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Abstract

When performance measurements are made of pro-

gram operation actual execution behavior can be per-

turbed. In general, the degree of perturbation depends

on the intrusiveness and frequency of the instrumen-

t ation. If the perturbation effects of the instrumen-

tation cannot be quantified by a perturbation model

(and subsequently removed during perturbation anal-

ysis), detailed performance measurements could be in-

accurate. Developing models of time and event per-

turbations that can recover actual execution perfor-

mance from perturbed performance measurements is

the topic of this paper. Time-based models can accu-

rately capture execution time perturbations for sequen-

tial computations and concurrent computations with

simple fork-join behavior. However, the performance of

parallel computations generally depends on the rela-

tive ordering of dependent events and the assignment

of computational resources. Event-based models must

be used to quantify instrumentation perturbation in

parallel performance measurements. The measurement

and subsequent analysis of synchronization operations

(e.g., barrier, semaphore, and advance/await synchro-

nization) can produce accurate approximations to ac-
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tual performance behavior. Unfortunately, event-based

models are limited in their ability to fully capture per-

turbation effects in nondeterministic executions.

1 Introduction

As the complexity of computer systems increase, there

is a greater need for performance data to understand

the interactions between different performance factors.

However, detailed performance measurement is not

without cost. In particular, the overheads associated

with the execution of instrumentation points in a pro-

gram can perturb its actual operational behavior and,

consequently, can introduce errors in the observed per-

formance data. For sequential programs, the primary

perturbations are in execution time. For parallel com-

putations, instrumentation can perturb event ordering

and resource usage, in addition to execution time.

From a performance evaluation perspective, instru-

mentation perturbations must, be balanced against the

need for detailed performance data. Excessive instru-

mentation perturbs the measured system; limited in-

strumentation reduces measurement detail — system

behavior must be inferred frc,m insufficient data. Reg-

rettably, there have been no formal models of per-

formance perturbation that would permit quantitative

evaluation given instrumentation costs, measured event

frequency, and desired instrumentation detail. Given

the lack of models and the potential dangers of exces-

sive instrument at ion, detailed performance measure-

ments, mainly in the form of software event traces, of-

ten are rejected for fear of corrupting the data (i.e., a

small volume of accurate, though incomplete, instru-

mentation data is preferred).

This paper describes several performance perturba-

tion models that can be used to recover actual per-

formance behavior from perturbed performance mea-

surements. The perturbation models we developed are

based on time and event analyais [9]. Time-based per-

turbation models attempt to recover accurate timing of

trace events from knowledge of instrumentation over-

head, assuming event independence. Event-based per-
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turbation models focus on removing the effects of in-

strumentation on the ordering of events in parallel ex-

ecution. Although more robust than time-based mod-

els, event-based models require more intrusive measure-

ments to capture data regarding the execution of syn-

chronization operations. All the models we discuss in

the paper have been implemented in perturbation anal-

ysis software and tested against a series of instrumenta-

tion experiments to determine their validity [9, 11, 10].

The results of these experiments suggest that a system-

atic application of performance perturbation analysis

techniques will allow more detailed, accurate instru-

mentation than traditionally believed possible.

In $2, we describe our instrumentation approach and

define metrics to quantify instrumentation perturba-

tions. In ~3, time-based perturbation models are dis-

cussed for both total execution time and per event

time approximations. Because time-based models as-

sume event independence during parallel execution,

they will fail when there are execution ordering depen-

dencies. Models for event-based perturbation analysis,

described in ~4, use measurements of synchronization

operations to resolve perturbations in these cases. How-

ever, perturbation models based on performance mea-

surements alone cannot quantify all perturbation er-

rors. Ultimately, the analysis must include information

about the execution context. In conclusion, we discuss

the limits of measurement-based perturbation models

and the directions for future work.

2 Instrumentation Approach

Performance perturbation models must be based on a

particular instrumentation approach. Because tracing

is the most general form of instrumentation, allowing

both static and dynamic analysis, we derive pertur-

bation models for trace instrumentation. Before dis-

cussing the time-based and event-based perturbation

models, we begin with a formal description of our in-

strumentation approach.

2.1 Event T’races

A computer system’s operation can be regarded as a se-

quence of actions representing some significant physical

or logical activity performed. For measurements pur-

poses, the execution of an action generates an event —

an encoded instance of an action. Events are dynamic

and each instance of an action defines a separate event.

A performance measurement can be viewed as the col-

lection of a (possibly infinite) set of events. Each event

in the measurement indicates the action type (or iden-

tity), the time when the action occurred, information

about where the action occurred, and any additional

data that further defines the action state.

