CSRD Rpt. No. 734

Submitted to 1988 International Conference on Parallel Processing, St. Charles, IL, August 1988.

REGULAR PROCESSOR ARRAYS
Allen D. Malony

January 1988

Center for Supercomputing Research and Development
University of Illinois

305 Talbot — 104 South Wright Street

Urbana, IL 61801-2932

Phone: (217) 333-6223

This work was supported in part by the National Science Foundation under Grant No. US NSF MIP-
8410110, the U. S. Department of Energy under Grant No. US DOE-DE-FG02-85ER25001, the U. S. Air
Force Office of Scientific Research under Grant No. AFOSR-F49620-86-C—0136, and the IBM Donation.

1. Introduction

Perhaps the most widely debated topic in parallel processing research is how to
interconnect multiple processors. The arguments take place across many different
cost/performance criteria such as algorithm mapping, scalability, reconfigurability, com-
munication efficiency, graph embedding, fault tolerance, and VLSI implementation.
Numerous processor interconnection topologies have been devised each with advantages

and disadvantages.

Mesh connected processor arrays were among the first processor interconnection
structures proposed for parallel processing [BBKK68] [KaLW68] [vonN68] [YaAm69).
Their distinguishing feature is the connection of processors only to immediate neighbors
where the connection degree is uniform throughout the array. The original motivation
for mesh topologies came from their ability to easily represent the natural data flow pat-
terns found in many algorithms. Parallel algorithms for numerical problems [Kuck68]
" and graph problems [LeKa72] as well as algorithms for permuting [Orecu76], sorting
[ThKu77] [NaSa79|, and switching [KaLW68] were developed, primérily for orthogonal

connected processor-arrays.

However, the thought of interconnecting thousands of processors brought on a wave
of new processor interconnection structures aimed at providing cost—effective solutions to
certain key scalability issues such as mean internode distance, communication traflic
density, connections per node, link visit ratios, and fault tolerance [Witt81] [ReSc83].
The processor arrays proposed included the torus, X-tree, chordal ring, R-ary N-cube,

cube-connected cycles, spanning bus hypercube, and dual bus hypercube, in addition to

Center for
Supercomputing Research and Development

REGULAR PROCESSOR ARRAYS

Allen D. Malony*

January 18, 1988

University of Illinois at Urbana—Champaign
104 S. Wright Street
Urbana, Illinois 61801

Copyright © 1988, Board of Trustees of the University of Illinois

! Center for Supercomputing Research and Development, University of Illinois at Urbana-

Champaign.

REGULAR PROCESSOR ARRAYS

Allen D. Malony®

January 18, 1988

Abstract

Regular is an often used term to suggest simple and uniform structure of a parallel
processor’s organization or a parallel algorithm’s operation. However, a strict definition
is long overdue. In this paper, we define regularity for processor array structures in two
dimensions and enumerate the eleven distinct regular topologies. Space and time emula-
tion schemes among the regular processor arrays are constructed to compare their
georﬁetric and performance characteristics. We also show how algorithms developed for
one regular processor array might be transferred to another regular array using matrix

multiplication and LU decomposition as examples.

1Genter for Supercomputing Research and Development, University of Nlinois at Urbana~-Champaign.

This work supported in part by the National Science Foundation under Grant No. US NSF MIP-
8410110, the U.S. Department of Energy under Grant No. US DOE- DE-FG02-85ER25001, the U.S, Air
Force Office of Scientific Research under Grant No. AFOSR-F49620-86-C-0138, and the IBM Donation.

the standard bus, crossbar, ring, and tree architectures [Witt81]. Although favored for
their regular geometry, uniform communication and simple extension, the mesh con-
. nected processor arrays were generally less desired because of the fact that internode
communication delays increase as the square root of the number of nodes in the system.
Besides, other processor interconnection structures also claimed various degrees of regu-

larity as well as flexibility, such as containing the mesh topologies as special cases.

Systolic array research approached the problem of designing processor arrays by
concentrating on requirements for an effective VLSI implementation of a parallel algo-
rithm [KuLe80] [Kung79] [Kung82]. Chip area, time and power required to implement
an algorithm in VLSI are dominat-,ed by the communication geometry of the algorithm
[SuMe77]. The effects of the area and time parameters of VLSI can be reduced to a large
degree if very simple’and regular patterns of interconnections between elements are used
[MeCo80) [Thom79]. The regularity requirement imposed on interconnection structures,
in a broad sense, deals with the layout of the communication geometry in a two-
dimensional area [Sava81]. Simple and regular interconnection geometries that are
two—dimensional and plane ﬁl'ling lead to cheap implementations and high chip density.
Also, parzallel algorithms .with simple and regular communication and data flows are

more appropriate for VLSI implementation and will result in higher performance.

The choice of processor array design to achieve good generalized communication
performance conflicted with the simple processor arrays favored for specialized VLSI sys-
tems. If only the more sophisticated communication topologies were implemented in

VLSI, then their communication efficiencies could be combined with the faster VLSI

speeds. However, several recent results suggest that mesh—connected arrays have com-
parable, if not better, general communication efficiency and performance when imple-
mented in VLSI as compared to other networks [Mazu86] [RaJo87]. In addition, there
has been much work done on making regular mesh arrays more flexible through
reconfigurability [ChFi82] [GoGr84] [Snyd82] [Venk85], graph embedding [GoKS84], and

algorithm mapping [BeSn84] [Bokh81] [KoSi83] [MeSi87| [MoFo086] [ReAP87].

