Performance Evaluation of Adaptive Scientific Applicasarsing TAU

Sameer Shendg Allen D. Malony*, Alan Morris®, Steven Parké&r J. Davison de St.
Germairt

2pPerformance Research Laboratory, Department of Computelndiormation Science,
University of Oregon, Eugene, OR 97403, USA

bScientific Computing and Imaging Institute,
University of Utah, Salt Lake City, UT 84112, USA

1. Introduction

Fueled by increasing processor speeds and high speedimbection networks, advances in
high performance computer architectures have allowed ¢reldpment of increasingly com-
plex large scale parallel systems. For computational fisisn programming these systems
efficiently is a challenging task. Understanding the peniance of their parallel applications is
equally daunting. To observe and comprehend the perforenaingarallel applications that run
on these systems, we need performance evaluation toolsahaap the performance abstrac-
tions to the user’'s mental models of application executior.instance, most parallel scientific
applications are iterative in nature. In the case of CFDiapfbns, they may also dynamically
adapt to changes in the simulation model. A performance aneasent and analysis system
that can differentiate the phases of each iteration andactexrize performance changes as the
application adapts will enable developers to better rgdarormance to their application be-
havior. In this paper, we present new performance measundaethniques to meet these needs.
In section 2, we describe our parallel performance systé, Bection 3 discusses how new
TAU profiling techniques can be applied to CFD applicationthwerative and adaptive char-
acteristics. In section 4, we present a case study featthenintah computational framework
and explain how adaptive computational fluid dynamics satoihs are observed using TAU.
Finally, we conclude with a discussion of how the TAU perfarme system can be broadly
applied to other CFD frameworks and present a few examplis o$age in this field.

2. TAU Performance System

Given the diversity of performance problems, evaluationhoés, and types of events and
metrics, the instrumentation and measurement mechanises®d to support performance ob-
servation must be flexible, to give maximum opportunity fonfiguring performance exper-
iments, and portable, to allow consistent cross-platfosrfggmance problem solving. The
TAU performance system [1,4], is composed of instrumeotatmeasurement, and analysis

*This research was supported by the U.S. Department of Enéxffjge of Science, under contracts DE-FGO03-
01ER25501 and DE-FG02-03ER25561, and University of UtahldmNL DOE contracts B524196 and 2205056.

1

2 S. Shende

parts. It supports both profiling and tracing forms of meamants. TAU implements a flexible
instrumentation model that permits a user to insert perémee instrumentation hooks into the
application at several levels of program compilation anelcexion. The C, C++, and Fortran
languages are supported, as well as standard messagegp@sginMPI) and multi-threading

(e.g., Pthreads) libraries.

For instrumentation we recommend a dual instrumentatignageh. Source code is instru-
mented automatically using a source-to-source translaiol, tau _instrumentor, that acts as
a pre-processor prior to compilation. The MPI library istinmnented using TAU's wrapper
interposition library that intercepts calls to the MPI salind internally invokes the TAU tim-
ing calls before and after. TAU source instrumentor can talselective instrumentation file
that lists the name of routines or files that should be exduateincluded during instrumen-
tation. The instrumented source code is then compiled akedi with the TAU MPI wrapper
interposition library to produce an executable.

TAU provides a variety of measurement options that are ahageen TAU is installed. Each
configuration of TAU is represented in a set of measurembrdriies and a stub makefile to be
used in the user application makefile. Profiling and trachegtlae two performance evaluation
techniques that TAU supports. Profiling presents aggregfatestics of performance metrics
for different events and tracing captures performanceaiméion in timestamped event logs for
analysis. In tracing, we can observe along a global timelinen events take place in different
processes. Events tracked by both profiling and tracingideckentry and exit from routines,
interprocess message communication events, and othedefieed atomic events. Tracing has
the advantage of capturing temporal relationships betwegent records, but at the expense of
generating large trace files. The choice to profile tradesa$eof temporal information with
gains in profile data efficiency.