For our purposes, the actions to be observed are

the execution of program statements and we will use

instrumentation to capture these actions in an event

trace. Given a program, P, composed of a sequence of

statements S1, Sz, . . . . S. and a set of instrumentation

points 11,12, . . . . In, an instrumentation of P is defined

as

z(P) =11, sl,12, s2, . . .. In.& ,

where some Ij may be null (i.e., no instrumentation).

Each instrumentation point captures an event identi-

fying the execution of the corresponding statement.

We define a logical event trace, T, to be a time-

ordered sequence of events el, . . . . em where each ei is of

the form {t(ei), eidt}, eidi is the event identifier for the

i+h event representing the statement se~d; in the pro-

gram, and t(ei) is the time when the event occurred.

The logical event trace represents the program’s ac-

tual performance. It is the logical event trace that we

are trying to capture in the performance measurement.

We use the notation rm to denote a measured event

trace. The measured event trace represents the pro-

gram’s measured performance. Because a program can

have both sequential and concurrent components, we

define the sequential event trace, ~’ (~~), as the sub-

sequence of events eP, e~, . . . . e, generated in sequential

mode. Similarly, the concurrent event trace for proces-

sor i, ri (r&), is the sub-sequence of events e:, e~, . . . . e;

executed in concurrent mode on processor i.

2.2 Definitions and Metrics

The measured trace, rm, reflects a perturbation of r in

execution time and, possibly, event order. The following

definitions are used to quantify the perturbations of

trace instrument ation.

The total execution time of a sequential program P

is

7’S(P) = ~ ~(se~di) ,

eiGTs

where T(Se~& ) is the actual execution time of state-

ment S.idi. The measured program execution time of

an instrumentation of P is

where T(~e~di ) is the direct execution time overhead of

the instrumentation point Ie~d~. The coupling of exe-

cution times for program statements and instrumen-

tation, represented by @, denotes perturbations not

included in individual instrumentation and statement

timings.

For concurrent execution time calculations, one must

determine the critical path during concurrent computa-

tion. Let T’ = eP, e~, ,.. , er represent the logical trace

of sequential events and rep = es, et, . . . . eu the logi-

cal trace of concurrent events along the critical path,
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respectively. The total actual

current program P is

T’(P)= ~ !r(seid,)
e,~r”

execution time of a con-

Similarly, the measured program execution time of an

instrumentation of P is:

T&(z(P)) = ~ [T(seid,) e) T(leid, )]

etET&

+ ~ [7’(S’eidj) @ ‘(~.idj)l
ejET~p

where Tip = ez, ev, ..., e= represents the critical path

of concurrent events in the instrumented program. Un-

fortunately, the concurrent event sequence identified as

the critical path in T’(P), rc~, may differ from that for

T&(z(P)), TAP.

From the above definitions, one can define a series

of instrumentation perturbation metrics. We will use

7’(P) and Tm(Z(P)) to represent actual and measured

execution times for both sequential and concurrent tim-

ing measurements. The simplest metric, absolute error

in measured execution time, is defined in the standard

way. The absolute error, All, is

AE = Tm(Z(P)) – T(P) . (1)

The perturbation in execution timle caused directly

by the execution of instrumentation instructions is

called direct perturbation. The direct perturbation,

DP, is defined as

DP = DP8 + DP’ ;

its sequential and concurrent components, DPS and

DPC, respectively, are

and

Although (1) estimates the instrumentation pertur-

bation, it does not estimate actual execution time from

trace data. The approximate execution time, T=(P),

is the difference between the measured execution time

and direct perturbation,

T.(P) = Tm(T(P)) – DP .

That is, T.(P) is the approximated execution time after

applying a perturbation analysis mcjdel that includes

only direct perturbations.

3 Time-Based Models

Given an understanding of possible performance instru-

ment ation perturbations and measures of in vitro trace

instrument ation costs in an execution environment,

our goal for perturbation analysis is to recover the

“true” trace of events from an measured trace as they

would have been generated during an execution with-

out instrumentation. Perturbation models then must

describe observed (measured) behavior as a perturba-

tion of true behavior. Perturbations are manifest in

event execution times and event ordering. For timing

analysis, perturbation models must approximate true

times of event occurrence, either for each trace event

or for the total execution time. Event analysis is more

difficult; program or system semantic information is

needed to determine if the re.lat ive, observed event or-

der is incorrect and, if so, generate a better approxima-

tion to the actual order. In both cases, perturbations

models must use the execution information contained

in a measured trace, ~m, to resolve the instrumentation

perturbations that occurred during the measurement

and to approximate actual performance behavior.

