
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2005; 00:1–7

Knowledge Engineering for

Automatic Parallel

Performance Diagnosis

L. Li∗,† and A. D. Malony

Department of Computer and Information Science, University of Oregon, U.S.A

SUMMARY

Scientific parallel programs often undergo significant performance tuning before meeting
their performance expectation. Performance tuning naturally involves a diagnosis process
– locating performance bugs that make a program inefficient and explaining them in
terms of high-level program design. We present a systematic approach to generating
performance knowledge for automatically diagnosing parallel programs. Our approach
exploits program semantics and parallelism found in computational models to search and
explain bugs. We first identify categories of expert knowledge required for performance
diagnosis and describe how to extract the knowledge from computational models.
Second, we represent the knowledge in such a way that diagnosis can be carried out
in an automatic manner. Finally, we demonstrate the effectiveness of our knowledge
engineering approach through a case study. Our experience diagnosing Master-Worker
programs show that model-based performance knowledge can provide effective guidance
for locating and explaining performance bugs at a high level of program abstraction.
Copyright c© 2005 John Wiley & Sons, Ltd.

key words: Performance; Diagnosis; Knowledge engineering; Parallel

1. Introduction

Performance tuning (a.k.a. performance debugging) is a process that attempts to find and
repair performance problems (performance bugs). For parallel programs, performance problems
may be the result of poor algorithmic choices, incorrect mapping of the computation to
the parallel architecture, or a myriad of other parallelism behavior and resource usage
problems that make a program slow or inefficient. Expert parallel programmers often approach
performance tuning in a systematic, empirical manner by running experiments on a parallel

∗Correspondence to: Deschutes Hall Room 228, University of Oregon, Eugene, OR, 97402, USA
†E-mail: lili@cs.uoregon.edu

Copyright c© 2005 John Wiley & Sons, Ltd.

2 L. LI AND A. D. MALONY

computer, generating and analyzing performance data for different parameter combinations,
and then testing performance hypotheses to decide on problems and prioritize opportunities
for improvement. Implicit in this process is the expert’s knowledge of the program’s code
structure, its parallelization approach, and the relationship of application parameters to
performance. We can view performance tuning as involving two steps: detecting and explaining
performance problems (a process we call performance diagnosis), and performance problem
repair (commonly referred to as performance optimization). The goal of automating parallel
performance tuning is difficult because the optimization phase can involve expertise that is
hard to formalize and automate.

This paper focuses on parallel performance diagnosis and how to support it as a automated
knowledge-based process. Certainly, important performance measurement and analysis tools,
such as Paradyn [16], AIMS [17], and SvPablo [3], have been developed to help programmers
diagnose performance problems. Two observations of these tools particularly motivate our
work:

1. The performance feedback provided by the tools tend to be descriptive information about
parallel program execution at lower levels. Even if the tools detect a specific source
code location or machine resource that demonstrates poor performance, the information
may lack the context required to relate the performance information to a higher-level
cause. Thus, it falls on the users to explain performance observations and reason about
causes of performance inefficiencies with respect to computational abstractions used in
the program and known only to them. Unfortunately, novice parallel programmers often
lack the performance analysis expertise required for high-level problem diagnosis using
only lower-level performance data.

2. The design of performance experiments, examining performance data from experiment
runs, and evaluating performance against the expected values to identify performance
bugs are not well automated and not necessarily guided by a diagnosis strategy. Typically,
the user decides on the instrumentation points and measurement data to collect before an
experiment run. The user is also often involved with the processing and interpretation
of performance results. The manual efforts required by tools and the lack of support
for associating effects with causes and managing performance problem investigation
ultimately limit diagnosis capability.

We believe that both of the deficiencies above could be addressed by encoding how
expert parallel programmers debug performance problems. In particular, we want to capture
knowledge about performance problems and how to detect them, and then apply this
knowledge in a performance diagnosis system. Where does the performance knowledge
come from? The key idea is to extract performance knowledge from parallel computational
models that represent structural and communication patterns of a program. The models
provide semantically rich descriptions that enable better interpretation and understanding
of performance behavior. Our goal is to engineer the performance knowledge in such a way
that bottom-up inference of performance causes is supported. In this manner, the diagnosis
system can use the performance knowledge base for problem hypothesis testing, whereby a
diagnosis search strategy decides which candidate hypothesis is most useful to pursue and new
experiment requirements are generated to confirm or deny it.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

AUTOMATIC PARALLEL PERFORMANCE DIAGNOSIS 3

The answer to whether a performance diagnosis tool would benefit from knowing the
computation model of a parallel program is most certainly “yes.” The problem we focus on
in this paper is the knowledge engineering required for model-based performance diagnosis.
The contributions of the performance knowledge derived from parallel models are that they
can explain performance loss from high-level program (computation) semantics and provide a
sound basis for automating performance diagnosis processes.

The remainder of this paper is organized as follows. The next section presents generic
performance diagnosis processes and our model-based diagnosis approach. Section 3 describes
how to extract performance knowledge on the basis of computational models. In section 4,
knowledge representation method will be discussed. We use Divide-and-Conquer model as
an example to demonstrate how to generate performance knowledge in section 5, and present
experiment results of diagnosing a Master-Worker test program in section 6. Section 7 provides
related research works. The paper concludes with observations and future works in section 8.

2. Model-based Automatic Performance Diagnosis

2.1. Generic Performance Diagnosis Process

Performance diagnosis is the process of locating and explaining sources of performance loss
in a parallel program. Expert parallel programmers often improve program performance by
iteratively running their programs on a parallel computer, then interpret the experiment results
and performance measurement data to suggest changes to the program. More specifically, the
process involves:

• Designing and running performance experiments. Researchers in parallel computing have
developed integrated measurement systems to facilitate performance analysis [17, 16, 20].
They observe performance of a parallel program under a specific circumstance with
specified input data, problem size, number of processors, and other parameters. The
experiments also decide on points of instrumentation and what performance information
to capture. Performance data are then collected from experiment runs.