3. CFD Application Performance Mapping

Observing the behavior of an adaptive CFD application shasvseveral interesting aspects
of its execution. Such applications typically involve a damdecomposition of the simulation
model across processors and an interaction of executioseptes the simulation proceeds in
time. Each iteration may involve a repartitioning or adaptof the underlying computational
structure to better address numerical or load balance grepe For example, a mesh refine-
ment might be done at iteration boundaries and informatimutconvergence or divergence
of numerical algorithms is detailed. Also, domain specifiiormation such as the number of
cells refined at each stage gives a user valuable feedbatlegmdgress of the computation.

Performance evaluation tools must capture and presentgq@ication specific data and co-
relate this information to performance metrics to providesaful feedback to the user. Present-
ing performance information that relates to applicatioacsfic abstractions is a challenging
task. Typically, profilers present performance metricsimfiorm of a group of tables, one for
each MPI task. Each row in a table represents a given rouiaeh column specifies a metric
such as the exclusive or inclusive time spent in the givetimewr the number of calls exe-
cuted. This information is typically presented for all imadions of the routine. While such
information is useful in identifying the routines that cobtite most to the overall execution
time, it does not explain the performance of the routinek vaspect to key application phases.
To address this shortcoming, we provide several profilingstes in TAU.

Performance Evaluation of Adaptive Scientific Applicasarsing TAU 3

3.1. Static timers

These are commonly used in most profilers where all invooatad a routine are recorded.
The name and group registration takes place when the tincegaged (typically the first time a
routine is entered). A given timer is started and stoppeduttne entry and exit points. A user
defined timer can also measure the time spent in a group ehstaits. Timers may be nested
but they may not overlap. The performance data generatetypamally answer questions such
as:what isthetotal time spent in M PI_Send() across all invocations?

3.2. Dynamic timers

To record the execution of each invocation of a routine, TAbmes dynamic timers where
a unigue name may be constructed for a dynamic timer for dacition by embedding the
iteration count in it. It uses the start/stop calls aroureldbde to be examined, similar to static
timers. The performance data generated can typically anguestions such aswvhat is the
time spent in theroutine foo() initerations 24, 25, and 40?

3.3. Static phases

An application typically goes through several phases ixscution. To track the perfor-
mance of the application based on phases, TAU provideg statl dynamic phase profiling.
A profile based on phases highlights the context in which &ineus called. An application
has a default phase within which other routines and phasesarked. A phase based profile
shows the time spent in a routine when it was in a given phaeeif & set of instrumented
routines are called directly or indirectly by a phase, wesd ghe time spent in each of those
routines under the given phase. Since phases may be nesteding may belong to only one
phase. When more than one phase is active for a given rottiejosest ancestor phase of a
routine along its callstack is its phase for that invocatidhe performance data generated can
answer questions such asghat is the total time spent in M PI_Send() when it was invoked in
all invocations of the /0 (IO => M PI_Send()) phase?

3.4. Dynamic phases

Dynamic phases borrow from dynamic timers and static phtmseseate performance data
for all routines that are invoked in a given invocation of agé. If we instrument a routine as a
dynamic phase, creating a unique name for each of its inkmtsatby embedding the invocation
count in the name), we can examine the time spent in all resitamd child phases invoked di-
rectly or indirectly from the given phase. The performanatadjenerated can typically answer
questions such asvhat isthe total time spent in M P1_Send() when it was invoked directly or
indirectly in iteration 24? Dynamic phases are useful for tracking per-iteration pesfibr an
adaptive computation where iterations may differ in th&gaition times.

3.5. Callpaths

In phase-based profiles, we see the relationship betwedéneswand parent phases. Phase
profiles [5] do not show the calling structure between défdgrroutines as is represented in
a callgraph. To do so, TAU provides callpath profiling cafiaés where the time spent in a
routine along an edge of a callgraph is captured. Callpatfilps present the full flat profiles
of routines (or nodes in the callgraph), as well as routinesga callpath. A callpath is rep-
resented syntactically as a list of routines separated bglimiler. The maximum depth of a
callpath is controlled by an environment variable.