We consider only perturbation models for timing

analysis. The two types of models we develop, time-

based and event-based, differ in their assumptions

about program execution. Time-based perturbation

models assume independence among threads of exe-

cution and, therefore, account only for the execution

time overhead of the instrumentation when construct-

ing performance approximations from the measured

traces. Event-based models use measurements of syn-

chronization operations to account for dependent exe-

cution, and maintain ordering relationships during per-

turbation analysis. The time- based models used for ap-

proximating total execution time and per event times

are discussed below. The event-b ased models are de-

scribed in \4.

3.1 Total Execution Time Analysis

Time-based models capture the effects of instrumenta-

tion perturbation when the time and order events occur

is execution independent. For sequential execution, the

execution states form a total order, and event times are

affected only by instrumentation overhead. For concur-

rent execution scenarios, mainly those involving simple

fork-join behavior and no inter-thread dependencies,

time-based perturbation models also apply. We begin

with the sequential execution case.

3.1.1 Sequential Total Time Model

During sequential execution, the principal perturba-

tion is direct — execution of additional instrumenta-

tion instructions.1 Furthermore, instrumentation does

1. ThLs does not means that indirect sources of perturbations

do not exist. Rather, the execution time overhead is known to
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not perturb the total order of program events. Thus,

our sequential perturbation model assumes that all per-

turbations are direct (i.e., AE = DP) and that the

cost for instrument ation is decoupled from statement

execution. Simply put, the model approximates actual

execution time by the difference between measured ex-

ecution time and all direct instrumentation costs. More

formally, the model’s assumptions imply the following:

1. The actual cost T(leidi ) for each instrumentation

point Ii is approximated by a constant CY.2

2. DP = ~e~~,, T(I.icii) = CYN, where N is the

number of instrumentation points.

3. T.(P) = Tm(Z(P)) – DP = Tm(Z(P)) – CYN.

As the approximate equality above suggests, the ac-

curacy of our assumption depends on the interaction

of instrumentation perturbations and statement execu-

tion. With source code instrumentation, compiler reg-

ister optimizations can invalidate the assumption of

a constant instrumentation perturbation. The desired

approximation in this case would be based on a non-

uniform perturbation model (i.e., one that considered

the effects of each individual instrumentation instance),

However, the number of different cases to consider can

become large and requires an analysis of the differences

in the code generated with and without instrumenta-

tion. In light of these complications, we assume that

a reasonably stable instrumentation overhead can be

obtained and that the constant overhead estimate is

valid.

3.1.2 Concurrent Total Time Model

During concurrent execution, multiple threads of con-

trol may simultaneously reach trace instrumentation

points. Intuitively, a critical path analysis would iden-

tify the set of instrumentation points needed to com-

pute total execution time [15]. Unfortunately, different

parallel perturbations can make this difficult. Events

can be reordered, and the critical path identified from

the instrumentation trace may not be the critical path

in the real code.

Without resorting to the event analysis models of ~4,

we can assume that events are not reordered and that

the concurrent thread with the longest execution time

(after direct perturbations have been removed) is the

critical path. If most threads execute similar instruc-

tion streams (i.e., there is little data dependent code),

this assumption is accurate.3 Like the sequential ex-

ecution time model, our base assumption implies the

following:

occur with every instrumentation execution, where the indirect

perturbations are less likely and deterministic.
2. The approximate to T(~eidi ), a, is given by the mean instru-
mentation time overhead.
3. If not, an event analysis model is needed. However, in [9, 11],

we show that timing analysis alone can yield significant insight

in many practical cases.

1.

2,

3.

The actual cost T(le~~i ) for each instrumentation

point Ii is approximated by a constant a.

DP = DPS + DP&z = DPS + crNmaz, where

● (Tm,(Z(Pmac)) - a]rma$l) > (Tm(Z(Pi)) -

alT*[) vi O<i <p,

● p is the number of processors,

● Tm (Z(Pi)) is the measured concurrent exe-

cution time on processor i,

● ~ac = ]Paz I is the number of instrumen-N

tation events in trace rma’.

Ta(P) = Tm(Z(P)) – DPC = Tm(Z(P)) – DPS –

cxNma$ .

The concurrent perturbation model chooses as the crit-

ical path the sequential execution path plus the exe-

cution path along the concurrent thread that has the

greatest accumulated execution time after the direct

perturbation has been removed.

3.2 Event Timing Analysis

Although total execution time approximations can

serve as partial validation of the time-based models,

ultimately we want to recover the actual order and tim-

ing of trace events. However, even given careful anal-

ysis and a predictive event timing model, one cannot

directly determine the accuracy of the predicted event

times. Instead, one must infer the stability of an event

timing model by comparing its trace predictions with

varying levels of trace instrumentation. As with execu-

tion time models, we begin with the simpler, sequential

case.

