
Models for On-the-Fly Compensation
of Measurement Overhead

in Parallel Performance Profiling

Allen D. Malony and Sameer S. Shende

Performance Research Laboratory
Department of Computer and Information Science

University of Oregon, Eugene, OR, USA
{malony,sameer}@cs.uoregon.edu

Abstract. Performance profiling generates measurement overhead dur-
ing parallel program execution. Measurement overhead, in turn, intro-
duces intrusion in a program’s runtime performance behavior. Intrusion
can be mitigated by controlling instrumentation degree, allowing a trade-
off of accuracy for detail. Alternatively, the accuracy in profile results
can be improved by reducing the intrusion error due to measurement
overhead. Models for compensation of measurement overhead in parallel
performance profiling are described. An approach based on rational re-
construction is used to understand properties of compensation solutions
for different parallel scenarios. From this analysis, a general algorithm
for on-the-fly overhead assessment and compensation is derived.

Keywords: Performance measurement and analysis, parallel computing,
profiling, intrusion, overhead compensation.

1 Introduction

In parallel profiling, performance measurements are made during program ex-
ecution. There is an overhead associated with performance measurement since
extra code is being executed and hardware resources (processor, memory, net-
work) consumed. When performance overhead affects the program execution, we
speak of performance (measurement) intrusion. Performance intrusion, no mat-
ter how small, can result in performance perturbation [7] where the program’s
measured performance behavior is “different” from its unmeasured performance.
Whereas performance perturbation is difficult to assess, performance intrusion
can be quantified by different metrics, the most important of which is dilation in
program execution time. This type of intrusion is often reported as a percentage
slowdown of total execution time, but the intrusion effects themselves will be
distributed throughout the profile results.

Any performance profiling technique, be it based on statistical profiling meth-
ods (e.g., see [4, 14]) or measured profiling methods (e.g., see [2, 9]), will encounter
measurement overhead and will also have limitations on what performance phe-
nomena can and cannot be observed [7]. Until there is a systematic basis for

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 72–82, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Models for On-the-Fly Compensation of Measurement Overhead 73

judging the validity of differing profiling techniques, it is more productive to
focus on those challenges that a profiling method faces to improve the accuracy
of its measurement. In this regard, we pose the question whether it is possible to
compensate for measurement overhead in performance profiling. What we mean
by this is to quantify measurement overhead and remove the overhead from pro-
file calculations. (It is important to note we are not suggesting that by doing
so we are “correcting” the effects of overhead on intrusion and perturbation.)
Because performance overhead occurs in both measured and statistical profiling,
overhead compensation is an important topic of study.

In our Euro-Par 2004 paper [8], we presented overhead compensation tech-
niques that were implemented in the TAU performance system [9] and demon-
strated with the NAS parallel benchmarks for both flat and callpath profile
analysis. While our results showed improvement in NAS profiling accuracy, as
measured by the error in total execution time compared to a non-instrumented
run, the compensation models were deficient for parallel execution due to their
inability to account for interprocess interactions and dependencies. The contri-
bution of this paper is the modeling of performance overhead compensation in
parallel profiling and the design of on-the-fly algorithms based on these models
that might be implemented in practical profiling tools.

Section §2 briefly describes the basic models from [8] and how they fail. We
discuss the issues that arise with overhead interdependency in parallel execution.
In Section §3, we follow a strategy to model parallel overhead compensation for
message-based parallel programs based on a rational reconstruction of compensa-
tion solutions for specific parallel case studies. From the rationally reconstructed
models, a general on-the-fly algorithm for overhead analysis and compensation
is derived. Conclusions and future work are given in Section §4.