• Finding symptoms. We define a symptom as an observation that deviates from
performance expectation. General metrics for evaluating performance includes execution
time, parallel overhead, speedup, efficiency, and cost [11]. By comparing the metrics
computed from performance data with what is expected, we can find symptoms such as
low scalability, poor efficiency, and so on.

• Inferring causes from symptoms. Causes are explanations of observed symptoms. Expert
programmers interpret performance symptoms at different levels of abstraction. They
may explain symptoms by looking at more specific performance properties [12], such
as load balance, memory utilization, and communication cost, or tracking down specific
source code fragments that are responsible for major performance loss [13]. Attributing
a symptom to culprit causes requires bridging a semantic gap between raw performance
data and higher-level parallel program abstraction. Expert parallel programmers, relying
on their performance analysis expertise and knowledge about program design, are able

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

4 L. LI AND A. D. MALONY

to form mediating hypotheses, capture supporting performance information, synthesize
raw performance data to testify the hypotheses, and iteratively refine hypotheses toward
higher-level abstractions until some cause is found.

2.2. Model-based Performance Diagnosis Approach

A parallel computational model, also called design pattern [4, 5] or parallel programming
paradigm [14] in the literature (we will use these terms interchangeably in this paper), is
a recurring algorithmic and communication pattern in parallel computing. Typical models
include master-worker, pipeline, divide-and-conquer, and geometric decomposition [5]. The
models identify not only computational components and their behaviors (semantics), but
process interaction and coordination patterns (parallelism) of runtime behavior of a parallel
program. The Divide-and-Conquer (D&C) model, for instance, describes a class of parallel
programs that feature recursively splitting a large problem into a certain number of smaller
subproblems of the same type until the problem size has been sufficiently reduced, then solving
the subproblems in parallel and merging their solutions to achieve the solution to the original
problem [4]. Split, solve, and merge are therefore essential computational components in D&C
computing. A process interacts with other processes at run time in four different ways – the
process receives subproblems from some parent processors if it does not participate in root
split, it passes divided subproblems down to some children processes, it receives sub-solutions
from children processors to merge, and finally it passes merged solution up to parent processes
for further solution join. The interactions dictate parallelism of D&C programs.

Parallel computational models can be supportive of detecting and interpreting performance
bugs at a high level of program abstraction. First, an important aspect of a computational model
– communication patterns – reflects data/task dependence relations enforced by parallelization.
In a parallel program, a significant portion of performance inefficiencies (e.g., undesirable
communication overheads, load-imbalance, and synchronization cost) is due to process
interactions arising from data/task dependency. So the communication pattern can help reveal
inherent performance degradation points at parallelism level of the program.

Second, computational structure and behavioral semantics of a parallel program provide
a context for interpreting performance inefficiencies. To explain a performance degradation
point, we need to look up participating processing units and their behaviors causing
performance loss at the point. Computation models capture such semantic information.

Third, model semantics facilitate bottom-up cause inference. We can classify and synthesize
low-level performance data to derive performance metrics of higher-level abstraction, according
to behavioral models of a parallel program. Evaluating performance against the metrics drives
inferencing process up to a higher abstraction level.

Computational models can also be helpful in performance experiment design and automation
of diagnosis process.

• The structural information helps selectively instrument the program code to capture only
relevant performance events. So model knowledge can effectively constrains the volume
of performance information generated for diagnosis, making measurement data more
tractable.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

AUTOMATIC PARALLEL PERFORMANCE DIAGNOSIS 5

• There is a collection of commonly-used models for constructing real-world parallel
applications. Each of them features a set of typical performance problems
and corresponding high-level causes. Researchers have built up rich performance
analysis expertise of the models. Performance diagnosis processes involve significant
experimentation and reasoning on the basis of prior knowledge. If we can represent and
manage the expert performance analysis expertise in a proper way, they will effectively
drive diagnosis process with little or no user intervention.

The above potential advantages of computational models motivate our pursuit of model-
based performance diagnosis approach. The basic idea of the approach is to incorporate
program semantics and parallelism embedded in computational models into generic diagnosis
processes to address the automation of performance diagnosis at a high level abstraction. We
call the information extracted from computational models and required by diagnosis processes
performance knowledge. The essence of our approach is to use the performance knowledge to
automatically drive performance problems search and interpretation. To get there we need to
generate performance knowledge from computational models and represent it in an engineered
knowledge base.

3. Generation of Model-based Performance knowledge

Experience in knowledge-based system [15] and requirements of performance diagnosis suggest
both domain knowledge and inference steps need to be modeled. In this section, we will focus
on model-oriented performance knowledge and inference modeling.

3.1. Performance Knowledge

We identify four categories of knowledge provided by computational models.

Performance factors at a high level of abstraction. In our diagnosis approach, we aim to find
performance causes at the level of parallelization design. For this end, we should first identify
design factors at this abstraction level that are most critical to performance. We investigate
factors like task scheduling strategy, data partitioning and mapping methods, model-specific
parameters (e.g., the number of workers in Master-Worker model), and other algorithmic
factors. A performance cause – an interpretation of performance symptoms in terms of these
factors – can therefore immediately direct the programmer to bad parallelism design decisions.

Performance models. Performance models help infer causes from symptoms. Structural
information embedded in computational models facilitates performance modeling of parallel
programs. In our methodology, a performance model is not a closed-form mathematical formula
of system/application parameters. Rather we present descriptive performance compositions
that identify computational components/overhead categories and their contribution to overall
performance. Given a programming pattern, participating processes can be grouped into
clusters in terms of individual process characteristics and their interaction mode with other
neighbor clusters. Also distinguishing to traditional performance modeling, we generate a
distinct performance model for each process cluster if more than one cluster exist. Performance

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

6 L. LI AND A. D. MALONY

models defined in this way serve two goals: (a) performance model of individual process clusters
helps detect computational components that account for performance loss. (b) Contrasting
performance models of inter-dependent processes to reveal their behavioral differences
helps interpret performance losses at process-interacting points such as communication and
synchronization (we will illustrate this with Divide-and-Conquer model in section 5.3).