3.2.1 Sequential Event Time Model

Each trace event identifies a unique spatial and tem-

poral state (i.e., a code location at a specified time),

In a sequential trace, each event is perturbed by the

instrumentation for all previous events, Thus, we can

iteratively calculate each event time, given the pertur-

bations of previous events.

For a trace, # , of sequential events el, . . . . em where

each ei is of the form {tm (ei), eid~ }, the model approx-

imates the actual time of event ei by ta (ei ),

fa(e~) = tm(ei) – (i – l)a , (2)

where a is the mean time for each trace instrumenta-

tion point and tm (ei) is the measured time of occur-

rence of ei from a trace of an instrumented execution.

3.2.2 Concurrent Event Time Model

Approximating event times for concurrent traces is

more difficult than for sequential traces. The pertur-

bation of each event depends on the perturbation of all

events on the critical path to the event. In the worst

case, a complete characterization of the execution de-

pendencies between concurrent threads of execution is

required. To simplify analysis, we assume that events



on separate concurrent threads are independent and

that the program contains only a single level of fork-

join concurrency.4 With the event-based models, these

assumptions can be relaxed.

Given a trace, #, of concurrent events e!, . . . . e; for

each concurrent thread i, and a trace, rs, of sequential

events e:, . . .,e~,5 we approximate the actual time of

a concurrent event e~ as follows.

1. If e~ is the first concurrent event after a sequen-

tial event e; in the time ordered trace, then

ta(ej) = tm(e~) –tm(ej) +ta(ej) .

We use the measured and approximated times of

the last sequential event occurrence as the time

basis for computing the execution time of the first

concurrent event of a concurrent phase of com-

putation.

2. If e~ immediately follows a concurrent event in

the trace on thread i, then

ta(ej) = tm(ej) –t,n(ej) +ta(ej) –cYcj ,

where c~ is the number of events in concurrent

thread i after the last sequential event e; in the

trace. Along a sequence of concurrent events, we

use the last sequential event as the time basis

for approximating the time of occurrence of e;,

but the direct perturbation along thread i also is

removed.

We approximate the actual time of a sequential event

e~ as follows.

1. If e; is the first sequential event in the trace after

the last concurrent event from a concurrent phase

of computation, then

ta(ei) =tm(e~) –tm(ej) +ta(ej) ,

where t.(ej ) > ta(e~) for all n and m such that

e: and e% appear before e; in the trace. It is here

that we determine the critical concurrent path

in the instrumented execution. The concurrent

event appearing before e; in the trace with the

greatest approximated timestamp is used as the

time basis to approximate the sequential event

occurrence.

2. If e~ follows a sequential event in the trace, then

where c; is the number of events that have oc-

curred in sequential mode since the last approx-

imated concurrent event e; in the trace (or the

4. Multiple phases of sequential and concurrent computation,

and hierarchical fork-joins are allowed.
5. A trace from a parallel execution is a sequence of sequential

and concurrent sub-traces.

beginning of the trace). Along a sequence of se-

quential events, we again use the last approxi-

mated concurrent event as the time basis for ap-

proximating the sequential event occurrence. Ad-

ditionally, we remove the direct sequential per-

turbation.

4 Event-Based Models

In general, concurrent execution involves data depen-

dent behavior. The states of parallel programs inher-

ently form a partial order that must be followed dur-

ing execution. If dependency control is spread across

threads of execution, instrumentation can perturb the

timing relationships of events. Direct applications of

time-based perturbation models will fail because they

do not capture these inter-thread event dependencies.

The fundamental problem with making detailed

measurements of parallel computations is not perfor-

mance degradation, as it is with sequential computa-

tions, but rather the perturbation of the set of “likely”

event orderings, resulting in the re-mapping of event

occurrence to threads of execut ion, the re-assignment of

computational resources, and changes in the behavior

of resource use. Unlike parallel debugging approaches

that attempt to detect data races in parallel programs

by applying an event-based, partial order theory of

“feasible” program execution [3, 4, 14], perturbation

analysis must recover the actual run-time performance

behavior from a perturbed performance measurement.

