
Aroon Nataraj, Allen D. Malony, Alan Morris
University of Oregon

 {anataraj,malony,amorris}@cs.uoregon.edu

In Search of Sweet-Spots in Parallel
Performance Monitoring

Dorian C. Arnold, Barton P. Miller
University of Wisconsin, Madison

dorian.arnold@gmail.com
bart@cs.wisc.edu

mailto:malony@cs.uoregon.edu
mailto:malony@cs.uoregon.edu
mailto:malony@cs.uoregon.edu
mailto:malony@cs.uoregon.edu
mailto:malony@cs.uoregon.edu
mailto:malony@cs.uoregon.edu

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan

Motivation
 Performance problem analysis increasingly complex

 Multi-core, heterogeneous, and extreme scale computing
 Shift of performance measurement and analysis perspective

 Static, offline analysis dynamic, online analysis
 Support for performance monitoring (measurement + query)
 Enabling of adaptive applications with performance feedback

 Prerequisites for performance measurement
 Low overhead and low intrusion
 Runtime analysis antithetical to performance tool orthodoxy

 Neo-performance perspective
 Co-allocation of additional (tool specific) system resources
 Make dynamic, performance-driven optimization viable

2

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 3

Monitoring for Performance Dynamics
 Runtime access to parallel performance data

 Scalable and lightweight
 Support for performance-adaptive, dynamic applications

 Raises vital concerns of overhead and intrusion
 Bigger issue in online systems due to global effects

 Alternative 1: Extend existing performance measurement
 Create own integrated monitoring infrastructure
 Disadvantage: maintain own monitoring framework

 Alternative 2: Couple with other monitoring infrastructure
 Leverage scalable middleware from other supported projects
 Challenge: measurement system / monitor integration
 TAU over Supemon (ToS) (UO, LANL)
 TAU over MRNet (ToM) (UO, University of Wisconsin)

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 4

Performance Monitoring: Contradictory Goals
 Application semantics dictate monitoring scheme

 Performance across iterations / phases
 Requirements determining a performance monitoring scheme

 Performance events to monitor
 Access frequency
 Data analysis operation (reduction type)

 Performance monitoring costs
 Intrusion to application
 Extra monitoring resource allocation (# processors)

 Opposing goals (leads to trade-offs)
 Acceptable performance data granularity (temporal / spatial)
 Acceptable level of application intrusion from offloads
 Acceptable monitoring resource requirements

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 5

Scalable Low-Overhead Performance Monitoring
 Key is to match ...

 Application monitoring demands with ...
 Effective operating range of monitoring infrastructure

 Over-provisioning (more monitor resources assigned)
 Leads to wasted resources and lost performance potential

 Under-provisioning (less monitor resources assigned)
 Poor scalability, high overhead, low performance data quality

 Not simply a question of # processors - but configuration
 Transport topology
 Transport-level reduction operations

 Try to find the monitoring Sweet-Spot
 “Area on a bat or racket where it makes most effective contact

with the ball” (New Oxford English Dictionary)

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 6

Talk Outline
 Motivation
 Monitoring for performance dynamics
 Contradictory goals of performance monitoring
 Key to scalable low-overhead performance monitoring
 TAUoverMRNet (ToM)
 Naive monitoring choices and consequences
 Estimating the bottleneck
 Characterization and finding sweet-spots
 Future plans and conclusion

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 7

What is MRNet?
 Multicast Reduction Network (University of Wisconsin)

 Software infrastructure, API, utilities (written in C++)
 Create and manage network overlay trees (TBON model)
 Efficient control through root-to-leaf multicast path
 Reductions (transformations) on leaf-to-root data path
 Packed binary data representation

 Uses thread-per-connection model
 Supports multiple concurrent “streams”

 Filters on intermediate nodes (upstream, downstream)
 Default filters (e.g., sum, average)
 Loads custom filters through shared-object interface

 MRNet-base tools (Paradyn, STAT debugger, ToM)

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan

TAUoverMRNet (ToM)
 Back-End (BE) TAU adapter

 offloads performance data
 Filters

 reduction
 distributed analysis
 upstream / downstream

 Front-End (FE) unpacks,
 interprets, stores

 Paths
 reverse data reduction path
 multicast control path

 Push-Pull model
 source pushes, sink pulls

8

MRNET

Comm Node

+

Filter

MRNET

Comm Node

+

Filter

TAU

Front-End

Streams

Streams

Back

End

Back

End

Data

C
o
n
tr

o
l
--

>

Data

C
o
n
tro

l -->

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan

ToM Filters
 Ideally there would be no need for filtering

 Retrieve and store all performance data provided
 Acceptability depends on performance monitor use

 High application intrusion, transport and storage costs
 Need to trade-off queried performance data granularity
 Which events, time intervals, application ranks?

 Reduce performance data as it flows through transport
 Distribute FE analysis out to intermediate filters

 Three filtering schemes
 1-phase: summary
 3-phase: histogram, classification histogram
 Progressive temporal/spatial detail with added complexity

9

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan

Histogram Filter (FLASH)

10

 0

 50

 100

 150

 200

 250

 300

 350

FLASH Sod 2-D | Event: Allreduce | N=1024

 50 75 100 125 150

Application Iteration #

 0

 3

 6

 9

 12

 15

 18

T
o
ta

l
E

v
e
n
t
R

u
n
ti
m

e
 (

s
e
c
s
)

No. of RanksFLASH Sod 2D | N=1024 | Allreduce No. of Ranks

- 1024 MPI Ranks
- FLASH 2D Sod
- ToM Fanout=8
- Offload performance
 every iteration

Hist Filter

N profiles of 300 events
- 300K events total

FLASH: astrophysical
thermonuclear flashes

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan

Histogram Filter (FLASH)

10

 0

 50

 100

 150

 200

 250

 300

 350

FLASH Sod 2-D | Event: Allreduce | N=1024

 50 75 100 125 150

Application Iteration #

 0

 3

 6

 9

 12

 15

 18

T
o
ta

l
E

v
e
n
t
R

u
n
ti
m

e
 (

s
e
c
s
)

No. of RanksFLASH Sod 2D | N=1024 | Allreduce No. of Ranks

Spike at Iteration 100
Temporal information- 1024 MPI Ranks

- FLASH 2D Sod
- ToM Fanout=8
- Offload performance
 every iteration

Hist Filter

N profiles of 300 events
- 300K events total

FLASH: astrophysical
thermonuclear flashes

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan

Histogram Filter (FLASH)

10

 0

 50

 100

 150

 200

 250

 300

 350

FLASH Sod 2-D | Event: Allreduce | N=1024

 50 75 100 125 150

Application Iteration #

 0

 3

 6

 9

 12

 15

 18

T
o
ta

l
E

v
e
n
t
R

u
n
ti
m

e
 (

s
e
c
s
)

No. of RanksFLASH Sod 2D | N=1024 | Allreduce No. of Ranks

Spike at Iteration 100
Temporal information

Unevenness of across ranks
Evolution of unevenness
 over iterations

Spatial information

- 1024 MPI Ranks
- FLASH 2D Sod
- ToM Fanout=8
- Offload performance
 every iteration

Hist Filter

N profiles of 300 events
- 300K events total

FLASH: astrophysical
thermonuclear flashes

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 11

 Simple SPMD workload

 Number of profile events fixed (64)
 Monitoring offload interval (usecs) = 100ms and 6ms
 # of application ranks = 64, # iterations = 1000

 Simple (1-phase) statistics filter
 ToM Fanout (FO) = 8 (two-level tree)

