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, A high-level abstract model 

1 lets visualization designers 

create displays in an 

integrated environment. 

The model directly links 

these displays to parallel 

( performance models. 

T he primary motivation for using parallel computer systems is 
their high performance potential, but that potential is notori- 
ously difficult to realize, and users often must analyze and tune 

parallel program performance. Parallel systems can be instrumented to 
provide ample feedback on program behavior, but because of the volume 
and complexity of the resulting performance data, interpreting these sys- 
tems can be extremely difficult. Hence, performance tools are needed to 
help bridge the gap between raw performance data and significant per- 
formance improvements. 

Data visualization has proved effective in deciphering many types of 
scientific and engineering data and facilitating human comprehension of 
large, complex data sets. Some of the most successful parallel performance 
tools are based on visualization techniques. The visual representation of 
data for a physical system is usually based on physical concepts and mod- 
els that are intuitively meaningful to the user. The interpretation of per- 
formance data, on the other hand, involves a seemingly artificial, abstract 
model of parallel computation that may have little or no direct meaning 
to the user and may be difficult to relate to application-level concepts rep- 
resented by the user’s program. 

Despite these difficulties, several performance visualization tools have 
demonstrated that helpful insights into parallel performance can be 
gained through graphical displays. However, much of this work has been 
experimental, specialized, and ad hoc. Evolving performance visualization 
into an integral, productive tool for evaluating parallel performance 
requires a more systematic, formal methodology that relates behavior 
abstractions to visual representations in a more structured way. In this 
article, we propose a high-level abstract model for the perlormance visu- 
alization process, explain its relationship to the most important concepts 
and principles of effective visualization practice, and illustrate the rela- 
tionship between these concepts and our abstract model through specific 
case studies. We also discuss the relationship of performance visualiza- 
tion to general scientific visualization. 

PARALLEL PERFORMANCE 
VISUALIZATION MODEL 

The model we propose for parallel performance visualization is based 
on two important principles: 

l Visual displays ofperformance information should be linked directly 
to parallel performance models. 

l Performance visualizations should be designed and applied in an 
integrated environment for parallel performance evaluation. 

To clarify the abstract model, we first give a concrete example of the 
process and then generalize it. Good parallel performance requires, among 
other things, that the computational work be spread evenly across the 
processors, that each processor do its share concurrently, and that addi- 
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i Figure 1. An example from ParaGraph illustrating 
the performance visualization process model: (top) 
utilization summary histogram; (bottom) utilization 
Gantt chart. 

tional work beyond that required by a serial algorithm be 
minimized. Thus, the corresponding processor-oriented 
performance analysis abstractions-load balance, concur- 
rency, and overhead, respectively-are important for opti- 
mizing performance. For quantification, these abstractions 
must be mapped to appropriate parallel performance data 
that can be monitored, such as processor busy, idle, and 
communication times. For visualization, these performance 
analysis abstractions must also be mapped to appropriate 
visual abstractions, such as bar charts and histograms. The 
final step, possibly after intermediate processing, involves 
mapping the performance data to specific instances of the 
visual abstractions to obtain a performance display, as 

~ exemplified by Figure 1 (produced by ParaGraphI). 
At the top of this figure, the data are integrated over 

time, giving a quick and effective visual impression of 
’ load balance and overhead but no insight into concur- 
~ rency. Although this display can identify poor load bal- 

ante or excessive overhead, it does not pinpoint the 
specific time of its occurrence. This deficiency is reme- 
died by the display shown at the bottom of Figure 1, 
where the same information is given as a function of 
time, so that specific periods of activity and idleness on 
specific processors can be identified and correlated across 

~ processors. However, this more detailed view is less effec- 
tive in providing an overall impression of relevant per- 

I formance abstractions. 

