
IThe Visual Display of
~ Parallel Performance
~ Data

Michael T. Heath
University of Illinois,
Urbana-Champaign

Allen D. Malony
University of Oregon

Diane T. Rover
Michigan State University

, A high-level abstract model

1 lets visualization designers

create displays in an

integrated environment.

The model directly links

these displays to parallel

(performance models.

T he primary motivation for using parallel computer systems is
their high performance potential, but that potential is notori-
ously difficult to realize, and users often must analyze and tune

parallel program performance. Parallel systems can be instrumented to
provide ample feedback on program behavior, but because of the volume
and complexity of the resulting performance data, interpreting these sys-
tems can be extremely difficult. Hence, performance tools are needed to
help bridge the gap between raw performance data and significant per-
formance improvements.

Data visualization has proved effective in deciphering many types of
scientific and engineering data and facilitating human comprehension of
large, complex data sets. Some of the most successful parallel performance
tools are based on visualization techniques. The visual representation of
data for a physical system is usually based on physical concepts and mod-
els that are intuitively meaningful to the user. The interpretation of per-
formance data, on the other hand, involves a seemingly artificial, abstract
model of parallel computation that may have little or no direct meaning
to the user and may be difficult to relate to application-level concepts rep-
resented by the user’s program.

Despite these difficulties, several performance visualization tools have
demonstrated that helpful insights into parallel performance can be
gained through graphical displays. However, much of this work has been
experimental, specialized, and ad hoc. Evolving performance visualization
into an integral, productive tool for evaluating parallel performance
requires a more systematic, formal methodology that relates behavior
abstractions to visual representations in a more structured way. In this
article, we propose a high-level abstract model for the perlormance visu-
alization process, explain its relationship to the most important concepts
and principles of effective visualization practice, and illustrate the rela-
tionship between these concepts and our abstract model through specific
case studies. We also discuss the relationship of performance visualiza-
tion to general scientific visualization.

PARALLEL PERFORMANCE
VISUALIZATION MODEL

The model we propose for parallel performance visualization is based
on two important principles:

l Visual displays ofperformance information should be linked directly
to parallel performance models.

l Performance visualizations should be designed and applied in an
integrated environment for parallel performance evaluation.

To clarify the abstract model, we first give a concrete example of the
process and then generalize it. Good parallel performance requires, among
other things, that the computational work be spread evenly across the
processors, that each processor do its share concurrently, and that addi-

001%9162/95/$400 i 19951EEE November 1995

n

Busy

1

i Figure 1. An example from ParaGraph illustrating
the performance visualization process model: (top)
utilization summary histogram; (bottom) utilization
Gantt chart.

tional work beyond that required by a serial algorithm be
minimized. Thus, the corresponding processor-oriented
performance analysis abstractions-load balance, concur-
rency, and overhead, respectively-are important for opti-
mizing performance. For quantification, these abstractions
must be mapped to appropriate parallel performance data
that can be monitored, such as processor busy, idle, and
communication times. For visualization, these performance
analysis abstractions must also be mapped to appropriate
visual abstractions, such as bar charts and histograms. The
final step, possibly after intermediate processing, involves
mapping the performance data to specific instances of the
visual abstractions to obtain a performance display, as

~ exemplified by Figure 1 (produced by ParaGraphI).
At the top of this figure, the data are integrated over

time, giving a quick and effective visual impression of
’ load balance and overhead but no insight into concur-
~ rency. Although this display can identify poor load bal-

ante or excessive overhead, it does not pinpoint the
specific time of its occurrence. This deficiency is reme-
died by the display shown at the bottom of Figure 1,
where the same information is given as a function of
time, so that specific periods of activity and idleness on
specific processors can be identified and correlated across

~ processors. However, this more detailed view is less effec-
tive in providing an overall impression of relevant per-

I formance abstractions.