2 Basic Models for Overhead Compensation

In our earlier work [8], we developed techniques for quantifying the overhead of
performance profile measurements and correcting the profiling results to com-
pensate for the measurement error introduced. This work was done for two types
of profiles: flat profiles and profiles of routine calling paths. The techniques were
implemented in the TAUprofiling system [9] and demonstrated on the NAS
parallel benchmarks. However, the models we developed were based on a local
perspective of how measurement overhead impacted the program’s execution.
Profiling measurements are, typically, performed for each program thread of ex-
ecution. (Here we use the term “thread” in a general sense. Shared memory
threads and distributed memory processes equally apply.) By a local perspective
we mean one that only regards the overhead impact on the process (thread)
where the profile measurement was made and overhead incurred.

Consider a message passing parallel program composed of multiple processes.
Most profiling tools would produce a separate profile for each process, showing
how time was spent in its measured events. Because the profile measurements
are made locally to a process, it is reasonable, as a first step, to compensate

74 Allen D. Malony and Sameer S. Shende

for measurement overhead in the process-local profiles only. Our original models
do just that. They accounted for the measurement overhead generated during
TAUprofiling for each program process (thread) and all its measured events,
and then removed the overhead from the inclusive and exclusive performance
results calculated during online profiling analysis. The compensation algorithm
“corrected” the measurement error in the process profiles in the sense that the
local overhead was not included in the local profile results.

The models we developed are necessary for compensating measurement in-
trusion in parallel computations, but they are not sufficient. Depending on the
application’s parallel execution behavior, it is possible, even likely, that intru-
sion effects due to measurement overhead seen on different processes will be
interdependent. We use the term “intrusion” specifically here to point out that
although measurement overhead occurs locally, its intrusion can have non-local
effects. As a result, parallel overhead compensation is more complex. In con-
trast with our past research on performance perturbation analysis [10–12], here
we do not want to resort to post-mortem parallel trace analysis. The problem of
overhead compensation in parallel profiling using only profile measurements (not
tracing) has not been addressed before. Certainly, we can learn from techniques
for trace-based perturbation analysis [13], but because we must perform over-
head compensation on-the-fly, the utility of these algorithms will be constrained
to deterministic parallel execution, for the same reasons discussed in [7, 13].

At a minimum, algorithms for on-the-fly overhead compensation in paral-
lel profiling must utilize a measurement infrastructure that conveys information
between processes at runtime. It is important to note this is not required for
trace-based perturbation analysis (since the analysis is offline) and it is what
makes compensation in profiling a unique problem. Techniques similar to those
used in PHOTON [15] and CCIFT [1] to embed overhead information in MPI
messages may aid in the development of such measurement infrastructure. How-
ever, we first need to understand how local measurement overhead affects global
performance intrusion so that we can construct compensation models and use
those models to develop online algorithms.

3 Models of Parallel Overhead Compensation

To address the problem of overhead compensation in parallel execution, we must
develop models that describe the effect of measurement overhead on execution
intrusion. From these models we can gain insight in how the profiling overheads
can then be compensated. However, unlike sequential computation, the models
must identify and describe aspects of parallel interaction that may cause differ-
ent intrusion behavior and, thus, lead to different methods for compensation.
We know that the methods will involve the communication of information be-
tween parallel threads of execution at the time of their interaction. To be more
specific, we will consider parallel compensation in message passing computation.
The parallel overhead compensation models we present below allow for infor-
mation about execution delay to be passed between processes during message

Models for On-the-Fly Compensation of Measurement Overhead 75

communication. The goal is to determine exactly what information needs to be
shared and how this information is to be used in compensation analysis. The
modeling methodology we develop extends to shared memory parallel comput-
ing, but the case for shared memory will not be presented here.

The approach we follow below constructs an understanding of the parallel
compensation problem from first principles. We first look at only two processes
and then three processes. From this in-depth study, our hope is to gain modeling
and analyses understanding that can extend to the general case. We will follow
a strategy of rational reconstruction where we take scenario measurement cases
and reconstruct an “actual” execution as if the measurement overhead were not
present. From what we learn, we then derive a model that works for that case and
look for consistent properties across the models to formulate a general algorithm
for overhead compensation.

