
A Distributed Performance Analysis Architecture for Clusters

Holger Brunst
��� �

Wolfgang E. Nagel
�

Allen D. Malony
�

�
Center for High Performance Computing

Dresden University of Technology
Dresden, Germany�

brunst, nagel � @zhr.tu-dresden.de

�
Department of Computer and Information Science

University of Oregon
Eugene, OR, USA�

brunst, malony � @cs.uoregon.edu

Abstract

The use of a cluster for distributed performance analy-
sis of parallel trace data is discussed. We propose an analy-
sis architecture that uses multiple cluster nodes as a server
to execute analysis operations in parallel and communi-
cate to remote clients where performance visualization and
user interactions occur. The client-server system devel-
oped, VNG, is highly configurable and is shown to perform
well for traces of large size, when compared to lead-
ing trace visualization systems.
Keywords: Parallel Computing, Performance Analy-
sis, Profiling, Tracing, Clusters

1. Introduction

Clusters have proven to be a viable means to achieve
large-scale parallelism for computationally demanding sci-
entific problem solving[7]. The relative ease with which
more computing, network, and storage resources can be
added to a cluster and the available systems software to
support them, especially the Linux OS, has made clus-
ters a system of choice for many laboratories. This is not
to say that it is also relatively easy to program clusters
or to achieve high-performance on cluster systems. While
the MPI[6] programming library provides a common pro-
gramming foundation for clusters, the increasing degree
of shared-memory parallelism on cluster nodes encourages
mixed-mode styles, as might be obtained from a combina-
tion of MPI and OpenMP (or other multi-threading) meth-
ods. In either case, it is still necessary to apply performance

tools to diagnose a variety of performance problems that can
arise in cluster-based parallel execution.

Given the distributed memory system architecture of
clusters, many of the performance issues result from the
interplay of local computation and remote communication.
While measurement techniques based on profiling are use-
ful for highlighting how execution time is spent within (par-
allel) threads on a single node, process communication be-
havior between nodes can be only summarized. Profiling
may give some insight into communication hotspots or mes-
saging imbalances, but it loses all information about time-
dependent communication behavior. In contrast, measure-
ment techniques based on event tracing reveal parallel ex-
ecution dynamics, allowing users to identify temporal pat-
terns of poor performance behavior at different regions of
program execution. The regrettable disadvantage of tracing
is the large amount of trace data produced, especially for
long running programs, complicating runtime I/O, off-line
storage, and post-mortem analysis.

In this paper, we focus our attention on the problem of
scalable trace analysis. We propose an integrated perfor-
mance analysis approach for clusters with the following ma-
jor goals in mind:

� Keep performance trace data on the parallel cluster
platform

� Analyze the parallel trace data in parallel on the cluster

� Provide fast and efficient remote trace visualization
and interaction

� Deliver analysis features similar to leading trace anal-
ysis tools



Our solution addresses one of the more limiting problems
with tracing as a usable method for large-scale performance
evaluation, that of dealing with large trace sizes during anal-
ysis and visualization.

The paper begins with an overview of the VNG architec-
ture, a prototype for parallel distributed performance anal-
ysis we developed at Dresden University of Technology in
Germany. Each component is then described in more de-
tail. The runtime system of VNG is particularly important
for its scalability. We discuss its operation separately. Ex-
periments were conducted to evaluate the trace processing
improvements when using multiple cluster nodes for anal-
ysis. These results are shown for two different platforms
and compared to baseline performance for the Vampir [3, 4]
trace visualization system. The paper concludes with a dis-
cussion of the work and directions for the future.

