TAUoverSupermon (ToS) Low-Overhead Online Parallel Performance Monitoring

<u>Aroon Nataraj</u>, *Matthew Sottile*, *Alan Morris*, *Allen D. Malony*, *Sameer Shende* {anataraj, matt, amorris, malony, shende}@cs.uoregon.edu http://www.cs.uoregon.edu/research/tau

Department of Computer and Information Science Performance Research Laboratory

Outline

- Problem, Motivations & Requirements
- Our Approach Coupling TAU and Supermon
 - What is TAU? What is Supermon?
 - And how we coupled them?

□ Rationale

Experimental Evaluation

- Online monitored data visualized
- Performance / Scalability results investigated

• Fault Tolerance demonstrated

• Correlating System-level metrics with performance

□ Related Work

Future Plans & Conclusion

Performance Transport Substrate

Transport Substrate for Performance Measurement

- Enables communication with (and between) the performance measurement subsystems
- Enables movement of measurement data and control

Modes of Performance Observation

- Offline / Post-mortem observation and analysis
 - > least requirements for a specialized transport
- Online observation
 - Iong running applications, especially at scale
- Online observation with feedback into application
 - ➤ in addition, requires that the transport is bi-directional

Performance observation problems/requirements => Function of the mode => Addressed by substrate

Performance Transport Substrate

Two fundamental components

- Measurement subsystem
- O Transport

Measurement Subsystem

• Instruments & measures application contexts (MPI ranks, processes, threads); Performance data producer

□ Transport

- Allows querying individual contexts' performance data
- Bridges application (source) with monitors (sinks)
- Challenge low-overhead, scalable & fault-tolerant
- More problematic than post-mortem data retrieval
 - Static: individual measurement contexts isolated
 - Online: global interactions between monitor and contexts

EuroPar 2007, Rennes, France

Primary Requirements of Transport Substrate

Performance of substrate

• Must be low-overhead

Robust and Fault-Tolerant

- Must detect and repair failures
- Must not adversely affect the application on failures

Bi-directional Transport (Control)

- Selection of events, measurement technique, target nodes
- What data to output, how often and in what form?
- Feedback into the measurement system & application
- Allows synchronization between sources & sinks

□ Scalable

• Must maintain the above properties at scale

EuroPar 2007, Rennes, France

Data Reduction

- At scale, cost of moving data too high
- Allow sampling/aggregation in different domains (nodewise, event-wise)
- Online, Distributed Processing of generated performance data
 - Use compute resource of transport nodes
 - Global performance analyses within the topology
 - Distribute statistical analyses
 - > easy (mean, variance, histogram), challenging (clustering)

What is TAU?

- $\Box \underline{T}$ uning and <u>A</u>nalysis <u>U</u>tilities (14+ year project effort)
- Performance system framework for HPC systems
 - Integrated, scalable, flexible, and parallel
 - Multiple parallel programming paradigms
 - Parallel performance mapping methodology
- Portable (open source) parallel performance system
 - Instrumentation, measurement, analysis, and visualization
 Portable performance profiling and tracing facility
 - Performance data management and data mining
- □ Scalable (very large) parallel performance analysis
- D Partners
 - O Research Center Jülich, LLNL, ANL, LANL, UTK

EuroPar 2007, Rennes, France

TAU Performance System Architecture

Instrumentation

EuroPar 2007, Rennes, France

TAU Measurement Mechanisms

Parallel profiling

- Function-level, block-level, statement-level
- Supports user-defined events and mapping events
- TAU parallel profile stored (dumped) during execution
- Support for flat, callgraph/callpath, phase profiling
- Support for memory profiling (headroom, leaks)

□ Tracing

- All profile-level events
- Inter-process communication events
- Inclusion of multiple counter data in traced events

□ Compile-time and runtime measurement selection

What is Supermon?

□ Scalable monitoring system for HPC clusters

- From LANL [12] (Sottile & Minnich)
- Sockets-based servers
- Gather, organize and transfer monitoring data

Heirarchical Architecture

- Mon-Daemons as leaves
- Root and Intermediate Supermon daemons

Data format - Symbolic expressions

• s-exprs based on LISP - unit of transport (like a packet)

Primary purpose: Monitoring system-level performance reported by H/W sensors and OS performance data.

□ In addition, listens on a UDS port, called *monhole*

• Allows custom data to be sent over the Supermon channels *EuroPar 2007, Rennes, France TAUoverSupermon (ToS)* 10

Approaches

Option 1: Use a NFS from within TAU and monitors

- Global shared-FS must be available
- File I/O overheads can be high
- Control through file-ops costly (e.g. meta-data ops)
- All data not consumed persistent storage wasteful

Option 2: Build new custom, light-weight transport

- Allows tailoring to TAU
- Significant programming investment
- Portability concerns across
- Re-inventing the wheel, may be

Our approach: Re-use existing transports

• Transport plug-ins couple with and adapt to TAU

Approaches continued ...