In this paper, we consider the question of what are the simple and regular processor
array topologies? The primary contribution of this work is the enumeration and analysis
of the "regular" two—dimensional processor array topologies using a geometric definition
of regularity. Several topologies are shown that have not appeared in the computer sci-
ence literature previously. Our analysis of the regular processor arrays is based on their
ability to emulate the other members of the class. We consider both space emulation
(processors of the host array are combined into "logical” nodes of the target array) as
well as time emulation (the interconnection geometry of the target array is provided by
time-multiplexing the links). We also show how algorithms developed for one regular
processor array can be transferred to another regular array using matrix multiplication

and LU decomposition as examples.

2. Regularity

Intuitively, the term regular implies simplicity and uniformity in space. A more
quantitative geometrical description is required, however, if we are to form a meaningful

classification of processor array topologies. Luckily, there is a wealth of mathematical

literature that comes to bear to help ﬁs construct a definition of regularity. [Borr68]
[Crit69] [Dumn71] [Gard72] [GrSh77] [GrSh80] [Kers68] [Lave3l] [Loeb76] [Subnl6]
[Zalg69).

In this section, we describe processor interconnection geometries as graphs with the
standard association being that vertices correspond to nodes and edges represent links in
the processor array. Although regularity can be defined for multiple dimensions
[Borr68][Crit69][Loeb76][Zalg69], our discussion is restricted to graphs that are two-
dimensional, i.e. planar. A second requirement is that the graph have a simple descrip-
tion and be uniformly extensible following a basic set of construction rules. Although
Malony considered regular graphs with vertices of possibly different degrees [Malo82|, we
restrict the definition here to apply only to graphs with vertices of eqlial degree. By the
graph being uniformly extensible, we mean that the properties of the vertices and edges
do not change as the number of nodes is increased; e.g., the length of an edge. The final
requirement that we place on regular graphs is that they be plane filling. That is, the

infinite graph completely covers the entire two—dimensional plane.

The requirements we place on regular graphs are not without mathematical pre-
cedence. The justification comes from the old geometrical prcblem of determining those
convex polygon figures that tessellate the plane [Gard72][GrSh77][GrSh80][Kers68]. In
particular, the problem is to construct tilings of the plane where a single convex poiygon
of r sides is used. Based on Euler’s theorem v — ¢ + f=1 (v vertices, ¢ edges and f faces
of a polygonal network of tiles) and basic Diophantine analysis, it is a simple conse-

quence that 3<r<6 [GrSh77].

Although there are eighty—one types of isohedral tilings in the plane [GrSh77], there
are ONLY eleven topologically distinct types of Laves nets [Lave31] (also called regular
or Subnikov nets [Subn16]) which are the "skeleton” graphs comsisting of tile "vertices”
(where three or more tiles meet), and tile "edges" where two tiles intersect. Figure 1
shows the eleven Laves nets along with symbols denoting the valences of the vertices as
the tessellating r—gon is traced; e.g., 3%.4.3.4 describes a pentagon tessellation where the
pentagon meets 3 other tiles, then 3, 4, 3, and finally, 4 other tiles. The entire geometry
of the distinct tessellation topologies can be described from this simple vertex valency

syntax.

So, what does this have to do with regular processor interconnection geometries?
The point is that the tessellation structures embody the requirements that we set forth
for regular graphs: they are two-dimensional, they have a simple degcription (tile vertex
valency syntax), all tiles used in a tessellation have the same number of edges (r-gon),
they are uniformly extensible, and they are plane filling. If we associate a tile to a pro-
cessor array node and the links to tile intersections (tile edges), the resultant intercon-

nection topology will embody the same regular properties.

The regular processor interconnection graphs can,ltherefore, be generated by taking
the dual of the Laves nets, i.e. the faces (tiles) are mapped to vertices, the tile vertices
are mapped to faces, and tile edges map to edges between the new vertices [GrSh77].
These regular graph are shown in Figure 2 (the same notation is used except the
numbers refer to the edge valency of the faces incident on a vertex). Because the graphi-

cal duality mapping is isomorphic, there are exactly eleven distinct regular processor

array topologies. These topologies are also known as the familiar nearest neighbor topo-
logies because all vertices are of equal degree and each vertex connects to that many of

its nearest neighbors.

We are now ready for the definition of a regular graph and a regular processor

array.

Definition: A graph is regular if it is two dimensional, all vertices have

equal degree and the dual of the graph is a tessellation.

Definition: A processor array is regular if its interconnection topology is a

regular graph.

The next section, we consider emulations among the regular processor arrays. In
particular, we focus on the triangular (6°), the orthogonal (4‘) and the hexagonal (3°)
topologies. These have been defined to be strongly regular because they form a set closed
under duality: the triangular graph is the dual of the hexagonal and vice versa, and the
orthogonal graph is the dual of itself [Malo82]. The strongly regular processor arrays are
well known in the parallel processing literature because of their simple structure and
geometrical symmetry which is important for regular algorithm data flows and for physi-

cal VLSI layout [Kung79] [FoKu80].

3. Regular Processor Array Emulation

Although the number of regular processor arrays is finite, it would be cost

inefficient to include each array in a parallel processing system and use an array only

when there is an appropriate match between an algorithm’s communication geometry
and that array’s topology. Instead, we would like to design the system with a single pro-
cessor array that offers good performance across a wide range of algorithms. The versa-
tility of a processor array is measured not only by the range of algorithms for which it is
specifically suited but also by the ease to which other algorithms can be mapped to its
communication geometry [BeSn84] [Bokh81] [KoSi83] [MeSi87] [MoF086], and the ability
of the array to reconfigure its communication geometry to that of the algorithms or
other array topologies [AmEp74] [ChFi82] [GoGr84] [GoKS84] [Snyds2] [Venk85]‘
[YaAm?71]. In this séction, we evaluate the regular processor arrays based on their abil-

ity to emulate other regular arrays.

