
Penvelope: A New Approach to Rapidly Predicting the Performance of
Computationally Intensive Scientific Applications on Parallel Computer

Architectures

Daniel M. Pressel
US Army Research Laboratory (ARL),

Aberdeen Proving Ground, MD
dmpresse@arl.army.mil

David Cronk
University of Tennessee,

Knoxville, TN
cronk@cs.utk.edu

Sameer Suresh Shende
University of Oregon, Eugene, OR

sameer@cs.uoregon.edu

Abstract

A common complaint when dealing with the
performance of computationally intensive scientific
applications on parallel computers is that programs exist
to predict the performance of radar systems, missiles and
artillery shells, drugs, etc., but no one knows how to
predict the performance of these applications on a
parallel computer. Actually, that is not quite true. A
more accurate statement is that no one knows how to
predict the performance of these applications on a
parallel computer in a reasonable amount of time.
PENVELOPE is an attempt to remedy this situation. It is
an extension to Amdahl’s Law/Gustafson’s work on
scaled speedup that takes into account the cost of
interprocessor communication and operating system
overhead, yet is simple enough that it was implemented as
an Excel spreadsheet.

1. Introduction

 A common complaint when dealing with the
performance of computationally intensive scientific
applications on parallel computers is that programs exist
to predict the performance of radar systems, missiles and
artillery shells, drugs, etc., but no one knows how to
predict the performance of these applications on a parallel
computer. Actually, that is not quite true. A more
accurate statement is that no one knows how to predict
the performance of these applications on a parallel
computer in a reasonable amount of time. We are
developing a fast model of the performance of these
applications on modern parallel computer architectures.
As the first step in the process, we have chosen to model
pure MPI applications. In general our approach works
best for programs using a single communicator.

However, it should be possible to use PENVELOPE to
model more complicated applications.
 The model uses “Back-of-the-Envelope” methods
and relies on either measured or predicted (e.g., using the
ENVELOPE model developed jointly at the US Army
Research Laboratory and the University of Tennessee,
Knoxville[1]) run times for single processor runs. It also
relies on measured numbers of calls and the amount of
data transferred for each of the commonly used MPI-1
calls (e.g., send, receive, and the more commonly used
collective operations). This of course means taking the
parallel measurements for each number of processors one
is interested in. However, the model assumes that these
numbers will be system independent, so the
measurements only need to be made once per application.
In contrast, the serial run times will be needed for each of
the systems to be modeled.
 In addition to the application specific data, one also
needs system specific data concerning peak internode
bandwidth, peak interprocessor/internode bandwidth with
only a single sender/receiver pair, and the minimum
latency for passing a one byte message. All of these
numbers of course assume one is using MPI. While this
is a lot of information to collect, fortunately it only needs
to be collected once per system. Many vendors and some
supercomputer sites (e.g., Oak Ridge National
Laboratory) routinely publish this information. Once
collected, it can be applied to the simulation of the
performance of any number of applications.
 The application specific and system specific
information is then entered into a series of Microsoft
Excel spreadsheets that our team has put together (one
spreadsheet per application-number of processors
pairing). While it can take some time to initially collect
this data, the time required for the spreadsheet to perform

Proceedings of the Users Group Conference (DOD_UGC’04)
0-7695-2259-9/04 $ 20.00 IEEE

its calculations is negligible on today’s PCs. This paper
will discuss our experimental results based on the NAS
benchmarks[2].
 This project was supported by a grant of computer
time from the DoD High Performance Computing
Modernization Program.

2. The Problem

 How does one predict the performance of a
parallelized scientific application on a computer? In
general, one is not interested in just one computer.
Rather, there are likely to be multiple competing systems
and the user is trying to decide which system(s) to request
access to. Frequently, the system staff is attempting to
evaluate competing bids from multiple vendors, possibly
for systems that will not be generally available for several
more months. Complicating matters further, one may
have multiple applications, multiple data sets per
application, and almost certainly will want the
applications run for a varying numbers of processors.

