
TAUoverSupermon : Low-Overhead Online
Parallel Performance Monitoring

Aroon Nataraj1, Matthew Sottile2, Alan Morris1, Allen D. Malony1, and
Sameer Shende1

1Department of Computer and Information Science
University of Oregon, Eugene, OR, USA,

{anataraj,amorris,malony,sameer}@cs.uoregon.edu

2Los Alamos National Laboratory, Los Alamos, NM, USA,
matt@lanl.gov

Abstract. Online application performance monitoring allows tracking
performance characteristics during execution as opposed to doing so
post-mortem. This opens up several possibilities otherwise unavailable
such as real-time visualization and application performance steering that
can be useful in the context of long-running applications. As HPC sys-
tems grow in size and complexity, the key challenge is to keep the online
performance monitor scalable and low overhead while still providing a
useful performance reporting capability. Two fundamental components
that constitute such a performance monitor are the measurement and
transport systems. We adapt and combine two existing, mature systems
- TAU and Supermon - to address this problem. TAU performs the mea-
surement while Supermon is used to collect the distributed measurement
state. Our experiments show that this novel approach leads to very low-
overhead application monitoring as well as other benefits unavailable
from using a transport such as NFS.
Keywords: Online performance measurement, cluster monitoring.

1 Introduction

Online or real-time application performance monitoring tracks performance char-
acteristics during execution and makes that information available to consumers
at runtime. In contrast to post-mortem performance data analysis, developing
monitoring capabilities opens up several possibilities otherwise unavailable, such
as real-time visualization and application performance steering. One advantage
of performance monitoring can be found in the tracking, adaptation, and con-
trol of long-running applications. The simple ability to detect problems early in
a running application and terminating the execution has practical benefits to
savings in computing resource usage. However, as HPC systems grow in size and
complexity, building efficient, scalable parallel performance monitoring systems
that minimize adverse impact on applications is a challenge.

Two fundamental components constitute an online application performance
monitor: 1) the performance measurement system and 2) the transport system.

The infrastructure for performance measurement defines what performance met-
rics can be captured for events in individual execution contexts (e.g., processes
and threads). Effectively, the measurement system is the performance data pro-
ducer. The transport system enables querying the parallel/distributed perfor-
mance state from the different contexts and delivers the data to monitoring
consumers. The transport system acts as a bridge between where the data is
generated to where it is consumed, but it can also be used to control the mea-
surement system to control type and rate of performance data production.

While any performance measurement raises issues of overhead and pertur-
bation, online monitoring introduces additional concerns. In static application
performance measurement (with post-mortem data access and analysis), the
measurement sub-systems of individual contexts are isolated as they perform
local measurements and are impacted little by the scale of the parallel applica-
tion. In contrast, the need to retrieve and integrate the global performance state
of individual contexts means measurement sub-systems are no longer isolated
and must support periodic interactions from the monitor, potentially affecting
performance behavior and scalability. The challenge is to create an online mea-
surement system that is scalable and very low overhead and can still provide
useful performance analysis capabilities.

Our solution, TAUoverSupermon (ToS), adapts two existing mature systems
– TAU [13] (as the measurement system) and Supermon [14] (as the transport
system) – to address the problem of scalable, low-overhead online performance
monitoring of parallel applications. We describe the ToS design and architec-
ture in Section 3. The efficiency of our approach is demonstrated in Section 4
through experiments to evaluate ToS performance and scalability. An exam-
ple to demonstrate application/system performance correlation is provided in
Section 5. Section 6 examines related work. The paper concludes in Section 7
with final remarks and a brief discussion of future directions. We begin with a
discussion of the rationale behind our approach in the next section, Section 2.

2 Rationale and Approach

There are several approaches to building a parallel application monitoring frame-
work, combining existing performance measurement infrastructure with a system
to transport performance data to monitoring consumers. The simplest is to use
filesystem capabilities for data movement. Here, the performance measurement
layer implements operations to write performance data to files. The filesystem
aggregates the performance information which can be seen by consumers when
they perform file read operations. Concurrent file I/O between the parallel ap-
plication and performance data consumers must be possible for this alternative
to be of any use. While NFS support provides for robust implementation of this
approach, file I/O overheads can be high (both on the producer and consumer
sides), the monitor control must also be implemented through file transactions,
and NFS has known scalability issues. Furthermore, in the rare case that a glob-

2

ally visible filesystem is unavailable, a file-based transport system is simply not
an option.