Model-specific performance metrics. Performance diagnosis is driven by metric-based
evaluation. Expert programmers define metrics describing certain performance properties
of concern, compute them from raw performance data, then assess and interpret them in
the context of parallel systems employed. Traditional performance analysis approaches use
generic metrics without relevance to program semantics, such as synchronization overhead
and imperfect L2 cache behavior in [12]. A consequence of evaluation with the generic metrics
is that the users still need to attribute them to specific program design decisions. To enhance
explanation power of performance metrics, we intend to incorporate model semantics into
their definition. For instance, the metrics could be process idle time due to waiting for parent
processes to split problem in Divide-and-Conquer model, or master setup task delay in Master-
Worker model. The advantage of model-specific metrics over generic ones is that they reflect
characteristics of problem-solving (i.e. algorithmic properties) and process coordination (i.e.
parallelism).

Experiment design and management. Empirical-based performance analysis relies on
experiments to capture performance information. The experiments in our method are
particularly tailored to performance characteristics as reflected in computational models.
Experiment specification includes system parameter setting, instrumentation instruction, and
decisions about what performance events to record.

3.2. Modeling Inference Steps

The three major types of actions involved in diagnosis – running experiments, computing and
evaluating performance metrics to find symptoms, and explaining symptoms – are performed
in an iterative manner. Figure 1 represents our iterative diagnosis methodology.

The inference process begins with defining model-specific performance metrics that have
close affinity with generic performance metric like efficiency or speedup. Corresponding
performance experiments are conducted and the collected data is abstracted according to
the metric computing rules. We then reach a symptom by evaluating the model-specific metric
against the expected value or the tolerance for its severity. If the symptom can be directly
interpreted by some factors at a high level of abstraction, then the search for performance
causes resulting in the symptom is over. That is, there is an explanation for the performance
problem. Otherwise, we refine search space for further search. New experiment specifications
and performance metric choices are generated as a result of refinement. They are fed into next
iteration of inference.

Refining search space is the most important step in the inference process in that it determines
the direction of performance cause search and essentially boosts the abstraction level of
inference. Our approach refines search space by first refining performance models to restrict
attention to more specific performance aspects, then defining model-specific metrics addressing
the performance aspects, and evaluating the metrics. The process implicitly involves generating

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

AUTOMATIC PARALLEL PERFORMANCE DIAGNOSIS 7

Experiment Specifications

performance data

Compute
performance metrics

Evaluate against
the expected

Explainable with
targeting performance

factors?

evaluation metric
Define initial

Specify experiments

Stop searching

Refine search space Stop searching

YesNo

NormalSymptoms

Data abstraction rules

Generate

Figure 1. Iterative model-based diagnosis processes.

performance knowledge (models and metrics) of more explanation power. Approaches to
performance modeling and metric formulating therefore play a critical role in the refinement
of search space. We identify following approaches:

(M1) breadth decomposition – decomposing performance cost according to computational
components of the computational model;

(M2) phase localization – restricting to model-specific computational phases to look for
performance losses occurring in the time periods;

(M3) concurrency coupling – formulating performance coupling among interactive processes
which arises from concurrency, workload distribution, data/task dependency;

(M4) parallelism overhead formulating – identifying and formulating parallelism-specific
performance overhead, such as idle time due to task scheduling, workload migration.

We will illustrate the applications of these approaches in the case study section. In
addition to above approaches, performance metrics can also be tailored to characteristics
of a computational model. For example, the metric levels of problem split a process being

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

8 L. LI AND A. D. MALONY

delayed, HBf
, in section 5.4 is specific to Divide-and-Conquer model. While it is not a value

of performance cost, it helps interpret source of the cost. The metrics are computed by
synthesizing raw performance measurement data in terms of their definition rules.

4. Performance Knowledge Representation

Given a parallel computational model, and a symptom associated with a model-specific
performance metric of concern, we can create an inference tree that represents our bottom-up
performance diagnosis approach. An example inference tree of a Divide-and-Conquer model
is presented in Figure 3. The root of the tree represents the symptom that we are going to
diagnose, branch nodes represent intermediate observations (i.e., a performance evaluation
with respect to some performance metric, such as waiting time is a significant percentage of
total elapsed time) that we have achieved so far and need further performance evidences to
explain, and leaf nodes represent an explanation of the root symptom in terms of high-level
performance factors. Inference processes presented in the tree are driven by metric evaluation.
Performance knowledge at various abstraction levels are recalled only when necessary at
appropriate node levels. Inference trees, therefore, formalize a structured knowledge invocation
process. In addition, inference trees can readily incorporate knowledge generated from new
experience or further performance model refinement through adding branches at appropriate
tree levels, making knowledge representation highly extensible.

We then encode the inference tree with production rules. Formally, a production rule is
a condition-action statement in which the conditions match the current situation and the
actions add to or modify that situation. In performance diagnosis terms, a rule consists of one
or more performance assertions, and performance evidences that must be satisfied to prove
the assertions. We make use of syntax defined in the CLIPS [18] expert system building tool
to describe production rules. The syntax has the form:

(defrule <rule-name>
<condition-element>*
=>
<action>*)

where
condition-element::= <pattern-ce> | <assigned-pattern-ce> | <not-ce> |

<and-ce> | <or-ce> | <logical-ce> | <test-ce> |
<exists-ce> | <forall-ce>

action ::= <constant> | <variable> | <function call>

Due to its extensibility, capabilities, and low-cost, CLIPS has been used in building expert
systems of a wide range of applications in industry and academia. The inference engine provided
in CLIPS is particularly helpful in performance diagnosis because it can repeatedly fire rules
with original and derived performance information until no more new facts can be produced,
thereby realizing automatic performance reasoning.

Inference trees already encode the content sketch and control structure for knowledge
reasoning, so we can immediately transform information embedded in the trees into production
rules. For the purpose of automatic performance diagnosis with minimum user intervention,

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

AUTOMATIC PARALLEL PERFORMANCE DIAGNOSIS 9

we need additional rules supporting the main reasoning thread presented in an inference tree.
The supporting rules fall into four categories – process clustering, abstract event recognition,
performance metric computing, and experiment specification.