The high-level parallel performance model that we pro-
pose (depicted graphically in Figure 2) emphasizes the
binding of performance analysis abstractions to perfor-
mance visual abstractions. The terms in this figure are
defined as follows:

l Performance analysis abstraction-a specification of
the performance characteristics to be observed from
the data, the performance analysis to be performed,
and the semantic attributes of the performance
results.

l Performance view-a representation of a performance
analysis abstraction such that its attributes can be
mapped to a performance display.

l Performance visual abstraction-a specification of the
desired visual form of the abstracted performance
data, unconstrained by the limitations of any partic-
ular graphics environment.

l Performance display-a representation of a perfor-
mance visual abstraction in a form that identifies the
visual properties to which the attributes of a perfor-
mance view are mapped.

l Performance visualization abstraction-the mapping
of a performance view to a performance display.

A key point here is that the performance visual design
can and should incorporate knowledge of the performance
analysis abstraction very early on (as indicated by the
dashed horizontal arrow in Figure 2), providing the basis
for performance interpretation in the final visualization.
The binding between performance analysis and visual
abstractions is a mapping from performance view outputs
to performance display inputs. This abstraction embodies
the integral relationships between performance data and
visual display that reveal the visualization’s performance
meaning.

So that it will be useful and its effectiveness can be eval-
uated, a performance visualization abstraction must be
instantiated in a performance visualizer tool. This tool
implements performance views, displays, and the map-
pings between them, using environment-specific graph-
ics technology based on underlying graphics libraries,
toolkits, and other resources.

VISUALIZATION CONCEPTS
AND PRINCIPLES

The concepts and principles underlying good data visu-
alization are becoming reasonably well understood.2~4
Some of these concepts have proved useful in the design
of effective performance views and displays. Still others
have arisen from the unique challenges of interpreting per-
formance data.

Context
To present performance information clearly, we must

establish some context to which users can relate that
information:

l Perspective-the point of view from which informa-
tion is presented. Typical perspectives for perfor-
mance information include the hardware, the
operating system, and the application program. A

Computer

given perspective may emphasize
states of processes or processors, or
interactions among them, and the
information may or may not be amal-
gamated over space or time. For exam-
ple, Figure 1 shows two views
depicting processor states.

l Semantic context-the relationship
between performance information
and the constructs and abstractions
(such as data structures and control
structures) in the application program.
For example, Figure 3, produced by
Popeye,s shows performance infor-
mation (the locality of memory refer-
ences) for a specific data structure (a
two-dimensional array) in an applica-
tion program. Another example is
selecting a graphical image from an
element and highlighting the corre-
sponding portion of the application
program. For instance, in the Auto-
mated Instrumentation and Monitor-
ing System (AIMS),6 selecting a
communication line between proces-
sors highlights the corresponding
send and receive statements in the
user program.

l Subview mapping-a mapping between
a subset of a graphical view (for
instance, a rectangular subregion)
and the corresponding subset of the
data being rendered.7 This mapping
implies that the data can be recon-
structed from the image, which would
not be the case if the data were
reduced so that details were lost.
For example, each horizontal bar in
Figure 1 (bottom) depicts the detailed
time history of the corresponding
processor, whereas in Figure 1 (top),
such detail is absent because the data
have been averaged over time.

Scaling
For scientific visualization, scaling

graphical views as data sets become very
large is a major challenge. This is especially
true of performance visualization as the
number of processors or duration of exe-
cution substantially increases. Several tech-
niques have been used to handle this
scaling problem:

l Mukidimensional and mukivariate
representation-a representation of
data with many attributes per data
point. Like most scientific data, per-
formance data are typically multidi-
mensional, with both space-like (for
example, processors or memory) and

,,(performance).,
data

semantic-based definition

Performance analysis abstractions I- Performance visual abstractions /

/

\ /
instantiation

Performance visualizer

gure 2. The parallel performance visualization model emphasizes
the binding of performance analysis abstractions to performance
visual abstractions.

Visualization t
technology Visualization toolkit

it I
Visualization / Graphics
environments 1 libraries

1

Other /
tools

Figure 3. Viewing data accesses: time series of data-array-access
surface plots (generated using IBM Data Explorer).

