur, 2007. (Lecture notes in computeT science
4707), pages 872-885. LNCS, 2007.

[113] J. Kaipio, V. Kolehmainen, lVl. Vauhkonen, and E. Somersalo. Inverse
problems with structural prior information. Inverse problems, 15:713-729, Nov
1998.

[114] S. Kirkpatrick, C. Gelatt, and lVI. Vecchio Optimization by simulated
annealing. Science, Number 4598, 13 May 1983, 220, 4598:671-680, 1983.

280

[115] J. Kosterich, K. :Foster, and S. Pollack. Dielectric properties of fluid saturated
bone: The effect of variation in conductivity of immersion fluid. IEEE Trans.
Biorned. Engr., 31:369-37.5, 1984.

[116] Y. Lai, W. van Drongelenc, L. Dlnga, K. Hecoxc, V. Towlec, D. Frimc, and
B. Hea. Estimation of in vivo human brain-to-skull conductivity ratio from
simultaneous extra- and intra-cranial electrical potential recordings. Clinical
Neurophysiology, 116(2):456-465, 2005.

[117] J. Latikka, T. Kuurne, and H. Eskola. Conductivity of living intracranial
tissues. Phys. Med. Biol., 46(6):1611-6,2001.

[118] S. Law. Thickness and resistivity variations over the upper surface of the
human skull. Brain Topography, 6:99-109, 1993.

[119] L. Lemieux, A. McBride, and J. Hand. Calculation of electrical potentials on
the surface of a realistic head model by finite differences. Phys. Med. Biol.,
41:1079-1091, 1996.

[120] W. R. B. Lionheart. Eit reconstruction algorithms: pitfalls, challenges and
recent developments. Physiol. Meas., 25:125-142, 2004.

[121] N. K. Logothetis. What we can do and what we cannot do with fmri. Nature,
453:869-878, 12,June 2008.

[122] B. Ludascher, 1. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A.
Lee, J. Tao, and Y. Zhao. Scientific workflow management and the kepler
system: Research articles. Concurr. Cornput. : Pract. Exper.,
18(10):1039-1065, 2006.

[123] R. MacLeod and et a1. Scirun/biopse: Integrated problem solving
environment for bioelectric field problems and visualization. In IEEE Int.
Syrnp. on Biorn. Irng., volume 1, pages 640-643, 2004.

[124] Microarray and gene expression markup language (mage-mI).
http://xml.coverpages.org/mageML.html.

[125] G. Marin, C. Guerin, S. Baillet, L. Garnero, and G. Meunier. Influence of
skull anisotropy for the forward and inverse problem in eeg: simulation studies
using fern on realistic head models. Hurn. Brain. Mapp., 6:250-269, 1998.

[126] J. Meijs, O. Weier, M. Peters, and A. van Oosterom. On the numerical
accuracy of the boundary element method. Biorned. Eng., 36:1038-1049, Oct
1989.

281

[127] J. Mejis, M. Peters, and A. Oosterom. Computation of megs and eegs using a
realistically shaped multicompartment model of the head. Med. Biol. Eng.,
23:36-37, 1985.

[128] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. Equation of state calculations by fast computing machines. The
Journal of Chemical Physics, 21(6):1087-1092, 1953.

[129] M. Miki, T. Hiroyasu, M. Kasai, K. Ono, and T. Jitta. Temperature parallel
simulated annealing with adaptive neighborhood for continuous optimization
problem. In Second international workshop on Intelligent systems design and
application, pages 149-154, Atlanta, GA, USA, 2002. Dynamic Publishers, Inc.

[130] Molecular dynamics [markup] language (modI).
http://xml.coverpages.org/modl.html.

[131] M. Mohr and B. Vanrumste. Comparing iterative solvers for linear systems
associated with the finite difference discretisation of the forward problem in
electro-encephalographic source analysis. Med. B'iol. Eng. Comput., 41:75-84,
2003.

[132] Z. Molnar and 1. Szeberenyi. Saleve: Simple web-services based environment
for parameter study applications. In GRID 05: Proceedings of the 6th
IEEE/ACM International Workshop on Grid Computing, pages 292-295,
Washington, DC, USA, 2005. IEEE Computer Society.

[133] J. Mosher and R. Leahy. Source localization using recursively applied and
projected (rap) music. IEEE Trans. Signal. Process., 47(2):332-340, 1999.

[134] Numerical data markup language (ndml).
http://xml.coverpages.org/materials.html.

