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SUMMARY

Chasm is a toolkit providing seamless language interoperability between Fortran 95 and C++. Language
interoperability is important to scientific programmers because scientific applications are predominantly
written in Fortran, while software tools are mostly written in C++. Two design features differentiate
Chasm from other related tools. First, we avoid the common-denominator type systems and programming
models found in most Interface Definition Language (IDL)-based interoperability systems. Chasm uses
the intermediate representation generated by a compiler front-end for each supported language as its
source of interface information instead of an IDL. Second, bridging code is generated for each pairwise
language binding, removing the need for a common intermediate data representation and multiple levels of
indirection between the caller and callee. These features make Chasm a simple system that performs well,
requires minimal user intervention and, in most instances, bridging code generation can be performed
automatically. Chasm is also easily extensible and highly portable. Copyright c© 2005 John Wiley &
Sons, Ltd.
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INTRODUCTION

Fortran is an integral part of the computing environment at major scientific institutions. It is the
language of choice for developing applications that model complex physical, chemical, and biological
systems. The Fortran‡ language (in particular, Fortran 95) provides a familiar and friendly environment
for scientific programmers at the application level.
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The C++ language, while not having the long heritage of Fortran, is increasingly being used in
scientific programming. While Fortran is most frequently used at the application level, C++ is most
frequently chosen for software development at the library level. This has lead to a language gap between
tools written in C++ and applications written in Fortran (that need to access the C++ tools). The Chasm
toolkit was designed to bridge this gap.

The language interoperability issue is not new. Many libraries and application frameworks provide
both Fortran 77 and C interfaces (MPI [1], for example). However, with modern languages like C++
and Fortran 95, simple Fortran 77 and C interfaces are often not enough or are inconvenient to
use. For example, Fortran 90 formally introduced arrays into the Fortran type system. This caused
interoperability problems because a Fortran, assumed-shape array dummy argument (e.g. integer,
dimension(:) :: a) is passed by an array descriptor (meta-data describing the array) rather than
just a raw memory pointer. C++ also has interoperability issues with templates, function overloading,
and classes, all of which are tricky to express in Fortran. Furthermore, information that is necessary
to link with C++ programs is not explicitly specified by the C++ standard, making symbol name
mangling compiler dependent. Similarly under-specified language features exist in Fortran, such as
array arguments and module procedure names, again making code generation compiler specific.

There have been many tools created to aid with language interoperability. Perhaps the most well
known is SWIG [2], a software development tool that connects programs written in C and C++ with
a variety of high-level (normally interpreted) programming languages. Other tools provide language
interoperability as part of an object or a distributed object mechanism. These systems are based on
Interface Definition Languages (IDLs) and include the Common Object Request Broker Architecture
(CORBA) [3], the Inter-Language Unification system (ILU) [4] and Babel [5].

Chasm takes a different approach to language interoperability than do systems requiring IDLs.
Chasm eliminates the need for IDLs by using compiler-based tools and static source analysis to
generate an XML-based representation of procedure interfaces. This simplifies life for Chasm users
as they are not required to create IDL files describing procedure interfaces. In addition, since Chasm
is based on compiler tools and language-inclusive XML representations, it provides a more complete
mapping between Fortran and C++ than do language-neutral IDL approaches.

Furthermore, Chasm focuses only on language interoperability, as opposed to Babel, which provides
an object model, and CORBA, which provides a distributed-object model. The concentration only
on language interoperability reduces the complexity of the tools for both Chasm users and Chasm
developers. Also, because Chasm does not require translation to and from a common, polylingual type
system, it allows optimizations for better run-time performance.

The paper proceeds as follows. First, a summary of related work and tools is provided, followed
by a description of the Chasm architecture. Then we describe the XML schema and the tools used to
generate it from C, C++, and Fortran source code (and Java compiled bytecode). Next, a brief outline
of the XML stylesheet transformations (XSLT), used to generate interlanguage bridging code, is given.
Finally, a summary of the paper can be found in the concluding section.

RELATED WORK

Many modern programming languages have some mechanism for interoperation with procedures
written in other languages. These range from sophisticated foreign function interfaces such as those
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found in OCaml [6], Python [7], Ruby [8], and the Java Native Interface (JNI) mechanism [9], to
traditional and very simple C-style interfaces. Frequently, this type of language interoperability is
provided within the language implementation and is bilingual (e.g. between Java and C). Older, and
more widely used languages in the scientific community, languages such as C, C++, and Fortran,
provide little or no proscribed functionality dedicated to interoperability with foreign languages.
The exception to this is the next Fortran version, F2003 [10], which includes a specification for
interoperability with C (see also [11]). In most instances, it is the user’s responsibility to ensure that
symbols follow the appropriate conventions and that any required type conversions take place.