The details of overhead removal in the profile calculation are described in our
earlier paper [8]. The focus below is on determining the actual overhead value to
be removed for each process. These two operations together constitute overhead
compensation.

3.1 Two Process Parallel Models

The simplest parallel computation involves only two processes which exchange
messages during execution. Measurement-based profiling will introduce overhead
and intrusion local to each process that carries between the processes as they
interact. To model the intrusion and determine what information must be shared
for overhead compensation, we consider the following two-process scenarios:

One send Process P1 sends one message to process P2
Two sends P1 sends two messages to P2
Handshake P1 sends one message to P2, then P2 sends one message to P1
General General message send and receive

For each scenario, we enumerate all possible cases for overhead relations between
the processes (what is called the “measured execution” model) and for each case
derive a representation of the execution with the overhead removed (what is
called the “approximated execution” model). We determine the overhead-free
approximation using a rational reconstruction of the “actual” event timings with
the measurement overhead removed.

Both models are presented in diagrammatic form. In additional, we present
expressions that relate the overhead, waiting, and timing parameters from the
measured execution to those “corrected” parameters in the approximated exe-
cution. It is important to keep in mind that the goal is to learn from the rational
reconstruction of the approximated execution how profile compensation is to be
done in the other scenarios, especially the general case. For space reasons, we
consider only the One Send and General scenarios in this paper.

Scenario: One Send. Consider a single message sent between two processes,
P1 and P2. Figure 1 shows the two possible cases, distinguishing which process

76 Allen D. Malony and Sameer S. Shende

o1

w

x1

P2

o1 (= x1)

P1

Approximated ExecutionMeasured Execution

Case 1

t

tt

t

x2

P1

P2
o2

o1 >= o2 + w
o2’ = o2 + w
w’ = 0
x2 = min(o1, o2+w) = o2+w

Rb
Re

S

Re

S

Rb

Case 2

Approximated Execution

P1

P2

P1

P2

o1

w
o2

w’

o1 (=x1)

x1

x2

t

t

t

t

Measured Execution

o2’ = o2 − (o1−o2 if o1>o2)
w’ = w + (o2 − o1)
x2 = min(o1, o2+w) = o1

o1 < o2 + w

Re Rb

S S

ReRb

Fig. 1. Two-Process, One-Send – Models and Analysis (Case: 1, 2).

has accumulated more overhead up until the time of the message communication.
Execution time advances from left to right and shown on the timelines are send
events (S) and receive events (Rb, receive begin; Re, receive end). The overhead
on P1 is o1 and the overhead on P2 is o2. The overhead is shown as a blocked
region immediately before the S or Rb events to easily see its size in the figure,
but it is actually spread out across the preceding timeline where profiled events
occur. Also designated is the waiting time (w) between Rb and Re, assuming
waiting time can be measured by the profiling system.

Case 1 occurs when P1’s overhead is greater than or equal to P2’s overhead
plus the waiting time (o1 ≥ o2 + w). A rational reconstruction of the approxi-
mated execution determines that P2 would not have waited for the message (i.e.,
S would occur earlier than Rb). Hence, the approximated waiting time (desig-
nated as w′) should be zero, as seen in the approximated execution timeline. Of
course, the problem is that P2 has already waited in the measured execution for
the message to be received. In order for P2 to know P1’s message would have
arrived earlier, P1 must communicate this information. Clearly, the information
is exactly the value o1, P1’s overhead. This is indicated in the figure by tagging
the message communication arrow with this value.