3.1. Emulation Philosophy

The goal of emulating a target regular array by a host regular array is to reproduce
the communication properties of the target array in the host. The emulation can take
place either in space or in time. Space emulation structurally maps the host array to the
target array by physically grouping host nodes into logical target nodes and activating
the appropriate host links such that the communication topology of the target array is
realized. If the target array cannot be embedded in the host array with a one to one
node mapping, the space gmulation will necessarily result in a reduction of the effective

size of the emulated target array.

Time emulation realizes the communication properties of the target array by time

multiplexing the host array links. Once a one to one node mapping is made between the

target and the host, the maximum number of host "minor" communication time cycles
needed to realize the communication connectivity of one "major” target time cycle can
be determined. If the target array cannot be embedded in the host array with a one to
one link mapping (we already assume a one to one node mapping), the time emulation
will necessarily result in an increase in the number of time cycles needed to execute an

algorithm on the emulated target array.

3.2. Space Emulation

One immediate conclusion quickly drawn regarding space emulation among regular
arrays is that the hexagonal array is the most efficient due to its higher node degree.
However, it is not as clear whether the triangular array is the least efficient just because
its node degree is three, although we suspect this is true. Nor can one safely say that
optimal hexagonal array space emulations can be achieved in all cases. Also, we would
like to know the relative differences in space emulation performance between different

host arrays.

We begin by defining a performance measure for space emulation. Clearly, an
optimal space emulation scheme should minimize the average number of host nodes used

to emulate a node in the target array.

Definition: The space emulation efficiency S,(N) of a space emulation
scheme used by regular array M to emulate regular array N is the
average number of nodes of M required to emulate one node of N.

If N contains » nodes, the size of the emulated target array will be

n / S, (N) nodes.

A lower bound on S,(N) can be determined by calculating the number of host array

nodes needed to match the node degree of the target array.

Definition: A optimal space emulation scheme achieves the lower bound of
the average number of host nodes required for a node of the emu-
lated target array. That is, no more than the number of host nodes
needed to meet the node degree requirements of the emulated target

array are used.

The process followed to construct an emulation scheme begins by grouping adjacent
nodes together to form logical nodes of the emulated target array. "Active" host links
are then selected to realize the target communication geometry. During operation, nodes

within a group coordinate their actions to correctly communicate data across the active

links.
Instead of enumerating all space emulations for all regular host arrays ad nauseam,
we instead concentrate on the strongly regular arrays. First, we show that a topological

hierarchy is formed among the three strongly regular networks with respect to space

emulation.

Theorem 1: The triangular array can optimally emulate the hexagonal
array with a space emulation efficiency of four and the orthogonal

array with a space emulation efficiency of two.

10

Proof: The emulation schemes are shown in Figure 3.1 and Figure 3.8.

Theorem 2: The orthogonal array can optimally emulate the hexagonal
array with a space emulation efficiency of two and the triangular
array with a space emulation efficiency of one.

Proof: The emulation schemes are shown in Figure 4.1 and Figure 4.11.

Theorem 3: The hexagonal array can optimally emulate the orthogonal
array with a space emulation efficiency of one and the triangular
array with a space emulation efficiency of one.

Proof: The emulation schemes are shown in Figure 5.8 and Figure 5.11.

Theorem 4: S, .uar (B)SSornogonat (B)< Shecagona (B) Where R is a regular array.
Proof: Any space emulation scheme used by the triangular array to emu-
late another regular array can also be used by the orthogonal and
hexagonal arrays since only one node is required by the orthogonal
and hexagonal arrays to emulate a node in the triangular array.
Therefore, any emulation scheme used by the orthogonal and hexag-
onal arrays for emulating another array must be at least as efficient
as the optimal scheme that would be used by the triangular array.

A similar argument is applied to show S, 0na(B)< S sag0na (7)-

11

Space Emulation Schemes

The space emulation schemes for the regular processors arrays using the
strongly regular arrays are shown in Figures 3.1-11 for the triangular host array,
Figures 4.1-11 for the orthogonal host array, and Figures 5.1-11 for the hexago-
nal host array [Malo82]. For each scheme, the underlying host array is shown as
nodes connected by dashed links. If a host link is solid, the link is active. Node
groupings for the triangular host array are shown as contained within solid line
boundaries; one of the groupings has been shaded in each emulation scheme. For
the orthogonal array, node groupings are shown using rectangles. We have also
left the internal connections between nodes within a grouping as dashed to help

emphasize the grouping structure.
In some cases, it is seen that a host node has none of its links drawn in, i.e.

solid; see Figure 3.9, Figure 4.4 and Figure 5.2. This means that this host node

does not participate in the space emulation.

Space Emulation Efficiency

The space emulation efficiencies of the schemes presented for the strongly
regular arrays are shown in Tables 1, 2 and 3. As expected, the hexagonal array
shows the best efficiencies with nine of the schemes using an optimal emulation of
one. The inability to achieve optimal schemes for 3.6 and 3.6.3.6 is attributed to

the rigid structure of those topologies.