 Offload Cost (OC) metric
 Maximum time within offload operation across ranks

 One Way Delay (OWD) metric
Time difference between sink receive and earliest BE send

Evaluating Monitoring Choices

for (i=0; i<iterations; i++) {
 work (usecs); TAU_DB_DUMP(); MPI_Barrier();
}

outputs profile to ToM

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 12

Naive Monitoring : Consequence

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 1

 10

 100

 1000

 10000

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(A) Blocking Offload

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 0.1

 1

 10

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(B) Non-blocking Offload
Fig. 3. Varying Offload Interval: Offload Cost (top), One Way Delay (bottom)

pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking

O
ffl

oa
d

C
os

t (
m

s)
O

ne
 W

ay
 D

el
ay

 (m
s)

Offload Iteration #

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 12

Naive Monitoring : Consequence

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 1

 10

 100

 1000

 10000

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(A) Blocking Offload

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 0.1

 1

 10

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(B) Non-blocking Offload
Fig. 3. Varying Offload Interval: Offload Cost (top), One Way Delay (bottom)

pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking

O
ffl

oa
d

C
os

t (
m

s)
O

ne
 W

ay
 D

el
ay

 (m
s)

Offload Iteration #

100 ms interval
OC stable (2 to 4 ms)
OWD stable (60 ms)

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 13

Naive Monitoring : Consequence

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 1

 10

 100

 1000

 10000

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(A) Blocking Offload

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 0.1

 1

 10

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(B) Non-blocking Offload
Fig. 3. Varying Offload Interval: Offload Cost (top), One Way Delay (bottom)

pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking

O
ffl

oa
d

C
os

t (
m

s)
O

ne
 W

ay
 D

el
ay

 (m
s)

Offload Iteration #

6 ms interval: OWD
Quickly grows and plateaus
Periodic, growth / sudden drops

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 14

Naive Monitoring : Consequence

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 1

 10

 100

 1000

 10000

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(A) Blocking Offload

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 0.1

 1

 10

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(B) Non-blocking Offload
Fig. 3. Varying Offload Interval: Offload Cost (top), One Way Delay (bottom)

pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking

O
ffl

oa
d

C
os

t (
m

s)
O

ne
 W

ay
 D

el
ay

 (m
s)

Offload Iteration #

6 ms interval: OC
Sudden spikes corresponding to
sudden drops in OWD

6 ms interval: OWD
Quickly grows and plateaus
Periodic, growth / sudden drops

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 15

Naive Monitoring : Consequence

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 1

 10

 100

 1000

 10000

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(A) Blocking Offload

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 0.1

 1

 10

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(B) Non-blocking Offload
Fig. 3. Varying Offload Interval: Offload Cost (top), One Way Delay (bottom)

pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking

O
ffl

oa
d

C
os

t (
m

s)
O

ne
 W

ay
 D

el
ay

 (m
s)

Offload Iteration #

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 15

Naive Monitoring : Consequence

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 1

 10

 100

 1000

 10000

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(A) Blocking Offload

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 0.1

 1

 10

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(B) Non-blocking Offload
Fig. 3. Varying Offload Interval: Offload Cost (top), One Way Delay (bottom)

pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking

O
ffl

oa
d

C
os

t (
m

s)
O

ne
 W

ay
 D

el
ay

 (m
s)

Offload Iteration #

Behavior of 6 ms offload-interval
- Transport : Tree of TCP connections
- 6 ms offload interval > Service capacity
- Queuing Large OWD values
- Buffer overflows TCP flow-control
- Back-pressure propagates to Back-End
- send() call blocks Large OC spike
- Temporary rate reduction OWD drop
- Pattern repeats

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 16

 Impact to application directly from blocking send()
 Large OC spikes
 779.4% overhead due to large blocking time

 Will simple non-blocking approach help?
 Decouple application from offloading

 Separate consumer thread performs actual offload
 Application places profile into shared, unbounded buffer
 Latency hiding

 Repeat same experiments, with non-blocking scheme

Non-Blocking Monitoring Scheme

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 17

Non-Blocking Monitoring : Consequence

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 1

 10

 100

 1000

 10000

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(A) Blocking Offload

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 0.1

 1

 10

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(B) Non-blocking Offload
Fig. 3. Varying Offload Interval: Offload Cost (top), One Way Delay (bottom)

pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking

O
ffl

oa
d

C
os

t (
m

s)
O

ne
 W

ay
 D

el
ay

 (m
s)

Offload Iteration #

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 17

Non-Blocking Monitoring : Consequence

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 1

 10

 100

 1000

 10000

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(A) Blocking Offload

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 0.1

 1

 10

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(B) Non-blocking Offload
Fig. 3. Varying Offload Interval: Offload Cost (top), One Way Delay (bottom)

pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking

O
ffl

oa
d

C
os

t (
m

s)
O

ne
 W

ay
 D

el
ay

 (m
s)

Offload Iteration #

Separate thread offloads
OC small for both
100 ms case: OWD stable

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 18

Non-Blocking Monitoring : Consequence

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 1

 10

 100

 1000

 10000

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(A) Blocking Offload

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 0.1

 1

 10

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(B) Non-blocking Offload
Fig. 3. Varying Offload Interval: Offload Cost (top), One Way Delay (bottom)

pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking

O
ffl

oa
d

C
os

t (
m

s)
O

ne
 W

ay
 D

el
ay

 (m
s)

Offload Iteration #

6 ms case: OWD
Continuous steady growth
OWD=60,000 ms >> blocking-OWD

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 19

Non-Blocking Monitoring : Consequence

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 1

 10

 100

 1000

 10000

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(A) Blocking Offload

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 0.1

 1

 10

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(B) Non-blocking Offload
Fig. 3. Varying Offload Interval: Offload Cost (top), One Way Delay (bottom)

pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking

O
ffl

oa
d

C
os

t (
m

s)
O

ne
 W

ay
 D

el
ay

 (m
s)

Offload Iteration #

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 19

Non-Blocking Monitoring : Consequence

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 1

 10

 100

 1000

 10000

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(A) Blocking Offload

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

O
W

D
 (

m
s
)

Offload Iteration #

Offload Interval: 6ms
Offload Interval: 100ms

 0.1

 1

 10

O
ff

lo
a

d
 C

o
s
t

(m
s
)

(B) Non-blocking Offload
Fig. 3. Varying Offload Interval: Offload Cost (top), One Way Delay (bottom)

pattern.
The impact to the application follows directly from the

blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in

a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-
hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking

O
ffl

oa
d

C
os

t (
m

s)
O

ne
 W

ay
 D

el
ay

 (m
s)

Offload Iteration #

Behavior of 6 ms offload-interval
- No blocking in producer
- No temporary rate reductions
- OWD increases without bound

Application overhead reduced (small OC)

Problem
- Performance data remains queued
- At end of run, only few profiles available
- Wait for remaining profiles increases
 overhead again (607%)

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 20

 Previous schemes do not reduce number of offloads
 Non-blocking simply delays the problem

 Application can detect problems
 Blocking case: Locally detect spike in OC
 Non-blocking case: Locally detect full buffer

 Application can do something
 Locally back-off
 Drop the current profile instead of offloading

 Lossy, non-blocking scheme
 With bounded buffers
 With local back-off

Non-Blocking and Lossy Monitoring Scheme

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 21

Lossy, Non-Blocking : Loss Map

 0

 8

 16

 24

 32

 40

 48

 56

 0 100 200 300 400 500 600 700 800 900 1000

M
P

I
R

a
n

k
 (

#
 0

 -
 6

3
)

Offload Iteration #

Loss Occured | Interval: 24ms

 0

 8

 16

 24

 32

 40

 48

 56

M
P

I
R

a
n

k
 (

#
 0

 -
 6

3
)

Loss Occured | Interval: 6ms

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4 (Sim)2 (Sim)1 (Sim)0 (Real)

%
 G

lo
b

a
l
S

n
a

p
s
h

o
ts

 S
u

c
c
e

s
s
fu

lly
 R

e
c
e

iv
e

d

Acceptance Threshold

Offload Interval: 6ms
Offload Interval: 24ms

Offload Interval: 100ms

(A) Loss Maps (B) % Successful Global Offloads
Fig. 5. Local Decisions : Non-blocking, Lossy Offload

separate capacity estimation tools (such as [7]) since they are
typically meant to work on one-to-one (and not many-to-one,
tree-based) paths and will not encounter the MRNet related
costs. Instead we use a second method to acquire another
estimate of the BOI and look for corroboration between the
two estimates.