With P1’s overhead information, P2 can determine what to do about the
waiting time. The waiting time has already been measured and must be cor-
rectly accounted. If the approximated waiting is adjusted to zero, where should
the elapsed time represented by w go? If the profiling overhead is to be correctly
compensated, the measured waiting time must be attributed to P2’s approxi-
mated overhead (o2′ = o2 + w)! This is interesting because it shows how the
naive overhead compensation can lead to errors without conveyance of delay

Models for On-the-Fly Compensation of Measurement Overhead 77

information between sender and receiver. It is also important to note that Rb
cannot be moved back any further in the approximated execution. This suggests
that the only correction we can ever make in the receiver is in the waiting time.

The overhead value sent by P1 with the message conveys to P2 the infor-
mation “this message was delayed being sent by o1 amount of time” or “this
message would have been sent o1 time units earlier.” We contend that this is ex-
actly the information needed by P2 to correctly adjust its profiling metrics (i.e.,
compensate for overhead in parallel execution). We refer to the value sent by P1
as delay and will assign the designator x to represent its modeling and analysis
that follows. For instance, P1’s delay is given by x1. In both cases, x1 = o1,
but it is not always true that delay will be equal to accumulated overhead, as
we will see. Now an interesting question arises. How much earlier would future
events on process 2 occur in the approximated execution after the message from
P1 has been received? In general, each process will maintain a delay value (xi
for process Pi) for it to include in its next send message to tell the receiving pro-
cess how much earlier the message would have been sent. In the approximated
execution, for denotational purposes, we show the x1 and x2 values for P1 and
P2 as shaded regions after the last events, S and Re, respectively. We also show
an expression for the calculation of x2 for this case.

Moving on to the second case, the overhead and waiting time in P2 is greater
than what P1 reports (i.e., o1 < o2+w). Rationally, this means that S happens
after Rb in the approximated execution. What is the effect on w′, the approx-
imated waiting time? It is interesting to see that w′ can increase or decrease,
depending on the relation of o1 to o2. (Remember, o1 is the same as x1 in these
cases.) However, the occurrence of Re is certainly dependent on S and, thus, x2
will be entirely determined by (and, in fact, equal to) x1.

General Scenario. The goal of the two process models is to enumerate the pos-
sible cases arising from send/receive message communication. From these cases,
we can rationally reconstruct the approximated execution to determine how over-
head, waiting, and delay times are to be adjusted. From this reconstruction, we
can derive expressions for overhead analysis and correction. The similarity in
the case results leads us to propose a general scenario for two processes. This
scenario considers an arbitrary message send on one process and corresponding
message receive on the other process. Thus, this is a generalization of the One
Send scenario above. However, we now use the delay values x1 and x2 instead
of the o1 and o2 overheads in the analysis. The expressions for the two cases are
given below (refer to Figure 1):

Case 1 Case 2
x1 >= x2 + w x1 < x2 + w
o2’ = o2 + w o2’ = o2 - (x1-x2 if x1>x2)
w’ = 0 w’ = w + (x2-x1)
x1’ = x1 x1’ = x1
x2’ = min(x1, x2+w) = x2 + w x2’ = min(x1, x2+w) = x1

78 Allen D. Malony and Sameer S. Shende

The importance of the general scenario is the case analysis showing how the
delay values are updated and what information is shared between processes dur-
ing message communication. (Keep in mind that we are arbitrarily designating
P1 as the sender and P2 as the receiver. The analysis also applies when P1 is
the receiver and P2 the sender, with appropriate reversals of notation in the
expressions.) Notice that the overhead values o1 (not shown) and o2 are accu-
mulated overheads. The o2 value is updated here to account for waiting time
processing, but whenever any new measurement overhead occurs on P1 or P2,
the accumulated overheads o1 and o2 must be updated accordingly. Similarly,
any new measurement overhead must also be added to the delay values x1 or
x2.

Just to be clear, it is the overhead values that are being removed during
the profiling calculations. Thus, we want these overhead to be accurately ac-
counted. The conclusion of the two process modeling is that we can handle the
parallel overhead compensation for ALL two-process scenarios by applying the
general analysis described above on a message-by-message analysis, maintaining
the overhead and delay values as the online analysis proceeds.