For the purpose of semantic-oriented metric computing, participating processes in a
computational model should be grouped into process clusters based on the behavioral
characteristics of individual processes and their interaction modes with other neighbor clusters.
Process clustering rules identify members of each behaviorally distinct process cluster (e.g., in
Master-Worker model, which processes play the role of master and which of worker) or inter-
dependent process clusters with respect to a particular process (e.g., in divide-and-conquer
case, who are parent processes that pass divided sub-problems down to a process, and who are
child processes that pass sub-solutions up to the process for merge).

An abstract event consists of a set of related low-level primitive performance events, which
together represent a higher-level abstract behavioral pattern, and performance attributes
derived from interactions among the events. Abstract events help identify the performance
inefficiencies distinct to behavior patterns a computational model exhibits at runtime,
therefore facilitating the computing of model-specific performance metrics. Productions rules
for recognizing abstract events scan an event trace, generate abstract event instances, and
calculate and assign performance attribute values to the instances. The third category –
performance metric computing rules – defines how performance attributes of the abstract
event instances are synthesized to produce model-specific metrics that can be used to promote
performance cause inference. The last category – experiment specification rules – is devoted to
the generation of performance data required for the performance metrics. Due to the limitation
of space, we refer readers to [26] for details of the representation and examples of the supporting
rule categories.

5. Case study – Divide-and-Conquer model knowledge generation

In this section, we will show how to generate performance knowledge from an example parallel
computational model, Divide-and-conquer (D&C), using the approach presented above.

5.1. Model description

A wide range of important problems have efficient solution based on the Divide-and-Conquer
method. The traditional D&C approach consists of: (i) recursively splitting the problem
into a certain number of smaller subproblems of the same type until the problem size has
been sufficiently reduced, (ii) solving the subproblems independently, and (iii) merging their
solutions to achieve the solution to the original problem [2, 4]. A D&C computation can
therefore be viewed as a process of expanding and collapsing a D&C tree [1]. The root of the
tree represents the whole problem. Each branch node in the tree corresponds to a problem
instance, and children of the node correspond to its divided subproblems. Each leaf represents
a base problem instance where problem split stops. In general, D&C algorithms are parallelized
by solving the subproblems concurrently at the upper levels of recursion. Figure 2 illustrates
a D&C tree which is concurrently computed by four processors. Doing efficient parallel D&C

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

10 L. LI AND A. D. MALONY

��

��

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������P1

P2

P3

P4

Height 0

Height 5

1

3 4

5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23

24 25

2

Figure 2. Distributing a D&C tree over 4 processors, where each processor takes care of both splitting,
computing, and merging associated with the assigned tree nodes.

computing is nontrivial. During the tree expansion, some nodes can be split into a number
of subproblems, while other nodes at the same or higher recursion level stop splitting due
to property of the data that have been computed so far, making the D&C tree unbalanced
or irregular. Usually, certain task scheduling/migration strategy is used to balance work load
among processors. For diagnosing this class of applications, first we need to identify factors
and design decisions critical to parallel D&C performance.

5.2. Performance factors

The major issue concerning parallel D&C performance is to balance computation among
processors while minimizing communication costs. In general, following factors have most
impact on D&C performance:

• Amount of work at split and merge stage. If split or merge operations are pretty expensive,
then the processors that are assigned nodes at the lower levels of recursion will be idle
for a significant amount of time while the nodes at the upper levels are splitting or
merging, therefore insufficiently utilized. In this case, dividing a problem into a number
of subproblems is often more efficient than that of a few subproblems since the former
introduces higher degree of concurrency. The factor therefore has close relevance to the
optimal number of children of a branch node in a D&C tree.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

AUTOMATIC PARALLEL PERFORMANCE DIAGNOSIS 11

• Size of base problem instance. The factor decides the height of D&C tree. Recall that
D&C model is particularly effective when the amount of work required for solving a base
case is large compared to the amount of work required for recursive splits and merges.
On the other hand, for the purpose of maximizing processor utilization there should be
a sufficient number of base problem instances. The two often conflicting conditions give
rise to the trade-off between depth of recursive split and amount of base problems.

• Process granularity. As mentioned above, we should seek a balancing point between the
number of processors used for parallel computing and other solution-specific parameters
(e.g. granularity of split and height of expansion tree) induced from D&C to achieve
satisfactory performance.

• Scheduling algorithms used for balancing workload. The factor decides the degree of
load balance and communication cost of moving computation around. Without loss
of generality, and to simplify later discussion, we make two assumptions about the
scheduling algorithms: 1. load migration occurs only when there are idle processors
available for doing extra computation. That is, at any instance of time, if all processors
are busy then no workload migration can happen. 2. If a processor passes some of its
subproblems (child branches in D&C tree) to other processors, then solutions to the
subproblems will be sent back to the processor to merge as soon as they are computed.
The assumptions facilitate localized modeling of performance loss due to scheduling
inefficiency in the next section.

5.3. Performance models

Next we model D&C performance by referring to the rules defined in section 3.2. According
to breadth decomposition rule, total elapsed time of a single processor p in a parallel D&C
execution, denoted as tp, consists of tsetup (process-setup overhead), tsplit (amount of time
spent splitting problems), tsolve (amount of time time spent solving base problem cases), tmerge

(amount of time spent merging sub-solutions), tcomm (communication time for transferring
data among processors), twait (amount of time spent waiting for workload assignment or
synchronizing with other processors), and thousekeeping (amount of software housekeeping time
with respect to task scheduling or load balancing algorithm):

(M1) ⇒ tp = tsetup + tsplit + tsolve + tmerge + tcomm + twait + thousekeeping (1)

Whenever we refer to communication time in the paper, we mean effective message passing
time that excludes time loss due to communication inefficiencies such as late sender or
late receiver in MPI applications. Rather, waiting time accounts for the communication
inefficiencies with the purpose of making explicit performance losses attributed to mistimed
processor concurrency, hence parallelism design.

Performance coupling of processors in D&C computing manifests in four aspects. First, the
processors which do not participate in root split need to wait for subproblems to be passed
down from some parent processor (Pparent). Second, the processors which are idle at some point
will get workload transferred from some neighbor processor (Pneighbor) that is designated by
the task scheduling algorithm. Third, the processors need to get sub-solutions from children
processors (Pchild) to merge. And last, after a processor finishes merging assigned local nodes,

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

12 L. LI AND A. D. MALONY

it needs to wait the parent processors dealing with upper level nodes to finish their merge
operation before finalizing. The four types of interdependency therefore dictate main sources
of performance loss.

