
Performance Evaluation of Adaptive Scientific Applications using TAU

Sameer Shendea∗, Allen D. Malonya, Alan Morrisa, Steven Parkerb, J. Davison de St.
Germainb

aPerformance Research Laboratory, Department of Computer and Information Science,
University of Oregon, Eugene, OR 97403, USA

bScientific Computing and Imaging Institute,
University of Utah, Salt Lake City, UT 84112, USA

1. Introduction

Fueled by increasing processor speeds and high speed interconnection networks, advances in
high performance computer architectures have allowed the development of increasingly com-
plex large scale parallel systems. For computational scientists, programming these systems
efficiently is a challenging task. Understanding the performance of their parallel applications is
equally daunting. To observe and comprehend the performance of parallel applications that run
on these systems, we need performance evaluation tools thatcan map the performance abstrac-
tions to the user’s mental models of application execution.For instance, most parallel scientific
applications are iterative in nature. In the case of CFD applications, they may also dynamically
adapt to changes in the simulation model. A performance measurement and analysis system
that can differentiate the phases of each iteration and characterize performance changes as the
application adapts will enable developers to better relateperformance to their application be-
havior. In this paper, we present new performance measurement techniques to meet these needs.
In section 2, we describe our parallel performance system, TAU. Section 3 discusses how new
TAU profiling techniques can be applied to CFD applications with iterative and adaptive char-
acteristics. In section 4, we present a case study featuringthe Uintah computational framework
and explain how adaptive computational fluid dynamics simulations are observed using TAU.
Finally, we conclude with a discussion of how the TAU performance system can be broadly
applied to other CFD frameworks and present a few examples ofits usage in this field.

2. TAU Performance System

Given the diversity of performance problems, evaluation methods, and types of events and
metrics, the instrumentation and measurement mechanisms needed to support performance ob-
servation must be flexible, to give maximum opportunity for configuring performance exper-
iments, and portable, to allow consistent cross-platform performance problem solving. The
TAU performance system [1,4], is composed of instrumentation, measurement, and analysis

∗This research was supported by the U.S. Department of Energy, Office of Science, under contracts DE-FG03-
01ER25501 and DE-FG02-03ER25561, and University of Utah and LLNL DOE contracts B524196 and 2205056.

1



2 S. Shende

parts. It supports both profiling and tracing forms of measurements. TAU implements a flexible
instrumentation model that permits a user to insert performance instrumentation hooks into the
application at several levels of program compilation and execution. The C, C++, and Fortran
languages are supported, as well as standard message passing (e.g., MPI) and multi-threading
(e.g., Pthreads) libraries.

For instrumentation we recommend a dual instrumentation approach. Source code is instru-
mented automatically using a source-to-source translation tool,tau instrumentor, that acts as
a pre-processor prior to compilation. The MPI library is instrumented using TAU’s wrapper
interposition library that intercepts calls to the MPI calls and internally invokes the TAU tim-
ing calls before and after. TAU source instrumentor can takea selective instrumentation file
that lists the name of routines or files that should be excluded or included during instrumen-
tation. The instrumented source code is then compiled and linked with the TAU MPI wrapper
interposition library to produce an executable.

TAU provides a variety of measurement options that are chosen when TAU is installed. Each
configuration of TAU is represented in a set of measurement libraries and a stub makefile to be
used in the user application makefile. Profiling and tracing are the two performance evaluation
techniques that TAU supports. Profiling presents aggregatestatistics of performance metrics
for different events and tracing captures performance information in timestamped event logs for
analysis. In tracing, we can observe along a global timelinewhen events take place in different
processes. Events tracked by both profiling and tracing include entry and exit from routines,
interprocess message communication events, and other user-defined atomic events. Tracing has
the advantage of capturing temporal relationships betweenevent records, but at the expense of
generating large trace files. The choice to profile trades theloss of temporal information with
gains in profile data efficiency.

