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Motivation
 Performance problem analysis increasingly complex

 Multi-core, heterogeneous, and extreme scale computing
 Shift of performance measurement and analysis perspective

 Static, offline analysis       dynamic, online analysis
 Support for performance monitoring (measurement + query)
 Enabling of adaptive applications with performance feedback

 Prerequisites for performance measurement
 Low overhead and low intrusion
 Runtime analysis antithetical to performance tool orthodoxy

 Neo-performance perspective
 Co-allocation of additional (tool specific) system resources
 Make dynamic, performance-driven optimization viable
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Monitoring for Performance Dynamics
 Runtime access to parallel performance data

 Scalable and lightweight
 Support for performance-adaptive, dynamic applications

 Raises vital concerns of overhead and intrusion
 Bigger issue in online systems due to global effects

 Alternative 1: Extend existing performance measurement
 Create own integrated monitoring infrastructure
 Disadvantage: maintain own monitoring framework

 Alternative 2: Couple with other monitoring infrastructure
 Leverage scalable middleware from other supported projects
 Challenge: measurement system / monitor integration
 TAU over Supemon (ToS) (UO, LANL)
 TAU over MRNet (ToM) (UO, University of Wisconsin)
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Performance Monitoring: Contradictory Goals
 Application semantics dictate monitoring scheme

 Performance across iterations / phases
 Requirements determining a performance monitoring scheme

 Performance events to monitor
 Access frequency
 Data analysis operation (reduction type)

 Performance monitoring costs
 Intrusion to application
 Extra monitoring resource allocation (# processors)

 Opposing goals (leads to trade-offs)
 Acceptable performance data granularity (temporal / spatial)
 Acceptable level of application intrusion from offloads
 Acceptable monitoring resource requirements
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Scalable Low-Overhead Performance Monitoring 
 Key is to match ...

 Application monitoring demands with ...
 Effective operating range of monitoring infrastructure

 Over-provisioning (more monitor resources assigned)
 Leads to wasted resources and lost performance potential

 Under-provisioning (less monitor resources assigned)
 Poor scalability, high overhead, low performance data quality

 Not simply a question of # processors - but configuration
 Transport topology
 Transport-level reduction operations

 Try to find the monitoring Sweet-Spot
 “Area on a bat or racket where it makes most effective contact 

with the ball” (New Oxford English Dictionary)
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Talk Outline
 Motivation
 Monitoring for performance dynamics
 Contradictory goals of performance monitoring
 Key to scalable low-overhead performance monitoring
 TAUoverMRNet (ToM)
 Naive monitoring choices and consequences
 Estimating the bottleneck
 Characterization and finding sweet-spots
 Future plans and conclusion
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What is MRNet?
 Multicast Reduction Network (University of Wisconsin)

 Software infrastructure, API, utilities (written in C++)
 Create and manage network overlay trees (TBON model)
 Efficient control through root-to-leaf multicast path
 Reductions (transformations) on leaf-to-root data path
 Packed binary data representation

 Uses thread-per-connection model
 Supports multiple concurrent “streams”  

 Filters on intermediate nodes (upstream, downstream)
 Default filters (e.g., sum, average)
 Loads custom filters through shared-object interface

 MRNet-base tools (Paradyn, STAT debugger, ToM)
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TAUoverMRNet (ToM)
 Back-End (BE) TAU adapter

  offloads performance data
 Filters

 reduction
 distributed analysis
 upstream / downstream

 Front-End (FE) unpacks,
  interprets, stores

 Paths
 reverse data reduction path
 multicast control path

 Push-Pull model
 source pushes, sink pulls
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ToM Filters
 Ideally there would be no need for filtering

 Retrieve and store all performance data provided
 Acceptability depends on performance monitor use

 High application intrusion, transport and storage costs
 Need to trade-off queried performance data granularity
 Which events, time intervals, application ranks?

 Reduce performance data as it flows through transport
 Distribute FE analysis out to intermediate filters

 Three filtering schemes
 1-phase: summary
 3-phase: histogram, classification histogram
 Progressive temporal/spatial detail with added complexity
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Histogram Filter (FLASH)
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Histogram Filter (FLASH)
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 Simple SPMD workload

 Number of profile events fixed (64)
 Monitoring offload interval (usecs) = 100ms and 6ms
 # of application ranks = 64, # iterations = 1000

 Simple (1-phase) statistics filter
 ToM Fanout (FO) = 8     (two-level tree)

 Offload Cost (OC) metric
 Maximum time within offload operation across ranks

 One Way Delay (OWD) metric
Time difference between sink receive and earliest BE send

Evaluating Monitoring Choices

for (i=0; i<iterations; i++) {
  work (usecs);   TAU_DB_DUMP();   MPI_Barrier();
}

outputs profile to ToM
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Naive Monitoring : Consequence
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Fig. 3. Varying Offload Interval: Offload Cost (top), One Way Delay (bottom)

pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking
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Naive Monitoring : Consequence
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 Impact to application directly from blocking send()
 Large OC spikes
 779.4% overhead due to large blocking time