2. Architecture Overview

The distributed parallel performance analysis architec-
ture described in this paper has been recently designed and
prototyped at Dresden University of Technology in Dres-
den, Germany. Based on the experience gained from the de-
velopment of the performance analysis tool Vampir, the new
architecture uses a distributed approach consisting of a par-
allel analysis server, which is supposed to be running on
a partition of a parallel clustered environment, and a visu-
alization client running on a remote graphics workstation.
Both components interact with each other over a socket
based network connection. In the discussion that follows,
the parallel analysis server together with the visualization
client will be referred to as VNG. The major goals of the
distributed parallel approach can be formulated as follows:

1. Keep performance data close to the location where
they originally were created

2. Perform event data analysis in parallel to achieve in-
creased scalability where speed-ups are on the order of
10 to 100

3. Allow for a fast and easy to use performance data anal-
ysis from remote end-user platforms

VNG consists of two major components, analysis server
(vngd) and visualization client (vng). Each can run on a dif-
ferent kind of platform. Figure 1 depicts an overview of the
envisioned overall architecture. Boxes represent modules of
the components whereas arrows indicate the interfaces be-
tween the different modules. The thickness of the arrows is
supposed to give a rough measure of the data volume to be
transferred over an interface whereas the length of an ar-
row represents the expected latency for that particular link.

On the left hand side of Figure 1 we can see the analy-
sis server, which is to be executed on a dedicated segment of
a parallel machine having access to the trace data generated

Figure 1. Architecture Overview

by an application being traced. The server is a heteroge-
neous program (MPI combined with pthreads), which con-
sists of worker and boss processes. The workers are respon-
sible for trace data storage and analysis. Each of them holds
a part of the overall trace data to be analyzed. The bosses
are responsible for the communication to the remote clients.
They decide how to distribute analysis requests among the
workers and once the analysis requests are completed, the
bosses merge the results into one response that is to be sent
to the client.

The right hand side of Figure 1 depicts the visualiza-
tion client(s) running on a local desktop graphics worksta-
tion. The client is freed from time consuming calculations.
Therefore, it has a straightforward sequential GUI imple-
mentation. The look and feel is very similar to performance
analysis tools like Vampir, Jumpshot[9] and others[2]. For
visualization purposes, it communicates with the analysis
server according to the user’s inputs. Multiple clients can
connect to the analysis server at the same time.

As mentioned above, the shape of the arrows indicates
the quality of the communication links with respect to
throughput and latency. Knowing this, we can deduce that
the client-to-server communication was designed to not re-
quire high bandwidths. In addition, only moderate latencies
are required in both directions. Two types of data are trans-
mitted: control information and condensed analysis results.
Following this approach, the goal of parallel analysis on the
server and remote visualization is achieved. The big arrows
connecting the program traces with the worker processes
indicate that high bandwidth is a major goal to get fast ac-
cess to whatever segment of the trace data the user is inter-
ested in. This is achieved by reading data in parallel by the
worker processes.

To support multiple client sessions, the server makes use
of multi-threading on the boss and worker processes. The
next section provides detailed information about the analy-
sis server architecture.



3. Analysis Server

3.1. Requirements

During the evolution of the Vampir project, we identified
a set of abstract requirements with respect to current cluster
platforms that typically cannot be fulfilled by most classical
sequential post mortem software analysis approaches:

� Do calculations in parallel.
� Support distributed memory.
� Increase scalability for both long (regarding time) and

wide (regarding number of processes) program traces.
� Allow preliminary cancellation of requests. After the

user spawned an analysis process, it should be possible
to terminate the process without waiting for its com-
pletion as it might turn out to be very time consuming.
With regards to a parallel infrastructure, this require-
ment is not easy to fulfill.

� Limit the data transferred to the visualization client to
a volume that is independent of the amount of traced
event data.

� Portability. The analysis component should work on as
many parallel platforms as possible.

� Extensibility. Depending on user demands, new analy-
sis capabilities should be easy to add.

3.2. Server Architecture

Section 2 has already provided a rough sketch of the
analysis server’s internal architecture. We will now go into
further detail. Figure 2 can be regarded as a close-up of the
left part of the architecture overview. On the right hand side
we can see an MPI boss process responsible for the inter-
action with the client and the control over the worker pro-
cesses. On the left hand side � identical MPI worker pro-
cesses are depicted in a stacked way so that only the upper
most process is actually visible.