Perhaps the most promising multi-lingual environment is the Common Language Infrastructure
(CLI), adopted by the European Computer Manufacturers Association (ECMA) standards body [12].
The C# language exploits most of the features of the CLI, as do other languages in Microsoft’s
.NET environment. The key to interoperability among CLI languages is a unified type system.
This allows language interoperability to be managed entirely by the compiler, linker, and loader, all
without programmer intervention. (Another system that takes advantage of compiler technology is
Concert [13].) Unfortunately, CLI is a relatively new technology and has not spread into the high-
performance computing environment, although it and the related .NET technology are rapidly being
adopted in the larger commercial computing community.

The Concert and CLI systems fit the definition of seamlessness (transparency of interoperability)
given by Barrett [14] in that few or no demands are placed on the programmer to achieve
interoperability. At the other end of the spectrum are systems that use an IDL, essentially requiring
users to learn a new language in order to specify procedure interfaces. These systems (e.g. CORBA [3]
and ILU [4]) are frequently elaborate middleware solutions geared toward distributed computing.
Babel [5] is an interoperability solution that is specifically geared to high-performance computing
(HPC) and also uses an IDL (SIDL, for Scientific IDL).

While position papers, such as [15] and [16] highlight the limitations of IDLs, the claim that IDLs
are a least-common-denominator solution is not always accurate. For example, because the Babel
project provides users with the capability of developing SIDL object classes in Fortran 77, in a sense,
Babel can be seen as providing language extensions, not just langauge interoperability. Babel provides
types (SIDL objects) that are not present in the original language, so clearly it is not a least-common-
denominator solution. Chasm does not provide such a capability. Chasm allows users to call methods
on C++ objects from Fortran, but it does not provide the capability of developing object classes in
Fortran§.

IDL-based solutions restrict users to programming language types that the IDL is capable of
representing. Solutions such as Concert [13], a multilanguage distributed programming system, assume
that the interface specification is the responsibility of the programming language, not of a separate IDL.
This allows a wider range of types to be passed between communicating language pairs, with the only
restriction that corresponding types be isomorphic between the two languages (see [17]).

Concert treats the IDL as an intermediate language generated by the compiler. This is much the same
approach taken by Chasm and by its predecessor SILOON [18], an interoperability system geared
to scripting languages (as is SWIG [2]). In this case, the IDL need not even be human readable.

§Objects come to Fortran in F2003 as extensions to user-defined types.
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The Chasm approach uses an XML format based on the intermediate representation generated by
C, C++, and Fortran compiler front-ends. Unlike Concert, however, Chasm does not require special
compilers for producing executable code.

Perhaps the ‘holy grail’ for language interoperability has been laid down by Barrett [14] in his
definition of a polylingual system (and implemented in the PolySPIN systems [19]):

‘Informally, a polylingual system is a collection of software components, written in
diverse languages, that communicate with one another transparently. More specifically,
in a polylingual system it is not possible to tell, by examining the source code of a
polylingual software component, that it is accessing or being accessed by components
of other languages. All method calls, for example, appear to be within a component’s
language, even if some are interlanguage calls. In addition, no IDL or other intermediate,
foreign type model is visible to developers, who may create types in their native languages
and need not translate them into a foreign type system.’.

ARCHITECTURE

Chasm adopts the principals of a polylingual system while producing code for ordered pairs of
languages operating in a HPC environment. Details of the Chasm architecture are provided in this
section. For simplicity, the bilingual capability of Chasm is described in terms of making Fortran
procedure calls from the C++ language. However, this is for ease of description only, as, in principle,
the Chasm approach can be used for general, bilingual interoperability. While Chasm-generated
bridging code is bilingual, calls to procedures written in a number of different languages may be made
from one program, simply by generating bridging code for each language set.

Requirements

There are several key requirements made of the Chasm architecture.

1. The architecture should provide language interoperability between ordered pairs¶ of languages
(caller and callee).

2. Interoperability mechanisms should be as efficient as possible, especially in a HPC environment.
3. Interfaces to foreign procedures should appear natural within the calling language.
4. Distributed objects do not need to be supported.
5. The architecture should place a minimal burden on the user.