The high-level parallel performance model that we pro- 
pose (depicted graphically in Figure 2) emphasizes the 
binding of performance analysis abstractions to perfor- 
mance visual abstractions. The terms in this figure are 
defined as follows: 

l Performance analysis abstraction-a specification of 
the performance characteristics to be observed from 
the data, the performance analysis to be performed, 
and the semantic attributes of the performance 
results. 

l Performance view-a representation of a performance 
analysis abstraction such that its attributes can be 
mapped to a performance display. 

l Performance visual abstraction-a specification of the 
desired visual form of the abstracted performance 
data, unconstrained by the limitations of any partic- 
ular graphics environment. 

l Performance display-a representation of a perfor- 
mance visual abstraction in a form that identifies the 
visual properties to which the attributes of a perfor- 
mance view are mapped. 

l Performance visualization abstraction-the mapping 
of a performance view to a performance display. 

A key point here is that the performance visual design 
can and should incorporate knowledge of the performance 
analysis abstraction very early on (as indicated by the 
dashed horizontal arrow in Figure 2), providing the basis 
for performance interpretation in the final visualization. 
The binding between performance analysis and visual 
abstractions is a mapping from performance view outputs 
to performance display inputs. This abstraction embodies 
the integral relationships between performance data and 
visual display that reveal the visualization’s performance 
meaning. 

So that it will be useful and its effectiveness can be eval- 
uated, a performance visualization abstraction must be 
instantiated in a performance visualizer tool. This tool 
implements performance views, displays, and the map- 
pings between them, using environment-specific graph- 
ics technology based on underlying graphics libraries, 
toolkits, and other resources. 

VISUALIZATION CONCEPTS 
AND PRINCIPLES 

The concepts and principles underlying good data visu- 
alization are becoming reasonably well understood.2~4 
Some of these concepts have proved useful in the design 
of effective performance views and displays. Still others 
have arisen from the unique challenges of interpreting per- 
formance data. 

Context 
To present performance information clearly, we must 

establish some context to which users can relate that 
information: 

l Perspective-the point of view from which informa- 
tion is presented. Typical perspectives for perfor- 
mance information include the hardware, the 
operating system, and the application program. A 
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given perspective may emphasize 
states of processes or processors, or 
interactions among them, and the 
information may or may not be amal- 
gamated over space or time. For exam- 
ple, Figure 1 shows two views 
depicting processor states. 

l Semantic context-the relationship 
between performance information 
and the constructs and abstractions 
(such as data structures and control 
structures) in the application program. 
For example, Figure 3, produced by 
Popeye,s shows performance infor- 
mation (the locality of memory refer- 
ences) for a specific data structure (a 
two-dimensional array) in an applica- 
tion program. Another example is 
selecting a graphical image from an 
element and highlighting the corre- 
sponding portion of the application 
program. For instance, in the Auto- 
mated Instrumentation and Monitor- 
ing System (AIMS),6 selecting a 
communication line between proces- 
sors highlights the corresponding 
send and receive statements in the 
user program. 

l Subview mapping-a mapping between 
a subset of a graphical view (for 
instance, a rectangular subregion) 
and the corresponding subset of the 
data being rendered.7 This mapping 
implies that the data can be recon- 
structed from the image, which would 
not be the case if the data were 
reduced so that details were lost. 
For example, each horizontal bar in 
Figure 1 (bottom) depicts the detailed 
time history of the corresponding 
processor, whereas in Figure 1 (top), 
such detail is absent because the data 
have been averaged over time. 

Scaling 
For scientific visualization, scaling 

graphical views as data sets become very 
large is a major challenge. This is especially 
true of performance visualization as the 
number of processors or duration of exe- 
cution substantially increases. Several tech- 
niques have been used to handle this 
scaling problem: 

l Mukidimensional and mukivariate 
representation-a representation of 
data with many attributes per data 
point. Like most scientific data, per- 
formance data are typically multidi- 
mensional, with both space-like (for 
example, processors or memory) and 
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gure 2. The parallel performance visualization model emphasizes 
the binding of performance analysis abstractions to performance 
visual abstractions. 
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Figure 3. Viewing data accesses: time series of data-array-access 
surface plots (generated using IBM Data Explorer). 
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Figure 4. Viewing concurrency patterns: (top) utili i- 
zation count display; (middle) space-time diagram 
from ParaGraph; (bottom) processor status display, 
where top left grid represents processor state, bot- 
tom left represents volume of messages currently 
being sent by each processor, and bottom right 
represents volume of messages currently being 
received by each processor; the top right grid is not 
used in this example. 