3. CFD Application Performance Mapping

Observing the behavior of an adaptive CFD application showsus several interesting aspects
of its execution. Such applications typically involve a domain decomposition of the simulation
model across processors and an interaction of execution phases as the simulation proceeds in
time. Each iteration may involve a repartitioning or adaption of the underlying computational
structure to better address numerical or load balance properties. For example, a mesh refine-
ment might be done at iteration boundaries and information about convergence or divergence
of numerical algorithms is detailed. Also, domain specific information such as the number of
cells refined at each stage gives a user valuable feedback on the progress of the computation.

Performance evaluation tools must capture and present key application specific data and co-
relate this information to performance metrics to provide auseful feedback to the user. Present-
ing performance information that relates to application specific abstractions is a challenging
task. Typically, profilers present performance metrics in the form of a group of tables, one for
each MPI task. Each row in a table represents a given routine.Each column specifies a metric
such as the exclusive or inclusive time spent in the given routine or the number of calls exe-
cuted. This information is typically presented for all invocations of the routine. While such
information is useful in identifying the routines that contribute most to the overall execution
time, it does not explain the performance of the routines with respect to key application phases.
To address this shortcoming, we provide several profiling schemes in TAU.



Performance Evaluation of Adaptive Scientific Applications using TAU 3

3.1. Static timers
These are commonly used in most profilers where all invocations of a routine are recorded.

The name and group registration takes place when the timer iscreated (typically the first time a
routine is entered). A given timer is started and stopped at routine entry and exit points. A user
defined timer can also measure the time spent in a group of statements. Timers may be nested
but they may not overlap. The performance data generated cantypically answer questions such
as:what is the total time spent in MPI Send() across all invocations?

3.2. Dynamic timers
To record the execution of each invocation of a routine, TAU provides dynamic timers where

a unique name may be constructed for a dynamic timer for each iteration by embedding the
iteration count in it. It uses the start/stop calls around the code to be examined, similar to static
timers. The performance data generated can typically answer questions such as:what is the
time spent in the routine foo() in iterations 24, 25, and 40?

3.3. Static phases
An application typically goes through several phases in itsexecution. To track the perfor-

mance of the application based on phases, TAU provides static and dynamic phase profiling.
A profile based on phases highlights the context in which a routine is called. An application
has a default phase within which other routines and phases are invoked. A phase based profile
shows the time spent in a routine when it was in a given phase. So, if a set of instrumented
routines are called directly or indirectly by a phase, we’d see the time spent in each of those
routines under the given phase. Since phases may be nested, aroutine may belong to only one
phase. When more than one phase is active for a given routine,the closest ancestor phase of a
routine along its callstack is its phase for that invocation. The performance data generated can
answer questions such as:what is the total time spent in MPI Send() when it was invoked in
all invocations of the IO (IO => MPI Send()) phase?

3.4. Dynamic phases
Dynamic phases borrow from dynamic timers and static phasesto create performance data

for all routines that are invoked in a given invocation of a phase. If we instrument a routine as a
dynamic phase, creating a unique name for each of its invocations (by embedding the invocation
count in the name), we can examine the time spent in all routines and child phases invoked di-
rectly or indirectly from the given phase. The performance data generated can typically answer
questions such as:what is the total time spent in MPI Send() when it was invoked directly or
indirectly in iteration 24? Dynamic phases are useful for tracking per-iteration profiles for an
adaptive computation where iterations may differ in their execution times.

3.5. Callpaths
In phase-based profiles, we see the relationship between routines and parent phases. Phase

profiles [5] do not show the calling structure between different routines as is represented in
a callgraph. To do so, TAU provides callpath profiling capabilities where the time spent in a
routine along an edge of a callgraph is captured. Callpath profiles present the full flat profiles
of routines (or nodes in the callgraph), as well as routines along a callpath. A callpath is rep-
resented syntactically as a list of routines separated by a delimiter. The maximum depth of a
callpath is controlled by an environment variable.