(M3) ⇒ twait = tw−split + tw−migration + tw−merge + tw−finish + tothers (2)

In above equation, the first four items correspond to the waiting time with respect to the
four types of process interaction. The last item accounts for performance loss that cannot be
mathematically represented. The loss is primarily due to local load-imbalance. For instance,
if the branches assigned to p3 in Figure 2 involve more workload than that of p2, the load-
imbalance will give rise to extra idle time of p2 before parent processor p1 gathers all sub-
solutions and performs merge at node 1, which accounts for tothers of p2.

Likewise, communication overheads tcomm – the amount of time spent transferring data,
Ncomm – the number of times of interprocessor communication, and Vcomm – the volume
of communication data can be decomposed into three categories according to computation
phases:

(M2) ⇒ tcomm = tcomm−split + tcomm−migration + tcomm−merge (3)

(M2) ⇒ Ncomm = Ncomm−split + Ncomm−migration + Ncomm−merge (4)

(M2) ⇒ Vcomm = Vcomm−split + Vcomm−migration + Vcomm−merge (5)

5.4. Performance metrics

The performance models above enable the definition of model-specific metrics to use for
evaluation. We start with evaluating process efficiencies to detect a top-level symptom. In
terms of D&C semantics, process efficiency is defined as:

efficiency :=
(tsplit + tmerge + tsolve)

tp
(6)

Let Bf and Bl be the first and the last tree branch processor p deals with during an execution,
then we define HBf

– levels of problem split process p being delayed – as the height of Bf root
and HBl

– levels of solution merge process p being delayed – the height of Bl root. We call
processor p′ a parent of p if p′ deals with higher level expansion tree nodes that lie on the path
from tree root to root of branch Bf . Let {p1

parent, . . . , p
K
parent} be parent processor set of p,

it implies that p1

parent splits tree root and passes sub-problems to p2

parent, p2

parent to p3

parent,

. . ., and finally pK
parent passes Bf to p. For example, parent set of p4 in Figure 2 is {p1, p3}.

We call processor p′ a neighbor of p if p′ migrates some branch to p to balance workload. Let
{p1

neighbor, . . . , p
M
neighbor} be the neighbor processor set of p, and pM

neighbor the processor that
migrates branch Bl to p. Neighbor set of p4 in Figure 2, for instance, is {p3}. We call processor
p′ a child of p if p passes/migrates some subproblem branch to p′. Let {p1

child, . . . , p
N
child} be the

children processor set of p. Children set of p1 in Figure 2, for instance, is {p2, p3}. Referring
to the refining rules in section 3.2, we formulate metrics with respect to each item in equation

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

AUTOMATIC PARALLEL PERFORMANCE DIAGNOSIS 13

(2) as below†:

(M2,M3) ⇒ tw−split :=

K∑

i=0

tisplit (7)

where tisplit represents the amount of time processor pi
parent spent splitting nodes on the path

from the root down to branch Bf ;

(M3,M4) ⇒ tw−migration :=
M∑

i=1

tiw−migration (8)

where tiw−migration is the amount of time waiting processor pi
neighbor to transfer load;

(M2,M3) ⇒ tw−merge :=
N∑

i=1

tiw−merge (9)

where tiw−merge is the amount of time spent waiting for processor pi
child to pass sub-solution;

Let p1

parent, . . . , p
K′

parent be parent processors of processor pM
neighbor. Recall that pM

neighbor passes
the branch Bl to p, then

(M2,M3) ⇒ tw−finish :=

K′∑

i=1

timerge (10)

where timerge is the amount of time processor pi
parent spend merging nodes on the path from

branch Bl up to the root. Illustrating the metrics with processor p2 in Figure 2, we have:
HBf

= 1,
HBl

= 2,
tw−split = node 1 split,

tw−migration = t
p1

w−migration, i.e., waiting time for p1 to migrate node 6 and node 7,
tw−merge = 0, since p2 does not have children processors,
tw−finish = node 2 merge + node 1 merge,

Decompositional performance modeling and metric computing in terms of model semantics
greatly facilitates generation of diagnosis knowledge.

5.5. Generation of model knowledge

An inference tree of diagnosing D&C programs is presented in Figure 3, referring to above
performance models and metrics. We can see that the model-specific metrics effectively
help guide the reasoning from low-level symptoms to causes at high level of abstraction.
For example, ratio of waiting time due to parent node split to overall performance loss

†Model implementation variation may enforce other minor overheads in following waiting time categories.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

14 L. LI AND A. D. MALONY

low
efficiency

wait_merge %

wait_split %

waiting %

wait_finish %

setup %

merge%

wait

merge%

wait_others %

wait_migration %

comm_merge %

comm_migration %

wait

comm_split %

communication %housekeeping %

help explain the cost.

c7: The performance loss here is due to load imbalance between process p with the other processors

: symptom

: intermediate observation

: cause

: inference step

severity of split level
Γsplit: tolerance for

Γmerge: tolerance for

HBl
≤ Γmerge

HBl
> Γmerge

severity of merge level

HBf
> Γsplit

HBf
≤ Γsplit

c2: Split is pretty expensive. Try to split problem into more subproblems to increase concurrency.
c3: The process can be better utilized if the scheduling algorithm can reduce load migration time.
c4: There is local load imblanace between p and pi

child. The branch transferred to pi
child

c5: The process was idle during upper HBl
levels of merge. There might be more processors used

c6: Merge is pretty expensive. Try to split problem into more subproblems to increase concurrency.

c8: Communication cost for merge is expensive. Ncomm−merge and Vcomm−merge help explain the cost.
c9: Communication cost for split is expensive. Ncomm−split and Vcomm−split help explain the cost.
c10: Communication cost for migration is expensive. Ncomm−migration and Vcomm−migration

necessary for optimal performance.
c1: The process was idle until HBf

levels of split. There might be more processors used than

incurred more work load than the counterpart in p.

than necessary for optimal performance.

than pparent, pneighbor, and pchild.