time-like dimensions and other parameters (such as 
problem size) that may vary as well. Such a multi- 
variate representation is conceptually compact, but 
the technical challenge for visualization is to repre- 
sent as many dimensions as possible on a flat video 
screen. Figure 1 (bottom) uses two screen dimen- 
sions plus color to depict three data dimensions 
(time, processor, and state), whereas Figure 3 uses 
an explicit three-dimensional rendering, with color 
reinforcing the vertical dimension. 

l A4acroscopic and microscopic views-the level of detail 
represented by a given view. A macroscopic view con- 
veys the big picture, while a microscopic view depicts 
fine detail. Figure 1 illustrates a simple example of 
this distinction. 

l Macro/micro composition and reading-a display 
composition that allows perception of both local 
detail and global structure. In such a display, fine 
details are discernible, but the details accumulate into 
larger coherent features, as in Figure 3. 

l Adaptive graphical display-the adjustment of a dis- 
play’s graphical characteristics in response to data set 
size. The goal is to reveal as much detail as possible 
without visual complexity interfering with the per- 
ception of that detail. In Figure 3, for instance, the 
double cueing (height and color) of the vertical axis 
might be modified as data set size grows. 

l Display manipulation-the interactive modification 
of a display, through techniques such as scrolling or 
zooming, to handle a large amount of data of vary- 
ing detail. In Figure 1 (bottom), for example, scrolling 
or zooming along the time axis could be used to con- 
vey fine detail for long runs that would otherwise 
compress the time axis and lose detail. 

l Composite view-a synthesis of two or more views 
into a single view that is intended to enhance visual 
relationships among the views and present more 
global information.7 Examples include combining 
lower dimensional displays into a single higher 
dimensional display or taking time along a third axis 
to construct a three-dimensional display from a two- 
dimensional animation. As a simple illustration, 
Figure 1 (bottom) is essentially a composite of suc- 
cessive processor-state displays. 

User perception and interaction 
Successful visual performance tuning depends on a syn- 

ergistic feedback loop between the user and the visual- 
ization tool. The tool produces images that the user 
interprets, while the user selects views and options to 
guide the tool in detecting and isolating performance bot- 
tlenecks. Important concepts in this category include 

l Perception and cognition-the sensory development 
of an impression, awareness, or understanding of a 
phenomenon. Human visual perception can grasp 
patterns, distinguishvariations, classify objects, and 
so on, through size, shape, color, and motion. For 
example, the use of color in Figure 1 (top) gives an 
overall impression of processor utilization that is eas- 
ily perceived. A familiar example where shape con- 
veys information is the Kiviat diagram. 



l Observingpatterns-the observation of spatial, tem- 
poral, or logical patterns of behavior, which often 
indicate important interrelationships between mod- 
els and data. For example, a repetitive pattern over 
time is often related to a program’s iterative loops. As 
an illustration, the bottom of Figure 4 shows a repet- 
itive pattern that is easily grasped by the eye. 

l User interaction-selections that users make regard- 
ing alternate views, levels of detail, and display para- 
meters. Such interaction lets users customize the 
visualization for a given situation to enhance under- 
standing. For example, in a processor-oriented dis- 
play, users can select a particular layout or ordering 
of processors to make patterns and relationships 
more evident, or they can study one specific proces- 
sor in detail. 

Comparison 
Comparisons and cross-correlations between related 

views or representations can provide much insight into 
behavioral characteristics and their causes. Several graph- 
ical techniques can be used for visual comparison: 

l Multiple views-the visual presentation of data using 
multiple displays from different perspectives. Any sin- 
gle visualization or perspective can usually display 
only a portion of the relevant behavior. Viewing the 
same underlying phenomenon from diverse per- 
spectives gives a more well-rounded impression and 
is more likely to yield useful insights.8 For example, 
the top and bottom parts of Figure 1 give related but 
complementary views: One better indicates load bal- 
ance, while the other better indicates concurrency. 
Still other views, say of communication or data 
accesses, could convey additional perspectives on the 
same underlying behavior. 

l Small multiples-a series of images showing the same 
combination of variables indexed by changes in 
another variable, much like successive frames of a 
movie. Information slices are positioned so that the 
viewer can make comparisons at a glance. Animation 
is one example of this technique (indexing over time), 
but indexing can also be done by processor number, 
code version, problem size, machine size, and so on. 
Figure 3 illustrates this powerful technique. 

l Cross-execution views-the visual comparison of per- 
formance information from program executions that 
may differ in various ways, such as in problem size or 
machine size. For example, Figure 5 (produced by 
ParaGraphI) shows a sequence of executions for suc- 
cessive program modifications. 