From Figure 6 B when the application offload interval falls
below the true-BOI of the system it is seen that queuing must
ensue (the queued waiting time, Qt, of the successive offloads
continue to increase). This queuing can in turn be detected
via the increasing One Way Delay values. Based on this we
construct a binary-search where the search space consists of
all possible intervals (from zero to infinity) and the comparison
operator uses the OWD as a heuristic for guidance. To reduce
the search-space to a manageable range, we first determine
the upper bound (or the initial High Interval). We use a stop-
and-go protocol with the BEs sending only after receiving
acknowledgment from the FE that the previous round arrived.
This ensures that no queuing occurs between rounds. The
OWD measured in this phase (termed the Resting OWD or
restOWD) is used as the initial High Interval. For the first
search the initial Low Interval would be zero. For successive
searches, performed in increasing order of profile size, the the
BOI of the previous profile-size can serve as the initial Low
Interval. In this resting phase, the standard deviation of the
restOWD is also determined and used in the calculation of an
OWD threshold (restOWD + k * restSD).

The main search phase starts by setting the Curr. Interval
to the High Interval. The BEs synchronously send l rounds
at the current interval. The FE calculates a growth metric
based on the l OWD values. The growth (defined as the mean
value of successive increases in OWD) captures increasing
OWD trends. When growth > restSD and the mean-One Way
Delay > OWD threshold, the Curr. Interval is set to the
mid-point of the upper-half of the interval range and the

ArrivalsDepartures

2 s

Server

1 / second

1 21 2

2 s

Qt = 0 s Qt = 0 s

A. Offload Interval >= BOI

1 s 0.5 s

Server

1 / second

1 22 3 3 41

Qt = 0 s Qt = 0.5 s Qt = 1.0 s

B. Offload Interval < BOI

Fig. 6. BOI Estimation Model

Low Interval is moved up. Otherwise, Curr. Interval is set
to the mid-point of the lower-half of the range and High
Interval is reduced. This procedure continues until the interval
range becomes less than an error threshold, satisfying the
termination condition and returning the Curr. Interval as the
BOI. If the growth was larger than the OWD threshold at
termination, the High Interval at that point is instead returned
as the BOI. Figure 7 shows the progress of one such search
where the number of application ranks is 64, the ToM fanout
(FO) is 8 and number of profile events is 64. The search
parameters are set to l=20, k=2 with an error threshold of
2*restSD.

For the evaluation we first estimate the BOI using the search
method. We then run the benchmark at progressively lower
offload intervals than the estimated-BOI and measure the data
arrival interval at the FE. As pointed out earlier, in the case
where the offload interval is larger than the true-BOI (which is

M
PI

 R
an

k
(#

 0
-6

3)
M

PI
 R

an
k

(#
 0

-6
3)

Offload Interval 6ms : Loss +

Offload Iteration #

Offload Interval 24ms : Loss +

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 21

Lossy, Non-Blocking : Loss Map

 0

 8

 16

 24

 32

 40

 48

 56

 0 100 200 300 400 500 600 700 800 900 1000

M
P

I
R

a
n

k
 (

#
 0

 -
 6

3
)

Offload Iteration #

Loss Occured | Interval: 24ms

 0

 8

 16

 24

 32

 40

 48

 56

M
P

I
R

a
n

k
 (

#
 0

 -
 6

3
)

Loss Occured | Interval: 6ms

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4 (Sim)2 (Sim)1 (Sim)0 (Real)

%
 G

lo
b

a
l
S

n
a

p
s
h

o
ts

 S
u

c
c
e

s
s
fu

lly
 R

e
c
e

iv
e

d

Acceptance Threshold

Offload Interval: 6ms
Offload Interval: 24ms

Offload Interval: 100ms

(A) Loss Maps (B) % Successful Global Offloads
Fig. 5. Local Decisions : Non-blocking, Lossy Offload

separate capacity estimation tools (such as [7]) since they are
typically meant to work on one-to-one (and not many-to-one,
tree-based) paths and will not encounter the MRNet related
costs. Instead we use a second method to acquire another
estimate of the BOI and look for corroboration between the
two estimates.

From Figure 6 B when the application offload interval falls
below the true-BOI of the system it is seen that queuing must
ensue (the queued waiting time, Qt, of the successive offloads
continue to increase). This queuing can in turn be detected
via the increasing One Way Delay values. Based on this we
construct a binary-search where the search space consists of
all possible intervals (from zero to infinity) and the comparison
operator uses the OWD as a heuristic for guidance. To reduce
the search-space to a manageable range, we first determine
the upper bound (or the initial High Interval). We use a stop-
and-go protocol with the BEs sending only after receiving
acknowledgment from the FE that the previous round arrived.
This ensures that no queuing occurs between rounds. The
OWD measured in this phase (termed the Resting OWD or
restOWD) is used as the initial High Interval. For the first
search the initial Low Interval would be zero. For successive
searches, performed in increasing order of profile size, the the
BOI of the previous profile-size can serve as the initial Low
Interval. In this resting phase, the standard deviation of the
restOWD is also determined and used in the calculation of an
OWD threshold (restOWD + k * restSD).

The main search phase starts by setting the Curr. Interval
to the High Interval. The BEs synchronously send l rounds
at the current interval. The FE calculates a growth metric
based on the l OWD values. The growth (defined as the mean
value of successive increases in OWD) captures increasing
OWD trends. When growth > restSD and the mean-One Way
Delay > OWD threshold, the Curr. Interval is set to the
mid-point of the upper-half of the interval range and the

ArrivalsDepartures

2 s

Server

1 / second

1 21 2

2 s

Qt = 0 s Qt = 0 s

A. Offload Interval >= BOI

1 s 0.5 s

Server

1 / second

1 22 3 3 41

Qt = 0 s Qt = 0.5 s Qt = 1.0 s

B. Offload Interval < BOI

Fig. 6. BOI Estimation Model

Low Interval is moved up. Otherwise, Curr. Interval is set
to the mid-point of the lower-half of the range and High
Interval is reduced. This procedure continues until the interval
range becomes less than an error threshold, satisfying the
termination condition and returning the Curr. Interval as the
BOI. If the growth was larger than the OWD threshold at
termination, the High Interval at that point is instead returned
as the BOI. Figure 7 shows the progress of one such search
where the number of application ranks is 64, the ToM fanout
(FO) is 8 and number of profile events is 64. The search
parameters are set to l=20, k=2 with an error threshold of
2*restSD.