 Will simple non-blocking approach help?
 Decouple application from offloading

 Separate consumer thread performs actual offload
 Application places profile into shared, unbounded buffer
 Latency hiding

 Repeat same experiments, with non-blocking scheme

Non-Blocking Monitoring Scheme
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Non-Blocking Monitoring : Consequence

 10

 100

 1000

 10000

 100000

 0  100  200  300  400  500  600  700  800  900  1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 1

 10

 100

 1000

 10000

O
ff

lo
a

d
 C

o
s
t 

(m
s
)

(A) Blocking Offload

 10

 100

 1000

 10000

 100000

 0  100  200  300  400  500  600  700  800  900  1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 0.1

 1

 10

O
ff

lo
a

d
 C

o
s
t 

(m
s
)

(B) Non-blocking Offload
Fig. 3. Varying Offload Interval: Offload Cost (top), One Way Delay (bottom)

pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking

O
ffl

oa
d 

C
os

t (
m

s)
O

ne
 W

ay
 D

el
ay

 (m
s)

Offload Iteration #



Sweet-Spots in Parallel Performance Monitoring   CLUSTER 2008, Tsukuba, Japan 17

Non-Blocking Monitoring : Consequence

 10

 100

 1000

 10000

 100000

 0  100  200  300  400  500  600  700  800  900  1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 1

 10

 100

 1000

 10000

O
ff

lo
a

d
 C

o
s
t 

(m
s
)

(A) Blocking Offload

 10

 100

 1000

 10000

 100000

 0  100  200  300  400  500  600  700  800  900  1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 0.1

 1

 10

O
ff

lo
a

d
 C

o
s
t 

(m
s
)

(B) Non-blocking Offload
Fig. 3. Varying Offload Interval: Offload Cost (top), One Way Delay (bottom)

pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking
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pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking
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pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking
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pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking
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 Previous schemes do not reduce number of offloads
 Non-blocking simply delays the problem

 Application can detect problems
 Blocking case: Locally detect spike in OC
 Non-blocking case: Locally detect full buffer

 Application can do something
 Locally back-off
 Drop the current profile instead of offloading

 Lossy, non-blocking scheme
 With bounded buffers
 With local back-off

Non-Blocking and Lossy Monitoring Scheme
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Lossy, Non-Blocking : Loss Map
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separate capacity estimation tools (such as [7]) since they are
typically meant to work on one-to-one (and not many-to-one,
tree-based) paths and will not encounter the MRNet related
costs. Instead we use a second method to acquire another
estimate of the BOI and look for corroboration between the
two estimates.

From Figure 6 B when the application offload interval falls
below the true-BOI of the system it is seen that queuing must
ensue (the queued waiting time, Qt, of the successive offloads
continue to increase). This queuing can in turn be detected
via the increasing One Way Delay values. Based on this we
construct a binary-search where the search space consists of
all possible intervals (from zero to infinity) and the comparison
operator uses the OWD as a heuristic for guidance. To reduce
the search-space to a manageable range, we first determine
the upper bound (or the initial High Interval). We use a stop-
and-go protocol with the BEs sending only after receiving
acknowledgment from the FE that the previous round arrived.
This ensures that no queuing occurs between rounds. The
OWD measured in this phase (termed the Resting OWD or
restOWD) is used as the initial High Interval. For the first
search the initial Low Interval would be zero. For successive
searches, performed in increasing order of profile size, the the
BOI of the previous profile-size can serve as the initial Low
Interval. In this resting phase, the standard deviation of the
restOWD is also determined and used in the calculation of an
OWD threshold (restOWD + k * restSD).

The main search phase starts by setting the Curr. Interval
to the High Interval. The BEs synchronously send l rounds
at the current interval. The FE calculates a growth metric
based on the l OWD values. The growth (defined as the mean
value of successive increases in OWD) captures increasing
OWD trends. When growth > restSD and the mean-One Way
Delay > OWD threshold, the Curr. Interval is set to the
mid-point of the upper-half of the interval range and the
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Fig. 6. BOI Estimation Model

Low Interval is moved up. Otherwise, Curr. Interval is set
to the mid-point of the lower-half of the range and High
Interval is reduced. This procedure continues until the interval
range becomes less than an error threshold, satisfying the
termination condition and returning the Curr. Interval as the
BOI. If the growth was larger than the OWD threshold at
termination, the High Interval at that point is instead returned
as the BOI. Figure 7 shows the progress of one such search
where the number of application ranks is 64, the ToM fanout
(FO) is 8 and number of profile events is 64. The search
parameters are set to l=20, k=2 with an error threshold of
2*restSD.