Extraction of information 
Several techniques enable visual extraction of useful 

information from a morass of data: 

l Reduction andfiltering-representing raw data by sta- 
tistical summaries, such as maxima and minima, 
means, standard deviations, frequency distributions, 
and so on. This notion extends to graphical reduc- 
tion, where a visual display conveys general trends 
rather than detailed behavior. In Figure 1 (top), for 
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Figure 5. Viewing interprocessor communication in 
ParaGraph: (top to bottom) a series of critical-path 
displays shows successive improvements in parallel- 
program performance. 
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example, the data are reduced by the averaging of oriented views together, Figure 4 (bottom) represents a 
states over time. display showing processor states and communication ani- 

l Clustering-multivariate statistical analysis and pre- mated over time. From the combination of shape and color 
sentation techniques for grouping or categorizing coding, we see that only one processor row (corresponding 
related data points. The intent is to classify points or to the processor groups we saw in the space-time diagram) 
identify outliers in a multidimensional data space. is busy at a time, while all other processors await remote 
Classical examples include scatterplots and frequency data. As the animation shows, data are sent from a proces- 
histograms. sorrow to the row above it, and the busy 

l Encoding and abstracting-using graph- processor row cycles upward. Thus, con- 
ical attributes such as color, shape, currency is limited to one processor row at 
size, and spatial orientation or ar- 
rangement to convey information (for T he critical a time, which explains the poor utilization 

path’s stability that we noticed initially. 
instance, additional dimensions). across multiple 
Such overloading can be easily abused, executions of the Access patterns for data 
but when used appropriately, color program is espe- distributions 
coding and so forth can effectively cially significant. Our second example involves data- 
increase a flat display’s dimensional- 
ity. In Figure 3, for example, both color 
and spatial arrangement convey infor- 
mation. 

l Separating information-visual differentiation among 
layers of information through color highlighting, 
foreground/background, and so forth. A good illus- 
tration of this technique is the highlighting of the crit- 
ical path in Figure 5. 

CASE STUDIES 
We now illustrate, through a series of case studies, the 

practical application of the model we have proposed for 
performance visualization. (For further details and addi- 
tional examples, see Heath, Malony, and Rover.9) 

Concurrency and communication 
in data-parallel computation 

Our first example, discussed in detail by Rover and 
Wright,lO represents the back substitution phase of a data- 
parallel program for solving a system of linear equations 
by Gaussian elimination. The system matrix is partitioned 
among the processors, and the owner-computes rule is 
used: Each program assignment statement is executed by 
the processor that owns the variable on the left-hand side, 
and any data used on the right-hand side that is owned by 
another processor must be sent to the left-hand-side owner 
before the statement is executed. 

Our initial analysis abstraction is simply the processor 
states during program execution, while the visual abstrac- 
tion is a time-series plot of the number of processors in each 
state. Scanning (scrolling, if needed) the display’s time axis 
lets users perceive the state transitions and patterns, as 
shown in Figure 4 (top), which reveals that processor uti- 
lization is poor. Suspecting that this inefficiency may stem 
from communication of nonlocal data, we select a view 
that depicts the message-passing among the processors- 
specifically, the space-time diagram shown in Figure 4 
(middle). A clear pattern emerges, with repetitive com- 
munication rounds among processor groups. 

To investigate how these groups relate to their locations, 
we select a processor-oriented view whose spatial arrange- 
ment of the processors reflects their logical configuration 
in a two-dimensional grid for the purpose of partitioning 
the matrix. Tying the message-passing and processor- 

Computer 

access patterns in parallel-programming 
languages, such as High-Performance 
Fortran (HPF) or parallel C + +, that incor- 

porate data-distribution semantics. Interprocessor com- 
munication in such languages is implicitly determined by 
the data distribution; the distribution selection constitutes 
the programmer’s main control over parallel efficiency. 
An appropriate analysis abstraction, therefore, is the pro- 
portion of local versus remote data accesses required to 
support a particular data distribution. 