For the evaluation we first estimate the BOI using the search
method. We then run the benchmark at progressively lower
offload intervals than the estimated-BOI and measure the data
arrival interval at the FE. As pointed out earlier, in the case
where the offload interval is larger than the true-BOI (which is

M
PI

 R
an

k
(#

 0
-6

3)
M

PI
 R

an
k

(#
 0

-6
3)

Offload Interval 6ms : Loss +

Offload Iteration #

Offload Interval 24ms : Loss +

24ms Offload Interval
- Every 8th rank is lossy
- ToM Fan-out = 8

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 21

Lossy, Non-Blocking : Loss Map

 0

 8

 16

 24

 32

 40

 48

 56

 0 100 200 300 400 500 600 700 800 900 1000

M
P

I
R

a
n

k
 (

#
 0

 -
 6

3
)

Offload Iteration #

Loss Occured | Interval: 24ms

 0

 8

 16

 24

 32

 40

 48

 56

M
P

I
R

a
n

k
 (

#
 0

 -
 6

3
)

Loss Occured | Interval: 6ms

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4 (Sim)2 (Sim)1 (Sim)0 (Real)

%
 G

lo
b

a
l
S

n
a

p
s
h

o
ts

 S
u

c
c
e

s
s
fu

lly
 R

e
c
e

iv
e

d

Acceptance Threshold

Offload Interval: 6ms
Offload Interval: 24ms

Offload Interval: 100ms

(A) Loss Maps (B) % Successful Global Offloads
Fig. 5. Local Decisions : Non-blocking, Lossy Offload

separate capacity estimation tools (such as [7]) since they are
typically meant to work on one-to-one (and not many-to-one,
tree-based) paths and will not encounter the MRNet related
costs. Instead we use a second method to acquire another
estimate of the BOI and look for corroboration between the
two estimates.

From Figure 6 B when the application offload interval falls
below the true-BOI of the system it is seen that queuing must
ensue (the queued waiting time, Qt, of the successive offloads
continue to increase). This queuing can in turn be detected
via the increasing One Way Delay values. Based on this we
construct a binary-search where the search space consists of
all possible intervals (from zero to infinity) and the comparison
operator uses the OWD as a heuristic for guidance. To reduce
the search-space to a manageable range, we first determine
the upper bound (or the initial High Interval). We use a stop-
and-go protocol with the BEs sending only after receiving
acknowledgment from the FE that the previous round arrived.
This ensures that no queuing occurs between rounds. The
OWD measured in this phase (termed the Resting OWD or
restOWD) is used as the initial High Interval. For the first
search the initial Low Interval would be zero. For successive
searches, performed in increasing order of profile size, the the
BOI of the previous profile-size can serve as the initial Low
Interval. In this resting phase, the standard deviation of the
restOWD is also determined and used in the calculation of an
OWD threshold (restOWD + k * restSD).

The main search phase starts by setting the Curr. Interval
to the High Interval. The BEs synchronously send l rounds
at the current interval. The FE calculates a growth metric
based on the l OWD values. The growth (defined as the mean
value of successive increases in OWD) captures increasing
OWD trends. When growth > restSD and the mean-One Way
Delay > OWD threshold, the Curr. Interval is set to the
mid-point of the upper-half of the interval range and the

ArrivalsDepartures

2 s

Server

1 / second

1 21 2

2 s

Qt = 0 s Qt = 0 s

A. Offload Interval >= BOI

1 s 0.5 s

Server

1 / second

1 22 3 3 41

Qt = 0 s Qt = 0.5 s Qt = 1.0 s

B. Offload Interval < BOI

Fig. 6. BOI Estimation Model

Low Interval is moved up. Otherwise, Curr. Interval is set
to the mid-point of the lower-half of the range and High
Interval is reduced. This procedure continues until the interval
range becomes less than an error threshold, satisfying the
termination condition and returning the Curr. Interval as the
BOI. If the growth was larger than the OWD threshold at
termination, the High Interval at that point is instead returned
as the BOI. Figure 7 shows the progress of one such search
where the number of application ranks is 64, the ToM fanout
(FO) is 8 and number of profile events is 64. The search
parameters are set to l=20, k=2 with an error threshold of
2*restSD.

For the evaluation we first estimate the BOI using the search
method. We then run the benchmark at progressively lower
offload intervals than the estimated-BOI and measure the data
arrival interval at the FE. As pointed out earlier, in the case
where the offload interval is larger than the true-BOI (which is

M
PI

 R
an

k
(#

 0
-6

3)
M

PI
 R

an
k

(#
 0

-6
3)

Offload Interval 6ms : Loss +

Offload Iteration #

Offload Interval 24ms : Loss +

24ms Offload Interval
- Every 8th rank is lossy
- ToM Fan-out = 8

6ms Offload Interval
- Loss structure different

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 21

Lossy, Non-Blocking : Loss Map

 0

 8

 16

 24

 32

 40

 48

 56

 0 100 200 300 400 500 600 700 800 900 1000

M
P

I
R

a
n

k
 (

#
 0

 -
 6

3
)

Offload Iteration #

Loss Occured | Interval: 24ms

 0

 8

 16

 24

 32

 40

 48

 56

M
P

I
R

a
n

k
 (

#
 0

 -
 6

3
)

Loss Occured | Interval: 6ms

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4 (Sim)2 (Sim)1 (Sim)0 (Real)

%
 G

lo
b

a
l
S

n
a

p
s
h

o
ts

 S
u

c
c
e

s
s
fu

lly
 R

e
c
e

iv
e

d

Acceptance Threshold

Offload Interval: 6ms
Offload Interval: 24ms

Offload Interval: 100ms

(A) Loss Maps (B) % Successful Global Offloads
Fig. 5. Local Decisions : Non-blocking, Lossy Offload

separate capacity estimation tools (such as [7]) since they are
typically meant to work on one-to-one (and not many-to-one,
tree-based) paths and will not encounter the MRNet related
costs. Instead we use a second method to acquire another
estimate of the BOI and look for corroboration between the
two estimates.

From Figure 6 B when the application offload interval falls
below the true-BOI of the system it is seen that queuing must
ensue (the queued waiting time, Qt, of the successive offloads
continue to increase). This queuing can in turn be detected
via the increasing One Way Delay values. Based on this we
construct a binary-search where the search space consists of
all possible intervals (from zero to infinity) and the comparison
operator uses the OWD as a heuristic for guidance. To reduce
the search-space to a manageable range, we first determine
the upper bound (or the initial High Interval). We use a stop-
and-go protocol with the BEs sending only after receiving
acknowledgment from the FE that the previous round arrived.
This ensures that no queuing occurs between rounds. The
OWD measured in this phase (termed the Resting OWD or
restOWD) is used as the initial High Interval. For the first
search the initial Low Interval would be zero. For successive
searches, performed in increasing order of profile size, the the
BOI of the previous profile-size can serve as the initial Low
Interval. In this resting phase, the standard deviation of the
restOWD is also determined and used in the calculation of an
OWD threshold (restOWD + k * restSD).

