Performance Modeling of Component Assemblies
with TAU

N. Trebonf, A. Morrist, J. Ray*, S. Shende' and A. Malony®
*Sandia National Laboratories, Livermore, CA 94551
{jairay} @ca.sandia.gov

and

fUniversity of Oregon, Eugene, OR 97403
{ntrebon,amorris,sameer,malony } @cs.uoregon.edu

I. INTRODUCTION

The Common Component Architecture (CCA) is a
component-based methodology for developing scientific simu-
lation codes. This architecture consists of a framework which
enables components, (embodiments of numerical algorithms
and physical models) to work together. Components publish
their interfaces and use interfaces published by others. Com-
ponents publishing the same interface and with the same func-
tionality (but perhaps implemented via a different algorithm
or data structure) may be transparently substituted for each
other in a code or a component assembly. Components are
compiled into shared libraries and are loaded in, instantiated
and composed into a useful code at runtime. Details regarding
CCA can be found in [1], [2]. An analysis of the process of
decomposing a legacy simulation code and re-synthesizing it
as components can be found in [3], [4]. Actual scientific results
obtained from this toolkit can be found in [5], [6].

Components exist so that they can be reused. Thus, the
component writer is rarely the sole user of the compo-
nents. A component writer can be expected to ensure the
correctness of the component. The performance, however,
is of primary importance to the component user who may
not be familiar with the implementation to the component.
Thus, in the context of HPC (high performance computing)
with components, one needs a reliable way of measuring the
performance of each implementation of a component non-
intrusively and correlate the performance with the problem
size to create a performance model. This was addressed in [7],
where a prototypical performance measurement and modeling
infrastructure (a set of performance related components based
on the TAU performance system [8], [9] for monitoring and
recording performance metrics of a scientific simulation) was
demonstrated. In this paper we present how these performance
models, may be used to obtain an approximately optimal
component assembly i.e., an optimal code.

Once a performance model has been created for each of
the components and their implementations, it is possible to
construct a global performance model for the application. By
comparing global performance models utilizing different sub-
sets (implementations) of components, it is possible to select
an optimal set of component implementations for a given prob-

lem. However, simply selecting the optimal implementation of
each component does not guarantee an optimal global solution
because the individual performance models do not consider
the interactions between components (e.g., cost of translating
one data structure to another if the interacting components
have different data layouts). If the number of components and
their implementations are small, one may adopt the brute-
force approach of enumerating all the possible realizations
of the component assembly, constructing and evaluating their
global performance models, and choosing the optimal one.
However, typical scientific codes consist of assemblies of 10 to
20 components. If each component has three implementations,
the solution space consists of 31 to 32° possible realizations,
which makes the brute-force approach of comparing each
realization unfeasible.

We propose a simple rule-based approach to reduce the
solution space by eliminating “insignificant” components. A
component is insignificant if it does not significantly contribute
to the overall performance of the application. These compo-
nents are eliminated from the global performance model, leav-
ing behind the “dominant” sub-assemblies, or cores. Once the
cores have been selected, an optimal assembly can be realized
through comparing the reduced number of global performance
models from these cores. The optimal component assembly
(consisting entirely of the cores) may then be extended into
a functioning component assembly by using (adding) any im-
plementation of the “insignificant” components. This ensures
that the final assembly will be close to optimal.

Runtime automated optimization of codes, as done by
Autopilot [10], [11] and Active Harmony [12] are closest
to our approach as outlined here and in [7]. Both require
the application to identify performance parameters (and the
valid values that they can take) to a tuning infrastructure. This
infrastructure also monitors their performance, which in case
of Active Harmony is provided by a function (the objective
function) implemented by the application itself. Each of the
parameters are perturbed and the application run to obtain
the effect of the perturbation. Active Harmony relies upon
a simplex algorithm to identify the optimal values of the
parameters while Autopilot uses fuzzy logic. Both (Active
Harmony and Autopilot) require the identification of “bad”
regions in parameter space, so that the optimization search

may be concluded faster by avoiding these regions. Active
Harmony also has an infrastructure to swap in/out multiple
libraries in order to identify an optimal implementation.
Neither of these approaches are quite right for us. We can
afford many evaluations of the objective function since it is
an algebraic formula synthesized out of multiple component
performance models. However, no approach will stand up
to exponential complexity. Our strategy has been to identify
the core set of parameters (component implementations) that
significantly affect performance and to perform a brute-force
evaluation/optimization only on the core.