[135] The network for earthquake engineering simulation (nees).
https:!!www.nees.org!.

[136] L. Neilson, M. Kovalyov, and Z. Koles. A computationally efficient method for
accurately solving the eeg forward problem in a finely discretized head model.
Clin Neurophysiol, 116(10):2302-2314, 2005.

[137] Network common data format (netcdf).
http://www.unidata.ucar.edu/software/netcdf/.

[138] P. Nicholson. Specific impedance of cerebral white matter. Experimental
Neurology, 13:386-401, 1965.

282

[139] Numerical python. adds a fast, compact, multidimensional array language
facility to python. http://www.pfdubois.com/numpy/.

[140] P. Nunez. Electric Fields of the Bruin: The neurophysics of the EEG. Oxford
University Press, 2006.

[141] P. Nunez and R. Silberstein. On the relationship of synaptic activity to
macroscopic measurements: Does co-registration of eeg with fmri make sense?
Bruin Topogr, 13:79-96, 2000.

[142] Nwchem homepage.
http://www.emsl.pnl.gov/capabilities/computing/nwchem/.

[143] A. 1. of Aeronautics and A. Staf. AIAA Guide for the Verification and
Validation of Computational Fluid Dynamics Simulations. American Institute
of Aeronautics & Astronautics, 1998.

[144] S. Ogawa, D. Tank, R. Menon, J. Ellermann, S. Kim, H. Merkle, and
K. Ugurbil. Intrinsic signal changes accompanying sensory stimulation:
functional brain mapping with magnetic resonance imaging. Natl. Acad. Sci.,
89(13):5951-5955, 1992.

[145] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, T. Carver,
M. Greenwood, K. Glover, M. Pocock, A. \iVipat, and P. Li. Taverna: a tool
for the composition and enactment of bioinformatics workflows.
Bioinformatics, 20(17):3045-3054, June 2004.

[146] Y. Okada, A. Lahteenmaki, and C. Xu. Experimental analysis of distortion of
magnetoencephalography signals by skull. Clin. Neurophysiol.,
110(2):230-238, 1999.

[147] J. Ollikainen, M. Vauhkonen, P. Karjalainen, and J. Kaipio. Effects of local
skull inhomogeneities on eeg source estimation. Med. Eng. Phys.,
21(3):143-154, 1999.

[148] T. Oostendorp, J. Delbeke, and D. Stegeman. The conductivity of the human
skull: Results of in vivo and in vitro measurements. IEEE Trunsactions on
Biomedical Engineering, 47(11):1487-1492, 2000.

[149] R. Oostenveld and T. Oostendorp. Validating the boundary element method
for forward and inverse eeg computations in the presence of a hole in the skull.
Hum. Bruin. Mapp., 17:179-192.,2002.

[150] R. Pascual-Marqui. Review of methods for solving the eeg inverse problem.
International Journal of Bioelectromagnetism, 1:75-6, 1999.

283

[151] A. Petitet, H. Casanova, R. Whaley, J. Dongarra, and Y. Robert. A numerical
linear algebra problem-solving environment designer's perspective. SIAM
Annual Meeting" 1999.

[152] Petsc: Portable, extensible toolkit for scientific computation,.
http://www.mcs.anl.gov/petsc/petsc-as/.

[153] R. Plonsey and D. B. Heppner. Considerations of quasi-stationarity in
electrophysiological systems. Bulletin of Mathematical Biology, 29(4):657-664,
December 1967.

[154] R. Pohlmeier, H. Buchner, G. Knoll, A. Rienacker, R. Beckmann, and
J. Pesch. The influence of skull - conductivity misspecification on inverse
source localization in realistically shaped finite element head models. Bmin
Topogr., 9(3):157-162, 1997.

[155] M. Posner and M. Raichel. Images of Mind. W.H. Freeman, New York, 1997.

[156] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. The Numerical
Recipes in C: The art of Scientific Computing. Cambridge University Press,
New York, 2nd edition, 1992.

[157] T. D. Project. http://www . cs. sandia. gov/DAKOTA/.

[158] A. Pursula, J. Nenonen, E. Somersalo, E. Ilmoniemi, and T. Katila.
Bioelectromagnetic calculations in anisotropic volume conducters. In
Biornag2000, pages 659-662, 2000.

[159] Pytables. http://pytables . sourceforge. net.

[160] R. K. Rew and G. P. Davis. Netcdf: An interface for scientific data access.
IEEE Computer Graphics and Applications, 10(4):76-82, 1990.