For the evaluation we first estimate the BOI using the search
method. We then run the benchmark at progressively lower
offload intervals than the estimated-BOI and measure the data
arrival interval at the FE. As pointed out earlier, in the case
where the offload interval is larger than the true-BOI (which is
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separate capacity estimation tools (such as [7]) since they are
typically meant to work on one-to-one (and not many-to-one,
tree-based) paths and will not encounter the MRNet related
costs. Instead we use a second method to acquire another
estimate of the BOI and look for corroboration between the
two estimates.

From Figure 6 B when the application offload interval falls
below the true-BOI of the system it is seen that queuing must
ensue (the queued waiting time, Qt, of the successive offloads
continue to increase). This queuing can in turn be detected
via the increasing One Way Delay values. Based on this we
construct a binary-search where the search space consists of
all possible intervals (from zero to infinity) and the comparison
operator uses the OWD as a heuristic for guidance. To reduce
the search-space to a manageable range, we first determine
the upper bound (or the initial High Interval). We use a stop-
and-go protocol with the BEs sending only after receiving
acknowledgment from the FE that the previous round arrived.
This ensures that no queuing occurs between rounds. The
OWD measured in this phase (termed the Resting OWD or
restOWD) is used as the initial High Interval. For the first
search the initial Low Interval would be zero. For successive
searches, performed in increasing order of profile size, the the
BOI of the previous profile-size can serve as the initial Low
Interval. In this resting phase, the standard deviation of the
restOWD is also determined and used in the calculation of an
OWD threshold (restOWD + k * restSD).

The main search phase starts by setting the Curr. Interval
to the High Interval. The BEs synchronously send l rounds
at the current interval. The FE calculates a growth metric
based on the l OWD values. The growth (defined as the mean
value of successive increases in OWD) captures increasing
OWD trends. When growth > restSD and the mean-One Way
Delay > OWD threshold, the Curr. Interval is set to the
mid-point of the upper-half of the interval range and the
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Low Interval is moved up. Otherwise, Curr. Interval is set
to the mid-point of the lower-half of the range and High
Interval is reduced. This procedure continues until the interval
range becomes less than an error threshold, satisfying the
termination condition and returning the Curr. Interval as the
BOI. If the growth was larger than the OWD threshold at
termination, the High Interval at that point is instead returned
as the BOI. Figure 7 shows the progress of one such search
where the number of application ranks is 64, the ToM fanout
(FO) is 8 and number of profile events is 64. The search
parameters are set to l=20, k=2 with an error threshold of
2*restSD.

For the evaluation we first estimate the BOI using the search
method. We then run the benchmark at progressively lower
offload intervals than the estimated-BOI and measure the data
arrival interval at the FE. As pointed out earlier, in the case
where the offload interval is larger than the true-BOI (which is
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separate capacity estimation tools (such as [7]) since they are
typically meant to work on one-to-one (and not many-to-one,
tree-based) paths and will not encounter the MRNet related
costs. Instead we use a second method to acquire another
estimate of the BOI and look for corroboration between the
two estimates.

From Figure 6 B when the application offload interval falls
below the true-BOI of the system it is seen that queuing must
ensue (the queued waiting time, Qt, of the successive offloads
continue to increase). This queuing can in turn be detected
via the increasing One Way Delay values. Based on this we
construct a binary-search where the search space consists of
all possible intervals (from zero to infinity) and the comparison
operator uses the OWD as a heuristic for guidance. To reduce
the search-space to a manageable range, we first determine
the upper bound (or the initial High Interval). We use a stop-
and-go protocol with the BEs sending only after receiving
acknowledgment from the FE that the previous round arrived.
This ensures that no queuing occurs between rounds. The
OWD measured in this phase (termed the Resting OWD or
restOWD) is used as the initial High Interval. For the first
search the initial Low Interval would be zero. For successive
searches, performed in increasing order of profile size, the the
BOI of the previous profile-size can serve as the initial Low
Interval. In this resting phase, the standard deviation of the
restOWD is also determined and used in the calculation of an
OWD threshold (restOWD + k * restSD).

The main search phase starts by setting the Curr. Interval
to the High Interval. The BEs synchronously send l rounds
at the current interval. The FE calculates a growth metric
based on the l OWD values. The growth (defined as the mean
value of successive increases in OWD) captures increasing
OWD trends. When growth > restSD and the mean-One Way
Delay > OWD threshold, the Curr. Interval is set to the
mid-point of the upper-half of the interval range and the
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Low Interval is moved up. Otherwise, Curr. Interval is set
to the mid-point of the lower-half of the range and High
Interval is reduced. This procedure continues until the interval
range becomes less than an error threshold, satisfying the
termination condition and returning the Curr. Interval as the
BOI. If the growth was larger than the OWD threshold at
termination, the High Interval at that point is instead returned
as the BOI. Figure 7 shows the progress of one such search
where the number of application ranks is 64, the ToM fanout
(FO) is 8 and number of profile events is 64. The search
parameters are set to l=20, k=2 with an error threshold of
2*restSD.