3.2 Three Process Parallel Models

The question at this point is whether that conclusion applies to three or more
processes. That is, can the general two-process analysis be applied on a message-
by-message basis to all send/receive messages between any two processes in a
multi-process computation and, more importantly, give the desired overhead
compensation result? We look at two scenarios with three processes to get a
sense of the answer. These scenarios are:

Pipeline Process P1 sends a message to P2, then P2 sends to P3
Two Receive Process P1 and P3 sends a message each to process P2

We argue that these two scenarios are enough to elucidate all similar cases
regardless of the number of processes. Again, we follow a rational reconstruction
approach to determine approximated executions and then derive expressions for
updating overhead, waiting time, and delay variables to match the reconstructed
executions. Only the Two Receive scenarios is described in detail in this paper.

Scenario: Two Receive. When more than two processes are communicating,
it is not hard to find a scenario that raises unpleasant issues in our ability to
correct overhead intrusion under a different set of receive assumptions. These
issues are brought on by the effect of intrusion on message sequencing. The Two
Receive scenario exposes the problem. Here one process, P2, receives messages
from two other processes. There are four cases to consider depending on the
relatives sizes of overheads and waiting times. Figures 2 and 3 show two of the
cases. For simplicity, we return to looking only at the first messages being sent
and received on each process, and consider the initial overheads (not the delays
values) in the analysis.

Models for On-the-Fly Compensation of Measurement Overhead 79

o1

P2

P3

w

o3
o3

x2’ = min(o3, x2+o2a+y) = x2+o2a+y = o2’’

First message

Second message

x2 = min(o1, o2+w) = o2+w = o2’

o2ao2a

o2

o1

y y
x2

o3

Measured Execution Approximated Execution

t

t

t

x2’

P3

P2

P1

t

t

t

t

t

t

o3

P1

P2

P3

P1

o1 >= o2 + w (x1 = o1)
o2’ = o2 + w
w’ = 0

o3 >= x2 + o2a + y (x3 = o3)
o2’’ = o2’ + o2a + y
y’ = 0

Re
Rb

SS

Rb
Rb

Rb

SS

Re

Re

S

Re
Re

Re
Rb

Rb

S

Fig. 2. Three-Process, Two Receive – Models and Analysis (Case 1).

In Figure 2, a two-part approximated execution is shown, with part one
(top) giving the state after the first message is processed and part two (bottom)
showing the result after the second message is processed. The analysis follows the
approach we used before, with new waiting values (w′ and y′) being calculated
and P2’s delay value (x2) updated. In this case, no waiting time would have
occurred, and no adjustment to waiting time is necessary. Otherwise, nothing
particularly strange stands out in the approximated result.

What would be a surprising result? If the overhead analysis resulted in a re-
ordering of send events in time, between the measured execution and the approx-
imated execution, then there would be concerns of performance perturbation. In
Figure 3, we see the send events changing order in time in the approximated
execution, with P3’s send taking place before P1’s send. As with the other cases,
our analysis reflects a message-by-message processing algorithm. In the rational
reconstruction, we assume the message communication is explicit and pairs a
particular sender and receiver. Under this assumption, the order of messages
received by P2 must be maintained in the approximated execution. In this case,
is the time reordering of send messages in Figure 3 a problem? In fact, no. It is
certainly possible that a process (P2) will first receive a message from a process
(P1) sent after another process (P3) sends a message to the receiving process.
This just reflects the strict order of P2 receives. However, if we consider receive
operations that can match any send, the send reordering exposes a problem with
overhead compensation, since the message from P3 should have been received
first in the “real” execution.