The main search phase starts by setting the Curr. Interval
to the High Interval. The BEs synchronously send l rounds
at the current interval. The FE calculates a growth metric
based on the l OWD values. The growth (defined as the mean
value of successive increases in OWD) captures increasing
OWD trends. When growth > restSD and the mean-One Way
Delay > OWD threshold, the Curr. Interval is set to the
mid-point of the upper-half of the interval range and the

ArrivalsDepartures

2 s

Server

1 / second

1 21 2

2 s

Qt = 0 s Qt = 0 s

A. Offload Interval >= BOI

1 s 0.5 s

Server

1 / second

1 22 3 3 41

Qt = 0 s Qt = 0.5 s Qt = 1.0 s

B. Offload Interval < BOI

Fig. 6. BOI Estimation Model

Low Interval is moved up. Otherwise, Curr. Interval is set
to the mid-point of the lower-half of the range and High
Interval is reduced. This procedure continues until the interval
range becomes less than an error threshold, satisfying the
termination condition and returning the Curr. Interval as the
BOI. If the growth was larger than the OWD threshold at
termination, the High Interval at that point is instead returned
as the BOI. Figure 7 shows the progress of one such search
where the number of application ranks is 64, the ToM fanout
(FO) is 8 and number of profile events is 64. The search
parameters are set to l=20, k=2 with an error threshold of
2*restSD.

For the evaluation we first estimate the BOI using the search
method. We then run the benchmark at progressively lower
offload intervals than the estimated-BOI and measure the data
arrival interval at the FE. As pointed out earlier, in the case
where the offload interval is larger than the true-BOI (which is

M
PI

 R
an

k
(#

 0
-6

3)
M

PI
 R

an
k

(#
 0

-6
3)

Offload Interval 6ms : Loss +

Offload Iteration #

Offload Interval 24ms : Loss +

Complete global offloads:
- 15% in 24ms
- 11.4% in 6ms
Complete profiles from only
initial 200 iterations

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 22

 OC spike / full-buffer signal is inconsistent
 Some ranks repeatedly penalized
 Some ranks are never penalized
 Bursts of loss - large intervals unmonitored

 Local backoff reaction inconsistent
 Late reaction - OC spike / full-buffer implies damage done

 Spatially and temporally inconsistent performance views
 Which ranks are monitored when? No control.
 Which intervals / iterations are monitored? No control.

 Need globally consistent performance views
 Need globally consistent method to determine ToM capacity

Inconsistent, Incomplete Performance Data

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan

Queueuing Theory 101

23

 0

 8

 16

 24

 32

 40

 48

 56

 0 100 200 300 400 500 600 700 800 900 1000

M
P

I
R

a
n

k
 (

#
 0

 -
 6

3
)

Offload Iteration #

Loss Occured | Interval: 24ms

 0

 8

 16

 24

 32

 40

 48

 56

M
P

I
R

a
n

k
 (

#
 0

 -
 6

3
)

Loss Occured | Interval: 6ms

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4 (Sim)2 (Sim)1 (Sim)0 (Real)

%
 G

lo
b

a
l
S

n
a

p
s
h

o
ts

 S
u

c
c
e

s
s
fu

lly
 R

e
c
e

iv
e

d

Acceptance Threshold

Offload Interval: 6ms
Offload Interval: 24ms

Offload Interval: 100ms

(A) Loss Maps (B) % Successful Global Offloads
Fig. 5. Local Decisions : Non-blocking, Lossy Offload

separate capacity estimation tools (such as [7]) since they are
typically meant to work on one-to-one (and not many-to-one,
tree-based) paths and will not encounter the MRNet related
costs. Instead we use a second method to acquire another
estimate of the BOI and look for corroboration between the
two estimates.

From Figure 6 B when the application offload interval falls
below the true-BOI of the system it is seen that queuing must
ensue (the queued waiting time, Qt, of the successive offloads
continue to increase). This queuing can in turn be detected
via the increasing One Way Delay values. Based on this we
construct a binary-search where the search space consists of
all possible intervals (from zero to infinity) and the comparison
operator uses the OWD as a heuristic for guidance. To reduce
the search-space to a manageable range, we first determine
the upper bound (or the initial High Interval). We use a stop-
and-go protocol with the BEs sending only after receiving
acknowledgment from the FE that the previous round arrived.
This ensures that no queuing occurs between rounds. The
OWD measured in this phase (termed the Resting OWD or
restOWD) is used as the initial High Interval. For the first
search the initial Low Interval would be zero. For successive
searches, performed in increasing order of profile size, the the
BOI of the previous profile-size can serve as the initial Low
Interval. In this resting phase, the standard deviation of the
restOWD is also determined and used in the calculation of an
OWD threshold (restOWD + k * restSD).

The main search phase starts by setting the Curr. Interval
to the High Interval. The BEs synchronously send l rounds
at the current interval. The FE calculates a growth metric
based on the l OWD values. The growth (defined as the mean
value of successive increases in OWD) captures increasing
OWD trends. When growth > restSD and the mean-One Way
Delay > OWD threshold, the Curr. Interval is set to the
mid-point of the upper-half of the interval range and the

ArrivalsDepartures

2 s

Server

1 / second

1 21 2

2 s

Qt = 0 s Qt = 0 s

A. Offload Interval >= BOI

1 s 0.5 s

Server

1 / second

1 22 3 3 41

Qt = 0 s Qt = 0.5 s Qt = 1.0 s

B. Offload Interval < BOI

Fig. 6. BOI Estimation Model

Low Interval is moved up. Otherwise, Curr. Interval is set
to the mid-point of the lower-half of the range and High
Interval is reduced. This procedure continues until the interval
range becomes less than an error threshold, satisfying the
termination condition and returning the Curr. Interval as the
BOI. If the growth was larger than the OWD threshold at
termination, the High Interval at that point is instead returned
as the BOI. Figure 7 shows the progress of one such search
where the number of application ranks is 64, the ToM fanout
(FO) is 8 and number of profile events is 64. The search
parameters are set to l=20, k=2 with an error threshold of
2*restSD.

For the evaluation we first estimate the BOI using the search
method. We then run the benchmark at progressively lower
offload intervals than the estimated-BOI and measure the data
arrival interval at the FE. As pointed out earlier, in the case
where the offload interval is larger than the true-BOI (which is

Queueing 101 BOI: bottleneck offload interval

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan

 Need an estimator of operating capacity
 Minimum offload interval without queueing
 Per profile size and filter type
 Metric: Bottleneck Offload Interval (BOI)

 Estimation Method 1
 If offload interval < BOI, then departure interval ≈ BOI
 Set offload interval = 0
 Measure departure interval

 Estimation Method 2
 If offload interval < BOI, then queue builds, OWD increases
 If offload interval ≥ BOI, then OWD stable or decreases
 Use increasing OWD as heuristic to binary-search for BOI

24

Estimation of Bottleneck Interval

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 25

BOI Binary Search: Example

 40

 45

 50

 55

 60

 65

 0 1 2 3 4 5 6 7 8 9

O
ff

lo
a

d
 I

n
te

rv
a

l
(m

s
)

Search Step

Curr. Interval
Low Interval
High Interval

 0

 50

 100

 150

 200

 250

 300

 350

O
n

e
 W

a
y
 D

e
la

y
 [

O
W

D
]

(m
s
) Curr. OWD

Rest. OWD + threshold
Growth

Fig. 7. Search Progress : Interval (bottom), OWD (top)

 5

 10

 15

-40-20-10

E
v
a
l
M

e
tr

ic
 [
 {

 (
D

a
ta

 A
rr

iv
a
l
In

te
rv

a
l)
*1

0
0
/(

E
s
ti
m

a
te

d
 O

ff
lo

a
d
 I
n
te

rv
a
l)
 }

 -
 1

0
0
]

% Change from Estimated Offload Interval Applied to Benchmark

Evaluating Estimation of Bottleneck Offload-Interval

N=64, FO=2
N=64, FO=4
N=64, FO=8

Fig. 8. Offload Interval Estimation Evaluation

not known), the data arrival interval should match the offload
interval. But when offload interval is lower than the true-BOI,
the data arrival interval should never drop below the true-BOI.
The evaluation metric used is the percent difference in the data
arrival interval from the estimated-BOI (i.e. the difference
between the estimates from the two methods). Figure 8 plots
the evaluation metric resulting from offloading at intervals that
are less than the estimated-BOI by 10, 20 and 40%. The curves
for all three configurations never fall below +6% and instead
begin to increase, suggesting that the estimated-BOI is at most
within 10% of the true-BOI.