Every single MPI worker process is equipped with one
master thread doing the MPI communication to the boss
and, if required, to other MPI workers. The master thread
is created once at the very beginning and keeps running un-
til the server is terminated. Depending on the number of
clients to be served, every MPI process also has a dynam-
ically changing number of � session threads responsible
for the clients’ requests. The communication between MPI
processes is done with standard MPI constructs whereas
the process-local threads communicate by means of shared
buffers synchronized by mutexes and conditional variables.
Doing so allows for low overhead interaction between the
mostly independent components.

Figure 2. Analysis Server in Detail

Session threads can be sub-divided into three different
module categories: analysis modules, event database mod-
ules, and trace format modules. Starting from the bottom,
trace format modules include the parsers for the traditional
Vampir trace format (VPT), the newly designed scalable
trace format (STF) by Pallas[8] and the TAU[5] trace for-
mat (TRC). The modular approach makes it easy to add
other third party formats. The database modules include
storage objects for all supported event categories like func-
tions, messages, performance metrics, etc. The final mod-
ule category provides the analysis capabilities of the server.
This type of module does its work upon the data provided
by the database modules.

So far, the worker processes have been discussed. For
the boss process(es) the situation is slightly different. The
layout of a boss process with respect to its threads is iden-
tical to the one applied on the worker processes. Similar
to a worker process, the master thread is responsible for
doing all MPI communication with the workers. The ses-
sion threads on the other hand have different tasks. They
are responsible for merging analysis results received from
the workers, converting the results to a platform indepen-
dent format, and doing the communication with the clients,
as depicted on the right hand side of Figure 2.

3.3. Communication

3.3.1. Client/Server. The design of the communication
interface between the display client and the analysis server
takes into account the following requirements:

� Asynchronous/Interleaved communication. It is
possible to trigger multiple requests without actu-
ally waiting for the response in order to hide la-
tency whenever multiple instances of the display client
make requests for new data.� Data transformation/preparation. To minimize
communication overhead, the data transferred be-
tween the two components is not raw event data like



what is typically handled by visualization programs. It
is important to stress here that the communication vol-
ume must not become dependent on the amount
of actual event data being processed by the analy-
sis server.� Endian conversion. The display component and the
analysis component typically would not reside on the
same platform, or even on the same platform architec-
ture. Conversion of data types to identical endianess
therefore is supported.� Security. Sensitive data might be transferred between
the analysis server and the display client. Our interface
allows encryption/authentication via standard mecha-
nisms like SSL, ssh tunneling, or similar, even though
this can be in contradiction to latency and throughput
optimization.� Extensible interface, compatibility. The interface de-
sign takes into account future components transferring
data over the same link. Communication between dif-
ferent versions of VNG is possible within the limita-
tion of supported features on both sides.

Based on the above requirements, we identified four dif-
ferent layers of communication to be designed and proto-
typed:

� Data exchange layer (sockets, shared memory, etc.)� Endian conversion layer (for inter-architecture com-
munication)� Serialization packaging layer� Custom request/response layer

The first layer realizes the pure data transfer by means
of simple input and output character buffers. Adapting this
layer is sufficient to support different means of communi-
cation like sockets, shared memory, etc. Only a very basic
API is provided at this layer. On top of this layer type, en-
dian conversion is provided. Data types like float, int, char,
string and vectors of them are supported. The third layer is
responsible for serialization and packaging of requests and
responses. Request and responses are in a format that eas-
ily allows adding and removing parameters without loss of
compatibility. We therefore used a key word based parame-
terization for both requests and responses. This final fourth
layer is the actual API to the application developer. This in-
terface allows easy request/response generation from and to
the analysis server.