For the evaluation we first estimate the BOI using the search
method. We then run the benchmark at progressively lower
offload intervals than the estimated-BOI and measure the data
arrival interval at the FE. As pointed out earlier, in the case
where the offload interval is larger than the true-BOI (which is
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separate capacity estimation tools (such as [7]) since they are
typically meant to work on one-to-one (and not many-to-one,
tree-based) paths and will not encounter the MRNet related
costs. Instead we use a second method to acquire another
estimate of the BOI and look for corroboration between the
two estimates.

From Figure 6 B when the application offload interval falls
below the true-BOI of the system it is seen that queuing must
ensue (the queued waiting time, Qt, of the successive offloads
continue to increase). This queuing can in turn be detected
via the increasing One Way Delay values. Based on this we
construct a binary-search where the search space consists of
all possible intervals (from zero to infinity) and the comparison
operator uses the OWD as a heuristic for guidance. To reduce
the search-space to a manageable range, we first determine
the upper bound (or the initial High Interval). We use a stop-
and-go protocol with the BEs sending only after receiving
acknowledgment from the FE that the previous round arrived.
This ensures that no queuing occurs between rounds. The
OWD measured in this phase (termed the Resting OWD or
restOWD) is used as the initial High Interval. For the first
search the initial Low Interval would be zero. For successive
searches, performed in increasing order of profile size, the the
BOI of the previous profile-size can serve as the initial Low
Interval. In this resting phase, the standard deviation of the
restOWD is also determined and used in the calculation of an
OWD threshold (restOWD + k * restSD).

The main search phase starts by setting the Curr. Interval
to the High Interval. The BEs synchronously send l rounds
at the current interval. The FE calculates a growth metric
based on the l OWD values. The growth (defined as the mean
value of successive increases in OWD) captures increasing
OWD trends. When growth > restSD and the mean-One Way
Delay > OWD threshold, the Curr. Interval is set to the
mid-point of the upper-half of the interval range and the
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Low Interval is moved up. Otherwise, Curr. Interval is set
to the mid-point of the lower-half of the range and High
Interval is reduced. This procedure continues until the interval
range becomes less than an error threshold, satisfying the
termination condition and returning the Curr. Interval as the
BOI. If the growth was larger than the OWD threshold at
termination, the High Interval at that point is instead returned
as the BOI. Figure 7 shows the progress of one such search
where the number of application ranks is 64, the ToM fanout
(FO) is 8 and number of profile events is 64. The search
parameters are set to l=20, k=2 with an error threshold of
2*restSD.

For the evaluation we first estimate the BOI using the search
method. We then run the benchmark at progressively lower
offload intervals than the estimated-BOI and measure the data
arrival interval at the FE. As pointed out earlier, in the case
where the offload interval is larger than the true-BOI (which is
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 OC spike / full-buffer signal is inconsistent
 Some ranks repeatedly penalized
 Some ranks are never penalized
 Bursts of loss - large intervals unmonitored

       Local backoff reaction inconsistent
 Late reaction - OC spike / full-buffer implies damage done

 Spatially and temporally inconsistent performance views
 Which ranks are monitored when? No control.
 Which intervals / iterations are monitored? No control.

 Need globally consistent performance views
 Need globally consistent method to determine ToM capacity

Inconsistent, Incomplete Performance Data
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Queueuing Theory 101
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separate capacity estimation tools (such as [7]) since they are
typically meant to work on one-to-one (and not many-to-one,
tree-based) paths and will not encounter the MRNet related
costs. Instead we use a second method to acquire another
estimate of the BOI and look for corroboration between the
two estimates.

From Figure 6 B when the application offload interval falls
below the true-BOI of the system it is seen that queuing must
ensue (the queued waiting time, Qt, of the successive offloads
continue to increase). This queuing can in turn be detected
via the increasing One Way Delay values. Based on this we
construct a binary-search where the search space consists of
all possible intervals (from zero to infinity) and the comparison
operator uses the OWD as a heuristic for guidance. To reduce
the search-space to a manageable range, we first determine
the upper bound (or the initial High Interval). We use a stop-
and-go protocol with the BEs sending only after receiving
acknowledgment from the FE that the previous round arrived.
This ensures that no queuing occurs between rounds. The
OWD measured in this phase (termed the Resting OWD or
restOWD) is used as the initial High Interval. For the first
search the initial Low Interval would be zero. For successive
searches, performed in increasing order of profile size, the the
BOI of the previous profile-size can serve as the initial Low
Interval. In this resting phase, the standard deviation of the
restOWD is also determined and used in the calculation of an
OWD threshold (restOWD + k * restSD).