- Measurement and data transport separated
 No such distinction in TAU before
- Created abstraction to separate and hide transport
 TauOutput
- **TauOutput exposes subset of Posix File I/O API**
 - Acts as a virtual transport layer
 - Most of TAU code-base unaware of transport details
 - Very few changes in code-base outside adapter
- Supermon (Sottile and Minnich, LANL) Adapter
 - TAU instruments & measures
 - Supermon bridges monitors (sinks) to contexts (sources)

EuroPar 2007, Rennes, France

Rationale

- □ Moved away from NFS
- Separation of concerns
 - Scalability, portability, robustness, fault-tolerance
 - Addressed independent of TAU
- □ Re-use existing technologies where appropriate
- Multiple bindings
 - Use different solutions best suited to particular platform
- Implementation speed
 - Easy, fast to create adapter that binds to existing transport
- Performance correlation : Bonus

ToS Architecture

TAU

- Front-End (Sink)
- ToS-Adapter
- Back-End Application

Supermon

- Root & Internal Supermon-D
- MON-D (Compute Node)
- Data Retrieval
 Push-Pull Model
 Multiple Sinks

EuroPar 2007, Rennes, France

Compute Noc Steering Compute Node Compute Node Compute Node Compute Node MON Supermon Example Client S-Expr Application Steering TAU_DB S-Expr ί ΤΑυ oplicatio Supermon Compute Noc Compute Node S-Expr Compute Node Compute Node Compute Node Example MON Client Supermon Performance Dbase S-Expr Example Client TAU_DB Online Visualizer TAU Application

ToS Architecture - Back End

Application calls TAU

- Per-Iteration call to *dump*
- Periodic calls using *alarm*

TauOutput object

- Configuration specific: compile or runtime
- One per thread
- Exposes subset of Posix File-I/O operations
- Non-blocking *recv Ctrl* Source push; Sink pull
 System, HW Sensor

Simple Example (NPB LU-C) Rank 0 Dump-View

Simple Example (NPB LU-C) 1 Dump Rank-View

Performance & Scalability

Scaling over NFS vs. Supermon : NPB LU (Per Iteration Sampling)

18

Observations

- TAU measurements (LU-PM) contributed *atmost* **5.4%** overhead (and as low as **0.9%** for N=128).
- Online measurement & data retrieval using NFS leads to *atleast* **70%** and *grows super-linearly* to over **946%**.
- Online measurement & data retrieval using ToS is (2) orders of magnitude better than ToNFS.
- \bigcirc ToS as low as 4.2%, but does grow to 22%.
- Severe stress test. 253 dumps in approx. 7 seconds, each from 512 processes. For typical monitoring will be small.
- As LU scales (strongly), *savings* from using ToS over ToNFS also *super-linear*.

Examine difference between LU-PM & LU-ToNFS
The DUMP itself does not explain the gap
Where did the time go?

(in seconds)	NFS - PM	NFS Dump	Gap?
N=128	14.36	7.428	6.932
N=256	35.6	15.834	19.765
N=512	67.94	32.367	35.573

Examine difference between LU-PM & LU-ToNFS
The DUMP itself does not explain the gap
Where did the time go?

(in seconds)	NFS - PM	NFS Dump	Gap?	Mpi_Recv Diff
N=128	14.36	7.428	6.932	7.023
N=256	35.6	15.834	19.765	19.886
N=512	67.94	32.367	35.573	35.745

Examine difference between LU-PM & LU-ToNFS
The DUMP itself does not explain the gap
Where did the time go?

(in seconds)	NFS - PM	NFS Dump	Gap?	Mpi_Recv Diff
N=128	14.36	7.428	6.932	7.023
N=256	35.6	15.834	19.765	19.886
N=512	67.94	32.367	35.573	35.745

Longer MPI_Recv in ToNFS explains the gap...
Why?

EuroPar 2007, Rennes, France

TAU-DB-DUMP Skew

EuroPar 2007, Rennes, France

TAU-DUMP-DB Time (microsecs)

- Kernel-level profile (from KTAU)
 - Smaller run (4 ranks) on test cluster at UO
 - System call durations (in seconds)

Type	rename	select	open	writev	read	close	write
Tau-NFS	11.75	9.46	8.55	4.02	3.22	2.50	0.63
Tau-PM	0	5.94	0.03	3.95	3.22	0	0.60

- □ sys_open(), sys_renamc() dominate cost
 - O Lack of proper control forces use of meta-data ops
 O Used to synchronize between producers & consumers
- □ *sys_select()* shows the extra waiting in MPI_Recv
- □ NFS Dump operation costs
 - Meta-Data operations
 - Blocking & Variable

EuroPar 2007, Rennes, France

Fault Tolerance Demonstrated

□ Goals

- Insulate Application
- Recover from Failure
- Isolate failures to sub-tree

Crash Failure - Supermon crashes

- kill() intermediate Supermon
- Sub-tree performance data lost
- Other Ranks' data still available