The application of our overhead compensation models to programs using
receive operations that can match any send message results in profile analysis
constrained to message orderings as they are observed in the measured execution.
These message orderings are affected by intrusion and, thus, may not be the

80 Allen D. Malony and Sameer S. Shende

w

First message

Second message

o3

t

t t

t

t

t

t

t

P1

P2

P3

o1

P1

P2

P3

x2

o1

y y

P1

P2

P3

w’ x2’

Approximated Execution

x2’ = min(o3, x2+o2a+y) = x2+o2a+y

o2

o2a

w’

o2a
o3 o3

o3

Measured Execution

t

o1 < o2 + w (x1 = o1)
o2’ = o2
w’ = w + (o2 − o1)
x2 = min(o1, o2+w) = o1

o3 >= x2 + o2a + y (x3 = o3)
o2’’ = o2’ + o2a + y
y’ = 0

Re

S

Rb Re Rb Re

S

Rb Re

S S

Rb Re

Re

S

Rb
Rb

S

Fig. 3. Three-Process, Two Receive – Models and Analysis (Case: 2).

message orderings that occur in the absence of measurement. However, while
it is actually possible to detect reordering occurrences (i.e., measured versus
approximated orderings), it is not possible to correct for reordering during online
overhead analysis and compensation. Why? There are two reasons. First, our
analysis is unable to determine if it is correct to associate a receive event with
a different send event. That is, the performance analysis does not know what
type of receive is being performed, one that is for a specific sender or one that
can accept any sender. Second, even if we know the type of receive operation, it
is not possible to know whether changing receive order will affect future receive
events. Therefore, the models must, in general, enforce message receive ordering.

3.3 Modeling Summary and General Algorithm

Our above modeling and analysis of measurement overhead in parallel message
passing programs has produced three important outcomes. First, the rational
reconstructions of the measurement scenarios and the analysis of the approx-
imated executions has resulted in a robust procedure for message-by-message
overhead compensation analysis in parallel profiling. It updates correctly wait-
ing times associated with message processing and calculates per process values
that capture online the amount a process has been effectively delayed due to
measurement overhead and its effects. From this overhead compensation basis,
the parallel profiling operations used to update inclusive and exclusive perfor-
mance can be performed. Second, this analysis requires ALL send messages to
be augmented with the delay value of the sender process at the time the message
is sent. This information is necessary for the receiving process to apply the anal-
ysis procedures. Third, approximation models based on receive type can result
in more accurate overhead handling and profile results, but the accuracy gains
are anticipated to be minor compared to the processing complexity involved.

Models for On-the-Fly Compensation of Measurement Overhead 81

We argue that general overhead scenarios for message passing computations
can all be addressed from what we learned in the two- and three-process modeling
above. A general algorithm for overhead compensation effectively applies the
Two-Process, General modeling and analysis on a message-by-message basis.
The algorithm is composed of three parts:

• Updating of local overhead and delay as a result of local profile
measurements.

• Updating of local overhead and delay as a result of messages re-
ceived and their reported delay.

• Transmission of local delay when a process sends a message.

If the transmission of the delays values can be supported, it should be possible to
incorporate this overhead compensation algorithm in a parallel profiling system
such as TAU[9].

4 Conclusion and Future Work

Profiling is an important technique for the performance analysis of parallel ap-
plications. However, the measurement overhead incurred during profiling can
cause intrusions in the parallel performance behavior. Generally speaking, the
greater the measurement overhead, the greater the chance the measurement will
result in performance intrusion. Thus, there is fundamental tradeoff in profil-
ing methodology concerning the need for measurement detail (as determined
by number of events and frequency of occurrence) versus the desired accuracy
of profiling results. We argue that without an understanding of how intrusion
affects performance behavior and without a way to adjust for intrusion effects
in profiling calculations, the accuracy of the profiling results is uncertain. Most
parallel profiling tools quantify intrusion as a percentage slowdown in the whole
execution and regard this as an implicit measure of profiling goodness. This is
unsatisfactory since it assumes overhead is evenly distributed across all threads
of execution and all profiling results are uniformly affected.