We have not tackled the security aspect in this layer-
ing approach. We did not want to invent our own security
scheme here, but instead we made use of standard ssh tun-
neling techniques that guarantee proper authentication as
well as the encryption of exchanged data. Of course, this
layer can be disabled if performance is an issue.

3.3.2. Boss/Worker. In the previous section we dis-
cussed the “external” client-to-server communication.
When it comes to the server’s internal communication be-
tween worker and boss processes, the situation is dif-
ferent. For the following reasons, we decided to use
MPI as the server’s internal communication infrastruc-
ture:

1. MPI works perfectly on clustered environments.

2. MPI is the standard for message passing.

3. All parallel platforms provide a (presumably efficient)
implementation of MPI.

4. MPI has proven to meet high scalability requirements.

5. Many MPI functions (like reductions) provide func-
tionality which we did not have to re-invent.

Unfortunately, the latter cannot be fully exploited be-
cause the server must be in the position to cancel a request
prematurely: all collective operations are blocking in the
sense, that once started, they must be completed on all par-
ticipating processes. Hence, a separate “control-channel”
is required which is based on non-blocking (unfortunately,
non-collective) MPI functions. A communication structure
uses MPI Isend, MPI Irecv and repeated calls to MPI Test
to allow premature cancellation of the current work on a re-
quest. Collective operations are then only executed after be-
ing told so through the control channel. Unfortunately, this
decreases the performance a little. We are looking into bet-
ter approaches.

3.3.3. Transaction Protocol. As stated above, an un-
sorted key word based transaction protocol seems to have
the best potential for future improvements and additions to
the communication interface without the loss of compat-
ibility between non-exact matching displays and analysis
components. In our case, such a request looks like the fol-
lowing (translated from binary):

REQUEST::RequestTimeline,
KEY::Threads, INT(4)::1, 2, 4, 8,
KEY::TimeIntervalStart, FLOAT(1)::StartTime,
KEY::TimeIntervalStop, FLOAT(1)::StopTime,
KEY::HorizontalResolution, INT(1)::800.

The ordering of the parameters can be arbitrary. Fur-
thermore, additional unknown or obsolete parameters are
allowed, but ignored. Serialization, type translation, and
packaging of such requests are generic tasks that work just
fine for any future extensions. The above example is writ-
ten in ASCII text to give an idea of what a generic proto-
col looks like. The real format of course is a tokenized bi-
nary representation, although for debugging purposes, a hu-
man readable format is useful as well. This only affects the



packaging layer of our model. Again, this is one of the ben-
efits of a multi-layered client/server interface.

3.4. Parallel Analysis

One main issue, is how the work is to be distributed
across several workers. It is desirable that all workers are
running the same code. Otherwise, software maintenance,
flexibility, and extensibility can suffer and possible distri-
bution of files over several file systems cannot be utilized.
Instead of diverging into several tasks and assigning them
dedicated data sets, the code rather transparently accepts
any kind of data and uniformly reacts on it. Hence, the cen-
tral idea here is to achieve the work distribution by parti-
tioning the data rather than distributing activity tasks.

This, however, implies that it has to be possible to write
analysis algorithms following this approach. For our pur-
poses, this is indeed possible, even if reduction require-
ments make it more difficult than if each analysis task is
performed on one process only.

3.4.1. State/Event Analysis. One of the major categories
of events handled by the analysis server is the category of
block-enter and block-exit events. They can be used to an-
alyze the run-time behavior of an application on different
levels of abstraction like the function level or the loop level.
Finer or coarser levels can be achieved depending on the
way an application is instrumented.

The analysis of this event type requires a consistent
stream of events to maintain its inherent stack structure.
The calculation of function profiles, call path profiles, time-
line views, etc. highly depend on this structure. To create
a degree of parallelism that the server can benefit from,
we chose a two-dimensional task distribution. For relatively
short traces, the data is equally distributed among the work-
ers by means of an interleaved process/thread ID to worker
mapping, which works best for relatively short traces with
a large number of threads. For traces that exceed a cer-
tain amount of events per process/thread, the process/thread
to worker mapping needs to be adopted every � events.
Hence, we achieve an equal distribution of the data among
all workers, even in the case of many events but few pro-
cesses/threads.