These requirements both restrict and free the design of Chasm. Requirement 1 frees Chasm
from a polylingual requirement. This may lead to better performance because it is not necessary
to transform/copy caller types to a general intermediate type system and then to transform again
to the callee type system. Requirement 3 hinders efficiency because it normally requires control
flow to pass through at least one bridging procedure (a stub). Requirement 4 allows for run-time

¶Ordered pairs make the important distinction that bindings are dependent on which language is acting as caller versus callee.
The reverse generally requires significantly different bindings to be created.
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efficiencies (no network and no need to support heterogeneous architectures). It also means that
Fortran is not transformed into an object-oriented language based on a distributed-object model. Fortran
programmers may call an object-oriented language, but doing so does not force them to design and
write Fortran as object-oriented code. Finally, requirement 5 implies that users should not need to
describe interfaces in a foreign language (an IDL). Interfaces in Chasm are determined (and published
in XML) by the compiler, which has full access to interface information. Users are not forced to modify
or even look at these files, unless they wish to change or update interface meta-data, thus providing
more information to the tools that subsequently use the XML.

Design overview

Chasm users must complete a series of steps to make calls between foreign languages.

1. Static analysis. During the first phase, users process their source code using Fortran or C++
compiler front-ends supplied by the Program Database Toolkit (PDT) project [20]. The PDT uses
commercial compiler front-ends supplied by Mutek for Fortran [21] and Edison Design Group
(EDG) for C++ [22]. The front-ends parse a program and emit its abstract syntax tree in the
compilers intermediate language (IL) representation. An IL analyzer then parses this language
specific representation and produces a uniform program database (PDB) format text file common
to Fortran and C/C++. The DUCTAPE library provides an API for accessing entities represented
in the PDB file. The PDB file is translated to an equivalent XML form in the next phase. The final
output of this phase is a human readable XML file describing the interfaces discovered by the
compiler. Information regarding the XML schema is provided in the next section.

2. Bridging-code generation. These tools take as input the XML file generated in phase 1 and output
stub and skeleton bridging code (described below).

3. Compile and link. This final phase is accomplished in a familiar fashion specified by the user.
Generally this is with a makefile. In fact, all three stages can be automated by combining them
within a makefile. Note that this meets the final requirement above. The only burden placed on
users is to create the makefile. Note that in rare instances, caller and callee types may not be
isomorphic and Chasm users may have to modify the callee interface. For example, Fortran does
not have a type equivalent to a C++ iterator, so a C++ function taking an iterator as a parameter
is not naturally callable from Fortran.

Stub and skeleton interfaces

Language interoperability is provided by stub and skeleton interfaces. This code is generated by
language transformation programs, which input the XML intermediate form published by the compiler
and output the stub and skeleton interfaces. These interfaces are described below.

A diagram showing control flow for a C++ caller and Fortran callee is shown in Figure 1.
The caller makes a call to a C++ stub interface. The stub adapter hides C++ users from the various
symbol-naming conventions used by Fortran compiler vendors. For instance, Fortran symbols are
sometimes upper case, sometimes lower case (or mixed as in C) and there may be one or two trailing
underscores appended. In addition, the stub adapter hides the name mangling of Fortran module
symbols. In summary, the stub provides a natural C++ interface to the user and hides compiler
dependencies such as symbol names.
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C++ Caller
Fortran 

Callee

Chasm C++ 

Stub Interface

Chasm Fortran 

Skeleton Interface

Figure 1. Control flow between a C++ caller and Fortran callee.

The stub passes control by calling a Fortran skeleton interface. The responsibility of both the stub
and the skeleton is to marshal C++ parameters to the final interlanguage call, made from the Fortran
skeleton to the Fortran callee. The stub performs preliminary marshalling of parameters from C++
to Fortran, while the skeleton completes the marshalling to the exact type required by the Fortran
callee.

Recall that no IDL is required by Chasm. The programmer of the callee writes a normal Fortran
procedure (or module procedure) and it is the compilers responsibility to discover (and publish) the
interface. The callee interface may have Fortran derived types, Fortran assumed-shape arrays, or
pointers to either of the two. Since pointers and array-valued parameters are passed in a compiler-
dependent fashion (see [23]), it is the responsibility of the Fortran skeleton interface to complete
the marshalling to the final form specified by the callee interface and take care of any compiler
dependencies arising in this process.

As mentioned above, the stub and skeleton bridging code is generated by XML transformations.
Depending on the types in the callee interface, sometimes the skeleton is not necessary and control
flow passes directly from the stub interface to the callee, thus increasing efficiency. Sometimes, the
stub interfaces may even be inlined, further increasing efficiency.