ToM provides an API that informs the application of the
BOI, OWD and OC for profile-sizes of interest to the applica-
tion. The application, thus informed, can decide the granularity

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 16 32 64 128 256

N
o
rm

a
liz

e
d
 S

D
 o

f
In

te
rv

a
l

No. of Profile Events

[Interval] FO=2
[Interval] FO=4
[Interval] FO=8

 0

 0.5

 1

 1.5

N
o
rm

a
liz

e
d
 S

D
 o

f
O

W
D

Normalized SD (% Mean) of Rest. OWD (top) and Bott. Offload Interval (bottom)

[OWD] FO=2
[OWD] FO=4
[OWD] FO=8

Fig. 9. Stability of One Way Delay (top) and Offload Interval (bottom)

of profile offloads. For instance, an iterative application may
determine that its iterations take 75 ms on average, but the
estimated-BOI reported is 100 ms. It can then decide (consis-
tently across the ranks) to drop every 4th profile offload, there
by increasing its average offload interval (with the average
taken over multiples of 4 rounds) to 100 ms, matching the
BOI. Further, by backgrounding the offloads (i.e. making them
non-blocking), it can avoid potential backups due to burstiness
from its lower-than-BOI short-term offload interval.

The isolated nature of HPC resource allocations for jobs
suggests a level of stability that may make BOI estimation at
the start of every application run unnecessary. We performed
five periodic probes (45 minutes apart) at varying fanouts and
profile event sizes. Figure 9 plots the standard-deviations of

O
ffl

oa
d

In
te

rv
al

 (m
s)

O
ne

 W
ay

 D
el

ay
 (m

s)

Search Progress Step

OWD metric

A new offload interval is chosen based
on reaction of the OWD metric (above)

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan

 Bottleneck Offload Interval depends on many factors
 Underlying network latencies and bandwidth
 TCP / IP stack processing
 MRNet (de)packetization
 Intermediate custom filter and sink operations
 TAU wrapper processing

 Cannot use standard capacity estimation tools (e.g., Nettimer)
 Probes will not encounter all costs involved in ToM
 Meant for one-to-one paths, not many-to-one ToM trees

 Instead corroborate BOI estimates from Methods 1 and 2
 Test under various configurations
 Result: Estimates agree to within 10%

26

Evaluating BOI Estimation

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan

 ToM provides estimation APIs to query
 BOI, OWD, OC and several other metrics

 Application can use metrics to decide profile granularity
 Example: Iterative application - 75 ms per iteration

 Estimated BOI provided by ToM = 100 ms
 All application ranks can decide to drop every 4th profile
 Average offload interval (over 4 rounds) will match BOI

 How to bridge monitoring requirements and costs?
 Given application size and type of reductions ...
 How to choose: ToM fanout, offload intervals, # profile events

 Answer: Characterization
 Need to characterize various ToM configurations using BOI

27

Once BOI is determined, how should it be used?

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan

 Configurations
 Simple statistics filter:

 mean, min, max, standard deviation
 Profile sizes

16 to 1024 events with power of two increments
 Application size N = 8

ToM fanouts FO = 2, 8
 Application size N = 16

ToM fanouts FO = 2, 4, 16
 Application size N = 64

ToM fanouts FO = 2, 4, 8, 64
 Estimate BOI for each configuration

 Pick median of 3 trials for each point
28

Characterizations using BOI

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 29

Application Size N = 8; Fanouts FO = 2, 8

both the OWD and BOI over the five probes. To be comparable,
the standard-deviations of the OWD and BOI are normalized
and reported as a percentage of the respective mean values.
Stability is observed across the configurations in both metrics.
In such stable environments, the BOI estimates for a wide
range of configurations can be generated, cached and reused
for the length of time for which the stability is known to
persist.

V. CHARACTERIZING ToM PERFORMANCE

The Bottleneck Offload Interval estimation method and API
provide the application the ability to discover the limits of
monitoring system capability. The question yet to be answered
is how to bridge monitoring requirements (as specified by
both the user and application semantics) with the monitoring
resource costs. Given an application size and the performance
data reductions to be performed, what are the choices to be
made with regards to ToM fanouts, monitoring offload intervals
and number of profile events to sample? To help answer
that, we characterize different ToM configurations using three
metrics below.

A. Bottleneck Offload Interval

The BOI estimation is performed over different profile sizes,
starting at 16 events, increasing at power of two increments
upto 1024 events. For each such configuration we determine
the BOI, by picking the median of three trials. We begin
with 8 applications ranks with ToM fanouts of 2 and 8. The
filter performs the same summary statistics reduction as in
previous experiments. Figure 10 (A) plots the BOI for the
two N=8 configurations. What is immediately striking is that
the FO=8 curve performs better than the FO=2 curve at
all profile sizes. At profile-size=16, there is a pronounced
difference in the BOI values of the two configurations. As
the profile size increases, FO=8 grows far more rapidly than
FO=2. Since we are dealing with the BOI, queuing costs can
be safely dismissed. Networking costs cannot account for the
differences observed as in both configurations, the MRNet tree
fits completely within a single (dual socket quad-core) node,
with the application ranks occupying a second node.

There are two primary costs associated with the reduction
tree – reduction costs (TR) and (de)packetization costs (TP).
The TR refers to the cycles required to perform a binary profile
reduction operation. With N=8, a total of 7*TR cycles will be
expended in reduction. The current statistics filter performs
the reduction on the arrival of the last child’s profile. In the
case of FO=2, the 7*TR reduction cycles are split across 7
processors, whereas in FO=8, a single thread performs all
the reduction cycles. The TP is cycles required to pack an
intermediate performance profile into a ToM packet (or unpack
a packet into a profile data structure). For a fixed profile-
size, TP is also fixed. But depending on the configuration,
the number of packetizations and de-packetizations varies. In
contrast to FO=2, in the FO=8 case there are no intermediate
(de)packetization costs.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 16 32 64 128 256 512 1024

B
o
tt
le

n
e
c
k
 O

ff
lo

a
d
 I
n
te

rv
a
l
(m

s
)

No. of Profile Events

Bottleneck Offload Interval | N=8

N=8, FO=2
N=8, FO=8

(A) N=8

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 16 32 64 128 256 512 1024

B
o

tt
le

n
e

c
k
 O

ff
lo

a
d

 I
n

te
rv

a
l
(m

s
)

No. of Profile Events

Bottleneck Offload Interval | N=16

N=16, FO=2
N=16, FO=4

N=16, FO=16

(B) N=16

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 16 32 64 128 256 512 1024

B
o

tt
le

n
e

c
k
 O

ff
lo

a
d

 I
n

te
rv

a
l
(m

s
)

No. of Profile Events

Bottleneck Offload Interval | N=64

N=64, FO=2
N=64, FO=4
N=64, FO=8

N=64, FO=64

(C) N=64
Fig. 10. Bottleneck Offload Interval Characterization

At small profile sizes, the TP dominates the cost in case of
FO=2, causing the large (and counter-intuitive) difference in
performance from the FO=8 case. The FO=8 configuration’s
BOI quickly rises as a single processor is performing all
reductions. Intuitively, this example is similar to the case of

B
ot

tle
ne

ck
 O

ffl
oa

d
In

te
rv

al
 (m

s)
[L

ow
er

 is
 b

et
te

r]

FO =2

FO =8

No. Events in Profile

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 29

Application Size N = 8; Fanouts FO = 2, 8

both the OWD and BOI over the five probes. To be comparable,
the standard-deviations of the OWD and BOI are normalized
and reported as a percentage of the respective mean values.
Stability is observed across the configurations in both metrics.
In such stable environments, the BOI estimates for a wide
range of configurations can be generated, cached and reused
for the length of time for which the stability is known to
persist.