November 1995

Lb urILI2#rIM aafT

15
14
13
12 H
II 0
18
8 P
8 R
-I 0
b c
5
4
3
2
1
e

34 211

m

El

m
8usy - IDLE

IJ SPaCethe Dia$pam
SmarrItE 8Iff;wct

es

q

I

Figure 4. Viewing concurrency patterns: (top) utili i-
zation count display; (middle) space-time diagram
from ParaGraph; (bottom) processor status display,
where top left grid represents processor state, bot-
tom left represents volume of messages currently
being sent by each processor, and bottom right
represents volume of messages currently being
received by each processor; the top right grid is not
used in this example.

time-like dimensions and other parameters (such as
problem size) that may vary as well. Such a multi-
variate representation is conceptually compact, but
the technical challenge for visualization is to repre-
sent as many dimensions as possible on a flat video
screen. Figure 1 (bottom) uses two screen dimen-
sions plus color to depict three data dimensions
(time, processor, and state), whereas Figure 3 uses
an explicit three-dimensional rendering, with color
reinforcing the vertical dimension.

l A4acroscopic and microscopic views-the level of detail
represented by a given view. A macroscopic view con-
veys the big picture, while a microscopic view depicts
fine detail. Figure 1 illustrates a simple example of
this distinction.

l Macro/micro composition and reading-a display
composition that allows perception of both local
detail and global structure. In such a display, fine
details are discernible, but the details accumulate into
larger coherent features, as in Figure 3.

l Adaptive graphical display-the adjustment of a dis-
play’s graphical characteristics in response to data set
size. The goal is to reveal as much detail as possible
without visual complexity interfering with the per-
ception of that detail. In Figure 3, for instance, the
double cueing (height and color) of the vertical axis
might be modified as data set size grows.

l Display manipulation-the interactive modification
of a display, through techniques such as scrolling or
zooming, to handle a large amount of data of vary-
ing detail. In Figure 1 (bottom), for example, scrolling
or zooming along the time axis could be used to con-
vey fine detail for long runs that would otherwise
compress the time axis and lose detail.

l Composite view-a synthesis of two or more views
into a single view that is intended to enhance visual
relationships among the views and present more
global information.7 Examples include combining
lower dimensional displays into a single higher
dimensional display or taking time along a third axis
to construct a three-dimensional display from a two-
dimensional animation. As a simple illustration,
Figure 1 (bottom) is essentially a composite of suc-
cessive processor-state displays.

User perception and interaction
Successful visual performance tuning depends on a syn-

ergistic feedback loop between the user and the visual-
ization tool. The tool produces images that the user
interprets, while the user selects views and options to
guide the tool in detecting and isolating performance bot-
tlenecks. Important concepts in this category include

l Perception and cognition-the sensory development
of an impression, awareness, or understanding of a
phenomenon. Human visual perception can grasp
patterns, distinguishvariations, classify objects, and
so on, through size, shape, color, and motion. For
example, the use of color in Figure 1 (top) gives an
overall impression of processor utilization that is eas-
ily perceived. A familiar example where shape con-
veys information is the Kiviat diagram.

l Observingpatterns-the observation of spatial, tem-
poral, or logical patterns of behavior, which often
indicate important interrelationships between mod-
els and data. For example, a repetitive pattern over
time is often related to a program’s iterative loops. As
an illustration, the bottom of Figure 4 shows a repet-
itive pattern that is easily grasped by the eye.

l User interaction-selections that users make regard-
ing alternate views, levels of detail, and display para-
meters. Such interaction lets users customize the
visualization for a given situation to enhance under-
standing. For example, in a processor-oriented dis-
play, users can select a particular layout or ordering
of processors to make patterns and relationships
more evident, or they can study one specific proces-
sor in detail.

Comparison
Comparisons and cross-correlations between related

views or representations can provide much insight into
behavioral characteristics and their causes. Several graph-
ical techniques can be used for visual comparison:

l Multiple views-the visual presentation of data using
multiple displays from different perspectives. Any sin-
gle visualization or perspective can usually display
only a portion of the relevant behavior. Viewing the
same underlying phenomenon from diverse per-
spectives gives a more well-rounded impression and
is more likely to yield useful insights.8 For example,
the top and bottom parts of Figure 1 give related but
complementary views: One better indicates load bal-
ance, while the other better indicates concurrency.
Still other views, say of communication or data
accesses, could convey additional perspectives on the
same underlying behavior.

l Small multiples-a series of images showing the same
combination of variables indexed by changes in
another variable, much like successive frames of a
movie. Information slices are positioned so that the
viewer can make comparisons at a glance. Animation
is one example of this technique (indexing over time),
but indexing can also be done by processor number,
code version, problem size, machine size, and so on.
Figure 3 illustrates this powerful technique.

l Cross-execution views-the visual comparison of per-
formance information from program executions that
may differ in various ways, such as in problem size or
machine size. For example, Figure 5 (produced by
ParaGraphI) shows a sequence of executions for suc-
cessive program modifications.