4 S. Shende

Figure 1. Adaptive Mesh Refinement in a parallel CFD simulation in the Uintah Computational
Framework

3.6. User-defined Events
Besides timers and phases that measure the time spent between a pair of start and stop calls in

the code, TAU also provides support for user-defined atomic events. After an event is registered
with a name, it may be triggered with a value at a given point inthe source code. At the
application level, we can use user-defined events to track the progress of the simulation by
keeping track of application specific parameters that explain program dynamics, for example,
the number of iterations required for convergence of a solver at each time step, or the number
of cells in each iteration of an adaptive mesh refinement application.

4. Case Study: Uintah

We have applied TAU’s phase profiling capabilities to evaluate the performance of the Uintah
computational framework (UCF) [2]. The TAU profiling strategy for Uintah is to observe the
performance of the framework at the level of patches, the unit of spatial domain partitioning.
Thus, we instrument UCF with dynamic phases where the phase name contains the AMR level



Performance Evaluation of Adaptive Scientific Applications using TAU 5

Figure 2. Distribution and time taken in various phases in the Uintah Computational Framework

and patch index. The case study focuses on a 3 dimensional validation problem for a com-
pressible CFD code. Initially, there is a region of gas at thecenter of the computational domain
that is at a high pressure (10atm) and temperature gas (3000K). At time = 0 the gas is allowed
to expand forming a spherical shockwave. Eventually, a low pressure region will form in the
center and the expanding flow will reverse directions. Figure 1 shows a sample distribution of
patches in the domain. The blue outer cubes enclose the eight(2x2x2) level 0 patches. The pink
inner cubes cover the “interesting” portions of the domain that have been selected by the AMR
subsystem for mesh refinement on level 1.

We instrumented Uintah by creating a phase based on the levelindex and patch index for
a task given to the Uintah scheduler. Phases are given name such as “Patch 0 ->1”, which
represents the 2nd patch on level 0. All tasks and instrumented functions are then associated by
way of phase profiling with the patch on which the computationis done.

Figure 2 shows the performance data obtained from the simulation as displayed by ParaProf.
Here we see the eight patches that make up level 0 overwhelm the time taken in other patches.
They executed on nodes 0,4,8,12,16,24 and 28. This gave us animmediate result showing that
these nodes spent extra time processing the level 0 patches,while the other nodes waited in
MPI Allreduce.

Figure 3 shows the distribution of a given timer, ICE::advectAndAdvanceInTime, across all
phases, each representing a patch. We can see that the time spent in this task for the eight level
0 patches is more 9 than seconds, while the time spent for all the other patches is less than 4
seconds each.

Figure 4 shows the profile for the phase ”patch 0 ->0” which runs only on node 0. We see the
partition of each task that was executed under this phase. Ifthis phase had run on other nodes,



6 S. Shende

Figure 3. The distrubution of the ICE::advectAndAdvanceInTime task across patches using
phase profiling

we would have aggregate statistics as well (mean, std. dev.).
Phase profiling in UCF allows the developers to partition theperformance data for tasks

and instrumented functions across spatially defined patches with information from the AMR
subsystem. This data can be used to identify load balancing issues as well as establish a better
understanding of code performance in an AMR simulation.

5. Other frameworks

Besides the Uintah computational framework, TAU has been applied successfully to several
frameworks that are used for computational fluid dynamics simulations. These include VTF [9]
from Caltech, MFIX [7] from NETL, ESMF [10] coupled flow application from UCAR, NASA
and other institutions, SAMRAI [12] from LLNL, Miranda [11]from LLNL, GrACE [13] from
Rutgers University, SAGE [6] from SAIC, and Flash [8] from University of Chicago. Our work
in performance evaluation of adaptive scientific computations can be broadly applied to other
CFD codes. Thus, CFD frameworks can benefit from the integration of portable performance
profiling and tracing support using TAU.