In general, the analysis types mentioned above generates
results in the form of tables, which can be easily transferred
over a network link, as their size does not depend on the
number of events being analyzed.

3.4.2. Communication Analysis. When it comes to com-
munication events, things get a little bit more difficult. This
is basically due to the fact that the nature of communica-
tion is at least two-dimensional. Having typically two or
more parties involved makes it somewhat difficult to find

a proper message to worker mapping so that message pro-
files and event-oriented timeline representations can be eas-
ily calculated. It becomes even more difficult when a cer-
tain load balance among the workers is to be fulfilled.

Another problem, which has not been discussed so far,
deals with the data aggregation to be done for the infor-
mation exchange with the client. It arises when messages
are to be displayed separately, as it is done by most time-
line like tool displays. In a native approach, this type of dis-
play requires either sending detailed event information or
pre-drawn bitmaps over the network link. Neither solution
is really desirable due to the high amount of data or the lack
of context. We decided on an approach that even solves an-
other peculiarity. That is the decreasing usefulness of de-
tailed message event displays when dealing with high event
densities.

In our solution, the communication events are distributed
among the workers in a similar way as the block enter
and exit events. Statistics can be easily calculated in a dis-
tributed manner. When it comes to detailed event displays
with high event densities, events are aggregated in groups
which allow both easy transfer to the client and meaningful
display of the information in the form of a single graphic (an
arrow indicating the actual number of events) and their av-
erage properties.

3.4.3. Performance Metric Analysis. Some classi-
cal performance analysis tools are also capable of acquir-
ing and displaying performance metric data as it can be
found on most parallel architectures today. This data is typ-
ically generated on a per process basis or for groups of pro-
cesses, which makes it relatively easy to distribute the data
among the workers. Similar to block entry/exit events, pro-
files and timelines can be calculated independently
on the workers. In a subsequent step, the control pro-
cess merges the condensed data and passes the results over
to a client.

3.4.4. Trace File Input Procedure. The analysis server is
supposed to support multiple trace file formats. Therefore,
a format unification layer is needed.

Results from earlier scalability studies for the ASCI
PathForward project, revealed that reading event trace data
from disk and transforming to appropriate internal data
structures required a significant amount of CPU time. We
therefore apply a fine-grained parallel input process that
does the event translation on top of a much coarser par-
allel I/O process. To avoid unnecessary inter-worker com-
munication, every worker directly accesses the trace data
files via a process-local instance of a trace format support li-
brary, which allows for selective event data input. So far, we
observed a satisfactory I/O performance on the tested plat-
forms that commonly used NFS. A parallel file system how-



ever, could increase the load performance of our approach
even more and fits perfectly well into the architecture.

4. Runtime Environment

The server architecture that was explained and discussed
in the preceding section was designed for flexibility and
portability to today’s most common parallel runtime en-
vironments. There are, however, certain configuration is-
sues about the underlying hardware platform that should be
met in order to allow for the best performance of the dis-
tributed performance analysis architecture. The subsequent
paragraphs describe an environment that during the devel-
opment of our parallel analysis server has proven to be well-
suited for a seamless and fast distributed performance anal-
ysis environment.

4.1. Layout

As depicted in Figure 3, the analysis server is expected to
run on a small segment of the parallel runtime environment.
The bright boxes represent the nodes that are to be execut-
ing the parallel application. Execution and tracing of ap-
plications takes place on those nodes. The small segment of
dark nodes at the right bottom corner is dedicated to interac-
tive analysis of the trace data generated by applications run-
ning on the bright nodes. The master analysis node, which
is drawn in stripes, does require access from and to the outer
world. Clients will have to connect to this particular node in
order to place analysis requests.