Extraction of information
Several techniques enable visual extraction of useful

information from a morass of data:

l Reduction andfiltering-representing raw data by sta-
tistical summaries, such as maxima and minima,
means, standard deviations, frequency distributions,
and so on. This notion extends to graphical reduc-
tion, where a visual display conveys general trends
rather than detailed behavior. In Figure 1 (top), for

8
II
18
I4
15
13
I2
4
0
,

:I
3
I
8 I

1‘
18
22

28 28 30

2b
24
8
I.
14

r2
4
b

;

,

:

:
8

:
It

:
n

:
I

16 18 :
22 0
I8
28 :

a8 :
24 0
24 I
8
I8
14 i
12 n

8
4
b :

;

Figure 5. Viewing interprocessor communication in
ParaGraph: (top to bottom) a series of critical-path
displays shows successive improvements in parallel-
program performance.

November 1995

example, the data are reduced by the averaging of oriented views together, Figure 4 (bottom) represents a
states over time. display showing processor states and communication ani-

l Clustering-multivariate statistical analysis and pre- mated over time. From the combination of shape and color
sentation techniques for grouping or categorizing coding, we see that only one processor row (corresponding
related data points. The intent is to classify points or to the processor groups we saw in the space-time diagram)
identify outliers in a multidimensional data space. is busy at a time, while all other processors await remote
Classical examples include scatterplots and frequency data. As the animation shows, data are sent from a proces-
histograms. sorrow to the row above it, and the busy

l Encoding and abstracting-using graph- processor row cycles upward. Thus, con-
ical attributes such as color, shape, currency is limited to one processor row at
size, and spatial orientation or ar-
rangement to convey information (for T he critical a time, which explains the poor utilization

path’s stability that we noticed initially.
instance, additional dimensions). across multiple
Such overloading can be easily abused, executions of the Access patterns for data
but when used appropriately, color program is espe- distributions
coding and so forth can effectively cially significant. Our second example involves data-
increase a flat display’s dimensional-
ity. In Figure 3, for example, both color
and spatial arrangement convey infor-
mation.

l Separating information-visual differentiation among
layers of information through color highlighting,
foreground/background, and so forth. A good illus-
tration of this technique is the highlighting of the crit-
ical path in Figure 5.

CASE STUDIES
We now illustrate, through a series of case studies, the

practical application of the model we have proposed for
performance visualization. (For further details and addi-
tional examples, see Heath, Malony, and Rover.9)

Concurrency and communication
in data-parallel computation

Our first example, discussed in detail by Rover and
Wright,lO represents the back substitution phase of a data-
parallel program for solving a system of linear equations
by Gaussian elimination. The system matrix is partitioned
among the processors, and the owner-computes rule is
used: Each program assignment statement is executed by
the processor that owns the variable on the left-hand side,
and any data used on the right-hand side that is owned by
another processor must be sent to the left-hand-side owner
before the statement is executed.

Our initial analysis abstraction is simply the processor
states during program execution, while the visual abstrac-
tion is a time-series plot of the number of processors in each
state. Scanning (scrolling, if needed) the display’s time axis
lets users perceive the state transitions and patterns, as
shown in Figure 4 (top), which reveals that processor uti-
lization is poor. Suspecting that this inefficiency may stem
from communication of nonlocal data, we select a view
that depicts the message-passing among the processors-
specifically, the space-time diagram shown in Figure 4
(middle). A clear pattern emerges, with repetitive com-
munication rounds among processor groups.

To investigate how these groups relate to their locations,
we select a processor-oriented view whose spatial arrange-
ment of the processors reflects their logical configuration
in a two-dimensional grid for the purpose of partitioning
the matrix. Tying the message-passing and processor-

Computer

access patterns in parallel-programming
languages, such as High-Performance
Fortran (HPF) or parallel C + +, that incor-

porate data-distribution semantics. Interprocessor com-
munication in such languages is implicitly determined by
the data distribution; the distribution selection constitutes
the programmer’s main control over parallel efficiency.
An appropriate analysis abstraction, therefore, is the pro-
portion of local versus remote data accesses required to
support a particular data distribution.