C1

C2
C3

C4 C4

pN
child

C5

C8

C10

p1

child

C9

C6

C7

Figure 3. Inference Tree for Performance Diagnosis of Divide-and-Conquer model.

(i.e., wait split% in Figure 3) and the levels of split being delayed (HBf
) jointly distinguish

the performance impact of split operations. As inference going deep, causes of performance
inefficiency are localized. Waiting time for merge (wait merge), for instance, is broken down
into waiting time for individual child processors, which helps isolate local load imbalance
between processor p and specific child processors.

The knowledge inference present in Figure 3 is not meant to be complete. There is still
room for further refining search for performance bugs. For instance, since processor p may

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

AUTOMATIC PARALLEL PERFORMANCE DIAGNOSIS 15

pass branches of workload down to a child processor pi
child for multiple times, tiw−merge – the

amount of time spent waiting processor pi
child to send back sub-solutions – can be further

decomposed into waiting time with respect to each pass-down, so that we are able to attribute
local load-imbalance to specific branches of involved processes. Nevertheless, designed to be
extensible, our inference tree can readily accommodate the knowledge extension.

Another important thing to know about the inference tree is that nodes at different tree
levels may enforce varying experiment specifications (we will illustrate the experiment variance
in section 6.3). Our diagnosis system can construct the experiments accordingly to collect
performance data of the related metrics.

6. Experimentation

6.1. Performance Diagnosis and Validation System

Hercule

= ?

Parallel

diagnosis results

problems
candidate

computational model knowledge

models

problems explanations

Parallel
program

pe
rf

. d
at

a
ex

pe
ri

m
en

t
sp

ec
if

ic
at

io
ns

fa
ul

t
in

je
ct

io
n

inference engine

inference rules

knowledge base
"Black box" parallel system

Figure 4. Hercule and performance diagnosis validation system.

We have built an automatic performance diagnosis (PD) system called Hercule based on the
knowledge engineering and performance problem inferencing approach discussed in previous
sections ‡. In this section, we demonstrate Hercule’s ability to diagnosis performance problems
in a Master-Worker parallel program run on an distributed memory cluster with 16 dual-
processor nodes and a gigabit ethernet switch.

In general, how is a performance diagnosis system to be validated? In order to test Hercule,
we want a controlled way to run parallel programs, instrument the program according to
the experiment specifications from the diagnosis system, and generate performance data in

‡We chose the name Hercule in keeping with the spirit of our earlier performance diagnosis project, Poirot [24].

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

16 L. LI AND A. D. MALONY

desired forms. However, in addition, a validation environment should also support the injection
of known (model level) performance problems in a parallel program.§ The diagnosis system
is unaware (a priori) of the performance fault and thus sees the parallel system as a black
box. Once the diagnosis process has completed, the validation environment can evaluate the
goodness of the result with respect to the known problems introduced.

Figure 4 shows how Hercule and the validation environment we are developing work
together, as new parallel computation models are included. The core of automated performance
diagnosis is a knowledge base that stores encoded, retrievable performance knowledge of
computational models. Given a program to be diagnosed, Hercule starts with being informed of
the computational model the program is patterned on, then comes up with a set of experiments
as it explores performance hypotheses. Hercule reaches diagnosis conclusions after iterations
of experiments and analysis. These conclusions are output as the performance problems found
in the program and corresponding explanations. We then compare the conclusions against the
performance problems introduced at the start.

6.2. Performance Problem Test Program

Master-Worker (M-W), also referred to as the Master-Slave [5], is one of the most often used
parallel computational models. In this model a computation is decomposed into a number
of independent tasks of variable length. A master is responsible for assigning the tasks to a
group of workers. Communications are required between the master and workers before and
after processing each task. The workers are independent to one another. The challenges in M-
W computational model are to organize the task assignment so that all workers finish the last
task processing at approximately the same time (time balancing), and the total elapsed time
of execution is minimized (makespan minimization) [7]. The master generally employs certain
task scheduling algorithms to achieve these goals [8]. We can express these as performance
goals to achieve.

With each task to be computed on a worker processor, we associate three activities ¶:

1. Worker request. A worker sends a requesting message to the master upon finishing the
last task processing, encapsulating the last task results in the message. Note that the
worker does not need to request its first task.

2. Task setup. Upon receiving a worker request, the master runs the task scheduling
algorithm to decide a task assignment, collects the data needed by the task, and transfers
the data and task specification to the requesting worker. If the task setup cost is expensive
relative to average task processing time, or there are too many workers to be effectively
served by the master, it will result in the master being seen, in some time periods,
as a performance bottleneck where a number of workers get stuck waiting for task
assignments.

§Fault injection is a common part of software testing and diagnosis environments.
¶There are different types of worker behavior in other M-W variants, such as in [6].

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

AUTOMATIC PARALLEL PERFORMANCE DIAGNOSIS 17

task_setup, if the process is master
task_processing, if workers

Time
imbalance

workers

master

master bottlenecks

Figure 5. Vampir timeline view of an example M-W program execution.

3. Worker computing. The worker receives the task information and starts the assigned
computation.

Due to the limitation of space, we refer readers to [26] for details of diagnosis knowledge
generation of the Master-Worker model.

We created a synthetic parallel Master-Worker program to demonstrate our knowledge-based
performance diagnosis approach. The performance problems we introduce in the program focus
on the impact of master-setup-task speed on overall performance. We implement the M-W
program using MPI, and set the initialization and finalization cost of both the master and
workers to a small value. Some number of independent tasks is chosen and their processing
times are assigned during execution. The master setup task time is set to be proportional to the
average task processing time. Figure 5 and 6 respectively present a Vampir [28] timeline view
and ParaProf [29] profile display of an execution of the program with 7 processors. The event
trace and profiles are generated by the TAU [20] performance measurement system with only
major model components being instrumented. In Figure 5, red regions represent task setup
at the master and task processing at the workers. Light blue regions represent MPI function
calls, including MPI Init, MPI Send, MPI Recv, and MPI Finalize. Note that in both

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

18 L. LI AND A. D. MALONY

Figure 6. Graphical display of relative time spent in each function on each node, context, thread.