[161] J. Rice. Computational science and the future of computing research. In
IEEE Computational Science and engineering magazine, pages 35-41, 1995.

[162] J. R. Rice and R. F. Boisvert. From scientific software libraries to
problem-solving environments. IEEE Computational Science f3 Engineering,
3(3) :44-53, Fall 1996.

[163] M. E. Riley, R. Buss, R. Campbell, M. Hopkins, P. Miller, A. Moats, and
W. Wampler. Verification and validation plan for the codes lsp and icarus
(pegasus). Technical report, Sandia National Laboratories, 2002.

[164] P. Roache. Fundamentals of Computational Fluid Dynamics. Hermosa
Publishers, 1998.

284

[165] A. Rodriguez-Rivera, B. Van Veen, and R. Wakai. Statistical performance
analysis of signal variance-based dipole models for meg/eeg source localization
and detection. IEEE Transactions on Biomedical Engineering, 50(2):137-149,
2003.

[166] T. Rogers, J. Hocking, U. Noppeney, A. IvIechelli, IvI. Gorno-Tempini,
K. Patterson, and C. Price. Anterior temporal cortex and semantic memory:
reconciling findings from neuropsychology and functional imaging. Cogn.
Affect Behav. Neurosci., 6(3):201-213, 2006.

[167J B. Roth, A. Gorbach, and S. Sato. How well does a three-shell model predict
positions of dipoles in a realistically shaped head? Phys. Med. Biol.,
87:175-184, 1993.

[168J B. Roth, D. Ko, 1. von Albertini-Carletti, D. Scaffidi, and S. S. Dipole
localization in patients with epilepsy using the realistic shaped head model.
Electroencephalography and Clinical Neurophysiology, 102(3):160-166, 1997.

[169J S. Rush and D. Driscoll. current distribution in the brain from surface
electrodes. Anesth. Analg., 47(6):717-723, 1968.

[170J S. Rush and D. Driscoll. Eeg electrode sensitivity - an application of
reciprocity. IEEE Trans. Biom. Eng., 16(1):15-22, 1969.

[171J S. Rush and D. Driscoll. Eeg electrode sensitivity-an application of
reciprocity. IEEE Trans. Biomed. Eng., 16:15-22, 1969.

[172J S. IvI. Sait and Y. Habib. Iterative Computer Algorithms with Applications in
Engineering: Solving Combinatorial Optimization Problems. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1999.

[173J H. Saleheen and T. Kwong. New finite difference formulations for general
inhomogeneous anisotropic bioelectric problems. IEEE Trans. Biomed. Eng.,
44:800-9, 1997.

[174J H. Saleheen and T. Kwong. A new three-dimensional finite-difference
bidomain formulation for inhomogeneous anisotropic cardiac tissues. IEEE
Trans. Biomed. Eng., 45:15-24, 1998.

[175J A. Salman, A. Malony, and M. Sottile. An open domain-extensible
environment for simulation-based scientific investigation (odessi). In
International Conference on Computational Science (ICCS 2009), pages 23
32,2009.

285

[176] A. Salman, A. Malony, S. Turovets, and T. D. Use of parallel simulated
annealing for computational modeling of human head conductivity. In
International Conference on Computational Science (ICCS 2001), pages
86-93, 2007.

[177] A. Salman, A. Malony, S. Turovets, and T. D. On the role of skull parcellation
in the computational modeling of human head conductivity. In Electrical
Impedance Tomogmphy Conference (Ell' Conference 2008), pages 16-18,
Dartmouth College, New Hampshire, 2008.

[178] A. Salman, A. Malony, S. Turovets, A. Morris, and D. Tucker. Modeling
human head electromagnetics on the cell broadband engine (poster).
Workshop on Solving Computational Challenges in Medical Imaging, 2007.
Seattle.

[179] A. Salman, S. Turovets, A. lVIalony, J. Eriksen, and T. D. Computational
modeling of human head conductivity. In International Conference on
Computational Science (1), pages 631-638, 2005.

[180] A. Salman, S. Turovets, A. Malony, P. Poolman, C. Davey, J. Eriksen, and
T. D. Noninvasive conductivity extraction for high-resolution eeg source
localization. Advances in Clinical Neuroscience and Rehabilitation, 6(1):27-28,
March 2006.

[181] A. Salman, S. Turovets, A. Malony, and V. Volkov. Multi-cluster, mixed-mode
computational modeling of human head conductivity. In International
Workshop on OpenMP (IWOMP) , 2005.