4.2. Common Data Storage System

To avoid costly and time consuming duplication of event
trace data, both the calculation and the analysis nodes need
a common view on the data. Having any kind of network
file system installed, this issue should not pose problems on
most target platforms. Keeping the data accessible to both
sides of the performance optimization process is crucial for
next generation, easy to use analysis tools.

Figure 3. Runtime Environment Layout

4.3. Security

The distributed approach we propose, requires network
access to at least one of the analysis nodes serving as mas-
ter communication node to the outer world. This brings up
security issues. Therefore, the master analysis node should
be totally shielded by a firewall allowing just the ssh proto-
col from a small set of machines known to be trusted clients
of the analysis facilities. In addition, the server has been de-
signed to run in user space only, and it is not desired to give
potential access to data that is not owned by a client.

4.4. Mode of Operation

Experiments with the parallel analysis server have shown
that running an interactive analysis daemon requires ded-
icated resources on the server side to provide reasonable
analysis performance. Furthermore, interactive scheduling
is required as running the analysis daemon in a batch envi-
ronment did not turn out to be feasible. This is basically due
to the fact that interactive analysis simply requires the anal-
ysis server to quickly respond whenever a request comes in.
Waiting time generated by a batch system would be a ma-
jor contradiction to this requirement, and would not be ac-
cepted by any tool user.

5. System Evaluation

To demonstrate the capabilities of the distributed, paral-
lel analysis system, a set of benchmarks was developed and
tested.

5.1. The Benchmarks

The following measurements were taken for VNG. They
were compared to sequential results obtained for the com-
mercial performance analysis tool Vampir.� Time needed to fully load a selected trace file.� Time needed to build the data structures for the sum-

mary statistics display.� Time needed to build the data structures for the time-
line display.

In order to obtain the timing results a slightly modified
visualization client was used to measure and log the han-
dling of requests in the server.

The tests were carried out for a trace file derived from
the sPPM application. The sPPM application is part of the
ASCI benchmark suite[1]. The following short description
of the code was taken from the benchmark’s web page:

The sPPM benchmark solves a 3D gas dynam-
ics problem on a uniform Cartesian mesh, us-
ing a simplified version of the PPM (Piecewise



Parabolic Method) code – hence the ”s” for sim-
plified. The code is written to simultaneously ex-
ploit explicit threads for multiprocessing shared
memory parallelism and domain decomposition
with message passing for distributed parallelism.

The generated trace file has a size of 327 megabytes and
holds 22 million events. Due to its size, it is well suited to
demonstrate the capabilities of VNG. All experiments were
done on 1, 2, 4, 8, and 16 MPI worker tasks plus one admin-
istrative MPI task, respectively. These timing experiments
where compared with the performance of Vampir which
runs sequentially.

5.2. The Environment

To provide proof of concept, we used the following lo-
cal computing environments to perform our tests. Platform
A is a Linux cluster that was recently installed at the Univer-
sity of Oregon. It consists of 16 dual-processor nodes inter-
connected with two independent gigabit Ethernet networks.
Platform B is a 128 processor SGI Origin 3800 at Dres-
den University of Technology. Although the Origin 3800 is
an SMP machine, the behavior comes very close to a clus-
ter when running a dedicated MPI Application. It further-
more shows that our architecture is not limited to clustered
environments.

5.2.1. Platform A:

Linux Cluster
OS: Linux 2.4.20
CPU: Intel Xeon
Clock: 2.80 GHz
Main Memory: 4 GB per Node
Endianness: Little Endian
Display: none
Scheduling: Exclusive

5.2.2. Platform B:

SGI multiprocessor architecture (Origin 3800)
OS: IRIX (6.5)
CPU: MIPS R12000
Clock: 400 MHz
Main Memory: 64 GB
Endianness: Big Endian
Display: none
Scheduling: Exclusive