12

Notice that the triangular array was able to achieve more optimal space
emulations than the orthogonal array. In part, this has to do with the orthogonal
array’s inability to realize triangular interconnection paths present in some of the

arrays such as 3*.6, 3°.4.3.4 and 3.6.3.6.
An interesting observation from the table is that $,..,u.(3-4.8.4) =3, yet

1
@Y =2 and §,,.0ma(3-4.6.4 =1 —. One quickly realizes that a better space
3

S

irsangular

emulation scheme could be achieve for 3.4.6.4 using the triangular array if the

orthogonal array was first emulated and then its emulation scheme used to realize

2
3.4.6.4. This would result in an emulation efficiency of 2 — instead of 3.
3

Observations

Space emulations among the regular arrays are interesting for several rea-
. sons. First, it provides a simple measure of cost, S, (N), for comparing the versa-
tility of the different regular arrays. Second, it helps us determine the pay back
for adding additional links to the array. Finally, it allows for algorithms to be
designed for one particular regular array with the assurance that it can execute

on another with bounded performance degradation.

3.3. Time Emulation

Time emulations among the regular processor arrays are more complex to

construct because a mapping from nodes of the host array to nodes of the target

13

array must first be devised. However, along with some simple eye-balling, we
employed some convenient shortcuts that allowed us to develop a collection of

time emulations for the strongly regular arrays as target topologies.

After the definition of time emulation efficiency, we make some simple obser-

vations.

Definition: The time emulation efficiency T,(N) of a time emulation
scheme used by regular array M to emulé’oe regular array N is the
number of communication time cycles required in M to realize the
data transfer between nodes possible in one cycle in N. Assuming
the processor array speeds are equal, if N completes an algorithm in
¢t time cycles, the time emulation scheme used by M will finish in

T, (N) * t time cycles.

Notice that if $,(N)=1, T,(N)=1. We can make use of this fact to compute bounds on
time emulations based time emulations already known. That is, if T,(N)=¢, and
Ty(0)=t, then T, (0)<t*t,.

We begin constructing time emulations by looking at the space emulations with
efficiency one. Since these already give us a one to one node mapping, we can easily dev-
ise an optimal time emulation of the host array in the space emulation by the target
array in the space emulation and calculate its efficiency by visually following the shortest
path to establish the single link connections of the underlying host array. For instance,

we compute T;,,,(3” to be three by looking at the space emulation scheme of 3.4.6.4 by 3°

14

and following the shortest path between connected hexagonal nodes using only the 3.4.6.4

links.

Following the above procedure, we were able to construct optimal time emulations
of the hexagonal array for most regular arrays. The time emulation efficiencies are
shown of Table 4. Optimal time emulations of the orthogonal array were also con-
structed for 4.8° and 6°. The time emulation efficiencies in parentheses indicate upper
bounds determined by applying the above formulas to these optimal hexagonal and
orthogonal time emulations. Other entries in the table come from visually mapping one

processor array onto another as in the case of the square array onto 3°.4.3.4 and 3°.4°.

Observations

The interest in time emulations comes from the fact that the emulated target array
is not reduced in size. Instead, a more complex routing of data in multiple time steps is
required to emulate the target array’s communication properties. However, we cannot
ignore the time needed to route data in a space emulation scheme. In fact, we see that
there are cases where a time emulation will be actually faster than a space emulation; a
time emulation of a hexagonal array using a triangular array will take three time cycles
whereas the space emulation requires four. In other cases, the opposite is true; consider

the triangular array emulating the orthogonal array.

15

1. Mapping Algorithms Among Regular Processor Arrays

Emulating a target regular processor array by some other regular host array either
in space or time is one way of making an algorithm originally designed for the target
array execute on the host. As we have seen, however, there will probably be some
penalty paid in array size reduction or increased algorith execution time. Alternatively,
one can try making minor changes to the data flow of an algorithm without affecting its

overall structure so that the algorithm will execute on a different processor array

[Malo82].

1.1. Matrix Multiplication on a Triangular Array

Kung and Leiserson developed a matrix multiplication algorithm for execution on a
hexagonal processor array [KuLe80]. Because data flows in only three directions in the
algorithm, we suspect that a triangular processor array might be able to perform the

same steps of the computation.

The problem is one of multiplying two » z »n matrices. The matrix product C = [¢;]

of A = [a;] and B = [b;] can be computed by the recurrences:

c,-g-l) =0

lc'(H-l) _.®

»
if e+ ay T by

_ C-(”+l)

Cij = Cij

We consider 4 and B to be n z » band matrices of width w1 and w2, respectively. The

matrix multiplication algorithm can be evaluated by the above recurrences by pipelining

16

the a, b; and ¢; through an array of 2*w1*w?2 triangularly—connected processors.

Consider the matrix multiplication problem shown in Figure 6. The triangular pro-
cessor array used for this problem is the diamond shaped array shown in Figure 7 with

the arrows indicating the direction of data flow of the matrices A, B and C.

The bands of the matrices move in three directions synchronously through the
array. As each ¢; passes through, it accumulates its necessary terms as defined by the

recurrences. The single step process of the computation is define as follows:

Stage 1: The g, b; and ¢; move in their respective directions to the next cell in
the network.

Stage 2: The recurrence equation is computed.

Stage 3: The ¢, b; and ¢; move in their respective directions to the next cell in

the network.

The single step computation process is a move-compute-move process. Figure 8 shows

several four steps in the execution of the algorithm.

The data flows of the matrix multiplication algorithm executing on the triangular
processor array are exactly the same as when it is executed on the hexagonal array
except for the need of an extra move in the single step computation. This move is
required to insure that the g, b; and ¢; arein their correct positions at the correct time.
Although this results in an increase in computation time of 50%, it is much less than the

four and three times increase using a space and time emulation of the hexagonal proces-

sor array, respectively.

1.2. LU Decomposition en & Triangular Processor Array

Kung and Leiserson’s LU decomposition algorithm slso easily transfers to the tri-
angular processor array [KuLe80]. We require, however, that bi-directicnal data move-

ment across links be aliowed.