Our early work in parallel perturbation analysis [11–13] demonstrated the
ability to track performance intrusion and remove its effects in performance
analysis results. However, there we had the luxury of a fully qualified event trace
which included synchronization events that exposed dependent operation. This
allowed us to recover execution sequences and derive performance results for an
approximated “uninstrumented” execution. While the same perturbation theory
applies, when profiling measurements are used, the analysis must be performed
online.

This paper contributes models for measurement overhead compensation de-
rived from a rational reconstruction of fundamental parallel profiling scenarios.
Using these models we described a general on-the-fly algorithm that can be used
for message passing parallel programs. The errors encountered in our earlier
work on the NAS parallel benchmarks, resulting from our simpler overhead and
compensation models, should now be reduced. However, implementing this al-
gorithms requires the ability to piggyback delay values on send messages and

82 Allen D. Malony and Sameer S. Shende

to process the delay values at the receiver. We are currently developing a MPI
wrapper library to support delay piggybacking that we can use to validate our
approach. Our implementation is intended to be portable to all MPI implemen-
tations and will not require transmission of multiple messages. This scheme will
be incorporated in the TAU performance system.

References

1. G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill, “Automated
Application-level Checkpointing of MPI Programs,” Principles and Practice of
Parallel Programming (PPoPP), 2003.

2. L. De Rose, “The Hardware Performance Monitor Toolkit,” Euro-Par Conference,
2001.

3. A. Fagot and J. de Kergommeaux, “Systems Assessment of the Overhead of Tracing
Parallel Programs,” Euromicro Workshop on Parallel and Distributed Processing,
pp. 179–186, 1996.

4. S. Graham, P. Kessler, and M. McKusick, “gprof: A Call Graph Execution Pro-
filer,” SIGPLAN Symposium on Compiler Construction, pp. 120–126, June 1982.

5. R. Hall, “Call Path Profiling,” International Conference on Software Engineering,
pp. 296–306, 1992.

6. D. Kranzlmüller, R. Reussner, and C. Schaubschläger, “Monitor Overhead Mea-
surement with SKaMPI,” EuroPVM/MPI Conference, LNCS 1697, pp. 43–50,
1999.

7. A. Malony, “Performance Observability,” Ph.D. thesis, University of Illinois,
Urbana-Champaign, 1991.

8. A. Malony and S. Shende, “Overhead Compensation in Performance Profiling,”
Euro-Par Conference, LNCS 3149, Springer, pp. 119–132, 2004.

9. A. Malony, et al., “Advances in the TAU Performance System,” In V. Getov, M.
Gerndt, A. Hoisie, A. Malony, B. Miller (eds.), Performance Analysis and Grid
Computing, Kluwer, Norwell, MA, pp. 129–144, 2003.

10. A. Malony, D. Reed, and H. Wijshoff, “Performance Measurement Intrusion and
Perturbation Analysis,” IEEE Transactions on Parallel and Distributed Systems,
3(4):433–450, July 1992.

11. A. Malony and D. Reed, “Models for Performance Perturbation Analysis,”
ACM/ONR Workshop on Parallel and Distributed Debugging, pp. 1–12, May 1991.

12. A. Malony, “Event Based Performance Perturbation: A Case Study,” Principles
and Practices of Parallel Programming (PPoPP), pp. 201–212, April 1991.

13. S. Sarukkai and A. Malony, “Perturbation Analysis of High-Level Instrumentation
for SPMD Programs,” Principles and Practices of Parallel Programming (PPoPP),
pp. 44–53, May 1993.

14. Unix Programmer’s Manual, “prof command,” Section 1, Bell Laboratories, Mur-
ray Hill, NJ, January 1979.

15. J. Vetter, “Dynamic Statistical Profiling of Communication Activity in Distributed
Applications,” ACM SIGMETRICS Joint International Conference on Measure-
ment and Modeling of Computer Systems, ACM, 2002.