Performance Evaluation of Adaptive Scientific Applications using TAU 7

Figure 4. Phase profile for patch 0 ->0 shows tasks executing under this phase

6. Conclusions

When studying the performance of scientific applications, especially on large-scale parallel
systems, there is a strong preference among developers to view performance information with
respect to their “mental” model of the application, formed from the structural, logical, and nu-
merical models used in the program. If the developer can relate performance data measured
during execution to what they know about the application, more effective program optimization
may be achieved. In this paper, we present portable performance evaluation techniques in the
context of the TAU performance system and its application tothe Uintah computational frame-
work. We illustrate how phase based profiling may be effectively used to bridge the semantic
gap in comprehending the performance of parallel scientificapplications using techniques that
map program performance to higher level abstractions.

REFERENCES

1. A. D. Malony and S. Shende and R. Bell and K. Li and L. Li and N.Trebon, “Advances
in the TAU Performance System,” Chapter, “Performance Analysis and Grid Computing,”
(Eds. V. Getov, et. al.), Kluwer, Norwell, MA, pp. 129-144, 2003.



8 S. Shende

2. J. D. de St. Germain and J. McCorquodale and S.G. Parker andC.R. Johnson, “Uintah: A
Massively Parallel Problem Solving Environment,” Ninth IEEE International Symposium
on High Performance and Distributed Computing, IEEE, pp. 33–41. 2000.

3. R. Bell and A. D. Malony and S. Shende, “A Portable, Extensible, and Scalable Tool for
Parallel Performance Profile Analysis,” Proc. EUROPAR 2003conference, LNCS 2790,
Springer, pp. 17-26, 2003.

4. TAU Portable Profiling. URL: http://www.cs.uoregon.edu/research/tau, 2005.
5. A. D. Malony and S. S. Shende and A. Morris, “Phase-Based Parallel Performance Profil-

ing,” Proc. ParCo 2005 Conference, Parallel Computing Conferences, 2005.
6. D. Kerbyson and H. Alme and A. Hoisie and F. Petrini and H. Wasserman and M. Gittings,

“Predictive Performance and Scalability Modeling of a Large-Scale Application,” Proc. SC
2001 Conference, ACM/IEEE, 2001.

7. M. Syamlal and W. Rogers and T. O’Brien, “MFIX Documentation: Theory Guide,” Tech-
nical Note, DOE/METC-95/1013, 1993.

8. R. Rosner, et. al., “Flash Code: Studying Astrophysical Thermonuclear Flashes,” Comput-
ing in Science and Engineering, 2:33, 2000.

9. J. Cummings and M. Aivazis and R. Samtaney and R. Radovitzky and S. Mauch and D.
Meiron, “A Virtual Test Facility for the Simulation of Dynamic Response in Materials,”
The Journal of Supercomputing 23(1), pp. 39–50, August 2002.

10. C. Hill and C. DeLuca and V. Balaji and M. Suarez and A. da Silva, “The Architecture
of the Earth System Modeling Framework,” Computing in Science and Engineering, 6(1),
Januaray/February 2004.

11. W. Cabot and A. Cook and C. Crabb, “Large-Scale Simulations with Miranda on Blue-
Gene/L,” Presentation from BlueGene/L Workshop, Reno, October 2003.

12. A. Wissinsk and R. Hornung and S. Kohn and S. Smith and N. Elliott, “Large Scale Parallel
Structured AMR Calculations using the SAMRAI Framework,” Proc. SC’2001 Conference,
ACM/IEEE, 2001.

13. Y. Zhang and S. Chandra and S. Hariri and M. Parashar, “Autonomic Proactive Runtime
Partitioning Strategies for SAMR Applications,” Proc. NSFNext Generation Systems Pro-
gram Workshop, IEEE/ACM 18th IPDPS Conference, April 2004.