LU decomposition is the problem of factoring a matrix A into lower and upper tri-
angular matrices L and U. If we assume that the A has the property that its LU decom-

position can be derived by Gaussian elimination without pivoting, the triangular

v

matrices I = [i;] and U = [g;] are evaluated according tc the following recurrences:

i 31
k+1) k+1
“-'(:' = “i(i A (=)
Iy =0if i<k

Iy = €5 * oy Hi>k

These recurrences can be pipelined on a triangular processor array with bi-directioznal
links.

Consider the LU decémposition of the band matrix shown in Figure 8. The tri-
angular processor array, shown in Figure 10, is constructed as follows. 2*w’ ?rocessors
are needed for 2 band matrix of width w. These processors are arrarnges in a diamond

shape with the shaped processor at the top representing =z special processor. This

18

processor computes the reciprocal of its input and passes the result southwest and the
same input northward unchanged. The inner processors below the upper boundaries are
basic processors. The processors on the upper boundaries are also basic processors but
the left boundary processors have an orientation rotated 120 degrees clockwise and the

right boundary processors are oriented 120 degrees counterclockwise.

As in the matrix multiplication algorithm, the single step computation is a move-
compute-move process. The data flows in the network as indicated by the arrows.
Figurer 11 shows four steps in the execution of the LU decomposition algorithm on the
triangular array. Again, the performance is better than if a space or time emulation

scheme was used.

2. CONCLUSION

Processor interconnection topologies incorporating communication and spatial regu-
larity will become increasingly important as VLSI dimensions continue to decrease. The
organization of VLSI cells will become much more structured with simple, regular, and
uniform geometries being more efficient. Although mesh processor arrays have known
scalability limitations with respect to communication [Witt81] [Reed83], several recent
reports suggest that the communication efficiency of two dimensional meshes is greater
than other interconnection topologies when compared for VLSI implementation [Ma.zu86]

[RaJo87].

The regular processor arrays described in this paper have an aesthetic appeal of

simplicity and ordered structure. They are geometrically defined based on nearest

19

neighbor connections and space-filing properties. Interestingy, only eleven processor
arrays of regular topology exist in two dimensions. We have enumerated these arrays as
well as presented space and time emulation schemes. The emulations efficiencies provide

measures for evaluating the regular processor arrays.

A natural extension of the work presented here concerns regular three dimension
organizations [Zalg69]. The exact geometrical interpretation of regularity in three
dimensional processor arrays is not clear. However, the volume-filling nearest neighbor
networks may be .an appropriate place to begin analyzing such topologies. The increased
spatial flexibility in three dimensions makes the problem significantly harder. Neverthe-

less, research in this area will become more important and necessary as VLSI begins to

offer three dimensional interconnects.

[AmEp74]

[BBKKG68]

[BeSn84]

[Bokh81]

[Borr68]

[ChFi82]

[Comp87]

[Crit69]

[Dumn71]

[FoKu80]

[Gard72]

[GoGr84]

[GoKS84]

[GrSh177)

[GrSh8oj

[KaLWe68]

20

REFERENCES

Serafino Amoroso and Irving J. Epstein. Maps Preserving the Uniformity of Neighbor-
hood Interconnection Patterns in Tesselation Structures. Info. and Control, Vol. 25,
1974, pp. 1-9.

G.H. Barnes, RM. Brown, M. Kato, D.J. Kuck, D.L. Slotnik, R.A. Stokes. The
ILLIAC IV Computer. IEEE Trans. Comp., Vol. c-17, 1968, pp. 746-757.

F. Berman and L. Snyder. On Mapping Parallel Algorithms tnto Parallel Architectures.
Proc. of the 1984 Inter. Conf. on Parallel Processing, Aug. 1984, pp. 307-309.

S.H. Bokhari. On the Mapping Problem. IEEE Trans. Comput., Vol. C-30, March
1981, pp. 207-214.

J. Borrego. Space Grid Structures. MIT Press, Mass., 1968.

T.L. Chang and P. David Fisher. Programmable Systolic Arrays. Proc. 9th Symp.
on Comput. Arch., 1982, pp. 48-53.

Computer (special issue on Systolic Arrays), Vol 20, No. 7, July 1987, pp. 12-17.

K. Critchlow. Order in S’pace. Viking Press, New York, 1969.

J.A. Dumn. Tesselation with Pentagons. Math Gazette, Vol. 55, No. 394, Dec. 1971,
pp- 366-369.

M.J. Foster and H.T. Kung. The Design of Special-Purpose VLSI Chips. Computer,
Jan. 1980, pp. 26-40.

M. Gardner. On Tesselating the Plane with Convez Polygon Tiles. Scientific Ameri-
can, Vol. 56, No. 398, Dec. 1972, pp. 332-335.

Naga S. Gollakota and F.Gail Gray. Reconfigurable Cellular Architecture. Proc. 11th
Int. Symp. Computer Arch., 1984, pp. 377-379.

D. Gordon, I. Koren and G. Silberman. Embedding Tree Structures in VLSI Hezagonal
Arrays. IEEE Trans. Comput., Vol. C-33, Jan. 1984, pp. 104-107. :

B. Grunbaum and G.C. Shephard. The Eighty-one Types of Isohedral Tilings in the
Plane. Math. Proc. of the Cambridge Phil. Soc., Vol. 82, Sept. 1977, pp. 177-
196.

B. Grunbaum and G.C. Shephard. Tilings with Congruent Tiles. Bulletin of the
Amer. Math. Soc., Vol. 3, No. 3, Nov. 1980, pp. 951-973.