If performance instrumentation is designed correctly

[5], an un-instrumented parallel execution that satisfies

Lamport’s sequential consistency criterion [7, 8] im-

plies that the performance measurement will be non-

interfering and safe [5]. If the performance measure-

ments involve only the detection and recording of event

occurrence (i.e. tracing), the partial order relationships

will be unaffected and the set of ‘(feasible” executions

will remain unchanged [12]. Thus, perturbation anal-

ysis begins with a total ordering of measured events

consistent with the happened before relation [6] defined

by the original partial order execution. To this total or-

der, we can apply time-based perturbation analysis to

thread events that occurred during independent execu-

tion to remove the instrumentation overhead. Similarly,

event-based perturbation analysis (to be discussed be-

low) [9] can be applied to the synchronization opera-

tions (e.g., barriers, semaphores, advance/await) that

implement the dependency relationships. As long as

the total ordering of dependent events present in the

6. A parallel execution is sequentially consistent if the result is

the same as if the operations were executed in some sequential
order obtained by arbitrarily interleaving the thread execution

streams.
7. Helmbold and Bryan refer to the set of feasible executions

defined by the partial order of program events as the partially

ordered set [5].
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measured execution is maintained during the analysis,

the approximated execution also will be a feasible exe-

cution. We will call such an approximated execution a

conservative approximation.

However, the important question is not whether the

conservative approximation is a feasible execution, but

whether it is a “likely)’ execution. The set of likely exe-

cutions is the subset of the feasible executions that are

most probable. Computing the likelihood distribution

of feasible executions is an extremely difficult problem,

requiring a model of time and concurrent execution.

The inability to predict likely executions makes it diffi-

cult to bound the error of conservative approximations.

Furthermore, no intrusive performance measurements

can possibly allow event-based perturbation analysis to

determine the proper assignment and use of resources

in the approximated execution. To improve the “ac-

curacy” of the conservative approximation, additional

information must be provided to the perturbation anal-

ysis process that describes certain behavioral proper-

ties of the computation (e.g., data dependency informa-

tion and loop scheduling algorithms). The perturbation

analysis can use this information to make more “lib-

eral” approximations. Although the liberal approxima-

tions might be more accurate than conservative ones,

in the sense that they are closer to likely executions,

it is still difficult to show error bounds without a more

formal timing model.

4.1 Synchronization Models

The approach we use for event-based perturbation

analysis is to identify the synchronization operations

used in a program to enforce execution dependencies

and instrument the operations to capture event tim-

ing and ordering information. Although the instrumen-

tation can perturb the measurements, knowledge of

synchronization semantics, together with themeasured

data, can be used to prevent execution ordering vi-

olations in the approximations made by event-based

analysis. The perturbation models used then are syn-

chronization models, describing both the semantics of

synchronization operations and the time approxima-

tion techniques for meaaured synchronization events.

There are many possible forms of synchronization

operations that could be analyzed [I]; we consider

three: barrier, semaphore, and advance/await synchro-

nization. These were chosen because they represent a

cross-section of synchronization alternatives. Our goals

in analyzing these three forms of synchronization are,

first, to determine what measurements must be made

to apply perturbation analysis, and, second, to under-

stand the approximation capabilities of the perturba-

tion analysis techniques. We begin with barrier syn-

chronization.

4.2 Barrier Perturbation Model

Simply, a barrier is a piece of code used to synchro-

nize multiple threads of execution at a single point in

time. Each thread participating in a barrier synchro-

nization will first enter the barrier, wait for all the other

threads to arrive, and then exit the barrier with all

other threads. The unique feature of the barrier is that

all threads will block until the last thread enters, est ab-

lishing a point in the computation where the states of

all threads participating in the barrier synchronization

are known. This point occurs when the barrier synchro-

nization has been satisfied and all threads are allowed

to proceed.

4.2.1 Barrier Instrumentation

The performance instrumentation of a barrier should

allow one to determine the sequence of thread arrivals

at the barrier, the waiting time of each thread, and

the time the threads exit the barrier [2]. This analysis

requires capture of two barrier events for each thread:

enter and exit. The enter event is recorded immedi-

ately after a thread enters the barrier and the exit

event is recorded immediately before the thread exits

the barrier. From the standpoint of perturbation anal-

ysis, we are primarily interested in the ezit events —

these establish a time basis for all following events on

each thread; see below. However, the enter events are

also import ant for barrier performance anal ysis.

Consider Figure 1 which shows four threads synchro-

nizing at a barrier b. When a thread reaches the bar-

rier, it executes instrumentation corresponding to bar-

rier entry (indicated by light shading) before execut-

ing the barrier code. After the last thread reaches the

barrier and the threads have synchronized, they all exe-

cute instrumentation code corresponding to barrier exit

(indicated by darker shading) before continuing along

their separate execution paths.

The barrier events are recorded in a trace for each

thread. To uniquely identify a particular barrier, we as-

sume the entry and exit events recorded are addition-

ally typed with this information. The ability to distin-

guish different barriers is required by the perturbation

analysis.