Il. PERFORMANCE MEASUREMENT

The infrastructure used to measure performance in HPC
environment is described in [7]. The framework consists of
three component types. First, lightweight proxies are inter-
posed between the caller and the callee components and trap
any method calls, enabling performance measurements to be
taken. The second component type is responsible for making
the performance measurements, including timer creation and
hardware interaction. The measurement system makes use of
the TAU measurement library [8] via a TAU component. The
final component type is the Mastermind, which is responsible
for gathering, storing, and reporting the measurement data.
Each proxy is connected to the Mastermind component, which
provides functionality to turn measurements on and off. The
Mastermind, in turn, is connected to TAU, which provides the
functionality to create and manage timers, as well as access
hardware counters.

Because of the proxies’ lightweight nature, the creation is a
mechanical process. We have developed a tool that automat-
ically generates a proxy for a given component This tool is
based on the Program Database Toolkit [13], which allows for
analysis and processing of C++ source code. A Proxy is create
for a single port. For a component that provides multiple ports,
multiple proxies can be generated. A similar tool was created
to automatically generate the Mastermind component. As a
result of these tools, a measurement framework can be easily
created for a CCA application.

I11. AN APPROXIMATE APPROACH

Table | displays the average results from the four proces-
sor run of the hydro-shock simulation (as described in [7])
averaged over the four CPUs. The exclusive time represents
the time spent in the given routine, minus the time spent
in all instrumented routines that occur prior to the routine’s
completion. Inclusive time measures the time spent from the
start of the routine until routine completion. As one can
see, the ErrorEstimator (ee_proxy) component’s routine alone
contributes over 30 seconds, or approximately 33% of the
total execution time, while the BoundaryConditions (bc_proxy)
component contributes a mere 38 milliseconds, or less than
1%.

Our aim is to propose an algorithm that identifies these
insignificant components and removes them from considera-
tion during the optimization process. To accomplish this, we

TABLE |
THE TABLE DISPLAYSTHE EXCLUSIVE (EXCL.) AND INCLUSIVE (INCL.)
TIMES (DEFINED IN SECTION Ill, ASWELL AS THE INCLUSIVE
PERCENTAGE FOR EACH OF THE INSTRUMENTED ROUTINES OF A GIVEN
COMPONENT. ALL TIMES ARE IN MILLISECONDS.

Component Name Method name Excl. time | Incl. Time %
driver_proxy go() 285 90,785 96
rk2_proxy Advance() 6,887 34,411 36.4
ee_proxy Regrid() 31,607 32,582 345
flux_proxy compute() 3,118 22,156 23.4
SC_proxy compute() 11,131 11,131 11.8
efm_proxy compute() 7,549 7,549 8.0
grace_proxy GC_Synch() 1,956 3,689 3.9
icc_proxy prolong() 1,044 1,044 11
grace_proxy GC_regrid_above() 644 946 1.0
icc_proxy restrict() 815 815 0.9
stats_proxy compute() 212 271 0.3
C_proxy compute() 129 253 0.3
rk2_proxy GetStableTimestep() 5 157 0.2
Cg_proxy compute() 86 150 0.2
bc_proxy compute() 38 38 0.0

extend our “proxying” technique described in [7] to construtct
a call-graph as the component application executes. Upon
termination, the call-graph is written to a file. A pruning
application then reconstructs the call-graph from the file and
performs the pruning algorithm. Figure 1 shows the entire
call graph for the simulation that we analyze (see [7] for
details). Since a component may be invoked from multiple
places i.e., it may exist on many call paths, it may appear
as multiple nodes on that graph. Once this graph is created,
it can be traversed, and based upon a set of rules, branches
classified as insignificant can be pruned off. “Insignificance”,
in our case is decided based on the inclusive time of a
component. The resulting graph will be an optimized core tree,
that identifies the major contributors to the code assembly’s
global performance. The selection of the optimal solution can
then be based upon the performance of these dominant core
components. Any combination of pruned component instances
can then be included to complete an approximately optimal
global solution.