W.H. Kautz, K.N. Levitt and A. Waksman. Cellular Interconnection Arrays. IEEE

[Kers68]

[KoSi83]

[Kuck68]
[Kung79]
[Kung82]

[KuLe80]

[Lave3i]
[LeKa72]

[Loeb76]

[Malo82]
[Mazu86]
[MeCo80]
[MeSi87]
[MoF086]
[NaSa79]

[Orcu76]

21

Trans. Comp., Vol. C-17, No. 5, May 1968, pp. 443—451.

R.B. Kershner. On Paving the Plane. Amer. Math Monthly, Vol. 75, No. 8, Oct.
1968, pp. 839-844.

I. Koren and G.M. Silberman. A Direct Mapping of Algorithms onto VLSI Processor
Arrays Based on the Data Flow Approach. Proc. of the Inter. Conf. on Parallel
Proc., Aug. 1983, pp. 335-337.

D.J. Kuck. ILLIAC IV Software and Applications Programming. IEEE Trans.
Comp., Vol. C-17, No. 8, Aug. 1968, pp. 758-770.

H.T. Kung. Let’s Design Algorithms for VLSI Systems. Caltech Conf. on VLSI,
Jan. 1979, pp. 65-90. '

H.T. Kung. Why Systolic Architectures?. Computer, Vol. 15, No. 1, Jan. 1982, pp.
97-107.

H.T. Kung and C.E. Leiserson. Algorithms for VLSI Processor Arrays. in Introduc-
tion to VLSI Systems, by C. Mead and L. Conway, Addison-Wesley, 1980, pp.
271-292.

F. Laves. Ebenenteilung und Koordinationszahl. Z. Kristallogr., Vol. 78, 1931, pp.
208-241.

K.N. Levitt and W.H. Kautz. Cellular Arrays for the Solution of Graph Problems.
CACM, Vol.15, No. 9, 1972, pp. 789-801.

A.L. Loeb. Space Structures. Addison-Wesley, Reading, Mass., 1976.

Allen D. Malony. Regular Interconnection Networks. Master’s Thesis, Univ. of Califor-
nia, Los Angeles, August 1982.

Pinaki Mazumder. Evaluation of Three Interconnection Networks for CMOS VLSI
Implementation. 1986 ICPP, Aug. 1986, pp. 200-207.

C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley, Reading,
Mass., 1980.

Bilha Mendelson and Gabriel M. Silberman. Mapping Data Flow Programs on ¢ VLSI
Array of Processors. 7, 1987, pp. 72-80.

D.I. Moldovan and J.A.B. Fortes. Partitioning and Mapping Algorithms Into Fized-
Size Systolic Arrays. IEEE Trans. Comput., Vol. C-35, No. 1, Jan. 1986, pp. 1-12.

D. Nassimi and S. Sahni. Bitonic Sort on a Mesh-Connected Parallel Computer. IEEE
Trans. Comput., Vol. C-27, Jan. 1979, pp. 2-7.

S.E. Orcutt. Implementation of Permutation Functions in ILLIAC IV-Type

[RaJo87]

[ReAPS87]

[ReSc83]

[Sava81]

; [Snyd82]
[Subn16]
[SuMe77]
[Thom?79]
(ThKu77]

[Ullm84]

[Venks5]
[vonN68]
[Witt81]
[YaAm69]

[YaAm71]

22

Computers. IEEE Trans. Comp., Vol. C-25, No. 9, Sept. 1976, pp. 929-936.

A.G. Ranade and S.L. Johnson. The Communication Efficiency of Meshes, Boolean
Cubes and Cube Connected Cycles for Wafer Scale Integration. Proc. 1987 Inter.
Conf. on Parallel Proc., Aug. 1987, pp. 479-482.

D.A. Reed, L.M. Adams and M.L. Patrick. Stencils and Problem Partitionings: Their
Influence on the Performance of Multiple Processor Systems. to appear in IEEE
Trans. Comput..

D.A. Reed and H.D. Schwetman. Cost-Performance Bounds for Multi—-microcomputer
Networks. IEEE Trans. Comput., Vol. C-32, No. 1, Jan. 1983, pp. 83-95.

J.E. Savage. Planar Circuit Complezity and the Performance of VLSI Algorithms.
Proc. of the CMU Conf. on VLSI Systems and Computations, 1981, pp. 61—
67.

L. Snyder. Introduction to the Configurable, Highly Parallel Computer. Computer,
Vol 15, No. 1, Jan. 1982, pp. 47-56.

A. Subnikov. K voprosu o stroenii Kristallov. Bulletin Acad. Imp. Sci., Ser. 6, Vol.
10, 1916, pp. 755-779.

LE. Sutherland and C.A. Mead. Microelectronics and Computer Science. Scientific
American, Vol. 237, Sept. 1977, pp. 210-228,

C.D. Thompson. Area-Time Complezity for VLSI. Proc. Caltech Conf on VLSI, -
Jan. 1979, pp. 405-508.

C.D. Thompson and H.T. Kung. Soriing on a Mesh-Connected Parallel Computer.
CACM, Vol. 20, April 1977, pp. 263-271.

J.D. Ullman. Computational Aspects of VLSI. Computer Science Press, 1984.

N. Venkateswaran. PA’ Arrays for Supercomputers. Proc. 1985 IEEE Supercom-
puter Conf., 1985, pp. 20-30.

J. von Neumann. The Theory of Self-Reproducing Automa, Univ. of lllinois at
Urbana-Champaign, 1968.

L.D. Wittie. Communications Structures for Large Networks of Microcomputers.
IEEE Trans. Comput., Vol. C-30, No. 4, April 1981, pp. 264-273.