For an application involving Gaussian elimination on a 
matrix, the relevant data structure is a two-dimensional 
array supporting an effective performance view that 
relates easily to the application program. The visual 
abstraction represents the data structure as a surface 
whose height and color are determined by the proportion 
of local data accesses for the corresponding position in the 
two-dimensional array (Figure 3). Color enhances viewer 
perception of the differences in data accesses within a sin- 
gle image and helps unify the series of images. The sur- 
face changes could be animated over time, but perhaps 
even more effective is a series of snapshots (small multi- 
ples) that convey the changing data-access patterns as the 
algorithm progresses. 

Critical paths in parallel computation 
The critical path is the longest serial thread, or chain of 

dependencies, running through a parallel-program exe- 
cution. It is an important performance analysis abstrac- 
tion, because we cannot reduce the program’s execution 
time without shortening the critical path; hence, it is a 
potential place for bottlenecks. The critical paths stability 
across multiple executions of the program is especially sig- 
nificant, since it may reveal the presence or absence of a 
systematic bias in the execution. By itself, however, criti- 
cal-path stability does not tell us whether such a bias is 
good or bad, so it should be augmented by other views. 

For parallel programs based on message passing, an 
appropriate visual abstraction for depicting the critical 
path is a minor modification of a space-time diagram, since 
data dependencies are satisfied by interprocessor com- 
munications. Figure 5 shows the critical paths (highlighted 
in the figure) for a sequence of successive improvements 
in a parallel program for solving shallow-water equations 
on a sphere using a spectral transform meth0d.l’ Time has 
been resealed in each instance, so the time scale shown 



does not reflect the actual performance improvement, ization its power, but rather the proper matching of a 
which is more than a factor of three. Actually, the graphical image to the scientist’s abstraction, regardless 
programmer made these improvements by analyzing pro- of how far that picture may be from ordinary reality. 
gram behavior using utilization and task displays, but it Consider some typical uses of graphics, say in the sta- 
is nevertheless instructive to observe the critical paths’ tistical analysis of data. A simple scatterplot of the resid- 
resulting behavior. uals in fitting a model to data can reveal outliers or 

In the initial implementation (Figure 5, top), the per- systematic bias that might go undetected by sophisticated 
formance is poor because of a substantial analytical or computational methods. Such 
load imbalance, and the critical path, not a plot has no direct correlation with “real- 
surprisingly, stays with a single processor ity.” It does not depend on the nature of the 
(the most heavily loaded one). When the S cientif ic data quantities represented by the data or the 
load balance is improved (Figure 5, middle can also reflect model. But it is nevertheless a powerful 
top), the critical path begins to cover more discrete events graphical technique that takes full advan- 
processors, as no single processor is now having intricate tage of the human eye’s ability to spot pat- 
the bottleneck. Further improvements temporal terns. Another example of this type is the 
spread the critical path even further precedence rela- use of purely abstract graphical plots to 
(Figure 5, middle bottom). This appears tionships, such as detect nonrandom patterns in the output 
to support the intuitive notion that a well- elementary par- of a (supposedly) random number gener- 
balanced algorithm should produce a title tracks from ator. 
somewhat random critical path because of an accelerator. A second argument is that performance 
slight timing vagaries in the nearly equal 
tasks. After the final improvement, how- 
ever, the critical path once again settles mainly on one 
processor (Figure 5, bottom). The explanation is that this 
implementation uses a carefully pipelined, ring-oriented 
algorithm. All previous load balance and communication 
anomalies have been removed, so that the behavior is now 
quite regular, with the trailing processor in the pipeline 
consistently staying on the critical path. 

SCIENTIFIC VISUALIZATION AND 
PERFORMANCE VISUALIZATION 

Although there are differences, scientific visualization 
and performance visualization have similar aims: to gain 
insight into underlying phenomena by graphically depict- 
ing data. 