A. Algorithm

In the following, let C; represent the set of children of node
J. Let T;,i € C; be the inclusive time of child i of node J.
Let J have N children, i.e., the order of the finite set C; is
N ;. When examining the children of a given node, we see
that two cases arise :

1) The total inclusive time of the children is insignificant

compared to the inclusive time of node J i.e.,

> Ty <a,

i,1€Cy
where 0 < a < 1. Thus the children contribute little
to the parent node’s performance and may be safely
eliminated from further analysis. « is typically around
0.1 i.e., 10%.

Fig. 1. The component call-graph for the shock hydro simulation. Along
with the component instance name, the inclusive time, in microseconds, is
included in each node.

2) The total inclusive time of the children is a substantial
fraction of node J’s inclusive time i.e., the children
contribute significantly and Zi,iecJ T;/T; > «. In this
case the children are analyzed to identify if dominant
siblings exist. Let

T = Z T;/N;

1,1€Cy

be the average or “representative” inclusive time for the
elements of C;. We then iterate through each node 7,7 €
Cy, eliminating the elements of C; where T;/T < f3.
Thus, children of J whose contributions are small rela-
tive to a representative figure are eliminated. Typically,
(3 is chosen to be around 0.1 i.e. 10%.

IV. EXAMPLES

In order to test our approach, it was first applied to a series
of simple call-graphs in order to ensure its correctness. One
of these examples is described in Section IV-A. The pruning
algorithm was then applied to a call-graph that was created
from an actual scientific simulation. Results are presented in
Sections 1V-B and IV-C.

A. Example 1: Dominant Path

Figure 2 depicts a simple call-graph that consists of only six
nodes. The algorithm works in a depth-first search. Starting at
the root, the two children, B and C, together do significantly
contribute to the parent’s inclusive execution time, and so each
branch is preserved and searched. First, the branch leading to
node B is examined, and since it contributes significantly, it
remains as part of a dominant path. At this point, node B’s
children are examined to see if they are significant to node
B; they are not and so nodes D and E are both immediately
pruned. Next, node C is examined to see if it is significant to
its parent, node A. Node C is determined to be insignificant
is removed. In the figures hereafter, we will follow the
convention of shading pruned branches.

Fig. 2. A simple call-graph example with pruned branches colored red and
node shaded.

Fig. 3. The resulting call-graph after pruning using levels of 10% for both
thresholds i.e., « = 8 = 0.1

B. Example 2: Shock-Hydro with 10% thresholds

Our pruning approach was then applied to a real scien-
tific simulation code. The complete component call-graph is
depicted in Figure 1. Each node in the graph contains the
name and the inclusive count for the given node. Using the
default threshold values of 10%, the original call-graph of 19
nodes (12 unique component instances) is reduced to a call-
graph of 8 nodes (8 unique component instances). The amount
of unique component instances has been reduced by roughly
33%. These results are depicted in Figure 3.

C. Example 3: Shock-Hydro with variable thresholds

Our pruning approach was also applied with threshold
levels set to 5% and 20%. These results are shown in Fig-
ures 4, and 5 respectively. In the case of the 5% threshold
levels, one component instance (ICC) is kept, rather than
removed, compared with the 10% thresholds. Similar results
are observed when comparing the 10% and 20% graphs. As
expected, with a higher threshold, we pruned off a branch
that the lower thresholds identified as significant. Also, with
the 20% thresholds only 7 out of the 12 components were
preserved in the component assembly. Thus this method trades
speed (achieving a small “core” call-graph) against accuracy
(recovering the actual inclusive time of the call-graph root
from the “core” call-graph) but allows one to conduct a

Fig. 4. The resulting call-graph after pruning using levels of 5% for both
thresholds, i.e., o = 8 = 0.05.

Fig. 5. The resulting call-graph after pruning using levels of 20% for both
thresholds, i.e., o = 8 = 0.20.

sensitivity (with respect to « and (3) analysis if it is deemed
important.

V. CONCLUSIONS

In this paper we have presented a simple algorithm to iden-
tify the dominant components (from a performance point of
view) in a component assembly. This algorithm was tested on a
call-graph created by monitoring a hydrodynamics simulation
as analyzed in [7]. The inclusive execution times, though
obtained from actual measurements, could have also been ob-
tained from performance models. Starting with a call-graph of
19 nodes (12 separate components), with thresholds («, 3) of
10 % we were able to determine a core component assembly of
8 nodes. The resulting call-graph represents a smaller solution
space to search for the optimal set of component instances to
solve a given problem. This algorithm successfully reduced the
call-graph of a real scientific simulation by roughly 41 % and
the number of realizations of component assemblies from 3'2
to 37 (assuming that 3 implementations of each component
exist), a saving of over two orders of magnitude when the
thresholds were set to 20%.