H. Yamada and S. Amoroso. Tessellation Automata. Info. and Control, Vol. 14,
1969, pp. 299-317.

H. Yamada and S. Amoroso. Structural and Behavorial Equivalences of Tesselation
Automata. Info. and Control, Vol. 18, 1971, pp. 1--31.

23

[Zalg69] Viktor A. Zalgaller. Convezr Polyhedra with Regular Faces. in Seminars in
Mathematics, Vol. 2, V.A. Steklov (editor), Math. Inst., Leningrad, Consultants

Bureau, New York, 1969, pp. 1-10.

Triangular Host Topology — Space Emulation Efficiency

Target Topology | Optimal Emulation Emulation Efficiency
(host nodes / target node) | (host nodes / target node)
3° 4 4
3. 3 3
3.4 3 3
3°.4.3.4 3 3
3.4.64 2 3
3.6.3.8 2 2
3.12° 1 2
4! 2 2
4.6.12 1 2'2"
3
4.8° 1 2
6° 1 1

Table 1. Space Emulation Efficiency for Triangular Host Array

Orthogonal Host Topology — Space Emulation E{ﬁéiency

Target Topology

Optimal Emulation
(host nodes / target node)

Emulation Efficiency
(host nodes / target node)

3.4.6.4

3.6.3.6

3.12

4.6.12

4.8

2

2

Table 2. Space Emulaticn Efficiency for Orthogonal Host Array

Hexagonal Host Topology — Space Emulation Efficiency

Target Topology | Optimal Emulation Emulation Efficiency
(host nodes / target node) | (host nodes / target node)

3° 1 1

1

3'.6 1 L E
8
3%.4° 1 1
3°.4.3.4 1 1
3.4.8.4 1 1
1

3.6.3.8 1 1
3

3.12° 1 1
4 1 1
4.8.12 1 1
4.8° 1 1
6° 1 1

Table 3. Space Emulation Efficiency for Hexagonal Host Array

Time Emulation Efficiency of Strongly Regular Afrays
Host Emulation Efficiency (cycles)
Topology
Hexagonal Orthogonal Triangular
3° 1 1 1
3°.4° 2 1 1
3°.4.3.4 2 1 1
3.4.6.4 3 (3) (3)
3.12° 6 (6) (6)
4! 2 1 1
4.8.12 5 (5) (5)
4.8° 4 3 (3)
6° 3 3 (3)

Table 4. Time Emulation Efficiency of Regular Target Arrays

3.6.3.6

(S
UL
DAVZZVA
NAVAY
NAVINA

4.6.12

AVAVAVA
AVAVAVAVA
AVAVAVAVAVA
AVAVAVAVAVAYA
"\ \AANY
VAVAVAVAVAY
\VAVAVAVAY,
\/\/\ YV

3.4.6.4

32, 4.3.4

~ Figure 1. The Eleven Laves Nets

4. g2

A

\/

WAVAVAVAY,
v, AAQAQAQAQAV

\ X
VAVAVAVAVAY,

\WAVAVAVAY,

AVAVAVAVA
JAVAVAYAVAVA

0,00,
fe: 0=
AX XX
s@u@u@n
'0.80,89, 9%
s@u@n
\/

(XY

AVAVAVAVAVAVA

AVAVAVAVAVAVAVA

EREEERER
V'V VN N\ \/\/

3.6.3.6

4.6.12

Figure 2. The Eleven Regular Processor Arrays

ion of 3°

1 Triangular Space Emulati

3

Figure

3.2 Triangular Space Emulation of 3‘.6

igure

F

Figure 3.3 Triangular Space Emulation of 3.4

4 Triangular Space Emulation of 3°.4.3.4

3

Figure

Figure 3.5 Triangular Space Emulation of 3.4.6.4

Figure 3.6 Triangular Space Emulation of 3.6.3.6

3.7 Triangular Space Emulation of 3.12°

igure

F

\%%%%\f

R R
SRR,
A

Figure 3.8 Triangular Space Emulation of 4*

s J
[]

Figure 3.9 Triangular Space Emulation of 4.6.12

Figure 3.10 Triangular Space Emulation of 4.8°

Figure 3.11 Triangular Space Emulation of ¢°

byl

R

[oa)
L}

a1
1

L34

Figure 4.1 Orthogonal Space Emulation of 3°

; NEREEEE g _ - - 1

I i | i

| i t t

] i 1 i

| I 1 t

|] | §

|- - - - - - poooo- t ;
| i 1 |
t i |]
I } | I
1 | i i
| | | |

4 " <
44 L [

i I |

| | i

| i !

i |]

i 1 |
] 3 {1

g LT}

! | | |
| i | |
l ! | |
i | | |
i i | 1

ri7 IW] - = - + ||||||||

| t i ﬁ |

! ! ! |

| | | [

i { I I

i i] |

- - !Iu* IIIIII 2 & [+ llllllll

i ! | {
i { f |
| | { 1
] i I I
1 | 1 | i

- - REEE F H

1 t i |

i | t |

I | | i

{] i |

[! | t

o (34 i I . I99]

C 1} L] I = T

Figure 4.2 Orthogonal Space Emulation of 3*s

Ll

>4

11

11
4

Figure 4.3 Orthogonal Space Emulation of 3°.4°

e i I e
;

w1
3

Figure 4.4 Orthogonal Space Emulation of 3°.4.3.4

gl (R 8]

al ny s
||||| T

1 1 1 1 [] | !
1 i 1 l 1 | ! I
! t 1 i 1 | 1 !
1 1 | 1 |] 1 i
i 1 1 1 t 1 I i
a - """ s & 4
1 ! i 1 1 ! [!
1 1 ' 1 1] 1 !
! 1 | ! 1] 1 1
[I | [1 ! ! !
1 1 1 1 1 }]]