4 S. Shende

30 Hot blob, 50x50x50 07/13/05 2 Levels of refinement 2, 2, 2

Refinement flag shown

Figure 1. Adaptive Mesh Refinement in a parallel CFD simatain the Uintah Computational
Framework

3.6. User-defined Events

Besides timers and phases that measure the time spent betwaé of start and stop calls in
the code, TAU also provides support for user-defined atorgots. After an event is registered
with a name, it may be triggered with a value at a given pointhie source code. At the
application level, we can use user-defined events to traglkptbgress of the simulation by
keeping track of application specific parameters that exgleogram dynamics, for example,
the number of iterations required for convergence of a sa@veach time step, or the number
of cells in each iteration of an adaptive mesh refinementicgupdn.

4. Case Study: Uintah

We have applied TAU'’s phase profiling capabilities to eviube performance of the Uintah
computational framework (UCF) [2]. The TAU profiling strgtefor Uintah is to observe the
performance of the framework at the level of patches, theafrspatial domain partitioning.
Thus, we instrument UCF with dynamic phases where the prase gontains the AMR level

Performance Evaluation of Adaptive Scientific Applicasarsing TAU 5

" . ParaProf: ihome/amorris/uintah/phase3d_new.ppk Phase: main() void (int, char **) [=][=]x]
File Options Windows Help
Metric Mame: Time

alue Type: exclusive p— | Other Patches |
[MPI.Testsomeg]

o o B e MR
nct 0,00)
nerl00)
nct 200]
n,c,1 2,0,0]
nc,t 4,00]
n,c,15,0,0]
nc,t 6,00
net 7,00)
nct 80,0
net 90,0

et 10,0,0 N
n,c,t 11,0,0 [
n.ct12,0,0

n,ct 12,00 |
n,¢;t14,0,0 I
n,c;t 15, 0,0
nct 16,00]
n,c,t 17,0,0 |
nct 18,00]
[X —|
n.ct 20,00 T
nctzl00)
n,c,t 22,0,0 (|
nct 2300
n.c1 24,00 T

(IR B N) — |
n;c;t 26;0,0 I
n,c127,0,0 [
n,ct 2800
nct2s00]
n,5;1:30,0,0
nct21,0,0)

i

reduced)

[pafth0-55] I | I

[patch 6 > €] I
I | [}

R 1

mDDDDDDDEDDDDDDD.DDDDDEDDDDDDDDDDD
--.-.-.--l-.-.-...-.-.--.--.._
=) e) [D [[) [] O]

Figure 2. Distribution and time taken in various phases@ldimtah Computational Framework

and patch index. The case study focuses on a 3 dimensiondatiah problem for a com-
pressible CFD code. Initially, there is a region of gas atcégter of the computational domain
that is at a high pressure (10atm) and temperature gas (3080Kme = 0 the gas is allowed
to expand forming a spherical shockwave. Eventually, a losggure region will form in the
center and the expanding flow will reverse directions. Fegushows a sample distribution of
patches in the domain. The blue outer cubes enclose the(igtx2) level O patches. The pink
inner cubes cover the “interesting” portions of the domhat have been selected by the AMR
subsystem for mesh refinement on level 1.

We instrumented Uintah by creating a phase based on theitedet and patch index for
a task given to the Uintah scheduler. Phases are given nacheasu‘Patch 0>1", which
represents the 2nd patch on level 0. All tasks and instruadfainctions are then associated by
way of phase profiling with the patch on which the computaisotione.

Figure 2 shows the performance data obtained from the stionlas displayed by ParaProf.
Here we see the eight patches that make up level O overwheltimtle taken in other patches.
They executed on nodes 0,4,8,12,16,24 and 28. This gaveiomagdiate result showing that
these nodes spent extra time processing the level 0 patetéds, the other nodes waited in
MPI_Allreduce.

Figure 3 shows the distribution of a given timer, ICE::ad®exiAdvancelnTime, across all
phases, each representing a patch. We can see that the &éntersthis task for the eight level
0 patches is more 9 than seconds, while the time spent fanalbther patches is less than 4
seconds each.