If a file system is not used, some alternative transport facility is necessary.
A measurement system could be extended to include this support, but it would
quickly lead to incompatibilities between monitors and significant programming
investment required to build a scalable, low-overhead transport layer. Instead,
where transport functionality has been developed in other system-level moni-
toring tools, an application-level performance monitor can leverage the func-
tionality for performance data transport. Our approach couples the Supermon
cluster monitor with the TAU application measurement system to provide the
measurement and transport capabilities required for online parallel application
performance monitoring. TAU performs the role of the performance producer
(source) and is adapted to use Supermon as the transport from which consumers
(sinks) query the distributed performance state.

The rationale behind TAUoverSupermon is based on the following criteria:

Reduced overhead. Using a traditional filesystem as monitor transport incurs
high overhead. Currently, TAU allows runtime performance output through
the filesystem, but suffers high overheads as discussed in Section 4.

Autonomous operation. Keeping the transport outside TAU makes available
an online transport facility to any other system components that want to
use it. Supermon can be used for several purposes, such as its default system
monitoring role, independently of TAU.

Separation of concerns. Concerns such as portability, scalability, and robust-
ness can be considered by the measurement and transport systems separately.
Both TAU and Supermon are mature, standalone systems whose implemen-
tations are optimized for their respective purposes.

Performance correlation. This approach allows close correlation between sys-
tem level information (such as from the OS and hardware sensors) with ap-
plication performance (see Section 5). This facilitates determining the root
cause of performance problems that may originate from outside of the ap-
plication.

Light-weight control. Feedback to the measurement system is important for
controlling monitoring system overhead. The control path should be light
weight to avoid having its use be a significant contributing factor.

3 The TAUoverSupermon Architecture

The high-level architecture of ToS is shown in Figure 1. It is composed of the
following interacting components:

TAU. The TAU measurement system (in blue) generates performance data for
each thread of execution due to application instrumentation. TAU imple-
ments an API to output performance data during or at the end of execution.

Supermon. The Supermon transport, including the root and intermediate Su-
permon daemons are located on intermediate (or service) nodes. The mon

3

Fig. 1. TAUoverSupermon Architecture

daemons (shown in green), are located on each compute node where the
application is running.

Clients. Monitor clients (sinks) of the online performance data (shown in yel-
low) can be located anywhere on the network connected to the cluster.

In the following sections we discuss each of the components in detail, their im-
plementation, and the changes we made to adapt them for ToS.

3.1 TAU Performance System

TAU [13] is an integrated toolkit for parallel performance instrumentation, mea-
surement, analysis, and visualization of large-scale parallel applications. TAU
provides robust support for multi-threaded, message passing, or mixed-mode
programs. Multiple instrumentation options are available, including automatic
source instrumentation. The TAU measurement system implements both parallel
profiling and tracing. We are mainly concerned with profile-based performance
data in this paper. TAU supports an API to read the performance profile data
stored in its internal data structures at runtime, and to output the performance
data to a monitoring system using the TAU DB DUMP() call. It is this output
interface that will be extended to support Supermon.

4

3.2 Supermon Cluster Monitor

Supermon [14] is a scalable monitoring system for high performance computing
systems. Its current implementation includes a set of socket-based servers that
gather, organize and transfer monitoring data in a format based on LISP sym-
bolic expressions (called s-exprs). Its architecture is hierarchical, whereby each
node is treated as a leaf node in a tree, while a series of data concentrators
gather data from the nodes and transport it to a root. The root then provides
data to clients. Supermon’s primary purpose has been in monitoring system-level
performance such as those reported by hardware-sensors and OS performance
data. The Supermon architecture builds on prior experiences with prior imple-
mentations based on SunRPC, followed by a non-hierarchical wire protocol over
sockets, to achieve a low-overhead, highly extensible monitoring system in the
current design. A Supermon system consists of the following components:

Kernel module. Within the compute node OS is a kernel module that exports
system-level parameters locally as a file in the /proc pseudo-filesystem for-
matted as s-exprs to avoid overhead from parsing the inconsistent formats
of the various data sources.

mon daemon. The mon daemon, on each compute node, reads the file un-
der /proc and makes available the system-level metrics as s-exprs over the
network via TCP/IP.

monhole. mon also listens on a Unix Domain Socket (UDS) locally accepting
data from any other sources outside the kernel. This interface to mon is
called the monhole.