The measured timeline shows an example of how the

threads might have executed at the barrier. Diagram-

matically, we represent the barrier’s synchronization

code executed after the last thread reaches the barrier

by ❑ . The enter and exit barrier instrumentation and

the waiting time on each thread are shown. The time-

line reflects only the measured execution behavior. It

is clearly possible that instrumentation on each thread

prior to the barrier can affect the order that threads

arrive. Thus, the timing relationships shown between

the entry and exit events may not be representative of

actual barrier behavior.
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Figure 1: Barrier Synchronization of Four Threads with Instrumentation

4.2.2 Barrier Approximation

The perturbation analysis of the instrumented barrier

is based solely on the exit events. The enter events

are used to approximate certain performance charac-

teristics of the barrier, but it is the exit events that

are used to resolve the time approxirnations of future

events. Figure 2 shows a possible tirneline of the ap-

proximated barrier execution. We assume the enter

events for each thread, whose approximated time of oc-

currence is represented by the white arrows, have been

previously resolved by perturbation analysis. The ap-

proximated time the first thread enters the barrier is

denoted by ta (enterf ) and the approximated time the

last thread enters the barrier is denoted by ta(errtery).

The perturbation analysis problem iIs to approximate

the barrier exit behavior. By assumption, all threads

are known to be present at the barrier at approximated

time t.(enter/). The approximated execution time of

the barrier code after this point is given by

t~(ezitj) – tm(enteq) -- a,

where tm (ezitf ) is the measured time the first thread

exits the barrier, and tm (enterl) is th~e measured time

the last thread enters the barrier. The approximated

time the first thread exits the barrier is

ta(exitj) = ta(enterl) + tm(eritj) – t~(enterl) – a.

Because we use t~(ezitf ) in computing ta (eritj ), the

thread first to exit the barrier in the measured execu-

tion is the same one that exits first in the approximated

execution. The approximated time the jth thread exits

the barrier after the first is given by

ta(ezitj) = t.(ezitf) + h(ezitj) – t~(exitj) – a,

where the event ea%j is obviously the exit event of

the jth thread. The ordering relationships of barrier

exit in the measured execution are maintained in

approximated execution with ta(exitf ) serving as

time basis for all other exit event approximations.

The barrier perturbation analysis assumes that

overhead for executing the barrier code remains

changed from the measured to the amroxirnated

the

the

the

un-

ex-. .
ecution. In general, the execution of the barrier code

can take variable time, depending on the barrier’s im-

plementation. For instance, if a single lock is used to

control access to a counter indicating the number of

threads which have entered the barrier, the lock be-

comes an access “hot spot” [13] in the computation.

The performance of barrier code implemented in this

manner will depend on the degree of lock contention; in

general, the higher the contention, the poorer the per-

formance. Because the measured thread arrival behav-

ior can be different from the actual behavior, there can

be errors in the perturbation analysis because of differ-

ences in barrier code performance. These errors can be

both positive (over-approximations due to poorer bar-

rier code performance in the measured execution) and

negative (under-approximations due to poorer barrier

code performance during the actual execution). Ide-

ally, the barrier performance would be modeled by the

perturbation analysis based on known performance be-

havior of the barrier implementation. The barrier entry

event times for each thread would provide barrier entry

timings to the model.

4.3 Semaphore Perturbation Model

The perturbation analysis of barrier synchronization

could be easily understood because the barrier creates

a global synchronization point. If all threads meet at

a barrier synchronization, the perturbation analysis of

events after the barrier will not be affected by the er-

rors resulting from the perturbation analysis of events
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Figure 2: Barrier Performance Approximation

prior to the barrier. In effect, the barrier provides event-

based perturbation analysis with a means of partition-

ing the computation between barrier synchronizations

and isolating perturbation analysis errors to individual

partitions.

Not all synchronization operations are as well be-

haved. In particular, the semaphore represents one of

the most primitive forms of synchronization, and hence

one of the least restrictive. The semaphore establishes

a synchronization relationship between only two events

and, thus, does not have the global synchronization

ramifications of the barrier. Furthermore, the pairing

of semaphore synchronization events can change from

actual to measured execution.

The basic semaphore embodies the most recent his-

tory of two operations: P and V. The P operation

checks the state of the semaphore to determine whether

a dependency has been satisfied. The V operation sig-

nals that some execution dependency has been satis-

fied. The semaphore’s state indicates only whether the

last operation on the semaphore was a P or a V. If

it waa a V, the next P operation will not wait. Other-

wise, the next P operation will wait. If S is a semaphore

whose value can be P or V, the semantics of the P and

V synchronization operations are shown below:

P(s): if (S equals V)

S=P
else

wait until S equals V

S=P

v(s): s =

More complex

v.

semaphores, such as counting
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semaphores, maintain additional history of P and V

operations as well as allow multiple threads to wait.