3. The Traditional Solutions

 The most common answer to this problem is to
measure the performance. This of course takes time and
in many cases requires considerable resources.
Additionally, when talking about one of a kind systems
and/or systems that are still being developed, this is not
even a possibility. The most common solutions to this
problem have been:

Wait until the systems are available and then run
your benchmarks.

Rely on industry standard benchmarks such as
Linpack[3], STREAMS[4], or the NPB benchmark
suite out of NASA Ames Research Laboratory.

Extrapolate from runs made on the previous
generation of hardware from the same vendor
and hope for the best.

 As was demonstrated in Reference 5, there can be a
considerable degree of variability in the delivered levels
of performance for each of these benchmarks. So which
if any of them should one use? Obviously what is needed
is an entirely different approach.

4. Back-of-the-Envelope Calculations

 A promising concept for an alternative approach is to
use Back-of-the-Envelope calculations. Engineers and
scientists have been using this approach for decades if not
centuries to predict the outcome of their work prior to

committing themselves to a particular design or costly
experiment. The key concept is to remove enough of the
fluff that the equations can be readily solved while not
eliminating any of the details that really matter.
Amdahl’s law and the work of Gustafson on scaled
speedup are prime examples of this approach at work.
While in many cases these approaches are good enough,
they will fail in two key areas:

Neither will tell you if the program has been
poorly parallelized (e.g., the granularity is too
fine).

Both lack any insights as to the importance of
the system interconnect. For all they care, a 1
Byte/second interconnect is just as good as a 1
GB/second interconnect. Similarly, an
interconnect with a 1 minute message passing
latency is of equal value to one with a 1
microsecond message passing latency.

 What is needed is an extension that incorporates both
Amdahl’s law and the work of Gustafson while making a
limited effort to take into account the design of the
program and the systems it will run on.
 In the general case, this problem may be too
complicated to solve using this approach. However, it
was felt that if one limited the problem to a commonly
occurring case or set of cases, then it might be possible to
achieve usable results with the desired degree of effort.
The obvious choice was programs parallelized using the
more commonly used MPI-1 features with a single
communicator. With some effort on the part of the user,
it should be possible to extend the model to cover
programs with multiple communicators. At this point in
the development of PENVELOPE, no attempt has been
made to investigate this possibility.

5. General Approach

 Based on data collected using TAU[6,7,8], or other
similar utilities, the cost for the data communications is
estimated. This means that on at least one system an
instrumented run must be made for each number of
processors being used. As previously mentioned, one
will also need information concerning the bandwidth and
latency for the system interconnects. Provisions have
been made for specifying the cost of the I/O, operating
system overhead, and whether or not communications are
overlapped with computations. The model assumes that
collective communications are never overlapped with
computations. Sends and Receives may or may not be
overlapped. Currently this is a simple yes or no question,
with no provisions for partial overlapping of
communications with computations. The cost of the
computations is estimated using Amdahl’s law for fixed

Proceedings of the Users Group Conference (DOD_UGC’04)
0-7695-2259-9/04 $ 20.00 IEEE

problem sizes, or Gustafson’s work for problems
involving scaled speedup.

6. Limitations

There are four main limitations with the model at the
present time. The first one is difficult to know how to
handle. When discussing an application’s performance,
one would like to think in terms of there being a single
value for the run time. In reality, there will always be a
range of values. If this range is small enough (e.g., 1–
10%), then it probably does not matter. However, in a
recent effort to benchmark some of the systems at the
ARL-MSRC, the following degrees of variability were
observed.

Intel Pentium 4 3.06 GHz (6.12 GFLOPS) Cluster with
Myrinet 2000 Switch (2 PE per node) Summary of the
Frequency Counts for (Worst Time/Best Time) for All

Classes

0.00

50.00

100.00

150.00

200.00

250.00

1.
0

1.
3

1.
6

1.
9

2.
2

2.
5

2.
8

>1
0.