INTERFACE REPRESENTATION IN XML

Ideally, a language interoperability tool would let a user with an existing library create a description
of the library calling interface in some representation language, and use this description repeatedly in
generating wrapper code. Users could then include this interface description with a compiled version
of their code, so that third-parties could discover the calling interface, with well-defined language
bindings, without requiring source code. Systems such as CORBA and Babel do so by using an
IDL, while languages such as Java embed the interface information in the compiled code. In fact,
this embedded Java interface information is used by Chasm tools to generate XML descriptions for
Java class libraries from compiled bytecode, thus eliminating the need for separate processing of
source code, as needed for C, C++, and Fortran files. XML was chosen as the IDL because XML
is a standardized format with a wide and rapidly growing base of users and tools.
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The Chasm XML schema is designed to represent interface characteristics consistently for Fortran,
C, C++, and Java. Other languages such as Ruby and Python can be represented, although their
lack of type information prior to run-time makes the automatic discovery of their interfaces difficult,
particularly when creating bindings to call from explicitly or strongly-typed languages. This simply
means that Chasm can easily build code to allow Python to call Fortran, but the Python type system
makes it more difficult when calling in the reverse order. For Python, users would need to hand generate
the required XML interface description file.

The XML schema takes a hierarchical approach to capturing interface information and type visibility,
similar to namespaces in C++, packages in Java, and general scoping rules in most languages.
An UML-style representation of the entities in the XML format are shown in Figure 2.

The outermost container in the XML schema is the library, allowing a single XML file to contain
descriptions for multiple scopes. A scope in this context is roughly equivalent to a Java package,
C++ namespace, or Fortran module. Each scope can contain methods, structures (such as classes, C
structs, or Fortran user defined types), and other scopes. Structures and methods use the type element to
describe in detail the type information related to method arguments and structure fields. The kind, ikind,
and fkind attributes are enumerations that include all built-in types for C, C++, and Fortran (the reader
should refer to the current Chasm XML schema or PDT DUCTAPE API for further details [24,25]).
To decouple the concept of a pointer and an array from the actual type of the elements comprising the
memory being pointed at, type elements are related to indirection elements (for pointers) and array
elements. Additional elements such as the proceduremap (for aliasing procedure names in Fortran)
are provided to contain information relevant at code generation time for bookkeeping and emitting
specialized wrapper code (code elements).

Source-based XML generation

To rapidly bootstrap the necessary XML files for Chasm code generators, a tool is provided that
uses source-level interface analysis to walk the original code and emit a default XML representation.
We differentiate between this ‘default’ representation and what may be a slightly different final
representation due to a lack of sufficient information to properly map an ambiguous type to
the corresponding actual type. For example, pointers in languages such as C and C++ introduce
ambiguity (see Figure 3), particularly when dealing with multi-dimensional arrays and character
strings.

In the Chasm XML representation, high-level array and string types are available that map to basic
pointers in C and C++. An automated tool with no semantic information to indicate how parameters
are used within the function body, forces it to take the most conservative guess when emitting XML.
The user is responsible for updating this XML to reflect the true high-level types to better assist tools
that will use the XML later‖.

Unlike a significant number of tools for source code analysis that use their own parsers, the Chasm
XML generation tool is based on the Program Database Toolkit (PDT), which in turn uses commercial

‖The next generation of XML generation tools will allow users to provide ‘hints’ so that it can better identify when low-level
pointer types map to high-level array and string constructs.
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Figure 2. UML representation of the Chasm XML schema.
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1 /* ambiguity in C pointers */
2 void example(int *1) {
3 /* the following are both syntactically correct, but
4 semantically different */
5 *i = 1; /* i points to a single value */
6 i[4] = 2; /* i is a ID array */
7 }

Figure 3. An example of the ambiguity in C with a pointer function argument.

grade C, C++, and Fortran 90 compiler front-ends for source parsing and processing. This allows
Chasm tools to easily gain access to information for all features in each language, including some that
cause custom parsers to break (in particular, heavy usage of C++ templates). The PDT has licenses
to freely distribute binary versions of the compiler front-ends that it supports (for a list of supported
platforms, see [25]).

CODE GENERATION USING XML TRANSFORMATIONS

The most important portion of Chasm, particularly to end-users, is the code generation facility that
takes XML as input and outputs stub and skeleton bridging code for interlanguage procedure calls.
Previous systems that the authors worked on for language interoperability either involved large
quantities of hand coding [26], or code generation routines that were very difficult to customize [18].
Beginning with the initial prototyping phase for Chasm, a high priority was given to designing a system
that was powerful and highly extensible, taking into account lessons learned from the projects cited
above.

While not the only choice, XSLT (Extensible Stylesheet Language for Transformations) was chosen
as the XML processing language. XSLT is a functional language similar to LISP and ML and is easy
to apply to the recursive structures found in XML documents. The code generation phase must create
several files. In general, there are a C++ header and implementation file for the stubs and a Fortran file
for the skeleton (for calling from C++ to Fortran).