Nevertheless, some argue that scientific visualization 
has the advantage of representing real phenomena, while 
performance visualization handles abstractions and arti- 
ficial objects. However, this is only partially true and is 
based on a rather narrow view of scientific visualization. 
Obviously, many visualizations do involve the depiction 
of some continuous physical quantities, such as tempera- 
ture or pressure, as a function of some continuous vari- 
ables, such as space or time coordinates. And the graphical 
image presented, typically represented by lines and sur- 
faces in Euclidean space, does correspond directly to some 
physical system. But many other types of scientific data 
that involve abstract entities or discrete objects bear little 
relation to any intuitive image of underlying reality. 

For example, a dynamic system’s behavior is often best 
understood in terms of phase space rather than the ordi- 
nary space-time in which the model is formulated. Phase 
space is an abstraction that scientists understand. When 
presented with a graphical image of it, they know what 
patterns (orbits and so forth) to look for. These patterns 
would likely be less obvious in an ordinary graphical pre- 
sentation of the same data in space-time. The use of such 
abstractions to interpret and represent data is ubiquitous 
throughout science. Even time representation by one spa- 
tial axis is an abstraction in this sense. Thus, it is not the 
direct representation of reality that gives scientific visual- 

data are fundamentally different from typ 
ical scientific data because of the discrete 

nature of the performance events and their complex, log- 
ical interrelationships. Again, this would be true ifwe took 
a narrow view of scientific data as basically the solution of 
a held equation. However, in a broader sense, scientific 
data involve discrete entities-genome sequences, demo- i 
graphic surveys, and so on. Scientific data can also reflect 
discrete events having intricate temporal precedence rela- 
tionships, such as elementary particle tracks from an accel- 
erator. A common feature in many of these cases is that 
they tend to be pattern recognition problems where qual- 
itative results are more important than quantitative results. 
This makes them even more ripe for graphical presenta- ~ 
tion than more conventional scientific modeling of physi- ~ 
cal phenomena, since such patterns are often best grasped 1 
visually. Since performance visualization has much the i 
same flavor, both in its goals and in the data with which it 
typicallyworks, perhaps we should be looking here for use- 
ful analogies and graphical ideas. 

This is not to say that performance data and visualiza- 1 
tion have nothing in common with conventional scientific 
data and visualization, where contours, surfaces, and so 
on depict field quantities. Performance data are almost 
invariably time dependent and often involve space-like 
quantities (memory addresses, loop and array indices, 
process and processor identifiers, and so on). This lets 
many standard tools of conventional scientific visualiza- 
tion be effectively applied in visualizing performance data. 

Hence, experience gained and lessons learned in scien- 
tific visualization have a direct benefit in developing and 
applying performance visualization technology. Specifically, 

l abstraction is a powerful and ubiquitous tool through- ~ 
out science, and one key to success in visualization is ~ 
the appropriate matching of graphical images to 
these abstractions; 

l scientific data come in many varieties and often pre- 
sent pattern recognition problems that may have 
much in common with performance analysis and 
visualization; 

l simple graphical techniques can be powerful in yield- 
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ing insights, but the entities represented may bear lit- 
tle or no direct relation to any physical entities; and 

l we should use the full range of tools and techniques 
for scientific visualization in seeking new ideas and 
paradigms for performance visualization. 

DESPITE TECHNOLOGICAL ADVANCES in performance visual- 
ization design, developing useful parallel performance 
visualizations is still challenging. MillerI addresses this 
challenge, listing criteria for good visualization. These cri- 
teria, like the concepts we have discussed, help define gen- 
eral requirements to guide the visualization designer in 
creating useful visual displays. Of course, in enhancing 
the interpretation of a visualization, we must also consider 
the semantic context-particularly with respect to the 
user’s conceptual model. A visualization that is meaning- 
ful to one person may not be meaningful to another. 

The performance visualization model we have pre- 
sented emphasizes the need for integrating performance 
evaluation models with performance displays to provide 
a foundation for developing usefulvisual abstractions. But 
the model also acknowledges the need for user involve- 
ment-in design, interaction, and evaluation-from 
which true insight is ultimately achieved. I 
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