0

Worst Time/Best Time

F
re

q
u

en
cy

Frequency Count for
(Worst Time/Best Time)

Figure 1. The variability in run times on the Intel
Pentium 4 cluster at the ARL-MSRC (0.1 increment

binning)

IBM SP 375 MHz (1.5 GFLOPS) Power3 (NH2) with
Colony Switch (single rail, 16 PE/node) Summary of

the Frequency Counts for (Worst Time/Best Time) for
All Classes

0
20
40
60
80

100
120
140
160

1.
0

1.
3

1.
6

1.
9

2.
2

2.
5

2.
8

>1
0.

0

Worst Time/Best Time

F
re

q
u

en
cy

Frequency Count for
(Worst Time/Best Time)

Figure 2. The variability in run times on the IBM SP
Power3 (NH2) at the ARL-MSRC (0.1 increment

binning)

512 PE SGI O3K 400 MHz (800 MFLOPS) 64 bit
compilers 16 KB page size Summary of the

Frequency Counts for (Worst Time/Best Time) for All
Classes

0.00
10.00

20.00
30.00

40.00
50.00

60.00

1.
0

1.
3

1.
6

1.
9

2.
2

2.
5

2.
8

>1
0.

0

Worst Time/Best Time

F
re

q
u

en
cy

Frequency Count for
(Worst Time/Best Time)

Figure 3. The variability in run times on the SGI Origin
3000 at the ARL-MSRC (0.1 increment binning)

The second problem is that many systems have
insufficient memory bandwidth in a node to peg the
interface on all of the processors at the same time.
Therefore, when going from a partially filled node to a
fully utilized node, there may be a significant decrease in
the per processor level of performance. The third
problem is superlinear speedup, where as the processor
count increases the amount of work per processor
decreases to the point that the working set fits in cache.
A side effect of this is that once the program enters the
region of superlinear speedup, the demands on the
memory system can drop markedly. In many cases, this
will eliminate the limitations discussed in the second
problem.

The fourth problem is related to the second and third
problems. What value should one use for the serial
runtime? For large problems, it may not even be possible
to run the application on a single processor. Assuming
that it is possible to run the application on a single
processor, is it best to use the measured serial run time,
the measured run time for a small number of processors*
that number of processors (this might eliminate some of
the errors associated with problems 2 and 3), or use a
model such as ENVELOPE to estimate the serial
performance based on more appropriate assumptions for
per processor memory bandwidth and cache hit rates
when using N processors. Currently for 4-9 processors,
the measured serial run time was used in our experiments
whenever it was available. For larger numbers of
processors, 4* the four processor run time was used
consistently. In some cases, a better choice would have
been to use the minimum of these two values, while the
best solution is likely to be modeling the serial
performance.

Proceedings of the Users Group Conference (DOD_UGC’04)
0-7695-2259-9/04 $ 20.00 IEEE

7. Results

In an attempt to jump start the process, data from[9, 10,

and 11] were used to calculate the communication costs.
Hardware information came from vendor websites,
vendor presentations at Supercomputer 2003 and other
conferences, from numerous publications out of Oak
Ridge National Laboratory and the Ohio Supercomputer
Center/Ohio State University. At the present time, we are
assuming that the BT, CG, EP, FT, and LU benchmarks
overlap computation with communication, while the MG
and SP benchmarks do not overlap computation with
communication. It now appears as though on some
systems the MG benchmark may be able to overlap
computation with communication (probably due to the
buffering of messages). Benchmark data for the class W,
A, and B benchmarks were collected for four systems at
the US Army Research Laboratory–Major Shared
Resource Center (ARL MSRC). This data was
supplemented with results published by the NAS group at
NASA Ames Research Laboratory and roughly 40 other
sites on the web, along with correspondence with some of
the vendors and two other supercomputing sites.