[182] A. Saltelli. Senstivity analysis for importance assessment. Risk Analysis,
22(3):579~590, June 2002.

[183] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli,
},;l. Saisana, and S. Tarantola. Global Sensitivity Analysis: The Primer. Wiley,
2008.

[184] Y. Salu, L. Cohen, D. Rose, S. Sato, C. Kufta, and H. M. An improved
method for localizing electric brain dipoles. IEEE Tmnsactions on Biomedical
Engineering, 37(7):699-705, 1990.

[185] San diego supercomputer center. http://www . sdsc. edu/.

[186] J. Sarvas. Basic mathematical and electromagnetic concepts of the
biomagnetic inverse problem. Phys. Med. Biol., 32:11-22, 1993.

286

[187] P. Schimpf, C. Ramon, and H. J. Dipole models for the eeg and meg. IEEE
Tmnsactions on Biomedical EngineeTing, 49(5):409-418, 2002.

[188] L. Schwer. An overview of the ptc 60/v&v 10: guide for verification and
validation in computational solid mechanics: Transmitted by 1. e. schwer,
chair ptc 60/v&v 10. Eng. with Comput., 23(4):245-252, 2007.

[189] L. E. Schwer and W. L. Oberkampf. Special issue on verification and
validation. Eng. with Comput., 23(4) :243-244, 2007.

[190] L. E. Schwer and W. L. Oberkampf. Special issue on verification and
validation. Eng. with Comput., 23(4), 2007.

[191] Siam. http://www . siam. org/students/resources!report .php.

[192] N. Soni, A. Hartov, C. Kogel, S. Poplack, and K. Paulsen. Multi-frequency
electrical impedance tomography of the breast: new clinical results. Phys'iol.
Meas., 25:301--314, 2004.

[193] G. P. Steven and R. J. Christopher. Scirun: a scientific programming
environment for computational steering. In Supermmputing '95: PToceedings
of the 1995 ACM/IEEE confeTence on SupeTcomputing (CDR OM), page 52,
New York, NY, USA, 1995. ACM.

[194] J. Stinstra and M. Peters. The volume conductor may act as a temporal filter
on the ecg and eeg. Medical and Biological EngineeTing and Computing,
36(6):711-716, November 1998.

[195] B. Sylvain, G. Line, M. Gildas, and H. Jean-paul. Combined meg and eeg
source imaging by minimization of mutual information. IEEE Tmns. Biomed.
Eng, 46:522-534, 1999.

[196] H. Szu and R. Hartley. Fast simulated annealing. Physics LetteTs A,
122:157-162, 1987.

[197] C. Tang, F. You, G. Cheng, D. Gao, F. Fu, and G. Yang. Correlation between
structure and resistivity variations of the live human skull. IEEE Transactions
on Biomedical EngineeTing, 55(9):2286-2292, Sept 2008.

[198] 1. Tanzer and N. Gencer. A new boundary element method formulation of the
forward problem solution of electro-magnetic source imaging. In In Pmc. 19
th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., pages 2100-2103,
Chicago,USA, 1997.

287

[199] S. Teukolsky, W. Vetterling, and B. Flannery. The Numerical Recipes in C:
The art of Scient~fic Computing. 2nd edition. Cambridge University Press,
New York, 1992.

[200] O. Thevenet, B. 0., F. Perrin, T. Dumont, and J. Pernier. The finite element
method for a realistic head model of electrical brain activities: Preliminary
results. Clin. Neurophys., 12, 1991.

[201] Traits ui. http:
//code.enthought.com/projects/traits/docs/html/TUIUG/index.html.

[202] D. Tuch, V. Wedeen, A. Dale, J. George, and J. Belliveau. Conductivity
tensor mapping of the human brain using diffusion tensor mri. Proc. Natl.
Acad. Sci., 98(20):11697-11701, 2001.

[203] R. Uitert, D. Weinstein, and C. Johnson. Can a spherical model substitute for
a realistic head model in forward and inverse meg simulations? In 13th Int.
Conf. on Biomagnetism" pages 798-800, 2002.

[204] R. Uitert, D. Weinstein, and C. Johnson. Volume currents in forward and
inverse magnetoencephalographic simulations using realistic head moclels.
Ann. Biomed. Eng., 31:21-31, 2003.

[205] S. van den Broek, F. Reidel's, M. Donderwinkel, and M. Peters. Volume
conduction effects in eeg and meg. Electroencephalogr. Clin. Neurophysiol.,
106, 1998.