From a perturbation analysis perspective, we will con-

sider only the basic semaphore case. All the problems

we encounter with this case also appear in the more

complex semaphore types.

4.3.1 Semaphore Instrumentation

There are five important events that must be moni-

tored in the semaphore’s operation: the V event, the

Pa event, the Pw event, the PP event, and the P= event.

The V event corresponds directly to the V operation

on the semaphore and is recorded immediately after the

V operation is performed. The P. event is recorded im-

mediately before the P code is executed and signifies

that the semaphore state is about to be tested. If the

P operation blocks, the PW event is recorded before

the thread begins to wait; otherwise, the Pp event is

recorded before the semaphore state is set to P. Finally,

the Pe event is recorded immediately before a thread

performing a P operation leaves the semaphore.

Because multiple semaphores may be active in a pro-

gram, to correctly identify the P and V operations on

a particular semaphore during perturbation analysis,

information uniquely identifying the semaphore must

must be recorded with the P and V events.

4.3.2 Semaphore Approximation

The perturbation analysis of a semaphore’s instrumen-

tation is concerned not so much with the removal of in-

strumentation overhead that comes with recording the

P and V events, although this is important to achieve

timing accuracy, but rather with identifying anomalous



semaphore operation that might occur in the approx-

imated execution as a result of perturbation analysis

errors. In fact, this is the main reason for studying

the semaphore form of synchronization. Under a lim-

ited set of assumptions regarding how a semaphore is

used during execution, we looked at several cases where

questions arise concerning how event-based perturba-

tion analysis should resolve approximated semaphore

behavior [9]. To simplify the discussion, we assume in

the following cases that an equal nunnber of P and V

operations are performed on each semaphore. Further-

more, we discuss only the single-P, single-V case.

Single-P, Single-V

If a semaphore is used by only two threads, every P

operation will be “satisfied” by a unique V operation;

success of the ith P operation will depend only on the

ith V operation. WTe refer to such a semaphore as a

singJe-P, single-V semaphore. The P and V events for

this semaphore can be matched explicitly by the per-

turbation analysis based on their order of occurrence.

For each ith P-V pair, the time-order relationship of

the P and V events must be maintained in the approx-

imated execution.

Figure 3 shows three different approximated execu-

tions that can result from the perturbation analysis

of a single-P, single-V semaphore. The left graph in

each case shows the ordering relationship of the P and

V events in the measured execution. The right graph

shows the events in the approximated execution. In

case A, no waiting is encountered at the semaphore

in the measured execution because tin(V) < tm (P,).

However, in the approximated timeline, ta(P,) < ta(V)

and tread T2 must wait. We assume events P$ and V

have been resolved in the approximated execution and

that ta (PP ) and t.(Pe) must be determined. There is

no information from the measured execution to indi-

cate how long after event V the event PP occurs in

the approximated execution, so we must assume it is

immediate.8 This establishes to (PP) as the time basis

for approximating t. (Pe). Thus,

t.(p,) = ~.(pp) + ~m(pe) – ‘m(pp)

The amount of waiting time can be calculated as

ta(Pp) – ta(Ps) + (tm(Pp) –tm(Ps)).

In case B, the opposite conditions exist. That is,

waiting occurs in the measured execution but not in

the approximated execution. Insteacl of the event PP

indicating the P operation succeeded, we are interested

in when waiting begins. The PW event provides a time

8. Performance measurements of semaphore operation could be

applied here tO establish a minimum separation between V and
Pp.

basis for t.(P.) in the approximation. We can calcu-

late from the measured execution how long after event

V the event Pe occurs in the approximated execution.

From this value, the approximated time of P, is given

by

ta(Pe) = t.(Pw) + h(pe) – k(v).

Because the approximated time of the V event is not

affected by semaphore waiting, it is possible that the

situation in case C may be encountered due to per-

turbation analysis errors. As shown, two successive V

events, Vi and Vi+l, are approximated to occur prior

to the ith P events. This violates the assumed opera-

tion of the semaphore. There are two recourses if this

situation occurs. The perturbation analysis could halt,

indicating that a violation of semaphore execution se-

mantics has occurred. A less abrupt action logs the

violation, adjusts the approximated time of Vi+l to be

immediately after t~(Pe) (see figure), and continues the

perturbation analysis.