V. CHARACTERIZING ToM PERFORMANCE

The Bottleneck Offload Interval estimation method and API
provide the application the ability to discover the limits of
monitoring system capability. The question yet to be answered
is how to bridge monitoring requirements (as specified by
both the user and application semantics) with the monitoring
resource costs. Given an application size and the performance
data reductions to be performed, what are the choices to be
made with regards to ToM fanouts, monitoring offload intervals
and number of profile events to sample? To help answer
that, we characterize different ToM configurations using three
metrics below.

A. Bottleneck Offload Interval

The BOI estimation is performed over different profile sizes,
starting at 16 events, increasing at power of two increments
upto 1024 events. For each such configuration we determine
the BOI, by picking the median of three trials. We begin
with 8 applications ranks with ToM fanouts of 2 and 8. The
filter performs the same summary statistics reduction as in
previous experiments. Figure 10 (A) plots the BOI for the
two N=8 configurations. What is immediately striking is that
the FO=8 curve performs better than the FO=2 curve at
all profile sizes. At profile-size=16, there is a pronounced
difference in the BOI values of the two configurations. As
the profile size increases, FO=8 grows far more rapidly than
FO=2. Since we are dealing with the BOI, queuing costs can
be safely dismissed. Networking costs cannot account for the
differences observed as in both configurations, the MRNet tree
fits completely within a single (dual socket quad-core) node,
with the application ranks occupying a second node.

There are two primary costs associated with the reduction
tree – reduction costs (TR) and (de)packetization costs (TP).
The TR refers to the cycles required to perform a binary profile
reduction operation. With N=8, a total of 7*TR cycles will be
expended in reduction. The current statistics filter performs
the reduction on the arrival of the last child’s profile. In the
case of FO=2, the 7*TR reduction cycles are split across 7
processors, whereas in FO=8, a single thread performs all
the reduction cycles. The TP is cycles required to pack an
intermediate performance profile into a ToM packet (or unpack
a packet into a profile data structure). For a fixed profile-
size, TP is also fixed. But depending on the configuration,
the number of packetizations and de-packetizations varies. In
contrast to FO=2, in the FO=8 case there are no intermediate
(de)packetization costs.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 16 32 64 128 256 512 1024

B
o
tt
le

n
e
c
k
 O

ff
lo

a
d
 I
n
te

rv
a
l
(m

s
)

No. of Profile Events

Bottleneck Offload Interval | N=8

N=8, FO=2
N=8, FO=8

(A) N=8

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 16 32 64 128 256 512 1024

B
o

tt
le

n
e

c
k
 O

ff
lo

a
d

 I
n

te
rv

a
l
(m

s
)

No. of Profile Events

Bottleneck Offload Interval | N=16

N=16, FO=2
N=16, FO=4

N=16, FO=16

(B) N=16

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 16 32 64 128 256 512 1024

B
o

tt
le

n
e

c
k
 O

ff
lo

a
d

 I
n

te
rv

a
l
(m

s
)

No. of Profile Events

Bottleneck Offload Interval | N=64

N=64, FO=2
N=64, FO=4
N=64, FO=8

N=64, FO=64

(C) N=64
Fig. 10. Bottleneck Offload Interval Characterization

At small profile sizes, the TP dominates the cost in case of
FO=2, causing the large (and counter-intuitive) difference in
performance from the FO=8 case. The FO=8 configuration’s
BOI quickly rises as a single processor is performing all
reductions. Intuitively, this example is similar to the case of

B
ot

tle
ne

ck
 O

ffl
oa

d
In

te
rv

al
 (m

s)
[L

ow
er

 is
 b

et
te

r]

FO =2

FO =8

No. Events in Profile

FO = 8 outperforms FO = 2 !
- Initial large difference
- Difference shrinks at large #events
- Not related to queueing costs (BOI)
- Not related to networking costs

MRNet tree fits in single 2x4 core node

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan

 Reduction Cost (TR) for single binary reduction operation
 For N = 8, 7*TR cycles for reduction
 Reduction performed on arrival of last profile
 FO = 8: single thread performs all 7*TR cycles serially
 FO = 2: 7*TR cycles split across 7 threads in tree

 (De)Packetization Cost (TP) to (un)pack intermediate profile
 FO = 8: No intermediate (de)packetizations
 FO = 2: Every-level in tree adds (de)packetizations

 At small #events, TP dominates costs in FO = 2
 FO = 8 TR costs quickly rise as single processor saturated
 Intuitively: Too many resources allocated in FO = 2

 Serial costs and parallelization overheads dominate
30

Reduction and (De)Packetization Costs

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 31

Application Size N = 16; Fanouts FO = 2, 4, 16

both the OWD and BOI over the five probes. To be comparable,
the standard-deviations of the OWD and BOI are normalized
and reported as a percentage of the respective mean values.
Stability is observed across the configurations in both metrics.
In such stable environments, the BOI estimates for a wide
range of configurations can be generated, cached and reused
for the length of time for which the stability is known to
persist.

V. CHARACTERIZING ToM PERFORMANCE

The Bottleneck Offload Interval estimation method and API
provide the application the ability to discover the limits of
monitoring system capability. The question yet to be answered
is how to bridge monitoring requirements (as specified by
both the user and application semantics) with the monitoring
resource costs. Given an application size and the performance
data reductions to be performed, what are the choices to be
made with regards to ToM fanouts, monitoring offload intervals
and number of profile events to sample? To help answer
that, we characterize different ToM configurations using three
metrics below.

A. Bottleneck Offload Interval

The BOI estimation is performed over different profile sizes,
starting at 16 events, increasing at power of two increments
upto 1024 events. For each such configuration we determine
the BOI, by picking the median of three trials. We begin
with 8 applications ranks with ToM fanouts of 2 and 8. The
filter performs the same summary statistics reduction as in
previous experiments. Figure 10 (A) plots the BOI for the
two N=8 configurations. What is immediately striking is that
the FO=8 curve performs better than the FO=2 curve at
all profile sizes. At profile-size=16, there is a pronounced
difference in the BOI values of the two configurations. As
the profile size increases, FO=8 grows far more rapidly than
FO=2. Since we are dealing with the BOI, queuing costs can
be safely dismissed. Networking costs cannot account for the
differences observed as in both configurations, the MRNet tree
fits completely within a single (dual socket quad-core) node,
with the application ranks occupying a second node.