Table I. Performance metrics of the test Master-worker program.

Metric names Performance loss%
waiting time in master bottlenecks 39.2%

waiting time for the master to set up tasks 34.3%
waiting time for slow workers to finish computing before finalization 14.8%

effective communication time 6.2%

figures, blocking/waiting time of processors is implicitly included in elapsed time of blocked
MPI Send, MPI Recv and MPI Finalize operations.

6.3. Diagnosis Results

Given the program and performance knowledge associated with M-W model, Hercule will
automatically request three experiments during the diagnosis. The first experiment collects
data for computing efficiencies of each worker (i.e., task processing time/total elapsed execution
time). The measurement data shows that worker 3 performs worst. Then Hercule investigates
the performance loss of worker 3. Of course, any worker can be identified for additional study.
The second experiment generates performance information for identifying overhead categories
with respect to computation components of the M-W model and their contributions. Waiting
(idle) time stands out as a result of this iteration of inference. The third experiment then targets
model-specific metrics in Table (I). The metrics are presented in the form of percentage that
each performance loss category contributes to the overall performance loss (i.e. total elapsed
execution time minus effective task processing time). It is interesting to note that waiting
time in master bottlenecks accounts for 39.2% lost cycles. To identify whether the amount of
workers or task setup speed is the dominant factor causing master bottlenecks, Hercule tests

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

AUTOMATIC PARALLEL PERFORMANCE DIAGNOSIS 19

dyna6-166:~/PerfDiagnosis/classes lili$./model_diag MW.clp

Begin diagnosing

... ...

Level 1 experiment - collect data for computing worker efficiencies.

__

Worker 3 is least utilized, whose efficiency is 0.385.

__

Level 2 experiment - collect data for computing initialization,

communication, finalization costs, and waiting (idle) time of worker 3.

__

Waiting time of worker 3 is significant.

__

Level 3 experiment - collect data for computing individual waiting

time fields.

__

Among lost cycles of worker 3, 14.831% is spent waiting for the last

worker to finish its computation (time imbalance).

__

Master processing time for assigning task to workers is significant

relative to average task processing time, which causes workers to

wait a while for next task assignment. Among lost cycles of worker 3,

34.301% is spent waiting for master computing next task to assign.

__

Among lost cycles of worker 3, 39.227% is spent waiting for the master

to process other workers’ requests in bottlenecks. This is because

the master processing time for assigning task is expensive relative

to average task processing time, which causes some workers to queue

up waiting for task assignment.

__

Figure 7. Diagnosis result output of the example M-W test program.

another model-specific metric – severity of master bottleneck – which is the average number of
worker requests got stuck in master bottlenecks. The metric turns out to be 1.6, which will not
cause severe delay unless a single task setup time is expensive relative to task processing time.
Given that the waiting time for task setup accounts for 34.3% lost cycles, it is more likely that
the low master capacity of setting up tasks is the main reason causing master bottlenecks.
The inference process and diagnosis results are presented in Figure 7, in a manner close to
programmer’s reasoning and understanding.

7. Related work

Paradyn [16] is a performance analysis system that automatically locates bottlenecks using
the W 3 search model. According to the W 3 model, searching for a performance problem is an
iterative process of refining the answer to three questions: why is the application performing

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

20 L. LI AND A. D. MALONY

poorly, where is the bottleneck, and when does the problem occur. Performance bugs Paradyn
targets are not in direct relation to parallel program design. It is not intended for explanation
of high-level bug either.

JavaPSL [21] is an implementation of the Performance Specification Language (PSL)
developed by the APART project [22]. Using syntax and semantics of Java programming
language, JavaPSL is intended for flexibly defining performance properties. A bottleneck
analysis tool using JavaPSL can automatically search for bottlenecks by navigating through
the performance data space and computing pre-defined performance properties. In distinct to
JavaPSL, our performance metrics are defined in terms of model-semantics, and intended for
both automatic performance bug search and interpretation.

Poirot [24] is an adaptable and automated performance diagnosis architecture. Instead of
performance knowledge engineering, it focuses on gathering a variety of performance diagnosis
methods and selecting method for adaptable diagnosis.

In [25], a Cause-Effect analysis approach is proposed to explain inefficiencies in distributed
programs. The approach detects local performance losses occurring in some execution periods,
which are often a result of behavioral inconsistence between two or more processors. It
interprets the performance losses by comparing earlier execution paths of the inconsistent
processors.

In [27], an approach to looking for the cause of communication inefficiencies in message
passing programs is presented. In the approach, they train decision trees with real performance
tracing data in order to automatically classify individual communication operations and find
inefficient behaviors.

Kappa-Pi [23] is also a rule-based automatic performance analysis tool. In this tool,
knowledge about commonly-seen performance problems is encoded into deduction rules at
various abstraction levels. It explains the problem found to the user by building an expression
of the highest level deduced facts which includes the situation found, the importance of such a
problem, and the program elements involved in the problem. While Kappa-Pi introduces the
possibility of using user-level information about program structure to analyze performance, we
realize the possibility and propose a systematic approach to extracting knowledge from high
level programming models.

8. Conclusions and Future directions

This paper describe a systematic approach to generating and representing performance
knowledge for the purpose of automatic performance diagnosis. The methodology makes
use of operation semantics and parallelism found in parallel computational models as a
basis for performance bug search and explanation. Four major categories of knowledge
are identified: performance models, model-specific metrics, high-level performance factors,
and experiment designs. Our method addresses how to extract expert information in each
category for particular parallel models of interest. The methodology also advocates model-
based inference by refining performance models and metrics. One important objective of our
work is to study how diagnosis knowledge is represented. In this work, we showed the use of
CLIPS for knowledge engineering. We also demonstrate knowledge generation of Divide-and-

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

AUTOMATIC PARALLEL PERFORMANCE DIAGNOSIS 21

Conquer model and the use of the prototype Hercule parallel performance diagnosis system
on a representative programing paradigm, Master-Worker. Our preliminary results show that
model-based performance knowledge provides effective guidance for locating and explaining
performance bugs at a high level of program abstraction.