Notice that the situation presented in case C cannot

be true of the approximated time of the P events. That

is, given two successive P. events in the trace, P: and

P~+l, and the ith V event, Vi,

ta(vi) < ta(P:+l).

The approximated time ta(P~+l ) will always be ad-

justed by the perturbation analysis to be greater than

vi.

4.4 Advance/Await Perturbation Model

Conservative semaphore perturbation models

strictly enforce the P-V event pairing found in the mea-

sured execution in the approximation. However, as ob-

served in the perturbation analysis of semaphores in-

volving multiple P and/or V operations (see [9]), re-

ordering of measured P-V event pairs in liberal approx-

imations (to give better approximations and smaller

execution times) fundamentally depends on what is

known about the execution behavior between concur-

rent threads. This knowledge cannot be measured from

the execution.

Semaphores can be used for general synchronization

operations in nondeterministic programs and, thus, the

potential perturbations of event order can be varied.

However, the advance/await form of synchronization

makes explicit the ‘(post” and “wait” actions involved

in programs using the advance and await operations

to enforce execution ordering dependencies. Because

the synchronization is strictly enforced, a partial or-

dering of these actions can be determined directly from

the measured advance and await events. Independent

of how advance and await operations are assigned

to threads of execution, this partial ordering must be

maintained by an advance/await perturbation model

(even a liberal one) in the approximated execution.
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Without knowledge of the scheduling policy for assign-

ing work to threads, the perturbation analysis must

maintain not only the partial order of the advance and

await events but also the event-to-thread assignment.

In this case, the conservative advance/await pertur-

bation model is very similar to the general single P, sin-

gle V semaphore model.g Obviously, due to prior per-

turbation removal, the relative ordering of the pieces

of work bounded by advance/await synchronization,

aa well aa the waiting delays, may change from the

measured execution. If additional information is made

available to the perturbation analysis indicating that

the work bounded by advance/await synchronization

can be assigned to any available thread as long as

the partial order is maintained, alternative scheduling

strategies could be applied in the approximation to re-

9. The full advance/await perturbation model can be found in

[10]. We will not repeat the discussion here.

duce waiting delays. The result could be a smaller total

execution time approximation, with corresponding re-

ductions in waiting delay in the threads of execution. In

theory, the perturbation analysis could even compute

a minimum critical path execution time for the partial

order computation by applying a generalized bin pack-

ing algorithm that ignores thread scheduling issues.

However, the same basic question arises in the

case of advance/await perturbation analysis as with

semaphore synchronization. What is reasonable for the

perturbation analysis to be able to assume about how

the work between synchronization points is executed?

The conclusion is that without additional knowledge

from the user regarding work independence and re-

ordering, no assumptions can be made without risk-

ing approximation errors or causing execution ordering

violations.
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5 Experimental Results

The time-based and event-based perturbations models

have been validated using a series of instrumentation

experiments [9, 11, 10]. The results of these experi-

ments suggest that a systematic application of perfor-

mance perturbation analysis techniques will allow more

detailed, accurate instrumentation in ,practice. A com-

plete report of these experimental resudts can be found

in [9].

6 Conclusion

Perturbation due to instrumentation has two effects

on the events occurring during concurrent execution:

temporal effects and resource assignment effects. In

addition to the. slowdown caused by instrumentation

overhead, temporal effects include possible event re-

ordering as the measurement alters the set of likely

partial order executions. Resource assignment effects

occur because the instrumentation changes the dy-

namic resource demands. In instances where the com-

putation dynamically adapts to resource availability,

instrumentation can perturb resource allocation and

utilization. This is particularly impcxtant to under-

stand with respect to processor assignment. Perfor-

mance approximations can differ significantly from ac-

tual execution unless resource assignment effects are

taken into account.

Unfortunately, the conservative perturbation models

do not attempt to quantify performance effects dues

to dependent event re-ordering or resource use. Any

perturbation analysis approximation must be safe [5]

(i.e., must not violate the partial ordering relation-

ships) and, thus, must be provided sufficient measure-

ments that capture the ordering dependencies during

execution. However, the accuracy of perturbation anal-

ysis depends not only on more precise synchroniza-

tion measurements, but also on additional knowledge

of actual (likely) execution behavior, unattainable from

measurements alone. This can include the scheduling

policies used by a program, more detailed data depen-

dency information, and even the performance charac-

terization of certain synchronization operations (e.g.

barrier performance). This information can be used to-

gether with the performance measurements obtained

from the event data to drive (in a sense) a simulation

of the execution. Although the approximations result-

ing from this more “liberal” perturbation analysis ap-

proach are potentially closer to the set of likely execu-

tions, such a result is difficult to analytically verify.
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