There are two primary costs associated with the reduction
tree – reduction costs (TR) and (de)packetization costs (TP).
The TR refers to the cycles required to perform a binary profile
reduction operation. With N=8, a total of 7*TR cycles will be
expended in reduction. The current statistics filter performs
the reduction on the arrival of the last child’s profile. In the
case of FO=2, the 7*TR reduction cycles are split across 7
processors, whereas in FO=8, a single thread performs all
the reduction cycles. The TP is cycles required to pack an
intermediate performance profile into a ToM packet (or unpack
a packet into a profile data structure). For a fixed profile-
size, TP is also fixed. But depending on the configuration,
the number of packetizations and de-packetizations varies. In
contrast to FO=2, in the FO=8 case there are no intermediate
(de)packetization costs.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 16 32 64 128 256 512 1024

B
o

tt
le

n
e

c
k
 O

ff
lo

a
d

 I
n

te
rv

a
l
(m

s
)

No. of Profile Events

Bottleneck Offload Interval | N=8

N=8, FO=2
N=8, FO=8

(A) N=8

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 16 32 64 128 256 512 1024

B
o

tt
le

n
e

c
k
 O

ff
lo

a
d

 I
n

te
rv

a
l
(m

s
)

No. of Profile Events

Bottleneck Offload Interval | N=16

N=16, FO=2
N=16, FO=4

N=16, FO=16

(B) N=16

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 16 32 64 128 256 512 1024

B
o
tt
le

n
e
c
k
 O

ff
lo

a
d
 I
n
te

rv
a
l
(m

s
)

No. of Profile Events

Bottleneck Offload Interval | N=64

N=64, FO=2
N=64, FO=4
N=64, FO=8

N=64, FO=64

(C) N=64
Fig. 10. Bottleneck Offload Interval Characterization

At small profile sizes, the TP dominates the cost in case of
FO=2, causing the large (and counter-intuitive) difference in
performance from the FO=8 case. The FO=8 configuration’s
BOI quickly rises as a single processor is performing all
reductions. Intuitively, this example is similar to the case of

B
ot

tle
ne

ck
 O

ffl
oa

d
In

te
rv

al
 (m

s)
[L

ow
er

 is
 b

et
te

r]

No. Events in Profile

FO = 2

FO = 16

FO = 4

Similar Trends as N = 8 case
FO = 4 crosses-over FO = 2

FO = 16 may cross-over
FO = 4 eventually

FO = 16 crosses-over FO = 4
at 256 events

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 32

Application Size N = 64; Fanouts FO = 2, 4, 8, 64

both the OWD and BOI over the five probes. To be comparable,
the standard-deviations of the OWD and BOI are normalized
and reported as a percentage of the respective mean values.
Stability is observed across the configurations in both metrics.
In such stable environments, the BOI estimates for a wide
range of configurations can be generated, cached and reused
for the length of time for which the stability is known to
persist.

V. CHARACTERIZING ToM PERFORMANCE

The Bottleneck Offload Interval estimation method and API
provide the application the ability to discover the limits of
monitoring system capability. The question yet to be answered
is how to bridge monitoring requirements (as specified by
both the user and application semantics) with the monitoring
resource costs. Given an application size and the performance
data reductions to be performed, what are the choices to be
made with regards to ToM fanouts, monitoring offload intervals
and number of profile events to sample? To help answer
that, we characterize different ToM configurations using three
metrics below.

A. Bottleneck Offload Interval

The BOI estimation is performed over different profile sizes,
starting at 16 events, increasing at power of two increments
upto 1024 events. For each such configuration we determine
the BOI, by picking the median of three trials. We begin
with 8 applications ranks with ToM fanouts of 2 and 8. The
filter performs the same summary statistics reduction as in
previous experiments. Figure 10 (A) plots the BOI for the
two N=8 configurations. What is immediately striking is that
the FO=8 curve performs better than the FO=2 curve at
all profile sizes. At profile-size=16, there is a pronounced
difference in the BOI values of the two configurations. As
the profile size increases, FO=8 grows far more rapidly than
FO=2. Since we are dealing with the BOI, queuing costs can
be safely dismissed. Networking costs cannot account for the
differences observed as in both configurations, the MRNet tree
fits completely within a single (dual socket quad-core) node,
with the application ranks occupying a second node.

There are two primary costs associated with the reduction
tree – reduction costs (TR) and (de)packetization costs (TP).
The TR refers to the cycles required to perform a binary profile
reduction operation. With N=8, a total of 7*TR cycles will be
expended in reduction. The current statistics filter performs
the reduction on the arrival of the last child’s profile. In the
case of FO=2, the 7*TR reduction cycles are split across 7
processors, whereas in FO=8, a single thread performs all
the reduction cycles. The TP is cycles required to pack an
intermediate performance profile into a ToM packet (or unpack
a packet into a profile data structure). For a fixed profile-
size, TP is also fixed. But depending on the configuration,
the number of packetizations and de-packetizations varies. In
contrast to FO=2, in the FO=8 case there are no intermediate
(de)packetization costs.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 16 32 64 128 256 512 1024

B
o

tt
le

n
e

c
k
 O

ff
lo

a
d

 I
n

te
rv

a
l
(m

s
)

No. of Profile Events

Bottleneck Offload Interval | N=8

N=8, FO=2
N=8, FO=8

(A) N=8

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 16 32 64 128 256 512 1024

B
o

tt
le

n
e

c
k
 O

ff
lo

a
d

 I
n

te
rv

a
l
(m

s
)

No. of Profile Events

Bottleneck Offload Interval | N=16

N=16, FO=2
N=16, FO=4

N=16, FO=16

(B) N=16

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 16 32 64 128 256 512 1024

B
o

tt
le

n
e

c
k
 O

ff
lo

a
d

 I
n

te
rv

a
l
(m

s
)

No. of Profile Events

Bottleneck Offload Interval | N=64

N=64, FO=2
N=64, FO=4
N=64, FO=8

N=64, FO=64

(C) N=64
Fig. 10. Bottleneck Offload Interval Characterization

At small profile sizes, the TP dominates the cost in case of
FO=2, causing the large (and counter-intuitive) difference in
performance from the FO=8 case. The FO=8 configuration’s
BOI quickly rises as a single processor is performing all
reductions. Intuitively, this example is similar to the case of

B
ot

tle
ne

ck
 O

ffl
oa

d
In

te
rv

al
 (m

s)
[L

ow
er

 is
 b

et
te

r]

No. Events in Profile

FO =2, 4, 8 in “correct” order
Already crossed-over

FO = 64 makes the crossover

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan

 BOI characterization shows importance of careful match
 Under-provisioning may be bad for performance
 But so can over-provisioning !

 Other metrics (direct costs, limiting overhead) also in paper
 Sweet-spot configurations for specific requirements exist
 ToM helps find these sweet-spots

 APIs
 Framework
 Metrics and evaluation methodology

33

Monitoring Requirements and Infrastructure Costs

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 34

Conclusion and Future Work
 Sweet-spot

 “Spot on a bat that produces the least shock when a ball is
hit” (New Oxford American Dictionary)

 Parallel performance monitoring must meet overhead,
latency, responsiveness, data consistency requirements

 Sweet-spots are those configuration choices that meet the
requirements or allow acceptable trade-offs

 Methodology and framework help find sweet-spots and make
informed monitoring decisions

 Would like to extend the characterizations to other filters
 Analysis of irregular, less periodic or non-uniform behaviors
 Dynamic estimation and feedback to application to stay

within sweet-spot during execution

Sweet-Spots in Parallel Performance Monitoring CLUSTER 2008, Tsukuba, Japan 35

Credits
 University of Oregon

 Aroon Nataraj
 Alan Morris
 Allen D. Malony
 TAU group members
 “Extreme Performance Scalable Operating Systems,” DOE

FastOS-2 grant, with Argonne National Lab

 University of Wisconsin
 Dorian C. Arnold (soon to be at University of New Mexico)
 Michael Brim
 Barton P. Miller