In the future we will address the construction of the com-
posite performance model for the entire component assembly
from the call-graph. The current monitoring infrastructure is
being extended to record the traversals of the branches of the

call-graph along with the problem size that the components are
presented with per invocation. For static scientific problems
(e.g. PDEs solved on a static mesh) the problem size is
expected to remain constant for the duration of the simulation.
This constraint is violated for dynamic approaches where the
algorithm adapts to the problem (e.g. PDEs solved on an
adaptively refined mesh) and the problem size per component
invocation is expected to change during the course of the
simulation. In such a case, the deterministic component perfor-
mance models will be embedded in a stochastic framework to
provide the “most probable” performance of a component as-
sembly as well as some (mathematically rigorous) measure of
the uncertainty associated with the “most probable” number.

REFERENCES

[1] R. Armstrong, D. Gannon, A. Geist, K. Keahy, S. Kohn, L. Mclnnes,
S. Parker, and B. Smolenski, “Towards a Common Component Archi-
tecture for High Performance Scientific Computing.” in Proceedings
of the 8" International Symposium on High Performance Distributed
Computing, 1999.

[2] B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E. Bernholdt,
and J. A. Kohl, “The CCA Core Specifications in a Distributed Memory
SPMD Framework,” Concurrency: Practice and Experience, vol. 14, pp.
323-345, 2002, also at http://www.cca-forum.org/ccafe03a/index.html.

[3] S. Lefantzi, J. Ray, and H. N. Najm, “Using the Common Component
Acrchitecture to Design High Performance Scientific Simulation Codes,”
in Proceedings of the International Parallel and Distributed Processing
Symposium, Nice, France, April 2003.

[4] S. Lefantzi and J. Ray, “A Component-based Scientific Toolkit for
Reacting Flows,” in Proceedings of the Second MIT Conference on
Computational Fluid and Solid Mechanics. Boston, Mass.: Elsevier
Science, 2003.

[5] J. Ray, C. Kennedy, S. Lefantzi, and H. N. Najm, “High-order Spatial
Discretizations and Extended Stability Methods for Reacting Flows on
Structured Adaptively Refined Meshes,” in Third Joint Mesting of the
U.S Sections of The Combustion Institute, Chicago, lllinois, March
2003, distributed on a CD.

[6] S. Lefantzi, C. Kennedy, J. Ray, and H. N. Najm, “A Study of the Effect
of Higher Order Spatial Discretizations in SAMR (Structured Adaptive
Mesh Refinement) Simulations,” in Proceedings of the Fall Meeting of
the Western States Section of the The Combustion Institute, Los Angeles,
California, October 2003, distributed on a CD.

[7] J. Ray, N. Trebon, S. Shende, R. C. Armstrong, and A. Malony,
“Performance Measurement and Modeling of Component Applications
in a High Performance Computing Environment : A Case Study,”
Sandia National Laboratories, Tech. Rep. SAND2003-8631, June 2003,
Also submitted to International Parallel and Distributed Computing
Symposium, 2004.

[8] “TAU: Tuning and Analysis
http://www.cs.uoregon.edu/research/paracomp/taul/.

[91 A. D. Malony and S. Shende, Distributed and Parallel Systems: From
Concepts to Applications. Norwell, MA: Kluwer, 2000, ch. Performance
Technology for Complex Parallel and Distributed Sys tems, pp. 37-46.

[10] R. L. Ribler, H. Simitci, and D. A. Reed, “The Autopilot Performance-
Directed Adaptive Control System,” Performance Data Mining, vol. 18,
pp. 175-187, 2001, Special Issue : Future Generation Computer Sys-
tems.

[11] R. L. Ribler et al, “Autopilot : Adaptive Control of Distributed Appli-
cations,” in Proceedings of the 5" |EEE International Symposium on
High Performance Distributed Computing, 1998, Chicago, IL, USA.

[12] 1.-H. C. Cristian Tapus and J. K. Hollingsworth, “Active Harmony :
Towards Automated Performance Tuning,” in Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, 2002.

[13] “PDT: Program Database
http://www.cs.uoregon.edu/research/paracomp/pdtoolKkit/.

Utilities,”

Toolkit,”