The main search phase starts by setting the Curr. Interval
to the High Interval. The BEs synchronously send l rounds
at the current interval. The FE calculates a growth metric
based on the l OWD values. The growth (defined as the mean
value of successive increases in OWD) captures increasing
OWD trends. When growth > restSD and the mean-One Way
Delay > OWD threshold, the Curr. Interval is set to the
mid-point of the upper-half of the interval range and the

ArrivalsDepartures
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B. Offload Interval  <  BOI

Fig. 6. BOI Estimation Model

Low Interval is moved up. Otherwise, Curr. Interval is set
to the mid-point of the lower-half of the range and High
Interval is reduced. This procedure continues until the interval
range becomes less than an error threshold, satisfying the
termination condition and returning the Curr. Interval as the
BOI. If the growth was larger than the OWD threshold at
termination, the High Interval at that point is instead returned
as the BOI. Figure 7 shows the progress of one such search
where the number of application ranks is 64, the ToM fanout
(FO) is 8 and number of profile events is 64. The search
parameters are set to l=20, k=2 with an error threshold of
2*restSD.

For the evaluation we first estimate the BOI using the search
method. We then run the benchmark at progressively lower
offload intervals than the estimated-BOI and measure the data
arrival interval at the FE. As pointed out earlier, in the case
where the offload interval is larger than the true-BOI (which is

Queueing 101 BOI: bottleneck offload interval
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 Need an estimator of operating capacity
 Minimum offload interval without queueing
 Per profile size and filter type
 Metric: Bottleneck Offload Interval (BOI)

 Estimation Method 1 
 If offload interval < BOI, then departure interval ≈ BOI
 Set offload interval = 0
 Measure departure interval

 Estimation Method 2
 If offload interval < BOI, then queue builds, OWD increases
 If offload interval ≥ BOI, then OWD stable or decreases
 Use increasing OWD as heuristic to binary-search for BOI

24

Estimation of Bottleneck Interval
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BOI Binary Search: Example
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not known), the data arrival interval should match the offload
interval. But when offload interval is lower than the true-BOI,
the data arrival interval should never drop below the true-BOI.
The evaluation metric used is the percent difference in the data
arrival interval from the estimated-BOI (i.e. the difference
between the estimates from the two methods). Figure 8 plots
the evaluation metric resulting from offloading at intervals that
are less than the estimated-BOI by 10, 20 and 40%. The curves
for all three configurations never fall below +6% and instead
begin to increase, suggesting that the estimated-BOI is at most
within 10% of the true-BOI.

ToM provides an API that informs the application of the
BOI, OWD and OC for profile-sizes of interest to the applica-
tion. The application, thus informed, can decide the granularity
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of profile offloads. For instance, an iterative application may
determine that its iterations take 75 ms on average, but the
estimated-BOI reported is 100 ms. It can then decide (consis-
tently across the ranks) to drop every 4th profile offload, there
by increasing its average offload interval (with the average
taken over multiples of 4 rounds) to 100 ms, matching the
BOI. Further, by backgrounding the offloads (i.e. making them
non-blocking), it can avoid potential backups due to burstiness
from its lower-than-BOI short-term offload interval.

The isolated nature of HPC resource allocations for jobs
suggests a level of stability that may make BOI estimation at
the start of every application run unnecessary. We performed
five periodic probes (45 minutes apart) at varying fanouts and
profile event sizes. Figure 9 plots the standard-deviations of
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 Bottleneck Offload Interval depends on many factors
 Underlying network latencies and bandwidth
 TCP / IP stack processing
 MRNet (de)packetization
 Intermediate custom filter and sink operations
 TAU wrapper processing

 Cannot use standard capacity estimation tools (e.g., Nettimer)
 Probes will not encounter all costs involved in ToM
 Meant for one-to-one paths, not many-to-one ToM trees

 Instead corroborate BOI estimates from Methods 1 and 2
 Test under various configurations 
 Result: Estimates agree to within 10%

26

Evaluating BOI Estimation
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 ToM provides estimation APIs to query 
 BOI, OWD, OC and several other metrics

 Application can use metrics to decide profile granularity
 Example: Iterative application - 75 ms per iteration

 Estimated BOI provided by ToM = 100 ms
 All application ranks can decide to drop every 4th profile
 Average offload interval (over 4 rounds) will match BOI

 How to bridge monitoring requirements and costs? 
 Given application size and type of reductions ...
 How to choose: ToM fanout, offload intervals, # profile events

 Answer: Characterization
 Need to characterize various ToM configurations using BOI

27

Once BOI is determined, how should it be used?
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 Configurations
 Simple statistics filter:

 mean, min, max, standard deviation
 Profile sizes

16 to 1024 events with power of two increments
 Application size N = 8

ToM fanouts FO = 2, 8
 Application size N = 16

ToM fanouts FO = 2, 4, 16
 Application size N = 64

ToM fanouts FO = 2, 4, 8, 64
 Estimate BOI for each configuration

 Pick median of 3 trials for each point
28
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Application Size N = 8; Fanouts FO = 2, 8

both the OWD and BOI over the five probes. To be comparable,
the standard-deviations of the OWD and BOI are normalized
and reported as a percentage of the respective mean values.
Stability is observed across the configurations in both metrics.
In such stable environments, the BOI estimates for a wide
range of configurations can be generated, cached and reused
for the length of time for which the stability is known to
persist.