For an application involving Gaussian elimination on a
matrix, the relevant data structure is a two-dimensional
array supporting an effective performance view that
relates easily to the application program. The visual
abstraction represents the data structure as a surface
whose height and color are determined by the proportion
of local data accesses for the corresponding position in the
two-dimensional array (Figure 3). Color enhances viewer
perception of the differences in data accesses within a sin-
gle image and helps unify the series of images. The sur-
face changes could be animated over time, but perhaps
even more effective is a series of snapshots (small multi-
ples) that convey the changing data-access patterns as the
algorithm progresses.

Critical paths in parallel computation
The critical path is the longest serial thread, or chain of

dependencies, running through a parallel-program exe-
cution. It is an important performance analysis abstrac-
tion, because we cannot reduce the program’s execution
time without shortening the critical path; hence, it is a
potential place for bottlenecks. The critical paths stability
across multiple executions of the program is especially sig-
nificant, since it may reveal the presence or absence of a
systematic bias in the execution. By itself, however, criti-
cal-path stability does not tell us whether such a bias is
good or bad, so it should be augmented by other views.

For parallel programs based on message passing, an
appropriate visual abstraction for depicting the critical
path is a minor modification of a space-time diagram, since
data dependencies are satisfied by interprocessor com-
munications. Figure 5 shows the critical paths (highlighted
in the figure) for a sequence of successive improvements
in a parallel program for solving shallow-water equations
on a sphere using a spectral transform meth0d.l’ Time has
been resealed in each instance, so the time scale shown

does not reflect the actual performance improvement, ization its power, but rather the proper matching of a
which is more than a factor of three. Actually, the graphical image to the scientist’s abstraction, regardless
programmer made these improvements by analyzing pro- of how far that picture may be from ordinary reality.
gram behavior using utilization and task displays, but it Consider some typical uses of graphics, say in the sta-
is nevertheless instructive to observe the critical paths’ tistical analysis of data. A simple scatterplot of the resid-
resulting behavior. uals in fitting a model to data can reveal outliers or

In the initial implementation (Figure 5, top), the per- systematic bias that might go undetected by sophisticated
formance is poor because of a substantial analytical or computational methods. Such
load imbalance, and the critical path, not a plot has no direct correlation with “real-
surprisingly, stays with a single processor ity.” It does not depend on the nature of the
(the most heavily loaded one). When the S cientif ic data quantities represented by the data or the
load balance is improved (Figure 5, middle can also reflect model. But it is nevertheless a powerful
top), the critical path begins to cover more discrete events graphical technique that takes full advan-
processors, as no single processor is now having intricate tage of the human eye’s ability to spot pat-
the bottleneck. Further improvements temporal terns. Another example of this type is the
spread the critical path even further precedence rela- use of purely abstract graphical plots to
(Figure 5, middle bottom). This appears tionships, such as detect nonrandom patterns in the output
to support the intuitive notion that a well- elementary par- of a (supposedly) random number gener-
balanced algorithm should produce a title tracks from ator.
somewhat random critical path because of an accelerator. A second argument is that performance
slight timing vagaries in the nearly equal
tasks. After the final improvement, how-
ever, the critical path once again settles mainly on one
processor (Figure 5, bottom). The explanation is that this
implementation uses a carefully pipelined, ring-oriented
algorithm. All previous load balance and communication
anomalies have been removed, so that the behavior is now
quite regular, with the trailing processor in the pipeline
consistently staying on the critical path.

SCIENTIFIC VISUALIZATION AND
PERFORMANCE VISUALIZATION

Although there are differences, scientific visualization
and performance visualization have similar aims: to gain
insight into underlying phenomena by graphically depict-
ing data.