[206] S. van den Broek, R. Zhou, and M. Peters. Computation of neuromagnetic
fields using finite-element method and biot-savart law. Med. Biol. Eng.,
34:21-26, 1996.

[207] J. D. Van Rorna, R. Poldrackb, and P. A. Functional mri at the crossroads.
International Journal of Psychophysiology, 73(1):3-9, 2009.

[208] B. Vanrumste, G. Van Roey, R. Van de Walle, M. DRave, 1. Lemahieu, and
P. Boon. The validation of the finite difference method and reciprocity for
solving the inverse problem in eeg dipole source analysis. Brain Topogr.,
14(2):83-92, 2001.

[209] A. Villringer and B. Chance. Noninvasive optical spectroscopy and imaging of
human brain function. Trends Neurosci, 20:435-442, 1997.

[210] Virolab. http://www .virolab. org/.

288

[211] K. Whittingstall, G. Stroink, L. Gates, and F. A. Effects of dipole position,
orientation and noise on the accuracy of eeg source localization. Biomedical
Engineering Online, 2(14), 2003.

[212] A. Wibisono, Z. Zhao, A. Belloum, and M. Bubak. A framework for
interactive parameter sweep applications. In M. Bubak, G. D. van Albada,
J. Dongarra, and P. M. A. Sloot, editors, ICCS (3), volume 5103 of Lecture
Notes in Computer Science, pages 481-490. Springer, 2008.

[213] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67-82, April 1997.

[214] C. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M. Koch, and
R. MacLeod. Influence of tissue conductivity anisotropy on eeg/meg field and
return current computation in a realistic head model: A simulation and
visualization study using high-resolution finite element modeling. neuroimage,
10(014), 2005.

[215] C. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M. Koch, and
R. MacLeod. Influence of tissue conductivity anisotropy on eeg/meg field and
return current computation in a realistic head model: A simulation and
visualization study using high-resolution finite element modeling. Neurolmage,
3:813-826, 2006.

[216] C. wolters, C. Koestler, J. Hardtlein, L. Grasedyck, and H. W. Numerical
mathematics of the subtraction method for the modeling of a current dipole in
eeg source reconstruction using finite head models. SIAM J. Sci. Comput,
40(2), 2007.

[217] C. Wolters, M. Kuhn, A. Anwander, and S. Reitzinger. A parallel algebraic
multigrid solver for finite element method based source localization in the
human brain. Computing and Visualization in Science, 5:165-177, 2002.

[218] X. Xiang, R. Kennedy, and G. Madey. Verification and validation of
agent-based scientific simulation models. In Agent-Directed Simulation
Conference, pages 47-55, San Diego, CA, April 2005.

[219] extensible scientific interchange language (xsil.

[220] S. Y. Iterative methods for sparse linear systems 2nd edition. SIAM, 2003.

[221] Y. Van, P. Nunez, and R. Hart. Finite-element model of the human head:
scalp potentials due to dipole sources. Medical and Biological Engineering and
Computing, 29(5), 9 1991.

289

[222] M. Yarrow, K. M. McCann, R. Biswas, and R. F. Van del' Wijngaart. An
advanced user interface approach for complex parameter study process
specification on the information power grid. In GRID '00: Proceedings of the
First IEEE/ACM International Workshop on Grid Computing, pages
146-157, London, UK, 2000. Springer-Verlag.

[223] S.-M. Yau, E. Grinspun, V. Karamcheti, and D. Zorin. Sim-x: parallel system
software for interactive multi-experiment computational studies. ipdps, 0:116,
2006.

[224] S.-Iv!. Yau, E. Grinspun, V. Karamcheti, and D. Zorin. Simx meets scirun: A
component-based implementation of a computational study system. ipdps,
0:322, 2007.

[225] B. Yvert, O. Bertrand, M. Thvenet, J. F. Echallier, and J. Pernier. A
systematic evaluation of the spherical model accuracy in eeg dipole
localization. Electroencephalogr. Clin. Neurophysiol., 102:452-459, 1997.

[226] K. Zhang, K. Damevski, V. Venkatachalapathy, and S. Parker. Scirun2: A cca
framework for high performance computing. In the 9th International
Workshop on High-Level Parallel Programming Models and Supportive
Environments (HIPS 2004), Santa Fe, NM, 2004. IEEE Press.

[227] Y. Zhang, W. van Drongelen, and B. He. Estimation of in vivo brain-to-skull
conductivity ratio in humans. Appl Phys Lett., 89(22), 2006.