V. CHARACTERIZING ToM PERFORMANCE

The Bottleneck Offload Interval estimation method and API
provide the application the ability to discover the limits of
monitoring system capability. The question yet to be answered
is how to bridge monitoring requirements (as specified by
both the user and application semantics) with the monitoring
resource costs. Given an application size and the performance
data reductions to be performed, what are the choices to be
made with regards to ToM fanouts, monitoring offload intervals
and number of profile events to sample? To help answer
that, we characterize different ToM configurations using three
metrics below.

A. Bottleneck Offload Interval

The BOI estimation is performed over different profile sizes,
starting at 16 events, increasing at power of two increments
upto 1024 events. For each such configuration we determine
the BOI, by picking the median of three trials. We begin
with 8 applications ranks with ToM fanouts of 2 and 8. The
filter performs the same summary statistics reduction as in
previous experiments. Figure 10 (A) plots the BOI for the
two N=8 configurations. What is immediately striking is that
the FO=8 curve performs better than the FO=2 curve at
all profile sizes. At profile-size=16, there is a pronounced
difference in the BOI values of the two configurations. As
the profile size increases, FO=8 grows far more rapidly than
FO=2. Since we are dealing with the BOI, queuing costs can
be safely dismissed. Networking costs cannot account for the
differences observed as in both configurations, the MRNet tree
fits completely within a single (dual socket quad-core) node,
with the application ranks occupying a second node.

There are two primary costs associated with the reduction
tree – reduction costs (TR) and (de)packetization costs (TP ).
The TR refers to the cycles required to perform a binary profile
reduction operation. With N=8, a total of 7*TR cycles will be
expended in reduction. The current statistics filter performs
the reduction on the arrival of the last child’s profile. In the
case of FO=2, the 7*TR reduction cycles are split across 7
processors, whereas in FO=8, a single thread performs all
the reduction cycles. The TP is cycles required to pack an
intermediate performance profile into a ToM packet (or unpack
a packet into a profile data structure). For a fixed profile-
size, TP is also fixed. But depending on the configuration,
the number of packetizations and de-packetizations varies. In
contrast to FO=2, in the FO=8 case there are no intermediate
(de)packetization costs.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 16  32  64  128  256  512  1024

B
o
tt
le

n
e
c
k
 O

ff
lo

a
d
 I
n
te

rv
a
l 
(m

s
)

No. of Profile Events

Bottleneck Offload Interval | N=8

N=8, FO=2
N=8, FO=8

(A) N=8

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 16  32  64  128  256  512  1024

B
o

tt
le

n
e

c
k
 O

ff
lo

a
d

 I
n

te
rv

a
l 
(m

s
)

No. of Profile Events

Bottleneck Offload Interval | N=16

N=16, FO=2
N=16, FO=4

N=16, FO=16

(B) N=16

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 16  32  64  128  256  512  1024

B
o

tt
le

n
e

c
k
 O

ff
lo

a
d

 I
n

te
rv

a
l 
(m

s
)

No. of Profile Events

Bottleneck Offload Interval | N=64

N=64, FO=2
N=64, FO=4
N=64, FO=8

N=64, FO=64

(C) N=64
Fig. 10. Bottleneck Offload Interval Characterization

At small profile sizes, the TP dominates the cost in case of
FO=2, causing the large (and counter-intuitive) difference in
performance from the FO=8 case. The FO=8 configuration’s
BOI quickly rises as a single processor is performing all
reductions. Intuitively, this example is similar to the case of
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Application Size N = 8; Fanouts FO = 2, 8

both the OWD and BOI over the five probes. To be comparable,
the standard-deviations of the OWD and BOI are normalized
and reported as a percentage of the respective mean values.
Stability is observed across the configurations in both metrics.
In such stable environments, the BOI estimates for a wide
range of configurations can be generated, cached and reused
for the length of time for which the stability is known to
persist.

V. CHARACTERIZING ToM PERFORMANCE

The Bottleneck Offload Interval estimation method and API
provide the application the ability to discover the limits of
monitoring system capability. The question yet to be answered
is how to bridge monitoring requirements (as specified by
both the user and application semantics) with the monitoring
resource costs. Given an application size and the performance
data reductions to be performed, what are the choices to be
made with regards to ToM fanouts, monitoring offload intervals
and number of profile events to sample? To help answer
that, we characterize different ToM configurations using three
metrics below.