Nevertheless, some argue that scientific visualization
has the advantage of representing real phenomena, while
performance visualization handles abstractions and arti-
ficial objects. However, this is only partially true and is
based on a rather narrow view of scientific visualization.
Obviously, many visualizations do involve the depiction
of some continuous physical quantities, such as tempera-
ture or pressure, as a function of some continuous vari-
ables, such as space or time coordinates. And the graphical
image presented, typically represented by lines and sur-
faces in Euclidean space, does correspond directly to some
physical system. But many other types of scientific data
that involve abstract entities or discrete objects bear little
relation to any intuitive image of underlying reality.

For example, a dynamic system’s behavior is often best
understood in terms of phase space rather than the ordi-
nary space-time in which the model is formulated. Phase
space is an abstraction that scientists understand. When
presented with a graphical image of it, they know what
patterns (orbits and so forth) to look for. These patterns
would likely be less obvious in an ordinary graphical pre-
sentation of the same data in space-time. The use of such
abstractions to interpret and represent data is ubiquitous
throughout science. Even time representation by one spa-
tial axis is an abstraction in this sense. Thus, it is not the
direct representation of reality that gives scientific visual-

data are fundamentally different from typ
ical scientific data because of the discrete

nature of the performance events and their complex, log-
ical interrelationships. Again, this would be true ifwe took
a narrow view of scientific data as basically the solution of
a held equation. However, in a broader sense, scientific
data involve discrete entities-genome sequences, demo- i
graphic surveys, and so on. Scientific data can also reflect
discrete events having intricate temporal precedence rela-
tionships, such as elementary particle tracks from an accel-
erator. A common feature in many of these cases is that
they tend to be pattern recognition problems where qual-
itative results are more important than quantitative results.
This makes them even more ripe for graphical presenta- ~
tion than more conventional scientific modeling of physi- ~
cal phenomena, since such patterns are often best grasped 1
visually. Since performance visualization has much the i
same flavor, both in its goals and in the data with which it
typicallyworks, perhaps we should be looking here for use-
ful analogies and graphical ideas.

This is not to say that performance data and visualiza- 1
tion have nothing in common with conventional scientific
data and visualization, where contours, surfaces, and so
on depict field quantities. Performance data are almost
invariably time dependent and often involve space-like
quantities (memory addresses, loop and array indices,
process and processor identifiers, and so on). This lets
many standard tools of conventional scientific visualiza-
tion be effectively applied in visualizing performance data.

Hence, experience gained and lessons learned in scien-
tific visualization have a direct benefit in developing and
applying performance visualization technology. Specifically,

l abstraction is a powerful and ubiquitous tool through- ~
out science, and one key to success in visualization is ~
the appropriate matching of graphical images to
these abstractions;

l scientific data come in many varieties and often pre-
sent pattern recognition problems that may have
much in common with performance analysis and
visualization;

l simple graphical techniques can be powerful in yield-

November 1995

ing insights, but the entities represented may bear lit-
tle or no direct relation to any physical entities; and

l we should use the full range of tools and techniques
for scientific visualization in seeking new ideas and
paradigms for performance visualization.

DESPITE TECHNOLOGICAL ADVANCES in performance visual-
ization design, developing useful parallel performance
visualizations is still challenging. MillerI addresses this
challenge, listing criteria for good visualization. These cri-
teria, like the concepts we have discussed, help define gen-
eral requirements to guide the visualization designer in
creating useful visual displays. Of course, in enhancing
the interpretation of a visualization, we must also consider
the semantic context-particularly with respect to the
user’s conceptual model. A visualization that is meaning-
ful to one person may not be meaningful to another.

The performance visualization model we have pre-
sented emphasizes the need for integrating performance
evaluation models with performance displays to provide
a foundation for developing usefulvisual abstractions. But
the model also acknowledges the need for user involve-
ment-in design, interaction, and evaluation-from
which true insight is ultimately achieved. I

References
1. M. Heath and J. Etheridge, “Visualizing the Performance of

Parallel Programs,“IEEESoftware, Vol. 8, No. 5, Sept. 1991,
pp. 29-39.

2. P. Keller and M. Keller, Visual Cues: PrQCtiCdDQtU Visualiza-
tion, IEEE Press, Piscataway, N.J., 1993.

3. E. Tufte, The Visual Display of Quantitative Information,
Graphics Press, Cheshire, Conn., 1983.

4. E. Tufte, Envisioning Information, Graphics Press, Cheshire,
Conn., 1990.

5. S. Hackstadt and A. Malony, “Next-Generation Parallel Per-
formanceVisualization: APrototyping Environment forVisu-
alization Development,” Tech. Report CIS-TR-93-23, Dept.
of Computer and Information Science, Univ. of Oregon,
Eugene, Ore., 1993.