Figure 4 shows the profile for the phase "patch-Q* which runs only on node 0. We see the
partition of each task that was executed under this phaskisiphase had run on other nodes,

6 S. Shende

X Total - Function Data: phase3d_new.ppk ||I||E||Z|
File Options Windows Help

M etric Mame: Time

Marme: ICE:adwectandadvancelnTime [MPIScheduler:executed]
alue Type: Exclusive

Units: secands

9.514 [| patch 0 - O sl
9,431 [| patch 0 -> 4
9393 [| patch 0 -» 5 1
9375 |patch 0 -»> 7 T
9,374 [| patch 0 -» 2
9.254 [| patch 0 -> 1 —
9.155 [lpatch 0 -» &
9,053 [| patch 0 -» 2

2607 patch1->0
3561 patch1-» 6
3512 pawchl-» 12
2481 lpatch1->4
z4ava[CCC T patch1-» 3
2451 [pawch1-> 10
2427 patch1-»21
3411 pateh 1-» 1
2407 [patchl-»8
2404 [Mpatchl->9
339 patch 1 -» 20
2382 Jpawchl-» 18
2381 patch1-»5
3372 Jpatch1-» 22
z367 [Jpawchl-»2
236 patch 1 -> 13
| E——

b [

Figure 3. The distrubution of the ICE::advectAndAdvandahne task across patches using
phase profiling

we would have aggregate statistics as well (mean, std..dev.)

Phase profiling in UCF allows the developers to partition pleeformance data for tasks
and instrumented functions across spatially defined patulign information from the AMR
subsystem. This data can be used to identify load balansswugs as well as establish a better
understanding of code performance in an AMR simulation.

5. Other frameworks

Besides the Uintah computational framework, TAU has beg@teghsuccessfully to several
frameworks that are used for computational fluid dynamicaiations. These include VTF [9]
from Caltech, MFIX [7] from NETL, ESMF [10] coupled flow apphtion from UCAR, NASA
and other institutions, SAMRAI [12] from LLNL, Miranda [1lom LLNL, GrACE [13] from
Rutgers University, SAGE [6] from SAIC, and Flash [8] from idersity of Chicago. Our work
in performance evaluation of adaptive scientific compatetican be broadly applied to other
CFD codes. Thus, CFD frameworks can benefit from the integratf portable performance
profiling and tracing support using TAU.

Performance Evaluation of Adaptive Scientific Applicasarsing TAU 7

File 0Options Windows Help

Fhase: patch 0 -= 0
Metric: Time

alue; Exclusive
Units: secands

12.202 e efIUy _computeCorrectionFluxes [MPISchaduler: executaf)]
9514 | | ICE :advectandadvancelnTime [MPIScheduler: execute(]
5501 [— |CE::computeEquilibrationPressure [MPIScheduler:; execute(l]
3.01 [l |CE::addExchangeToMomentumandEnergy [MPIScheduler: execute)
2.964 e Datasrchiver:autput [MPIScheduler:execute)]
2.777 [l |CE:computeDelPressandlUpdatePressCC [MPIScheduler: execute]
2.599 [| ICE:computelagrangianspecificolume [MPIScheduler: executed]
2.51? sl AMRICE:errorEstimate [MPIScheduler: executed]
2.299 [l |CE:accumulateMomentumsourcesinks [MPIScheduler: executen]
2.24 o |CE::addExchangeCantributionTaoFCyel [MPIScheduler:executed]
1.864 [l FegridderCommon::Dilate? Creation [MPIScheduler: executed]
1.475 [coarsen [MPIScheduler:executed]
1.155 [ICE:computevel _FC [MPIScheduler:executef]
1.093 5 ICE:computeLagrangianyalues [MFPIScheduler: executed]
0.583 B ICE:compuiePressFC [MPIScheduler;:executed]
0.212 B Datasrchiver:checkpoint [MPIScheduler: executen]
0.281 [reflux_apphCarrectionFluxes [MPIScheduler:executed)
0.27 @ ICE:accumulateEnergysourcesinks [MPIScheduler: executed]
0.201 [ICE:actualhComputeStableTimestep [MPIScheduler: executed]
|
I
|
|
|
|
|

0114 ICE::camputeTempFC [MPIacheduler: executed]

0118 ICE . computeThermoTransportProperties [MPIScheduler i executed]
0.087 | Task execution [MPIEcheduler::initiateTask]]