A. Bottleneck Offload Interval

The BOI estimation is performed over different profile sizes,
starting at 16 events, increasing at power of two increments
upto 1024 events. For each such configuration we determine
the BOI, by picking the median of three trials. We begin
with 8 applications ranks with ToM fanouts of 2 and 8. The
filter performs the same summary statistics reduction as in
previous experiments. Figure 10 (A) plots the BOI for the
two N=8 configurations. What is immediately striking is that
the FO=8 curve performs better than the FO=2 curve at
all profile sizes. At profile-size=16, there is a pronounced
difference in the BOI values of the two configurations. As
the profile size increases, FO=8 grows far more rapidly than
FO=2. Since we are dealing with the BOI, queuing costs can
be safely dismissed. Networking costs cannot account for the
differences observed as in both configurations, the MRNet tree
fits completely within a single (dual socket quad-core) node,
with the application ranks occupying a second node.

There are two primary costs associated with the reduction
tree – reduction costs (TR) and (de)packetization costs (TP ).
The TR refers to the cycles required to perform a binary profile
reduction operation. With N=8, a total of 7*TR cycles will be
expended in reduction. The current statistics filter performs
the reduction on the arrival of the last child’s profile. In the
case of FO=2, the 7*TR reduction cycles are split across 7
processors, whereas in FO=8, a single thread performs all
the reduction cycles. The TP is cycles required to pack an
intermediate performance profile into a ToM packet (or unpack
a packet into a profile data structure). For a fixed profile-
size, TP is also fixed. But depending on the configuration,
the number of packetizations and de-packetizations varies. In
contrast to FO=2, in the FO=8 case there are no intermediate
(de)packetization costs.
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Fig. 10. Bottleneck Offload Interval Characterization

At small profile sizes, the TP dominates the cost in case of
FO=2, causing the large (and counter-intuitive) difference in
performance from the FO=8 case. The FO=8 configuration’s
BOI quickly rises as a single processor is performing all
reductions. Intuitively, this example is similar to the case of
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 Reduction Cost (TR) for single binary reduction operation
 For N = 8, 7*TR cycles for reduction
 Reduction performed on arrival of last profile
 FO = 8: single thread performs all 7*TR cycles serially
 FO = 2: 7*TR cycles split across 7 threads in tree

 (De)Packetization Cost (TP) to (un)pack intermediate profile
 FO = 8: No intermediate (de)packetizations
 FO = 2: Every-level in tree adds (de)packetizations

 At small #events, TP dominates costs in FO = 2
 FO = 8 TR costs quickly rise as single processor saturated
 Intuitively: Too many resources allocated in FO = 2

 Serial costs and parallelization overheads dominate
30

Reduction and (De)Packetization Costs
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Application Size N = 16; Fanouts FO = 2, 4, 16

both the OWD and BOI over the five probes. To be comparable,
the standard-deviations of the OWD and BOI are normalized
and reported as a percentage of the respective mean values.
Stability is observed across the configurations in both metrics.
In such stable environments, the BOI estimates for a wide
range of configurations can be generated, cached and reused
for the length of time for which the stability is known to
persist.

V. CHARACTERIZING ToM PERFORMANCE

The Bottleneck Offload Interval estimation method and API
provide the application the ability to discover the limits of
monitoring system capability. The question yet to be answered
is how to bridge monitoring requirements (as specified by
both the user and application semantics) with the monitoring
resource costs. Given an application size and the performance
data reductions to be performed, what are the choices to be
made with regards to ToM fanouts, monitoring offload intervals
and number of profile events to sample? To help answer
that, we characterize different ToM configurations using three
metrics below.

A. Bottleneck Offload Interval

The BOI estimation is performed over different profile sizes,
starting at 16 events, increasing at power of two increments
upto 1024 events. For each such configuration we determine
the BOI, by picking the median of three trials. We begin
with 8 applications ranks with ToM fanouts of 2 and 8. The
filter performs the same summary statistics reduction as in
previous experiments. Figure 10 (A) plots the BOI for the
two N=8 configurations. What is immediately striking is that
the FO=8 curve performs better than the FO=2 curve at
all profile sizes. At profile-size=16, there is a pronounced
difference in the BOI values of the two configurations. As
the profile size increases, FO=8 grows far more rapidly than
FO=2. Since we are dealing with the BOI, queuing costs can
be safely dismissed. Networking costs cannot account for the
differences observed as in both configurations, the MRNet tree
fits completely within a single (dual socket quad-core) node,
with the application ranks occupying a second node.