Conn Failure - Connection broken

- Perform a Crash, then restart Supermon
- Tree gets repaired automatically

Application Successful - No slowdown

Fault Tolerance - Scenario: Supermon Crash

Fault Tolerance - Scenario: Supermon Crash

EuroPar 2007, Rennes, France

Fault Tolerance - Scenario: Connection Drop

EuroPar 2007, Rennes, France

Fault Tolerance Explained

- Supermon is loosely coupled
 - Failures do not propagate back
 - Keeps a list of dead-connections
- Front-End periodically sends out recursive-repair command
- Back-End connection failure not catastrophic
- □ Summary
 - Connection Failures are handled transparently
 - Crash Failures not catastrophic (s/w crash may be handled transparently with watch-dog)

Limitations

- Only Fail-Stop errors examined
- Does not route-around crash failures

EuroPar 2007, Rennes, France

Correlation with System Metrics (Uintah)

Related Work

 Online automated computational *steering frameworks* - Falcon [4], Autopilot [1], Active Harmony [2] and MOSS [6]; sensors, actuators; *built-in transport*.

- Distributed Performance Consultant [3], online *performance diagnosis* uses high-performance data transport, reduction system, MRNET [7].
- OMIS [10] and OCM [9] universal *interface* between tools and monitoring system. Event-action paradigm; distributed client-server system for monitoring services.
- Periscope [11] *hierarchical monitoring agents* (reduction & performance evaluation) *scalable*.
- ToS, *couples* two independent, mature, stand-alone systems; builds on lower-level interface between TAU & Supermon; underlying *virtual-transport-layer* allows other *adaptors*; other adaptors feasible (TAUoverMRNET in progress); steering not applied but *reverse control channel* exists.

Conclusion & Future Work

- ToS: Online parallel performance monitor that is *low-overhead*, *scalable* and *fault-tolerant*, based on coupling TAU with Supermon
- **Further Experimentation**
 - More complex applications, workloads
 - Different topologies & Buffer strategies (see paper)

□ Improving ToS

- Add ability to perform Data-Transformations
- Improve Control capabilities
- □ Adapters: MRNET (Arnold, Miller) adapter (WIP).
- □ Platforms: ToS BG/L port. I/O Node hosts Mon-D.
 - Need to tune and experiment

EuroPar 2007, Rennes, France

Acknowledgements

- Matt Sottile, Ron Minnich (Los Alamos National Lab) for Supermon collaboration and guidance
- Computing Resource Access
 - Argonne National Lab for access to the BG/L system
 - Lawrence Livermore National Lab for Linux cluster access provided to the TAU group
- □ Funding for ToS
 - Los Alamos National Laboratory

References

- Image: Description of the second s
- [2]: Ribler, R., Simitci, H., Reed, D.: The Autopilot performance-directed adaptive control system. Future Generation Computer Systems 18(1), 175–187 (2001).
- Image: Second Strategy Stra
- [4]: Gu, W., et al.: Falcon: On-line monitoring and steering of large-scale parallel programs. In: 5th Symposium of the Frontiers of Massively Parallel Computing, McLean, VA, pp. 422–429 (1995).
- Image: International Conference on Cluster Computing, Barcelona, Spain (2006).
 Image: International Conference on Cluster Computing, Barcelona, Spain (2006).
- □[6] : Eisenhauer, G., Schwan, K.: An ob ject-based infrastructure for program monitoring and steering. In: 2nd SIGMETRICS Symposium on Parallel and Distributed Tools (SPDT'98), pp. 10–20 (1998).
- [7]: Roth, P., Arnold, D., Miller, B.: Mrnet: A software-based multicast/reduction network for scalable tools. In: SC'03: ACM/ IEEE conference on Supercomputing (2003).
- [8]: Bailey, D.H., et al.: The nas parallel benchmarks. The International Journal of Supercomputer Applications 5(3), 63–73 (1991).
- [9]: Wismuller, R., Trinitis, J., Ludwig, T.: Ocm a monitoring system for interoperable tools. In: 2nd SIGMETRICS Symposium on Parallel and Distributed Tools (SPDT'98), pp. 1–9 (1998).
- Image: Description of the second s
- [11]: Gerndt, M., F "urlinger, K., Kereku, E.: Periscope: Advanced techniques for performance analysis. In: In: Parallel Computing: Current & Future Issues of High-End Computing, In the International Conference ParCo (2005).
- □[12]: Sottile, M., Minnich, R.: Supermon: A high-speed cluster monitoring system. In: CLUSTER'02: International Conference on Cluster Computing (2002).
- □[13]: Shende, S., Malony, A.D.: The TAU parallel performance system. The International Journal of High Performance Computing Applications 20(2), 287–331 (2006).
- Image: Pick, K.A., Malony, A.D., Shende, S., Morris, A.: TAUg: Runtime Global Performance Data Access Using MPI. In: Euro-PVM-MPI (2006).
- □[15]: de St. Germain, J.D., Parker, S.G., McCorquodale, J., Johnson, C.R.: Uintah: A massively parallel problem solving environment. In: HPDC'00: International Symposium on High Performance Distributed Computing, pp. 33–42 (2000).

EuroPar 2007, Rennes, France

Questions?

- □ Thank you for attending the talk.
- □ Email: anataraj (AT) cs.uoregon.edu