H- -7 11— "

||||| 1

N 1 [I I | 1 1
1 [1 1 [J | |
1 ! I 1 1 i 1 [
1 1 | 1 1 ! 1 1
1 i 1 1 } 1 1 |

[4 DR .) § P,

Vol L} 1

Figure 4.5 Orthogonal Space Emulation of 3.4.6.4

FH----- [t H -~ -~ - F===-- -~ ~-- F-——-——- H--=--- B
e e F-———-$----- B -—-===< H - - B ===

H----- 2 S—— H----- 2 S F----- 2 S H----- B
R N B e o — H-——— = S —— [0 N t ————— 3]

Figure 4.6 Orthogonal Space Emulation of 3.6.3.6

-

l

O T RNy & weyyepn v ' [PURRNE P SU P

—-———— e

|

Figure 4.7 Orthogonal Space Emulation of 3.12°

Figure 4.8 Orthogonal Space Emulation of 4*

——— - - ——

—_— - - e - - oy

o - -

it T SR

R T e S

Figure 4.9 Orthogonal Space Emulation of 4.6.12

Figure 4.10 Orthogonal Space Emulation of 4.8°

Figure 4.11 Orthogonal Space Emulation of ¢’

Figure 5.1 Hexagonal Space Emulation of 3°

Figure 5.2 Hexagonal Space Emulation of 3's

—
\ \ \ \ \ \ \ \
Al \ \ \ \ \ \ \
A \ \ \ \ \ \
A \ \ \ \ \ \
\ \ \ \ \ . N

NAVAVAVAYAVAVAE:
MM/V\/\/
NAVAVAVEVEVEYAN

Figure 5.3 Hexagonal Space Emulation of 3°.4®

Figure 5.4 Hexagonal Space Emulation of 3%.4.3.4

Figure 5.6 Hexagonal Space Emulation of 3.6.3.6

Figure 5.7 Hexagonal Space Emulation of 3.12°

//// Va4
. //////
////////
///////
VAV AN AVAY
///////
ST T T T T T

Figure 5.8 Hexagonal Space Emulation of 4*

Figure 5.9 Hexagonal Space Emulation of 4.6.12

- — - e e = -—— - - - _—— e — g

Figure 5.10 Hexagonal Space Emulation of 4.8

Figure 5.11 Ilexagonal Space Emulation of ¢

by by by €y G2 O3
0 0
ds3 bay hay baz by €y Cay O3
a3z d3y b3y byz bay bis | = | 3 ca e33
-. 1)43 o. ('_” ('42
0 0
A B C

Figure 6. Matrix Multiplication Problem

[3Y

¢ a}
[XS)

wm

TS

(¥

(1)

o
N

~
(¥

24

14

gure 7. Triangular Processor Array for Matrix Mulitplication

€23
by
3,37
24
Y -
3y 32 .
c,43 34

52
32
o
aq3
°52 b/
)3 43
5
43
33
B3,
353

~
%
€53
24

Figure 8. Four Steps in Matrix Multiplication on
the Triangular Processor Array

p—

Figure 9. LU Decomposition Problem

22

3

23

1 32

Figure 10. Triangular Processor Array for LU Decomposition

=
o
ot
-+
. pt
/2]
o
5
Q
Q
L
-~
-
-
=
X
v}
2
a
42
Q]
m..e..

Yt
fd
L

Aol

FAR]

K
e

on

Figure L1

4

BIBLIOGRAPHIC DATA 1. Report No. 2 3. Recipient’s Accession No.

SHEET CSRD-734

4. Title and Subtitle 5. Report Date

REGULAR PROCESSOR ARRAYS January 1988
6.

7. Author(s) 8. Performing Organization Rept.

Allen D. Malony No. CSRD-734

9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

University of Illinois at Urbana-Champaign :

Center for Supercomputing Research and Development 1. Gontsa g“;“%N°-U§ gsﬁ

Urbana, IL 61801-2932 i ?582?3%; 1]{3900% PoSRET
F49620-86-C-0136; IBM Bos

12. Sponsoring Organization Name and Address 13. Type of Report & Period

National Science Foundation, Washington, DC; Covered

U.S. Department of Energy, Washington, DC; Technical Report

U.S. Air Force Office of Scientific Research, Washington, DC;|14

IBM Corporation, Armonk, NY

15. Supplementary Notes

16. Abstracts

Regular is an often used term to suggest simple and uniform structure of a parallel
processor's organization or a parallel algorithm's operation. However, a strict
definition is long overdue. In this paper, we define regularity for processor
array structures in two dimensions and enumerate the eleven distinct regular
topologies. Space and time emulation schemes among the regular processor arrays
are constructed to compare their geometric and performance characteristics. We
also show how algorithms developed for one regular processor array might be
transferred to another regular array using matrix multiplication and LU
decomposition as examples.

17. Key Words and Document Analysis. 17a. Descriptors

architecture
VLSI

17b. Identifiers/Open-Ended Terms

17¢. COSATI Field/Group

18. Availability Statement 19.. Security Class (This 21. No. of Pages
. eport)
{mi UNCLASSIFIED 70
Release Unlimited 20. Security Class (This 22. Price
Page
UNCLASSIFIED

FORM NTiS-35 {(10-70) ’ USCOMM-DC 40329-P71