We have built knowledge bases of Master-Worker and Divide-and-Conquer model with the
methods presented in this paper. There is still much work to be done for further improvement
and application of this approach. First, we will extend our inference trees with diagnoses of
performance problems with respect to inter-play of a computational model with the underlying
parallel machine. This will require a greater degree of definition in the performance metrics
and analysis. Second, we will create knowledge bases for additional parallel models, such as
Fork-Join, Phase-based, and possibly BSP. Parallel applications can use a combination of
parallel paradigms. An important target for our future work is the inclusion of compositional
modeling. This will add another level of complexity to the knowledge engineering and problem
inferencing since we must be able to reason about the interplay of one model with another.
Compositional models will naturally include a hierarchical modeling requirement. Finally, we
will continue to enhance the Hercule system and build a more powerful validation system.
The latter will be important in testing the power of the model-engineered diagnosis knowledge
developed in the Hercule environment.

ACKNOWLEDGEMENTS

We would like to thank Professor Ginnie Lo for reviewing and valuable comments on earlier versions
of this paper.

REFERENCES

1. I-Chen Wu, H. T. Kung. Communication complexity for parallel divide-and-conquer. In Proceedings of the
32nd annual symposium on Foundations of computer science, 1991

2. Robert Sedgewick. Algorithms. Addison Wesley, 2nd edition, 1988
3. SvPablo, University of Illinois, http://www.renci.unc.edu/Project/SVPablo/SvPabloOverview.htm [April

10 2005]
4. B. L. Massingill and T. G. Mattson and B. A. Sanders. Some Algorithm Structure and Support Patterns

for Parallel Application Programs. In Proc. 9th Pattern Languages of Programs Workshop, 2002.
5. B. L. Massingill and T. G. Mattson and B. A. Sanders. Patterns for Parallel Application Programs. In

Proc. 6th Pattern Languages of Programs Workshop, 1999
6. E. Cesar, J.G. Mesa, J. Sorribes, and E.Luque. Modeling Master-Worker Applications in POETRIES. In

Proc. of the 9th International Workeshop on High-Level Parallel Programming Models and Supportive
Environments, 2004.

7. Gary Shao, Fran Berman, Rich Wolski. Performance Effects of Scheduling Strategies for Master/slave
Distributed Applications. International Conference on Parallel and Distributed Processing Techniques
and Applications, June, 1999.

8. Sartaj Sahni. Scheduling Master-Slave Multiprocessor Systems. IEEE transactions on Computers 1996;
45(10):1195-1199.

9. R. L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal on Applied Mathematics
1969; 17(2):416-429.

10. P. Brucker, C. Dhaenens-Flipo, S. Knust, S.A. Kravchenko, F. Werner. Complexity results for parallel
machine problems with a single server. Journal of Scheduling 2002; 5:429-457.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

22 L. LI AND A. D. MALONY

11. A. Grama, A. Gupta, G. Karypis and V. Kumar. Analytical Modeling of Parallel Programs. In Introduction
to Parallel Computing. Addison-Wesley, 2003,

12. T. Fahringer and C. S. Jr. Aksum: a tool for multi-experiment automated searching for bottlenecks in
parallel and distributed programs. In Proceedings of SC2002, 2002.

13. John Mellor-Crummey and Robert Fowler and Gabriel Marin and Nathan Tallent. HPCView: A Tool for
Top-down Analysis of Node Performance. The Journal of Supercomputing 2002; 23:81-104.

14. N. Carriero and D. Gelernter. How to Write Parallel Programs: A Guide to Perplexed. ACM Computing
Surveys 1989 21(3):323-357.

15. D. A. Waterman, A Guide to Expert Systems. Reading, MA, Addison-Wesley, 1985.
16. B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K. L. Karavanic, K.

Kunchithapadam, T. Newhall. The Paradyn Parallel Performance Measurement Tool. In IEEE Computer
1995; 28(11):37-46.

17. J. C. Yan. Performance tuning with AIMS — an Automated Instrumentation and Monitoring System for
multicomputers. In Proc. 27th Hawaii International Conference on System Sciences, pp.625–633, 1994.

18. CLIPS: A Tool for Building Expert Systems, http://www.ghg.net/clips/CLIPS.html. [April 10 2005]
19. P. C. Bates. Debugging heterogeneous distributed systems using event-based models of behavior. ACM

Trans. on Computer Systems 1995; 13(1):1-31.
20. TAU - Tuning and Analysis Utilities, University of Oregon, http://www.cs.uoregon.edu/research/

paracomp/tau/tautools/ [April 10 2005]
21. T. Fahringer and C. S. Jnio. Modeling and detecting performance problems for distributed and parallel

programs with JavaPSL. In Proceedings of SC2001, 2001
22. APART IST Working Group on Automatic Performance Analysis: Real Tools, http://www.fz-juelich.

de/zam/RD/coop/apart/ [April 10 2005]
23. A. Espinosa, Automatic Performance Analysis of Parallel Programs, PhD thesis, Computer Science

Department, University Autonoma de Barcelona, Barcelona, Spain, 2000
24. Allen D. Malony and B. Robert Helm, A theory and architecture for automating performance diagnosis.

Future Generation Computer Systems 2001; 18:189-200.
25. Wagner Meira Jr., Thomas J. Leblanc, and Virglio A. F. Almeida. Using cause-effect analysis to understand

the performance of distributed programs. In Proceedings of the SIGMETRICS symposium on Parallel and
distributed tools, 1998

26. L. Li and A. D. Malony. Knowledge engineering for model-based parallel performance diagnosis. Submitted
to Supercomputing 2005.

27. Jeffrey Vetter. Performance analysis of distributed applications using automatic classification of
communication inefficiencies. In ACM International Conference on Supercomputing 2002.

28. Vampir, http://www.pallas.com/e/products/index.htm [April 10 2005]
29. R. Bell, A. D. Malony, and S. Shende. A Portable, Extensible, and Scalable Tool for Parallel Performance

Profile Analysis. In Proc. EUROPAR 2003 conference, LNCS 2790, Springer, Berlin, pp. 17-26, 2003.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7