6. J. Yan et al., The Automated Instrumentation and Monitoring
System (AlMSI ReferenceManual, Report 108795, NASAAmes
Research Center, Moffett Field, Calif., 1993.

7. A. Couch, “Categories and Context in Scalable Execution
Visualization,“J. ParallelandDistributedComputing, Vol. 18,
No. 2, June 1993, pp. 195-204.

8. T. LeBlanc, J. Mellor-Crummey, and R. Fowler, “Analyzing
Parallel-Program Executions Using Multiple Views,” J. Par-
allel andDistributed Computing, Vol. 9, No. 2, June 1990, pp.
203-217.

9. M. Heath, A. Malony, and D. Rover, “Parallel Performance
Visualization: From Practice to Theory,“lEEEPamlle1 and Dis-
tributed Technology, Vol. 3, No. 4. Winter 1995.

10. D. Rover and C. Wright, “Visualizing the Performance of
SPMD and Data-Parallel Programs,” J. Parallel and D&rib-
uted Computing, Vol. 18, No. 2, June 1993, pp. 129-146.

11. P.H. Worley and J.B. Drake, “Parallelizing the SpectralTrans-
form Method,” Concurrency: Practice and Experience, Vol. 4,
No. 4, June 1992, pp. 269-291.

12. B. Miller, “What to Draw? When to Draw? An Essay on
Parallel-Program Visualization,” J. Parallel and Distributed
Computing, Vol. 18, No. 2, June 1993, pp. 265-269.

Michael T. Heath is a professor in the Department of
Computer Science and a senior research scientist at the
National Centerfor SupercomputingApplications at the Uni-
versity of Illinois, Urbana-Champaign. His research inter-
ests include large-scale scientific computing on parallel
computers, with specific interests in sparse matrix compu-
tations and performance visualization.

Heath received a BS degree in mathematicsfrom the Uni-
versity of Kentucky, an MS degree in mathematicsfrom the
University of Tennessee, and a PhD degree in computer sci-
encefiom Stanford University Heath is a member of thesci-
entific advisory and review panels for high-performance
computingatArgonne, LosAlamos, and OakRidgeNational
Laboratories and is on the panel ofjudgesfor the Gordon Bell
Prizeforparallel performance. He is an editor of the SIAM
Review, the SIAM Journal on Scientific Computing, and
the International Journal of Supercomputer Applications.

Allen D. Malony is an assistant professor in the Depart-
ment of Computer and Information Science at the Univer-
sity of Oregon. His research interests focus on performance
evaluation for parallel and high-speed computer systems,
including performance measurement, analysis, visualiza-
tion, and modeling, as well as parallel-programming envi-
ronments.

Malony received BS and MS degrees in computer science
from the University of Calqornia, Los Angeles, in 1980 and
1982, respectively, and a PhD degreefrom the University of
Illinois, Urbana-Champaign, in 1990. He received a National
Science Foundation (NSF) National Young Investigator
Award in 1994.

Diane T. Rover is an assistantprofessor in the Department
of Electrical Engineering at Michigan State University. Her
research interests include integratedprogram development
andperformance environmentsforparallel anddistributed
systems, instrumentation systems, performance visualiza-
tion, embedded real-time system analysis, and reconfigurable
hardware.

Rover received a BS degree in computer science in 1984,
and MS and PhD degrees in computer engineering in 1986
and 1989, respectively, allfrom Iowa State University. She
received an R&D lOOAward in 1991 for the development of
the Slalom benchmark, a MasPar Challenge Award in 1994,
and an MSU College of Engineering Withrow TeachingExcel-
lence Award in 1994. Rover is a member of the IEEE Com-
puter Society, the ACM, and the American Society for
EngineeringEducation (ASEE).

Readers can contact Heath at the Department of Computer
Science, 2304 Digital Computer Laboratory, University of
Illinois, 1304 WestSpringfieldAve., Urbana, IL 61801-2987;
e-mail heath@cs.uiuc.edu.

Computer