5.2.3. Local Desktop Client:

OS: Linux (Kernel 2.4.17)
CPU: AMD Athlon
Clock: 1 GHz

� proc.: 1
�

1 + 1 2 + 1 4 + 1 8 + 1 16 + 1
Load Op.: 41.00 16.63 8.64 4.20 2.17 1.09
Timeline: 0.35 0.07 0.07 0.06 0.07 0.07

Profile: 2.05 0.24 0.16 0.11 0.12 0.16

�

sequential Vampir

Table 1. Timing Results in Seconds for Exper-
iments on Platform A

� proc.: 1
�

1 + 1 2 + 1 4 + 1 8 + 1 16 + 1
Load Op.: 208.00 91.50 43.45 21.26 10.44 5.20
Timeline: 1.05 0.17 0.18 0.17 0.15 0.16

Profile: 7.86 0.82 0.44 0.25 0.16 0.14

�

sequential Vampir

Table 2. Timing Results in Seconds for Exper-
iments on Platform B

Main Memory: 768 MB
Endianness: Little Endian
Display: X (Local)

5.3. Results

The results for the test cases run on Platform A and B are
shown in Table 1 and 2 respectively.

Figures 4 and 5, show the speedups derived from these tim-
ing results.

Figure 4. Speedups for the Parallel Analysis
Server on Platform A



Figure 5. Speedups for the Parallel Analysis
Server on Platform B

5.4. Discussion

The first column of Table 1 and Table 2 gives the tim-
ing results obtained with the commercial tool Vampir. The
experimental results obtained with VNG will be related to
those values.

The first row in Table 1 and Table 2 illustrates the load-
ing time when reading in the 327 megabyte file mentioned
in Section 5.1 We can see that even the single worker ver-
sion of VNG already outperforms standard Vampir. This
is mainly due to linear optimizations we did in the design
of VNG. This is the principal reason for the super scalar-
speedups we observe when we compare a multi-MPI task
run of VNG with a standard Vampir. Upon examination of
the speedups for 2, 4, 8, and 16 MPI tasks, we see that the
loading time typically is reduced by a factor of two, as the
number of MPI tasks doubles. This proves that scalability
is achieved. Another important aspect, not mentioned in the
tables, is that the amount of memory is reduced per node.
This allows one to load very large trace files on a clustered
system. With standard Vampir, this was only possible with
large SMP systems.

The second row in both tables depicts the update time for
the main timeline window. In this case the speedup is not as
high as for the loading time. This is mainly due to optimiza-
tions that we did in an earlier stage, where we introduced a
drawing algorithm that has an �

�����
� complexity. The pa-

rameter of � is equal to the pixel width of a display and �

is the number of events to be summarized. From this start-
ing point only a few more optimizations were possible. No-
tice that the execution time is already quite small.

Row three shows the performance measurements for the
calculation of a full featured profile. The sequential time
on both platforms is significantly higher than that of the
times recorded for the parallel analysis server. The timing
measurements show that we succeeded in drastically reduc-
ing this amount of time. Absolute values on the order of

less than a second even for the single worker version allow
smooth navigation in the GUI. The speedups prove scalabil-
ity of this functionality. The speedups for the cluster how-
ever indicate that we are dealing with a system that has a
weaker processor/network performance ratio compared to
the results for the SMP machine although its absolute per-
formance is approximately 4 times higher. This is pretty
common for a Linux cluster made of COTS and therefore
was not totally unexpected by us. When dealing with bigger
trace files, this phenomenon disappears as the time spent for
calculations increases while communication stays the same.

What the numbers do not say is that we have basically
overcome two of the major drawbacks of trace analysis dur-
ing the past. The server approach allows us to keep perfor-
mance data as close to its origin as possible. No costly and
annoying transport to a local client is needed anymore. The
usage of distributed memory on the server side furthermore
allows us to support today’s clustered architectures without
a loss of generality.