There are two primary costs associated with the reduction
tree – reduction costs (TR) and (de)packetization costs (TP ).
The TR refers to the cycles required to perform a binary profile
reduction operation. With N=8, a total of 7*TR cycles will be
expended in reduction. The current statistics filter performs
the reduction on the arrival of the last child’s profile. In the
case of FO=2, the 7*TR reduction cycles are split across 7
processors, whereas in FO=8, a single thread performs all
the reduction cycles. The TP is cycles required to pack an
intermediate performance profile into a ToM packet (or unpack
a packet into a profile data structure). For a fixed profile-
size, TP is also fixed. But depending on the configuration,
the number of packetizations and de-packetizations varies. In
contrast to FO=2, in the FO=8 case there are no intermediate
(de)packetization costs.
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Fig. 10. Bottleneck Offload Interval Characterization

At small profile sizes, the TP dominates the cost in case of
FO=2, causing the large (and counter-intuitive) difference in
performance from the FO=8 case. The FO=8 configuration’s
BOI quickly rises as a single processor is performing all
reductions. Intuitively, this example is similar to the case of
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Application Size N = 64; Fanouts FO = 2, 4, 8, 64

both the OWD and BOI over the five probes. To be comparable,
the standard-deviations of the OWD and BOI are normalized
and reported as a percentage of the respective mean values.
Stability is observed across the configurations in both metrics.
In such stable environments, the BOI estimates for a wide
range of configurations can be generated, cached and reused
for the length of time for which the stability is known to
persist.

V. CHARACTERIZING ToM PERFORMANCE

The Bottleneck Offload Interval estimation method and API
provide the application the ability to discover the limits of
monitoring system capability. The question yet to be answered
is how to bridge monitoring requirements (as specified by
both the user and application semantics) with the monitoring
resource costs. Given an application size and the performance
data reductions to be performed, what are the choices to be
made with regards to ToM fanouts, monitoring offload intervals
and number of profile events to sample? To help answer
that, we characterize different ToM configurations using three
metrics below.

A. Bottleneck Offload Interval

The BOI estimation is performed over different profile sizes,
starting at 16 events, increasing at power of two increments
upto 1024 events. For each such configuration we determine
the BOI, by picking the median of three trials. We begin
with 8 applications ranks with ToM fanouts of 2 and 8. The
filter performs the same summary statistics reduction as in
previous experiments. Figure 10 (A) plots the BOI for the
two N=8 configurations. What is immediately striking is that
the FO=8 curve performs better than the FO=2 curve at
all profile sizes. At profile-size=16, there is a pronounced
difference in the BOI values of the two configurations. As
the profile size increases, FO=8 grows far more rapidly than
FO=2. Since we are dealing with the BOI, queuing costs can
be safely dismissed. Networking costs cannot account for the
differences observed as in both configurations, the MRNet tree
fits completely within a single (dual socket quad-core) node,
with the application ranks occupying a second node.

There are two primary costs associated with the reduction
tree – reduction costs (TR) and (de)packetization costs (TP ).
The TR refers to the cycles required to perform a binary profile
reduction operation. With N=8, a total of 7*TR cycles will be
expended in reduction. The current statistics filter performs
the reduction on the arrival of the last child’s profile. In the
case of FO=2, the 7*TR reduction cycles are split across 7
processors, whereas in FO=8, a single thread performs all
the reduction cycles. The TP is cycles required to pack an
intermediate performance profile into a ToM packet (or unpack
a packet into a profile data structure). For a fixed profile-
size, TP is also fixed. But depending on the configuration,
the number of packetizations and de-packetizations varies. In
contrast to FO=2, in the FO=8 case there are no intermediate
(de)packetization costs.
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Fig. 10. Bottleneck Offload Interval Characterization

At small profile sizes, the TP dominates the cost in case of
FO=2, causing the large (and counter-intuitive) difference in
performance from the FO=8 case. The FO=8 configuration’s
BOI quickly rises as a single processor is performing all
reductions. Intuitively, this example is similar to the case of
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FO =2, 4, 8 in “correct” order
Already crossed-over

FO = 64 makes the crossover
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 BOI characterization shows importance of careful match
 Under-provisioning may be bad for performance
 But so can over-provisioning !

 Other metrics (direct costs, limiting overhead) also in paper
 Sweet-spot configurations for specific requirements exist
 ToM helps find these sweet-spots 

 APIs
 Framework
 Metrics and evaluation methodology
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Monitoring Requirements and Infrastructure Costs
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Conclusion and Future Work
 Sweet-spot

 “Spot on a bat that produces the least shock when a ball is 
hit” (New Oxford American Dictionary)

 Parallel performance monitoring must meet overhead, 
latency, responsiveness, data consistency requirements

 Sweet-spots are those configuration choices that meet the 
requirements or allow acceptable trade-offs

 Methodology and framework help find sweet-spots and make 
informed monitoring decisions

 Would like to extend the characterizations to other filters
 Analysis of irregular, less periodic or non-uniform behaviors
 Dynamic estimation and feedback to application to stay 

within sweet-spot during execution
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