Based on this data, the run time was estimated for a
large number of combinations of system, number of
processors (in some cases out to 64 processors), and
benchmarks for the class A data sets. A smaller number
of combinations were estimated for the class B and W
data sets due to the more limited amount of information
available for modeling these data sets. When sufficient
information existed, the predicted run times were
compared to the measured runtimes (using the best times
when more than one measurement was made). Similarly,
the predicted run times using Amdahl’s law was
compared to the measured run times. Figures 4 and 5
show these results. In many cases there was little
difference between the two sets of predictions due to the
overlapping of communication with computation. Where
there was a strong degree of superlinear speedup, neither
model worked well, but PENVELOPE appears to be
worse. In cases where the communication costs were
large, PENVELOPE is significantly more accurate than
using Amdahl’s law by itself. In a number of cases where
neither cache effects nor communications costs were
large, Amdahl’s law tended to under estimate the run time
by 10–30 % while PENVELOPE would over estimate the
run time by a similar amount.

Frequency Count

0

20

40

60

80

100

<0
.2 0.

3
0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

>=
2.9

Measured/Predicted

F
re

qu
en

cy

Figure 4. The accuracy of PENVELOPE in estimating
the run time for selected runs of the NAS benchmark

suite (0.1 increment binning)

Cannonical Frequency Count

0

20

40

60

80

100

120

<0
.2 0.

3
0.

5
0.

7
0.

9
1.

1
1.

3
1.

5
1.

7
1.

9
2.

1
2.

3
2.

5
2.

7
>=

2.
9

Measured/Predicted

F
re

q
u

en
c

Figure 5. The accuracy of Amdahl’s law in estimating
the run time for selected runs of the NAS benchmark

suite (0.1 increment binning)

8. Conclusions

PENVELOPE is a work in progress. As such it
shows significant promise in achieving its goals.
However, at the present time, some of those goals are
only partially achieved. It is hoped that continued work
will rapidly improve the quality of the predictions.

References

1. Pressel, Daniel M., “ENVELOPE: A New Approach to
Estimating the Delivered Performance of High Performance
Processors.” ARL-TR-2671, US Army Research Laboratory,
February 2002.

2. The NAS Benchmark (NPB) home page can be found at
http://www.nas.nasa.gov.

3. Dongara, J., “Linpack Benchmark-Parallel” table for the
Linpack Benchmark.” published electronically at
http://www.netlib.org.

4. McCalpin, J., “Equivalent MFLOPS” table for the STREAM
Benchmark.” published electronically at
http://www.cs.virginia.edu/stream.

Proceedings of the Users Group Conference (DOD_UGC’04)
0-7695-2259-9/04 $ 20.00 IEEE

5. Pressel, Daniel M. and Jelani Clay, “Benchmarking the
Benchmarks.” ARL-TR-2805, US Army Research Laboratory,
September 2002.

6. Shende, S., et al., “Portable Profiling and Tracing for Parallel
Scientific Applications Using C++.” Proceedings of ACM
SIGMETRICS Symposium on Parallel and Distributed Tools
(SPDT ’98), August 1998, pp. 134–135.

7. “TAU Portable Profiling.” University of Oregon, Published
electronically at
http://www.cs.uoregon.edu/research/paracomp/tau.

8. Maloney, Allen D. and Sameer Shende, “Performance
Technology for Complex Parallel and Distributed Systems.”
“Quality of Parallel and Distributed Programs and Systems,”

(Eds. Peter Kacsuk and Gabriele Kotsis), Nova Science
Publishers, Inc., NY, 2003, pp. 25–41.

9. Wong, Frederick C., et al., “Architectural Requirements and
Scalability of the NAS Parallel Benchmarks.” published in the
conference proceedings for SC’99, November 1999.

10. Lobosco, Marcelo, Vitor Santos Costa, and Claudio L. de
Amorim, “Performance Evaluation of Fast Ethernet, Giganet
and Myrinet on a Cluster”.

11. Tabe, Theodore B. and Quentin F. Stout, “The Use of the
MPI Communication Library in the NAS Parallel Benchmarks.”
CSE-TR-386-99, University of Michigan as a Computer Science
and Engineering Technical Report, 1999.

Proceedings of the Users Group Conference (DOD_UGC’04)
0-7695-2259-9/04 $ 20.00 IEEE