Type conversion

The XML transformation engine must declare and implement stub interfaces in C++ and implement the
Fortran skeleton interfaces. For each file there is a corresponding XSLT program to generate the file.
These stylesheets are fairly generic in that they all contain functions to write file headers and trailers
as well as functions to process callee interfaces as they are encountered in the XML file.

At their core, these latter functions continually map types from one language to another as an XML
file is processed. The specific mapping depends on context. For instance, is the variable a return type
or is it declared within the parameter list of the procedure? Does a parameter type need a variable
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declared within the body of a stub function or is the variable declaration within the function parameter
list sufficient? All of these decisions and type transformations are done by XSLT functions contained
in a type-conversions stylesheet. For example, type-spec is a function that generates the return
type in a C++ stub declaration. If the Fortran callee is a function returning the type, integer, then
type-spec would produce the string int on output.

This makes Chasm easy to extend. One only has to override type-spec by placing a custom
version in a user-conversions stylesheet and have type-spec produce the string int32 t, for
example. This extensibility is particularly useful when passing arrays between Fortran and C++.
While a default C++ array class is provided for the array-conversion type used in C++ stub interfaces,
Chasm users are able to substitute their own custom-array class for the default.

Problematic types

There are a few types that provide particular challenges to language interoperability. These include
Fortran arrays, pointers and character strings. These challenges are briefly considered below.

Fortran passes an array via a descriptor (sometimes referred to as a dope vector) that contains
array meta-data, such as the number of dimensions and the number of elements in each dimension.
Array descriptors are not specified by the language and are vendor specific [23]. A C library is provided
with the Chasm distribution to create and access array-descriptor information. This library allows users
to create, for example, a multidimensional array in C and pass it to Fortran as an assumed-shape array.
Fortran pointers are also passed via a descriptor.

The convention for strings is somewhat different. Normally, a Fortran compiler passes a pointer to
the character buffer, as do C compilers, although Fortran strings are not terminated with a 0. Rather,
the string length is explicitly passed as a hidden parameter at the end of the formal parameter list.

Fortunately, Chasm users do not need to be concerned with the exact nature of how a specific Fortran
vendor chooses to pass arrays, pointers, or character strings. The stub and skeleton bridging code hides
these compiler-dependent details.

CONCLUSIONS

Chasm is a toolkit providing language interoperability between Fortran 95 and C++. Its equivalent of an
IDL is created by a compiler pass that outputs an XML file. Stub and skeleton interfaces are machine
generated from the XML by XSLT stylesheets. Chasm stylesheet functions are easily extensible to
provide custom interlanguage type conversions by overriding the default XSLT functions. For C++
to Fortran interfaces, normally Chasm does not require human intervention, so the entire language
interoperability process can be automated in normal project makefiles. C-based languages have more
ambiguity (recall the C pointer example discussed above), so minor modifications to XML files may
be required.

Several advantages are seen to using Chasm over the traditional method of hand-modifying user code
and making the interlanguage function calls directly from the caller’s code. First it removes the shear
drudgery of hand coding and removes compiler dependencies from user code. However, perhaps more
importantly, it means that bridging code will not become out of sync with changes in user code, because
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normally a simple make will regenerate the bridging code. Chasm generated code is less susceptible to
errors than hand-generated code.

Furthermore, because Chasm is easily extensible, it can be modified on a project-wide basis to meet
project needs. This allows projects to impose project-wide language transformation standards so that
individual project programmers need not ‘invent’ their own, thus leading to surprises and ultimately
to errors. There need not be any long-term dependencies on Chasm, because each project ‘owns’ the
generated code and it can be distributed with project libraries. The open source license of Chasm allows
source code for the small Chasm run-time library to be distributed with a user’s source distribution.

While Chasm [24] is ‘bilingual’, providing point-to-point interoperability between Fortran and C++,
Chasm stylesheets can easily be modified to provide calls from other languages to Fortran or C++.
Experimental versions have been created that automatically create bridging code for calls from Ruby
to Fortran. More creatively, proof-of-concept stylesheets have been created that automatically wrap
Fortran modules as Common Component Architecture (CCA) [27] components.

Chasm is continually being developed. It has good support for users seeking to call Fortran
from C++, however work is currently underway to improve the Fortran compiler front-end distributed
with the PDT. Fortran primitive types and array types are well supported. Future improvements include
better support for Fortran derived types and more complete support for generating bridging code for
calls from Fortran to C++. While the Fortran to C++ XSLT stylesheets are immature, they have been
successfully used to produce Fortran interfaces to the C++ Visualization ToolKit (VTK) [28].
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