6. Conclusion

Parallel trace measurement and analysis has been crit-
icized in recent years for being impractical as a perfor-
mance evaluation methodology for scalable clustered sys-
tems. Primarily, these criticisms point out the issue of large
trace volume and the problems it causes for trace storage
management, trace analysis, and visualization. One can ar-
gue that the amount of trace data is closely tied with the
requirements for performance analysis. Hence, the choice
of how much trace data to collect and for what events
is a decision made during performance problem solving.
Certainly, a more refined performance diagnosis strategy
could make better, more judicious decisions regarding per-
formance instrumentation to achieve small trace volume.
However, from the perspective of the trace analysis system,
this is of little consequence, since it must be able to function
effectively with traces of large size. Even with careful plan-
ning of performance experiments, traces of large-scale par-
allel machines can quickly grow to the size we tested here.

Consequently, the best we can do to counter the criti-
cism is to improve our trace analysis technology. The VNG
system presented in this paper is a validation of tracing as
a viable technology for scalable performance analysis. We
achieve significant improvements in tracing I/O and analy-
sis functions over the leading commercial system by paral-
lelizing the VNG server using the same cluster technology
used for the application’s execution. Moreover, greater us-
ability is gained through a separation of analysis and inter-
face, making it possible to support multiple, simultaneous
user sessions in a distributed environment.

We are continuing to improve the VNG technology as
well as explore its possible applications. For instance, recent



work has attempted to link VNG with a runtime trace gener-
ation system, thereby giving users online analysis access to
investigate performance problems during long-running pro-
grams. Such support could be used to remove uninteresting
or redundant sections of the trace from being stored or to in-
form a computational steering system to guide the applica-
tion towards better execution performance.

Although scalable cluster systems present VNG with a
critical, stressful test case, VNG is not limited to clustered
environments. Its usage of standard software technology
guarantees a high degrees of portability to other platforms.

References

[1] Accelerated Strategic Computing Initiative (ASCI). sPPM
benchmark. http://www.llnl.gov/asci benchmarks/asci/limi-
ted/ppm/asci sppm.html.

[2] S. Browne, J. Dongarra, and K. London. Review of perfor-
mance analysis tools for MPI parallel programs. NHSE Re-
view, 1998.

[3] H. Brunst, W. E. Nagel, and H.-C. Hoppe. Group-based pe-
formance analysis for multithreaded SMP cluster applications.
In R. Sakellariou, J. Keane, J. Gurd, and L. Freeman, editors,
Euro-Par 2001 Parallel Processing, number 2150 in LNCS,
pages 148–153, Manchester, UK, Aug. 2001. Springer.

[4] H. Brunst, M. Winkler, W. E. Nagel, and H.-C. Hoppe. Perfor-
mance optimization for large scale computing: The scalable
vampir approach. In V. N. Alexandrov, J. J. Dongarra, B. A.
Juliano, R. S. Renner, and C. K. Tan, editors, Computational
Science – ICCS 2001, Part II, number 2074 in LNCS, pages
751–760, San Francisco, CA, USA, May 2001. Springer.

[5] A. Malony and S. Shende. Performance technology for com-
plex parallel and distributed systems. In G. Kotsis and P. Kac-
suk, editors, Distributed and Parallel Systems From Instruc-
tion Parallelism to Cluster Computing. Proc. 3rd Workshop
on Distributed and Parallel Systems, DAPSYS, pages 37–46.
Kluwer, 2000.

[6] Message Passing Interface Forum. MPI: A message passing
interface standard. International Journal of Supercomputer
Applications (Special Issue on MPI), 8(3/4), 1994.

[7] H. W. Meuer, E. Strohmaier, J. J. Dongarra, and H. D.
Simon. TOP500 supercomputer sites, 21st edition, 2003.
http://www.top500.org.

[8] Pallas GmbH, Germany. http://www.pallas.com.
[9] O. Zaki, E. Lusk, W. Gropp, and D. Swider. Toward scalable

performance visualization with Jumpshot. High Performance
Computing Applications, 13(3):277–288, 1999.