0077 SchedulerCammaon:: caprDataT aklewSrid [MPIEcheduler: executed]
00685 ICE;;actualkdnitialize [MPI5cheduler: executed]

0.048 | HierarchicalRegridder::MarkPatches2 [MPIEcheduler::executed]
0045 initializeErrarEstimate [MPIScheduler: execute(]

Figure 4. Phase profile for patch 80 shows tasks executing under this phase

6. Conclusions

When studying the performance of scientific applicatiospeeially on large-scale parallel
systems, there is a strong preference among developerswogpérformance information with
respect to their “mental” model of the application, formeahfi the structural, logical, and nu-
merical models used in the program. If the developer canerglarformance data measured
during execution to what they know about the applicationievaifective program optimization
may be achieved. In this paper, we present portable perfazenavaluation techniques in the
context of the TAU performance system and its applicatiotméoUintah computational frame-
work. We illustrate how phase based profiling may be effetyivsed to bridge the semantic
gap in comprehending the performance of parallel scierggijgications using techniques that
map program performance to higher level abstractions.

REFERENCES

1. A.D. Malony and S. Shende and R. Bell and K. Li and L. Li andTikebon, “Advances
in the TAU Performance System,” Chapter, “Performance ysialand Grid Computing,”
(Eds. V. Getoy, et. al.), Kluwer, Norwell, MA, pp. 129-144)03.

»

10.

11.

12.

13.

S. Shende

J. D. de St. Germain and J. McCorquodale and S.G. Parke€ &hdJohnson, “Uintah: A
Massively Parallel Problem Solving Environment,” NinthBE International Symposium
on High Performance and Distributed Computing, IEEE, pp-433 2000.

R. Bell and A. D. Malony and S. Shende, “A Portable, Extelesiand Scalable Tool for
Parallel Performance Profile Analysis,” Proc. EUROPAR 2068ference, LNCS 2790,
Springer, pp. 17-26, 2003.

TAU Portable Profiling. URL: http://www.cs.uoregon.éesearch/tau, 2005.

A. D. Malony and S. S. Shende and A. Morris, “Phase-BasedlEBPerformance Profil-
ing,” Proc. ParCo 2005 Conference, Parallel Computing €@mices, 2005.

D. Kerbyson and H. Alme and A. Hoisie and F. Petrini and Hs¥¢aman and M. Gittings,
“Predictive Performance and Scalability Modeling of a Lea§cale Application,” Proc. SC
2001 Conference, ACM/IEEE, 2001.

M. Syamlal and W. Rogers and T. O’Brien, “MFIX Documenati Theory Guide,” Tech-
nical Note, DOE/METC-95/1013, 1993.

R. Rosner, et. al., “Flash Code: Studying Astrophysiterimonuclear Flashes,” Comput-
ing in Science and Engineering, 2:33, 2000.

J. Cummings and M. Aivazis and R. Samtaney and R. Radgvérkl S. Mauch and D.
Meiron, “A Virtual Test Facility for the Simulation of Dynaim Response in Materials,”
The Journal of Supercomputing 23(1), pp. 39-50, August 2002

C. Hill and C. DelLuca and V. Balaji and M. Suarez and A. da&Si“The Architecture
of the Earth System Modeling Framework,” Computing in Sceeand Engineering, 6(1),
Januaray/February 2004.

W. Cabot and A. Cook and C. Crabb, “Large-Scale Simuiatwith Miranda on Blue-
Gene/L,” Presentation from BlueGene/L Workshop, Renopat 2003.

A. Wissinsk and R. Hornung and S. Kohn and S. Smith and IdtEI'Large Scale Parallel
Structured AMR Calculations using the SAMRAI Frameworkp®. SC’'2001 Conference,
ACMI/IEEE, 2001.

Y. Zhang and S. Chandra and S. Hariri and M. Parasharpffumic Proactive Runtime
Partitioning Strategies for SAMR Applications,” Proc. NSExt Generation Systems Pro-
gram Workshop, IEEE/ACM 18th IPDPS Conference, April 2004.