Supermon daemon. On the service node(s), there is the Supermon daemon.
This talks to each of the mon daemons and queries and collects the data from
them. This data includes the /proc system-level parameters as well as data
submitted through the monhole interface. Supermon then makes this data
available as another s-expression to any interested clients. Using the same
s-expr format as the mon daemons, Supermon daemons may act as clients
to other Supermon daemons to create a scalable, hierarchical structure for
transporting data from sources to sinks.

3.3 Coupling TAU and Supermon

Figure 1 depicts the interaction between the application instrumented with TAU
and the mon daemon on the compute node through the monhole interface. Below
we describe the changes made to Supermon and TAU to build the ToS system.

Adapting Supermon

The mon daemon provides the UDS-based monhole interface for external sources
to inject data. We tested and updated monhole for TAU’s use and made its
buffering characteristics more flexible. The buffering policy name refers to how
the existing data in the mon daemon buffer is managed due to a new write or a
read. Some possible policies are:

5

REPLACE-READ: Existing data is replaced (i.e., overwritten) on a write,
and the buffer remains unaffected on a read.

FILL-DRAIN : Writes append to buffer and reads empty the buffer.
REPLACE-DRAIN : Writes replace buffer data and reads empty the buffer.
FILL(K)-READ: Writes append data, but the buffer is unaffected by reads.

Given a ring buffer of finite size K, repeated writes (> K) will overwrite
data.

The buffer policy is important as it determines how the buffer is affected by
multiple concurrent clients and what data is retrieved. It also determines what
guarantees regarding data loss can be made (e.g., when sampling rate does not
match data generation rate), and what memory overhead on the data source is
required to support maintaining data for clients to read.

Initially, the monhole only supported the simple and efficient REPLACE-
READ. This policy has several advantages: i) slow sinks will not cause infinitely
large buffers to be maintained at the mon daemon, and ii) multiple sinks can
query the data simultaneously without race conditions. However, the policy suf-
fers from potential data-loss when sink read rate (even transiently) is less than
source generation rate, or bandwidth waste when sinks query too frequently and
receive the same data. A small configurable buffer under FILL(K)-READ can
alleviate the former, whereas a REPLACE-DRAIN strategy can remedy the
latter when a single client is used. For these reasons, we implemented a runtime-
configurable buffer strategy. The repair mechanism for hierarchical topologies
was also fixed in Supermon.

Adapting TAU

Prior to our work with Supermon, TAU assumed the presence of a shared network
filesystem for performance monitoring. Buffered file I/O routines were used in the
TAU monitoring API. We first made the notion of transport a first-class entity
by creating a generic transport class. To keep changes isolated to a small portion
of the TAU code base, the generic transport class needed to expose interfaces
exactly like the file I/O calls in the standard I/O library, stdlib. As shown in
Figure 1, two implementations of this transport class were created: one for the
default stdlib file I/O and the other for use with the monhole interface. The type
and nature of the transport being used is kept hidden from the TAU API. The
type of transport can be fixed statically at compile-time or can be communicated
to the application via an environment variable at application startup. While
read/write operations on the monhole are performed directly, other operations
such as directory creation are not directly available and need to be forwarded to
sinks (on control nodes). This framework allows easy extension by adding new
custom transports to TAU in the future.

4 Investigating Performance and Scalability

To evaluate TAUoverSupermon we use the NAS Parallel LU application (Class
C) benchmark [1] instrumented with TAU under different configurations. The

6

 0

 20

 40

 60

 80

 100

 120

 128 256 512

E
xe

cu
tio

n
T

im
e

(s
ec

s)

No. of Processors

Scaling over NFS vs. Supermon : NPB LU (Per Iteration Sampling)

Unistrumented LU
LU w/ TAU

LU w/ Online TAU-over-NFS
LU w/ Online TAU-over-Supermon

Fig. 2. Execution Time and Overhead

choice of the benchmark was guided by the need for a representative parallel
workload; one that triggers a sufficient number of events, so as to study the over-
head generated as a function of number of profile measurements that take place.
LU has a mix of routine and MPI events and an understood parallel algorithm
that lets us relate overhead to scaling behavior. We compare the performance of
NPB LU under the following configurations:

LU-none Basic LU without instrumentation.
LU-PM LU instrumented with TAU for post-mortem measurement data.
LU-NFS LU instrumented with TAU for online measurement using NFS.
LU-ToS LU instrumented with TAU for online measurement using Supermon.

Online measurement data retrieval of LU is performed at a frequency of
once per iteration. We repeat each of the runs over 128, 256 and 512 nodes to
examine scalability. The Atlas cluster from Lawrence Livermore National Lab,
with quad dual-core Opteron Linux nodes running Infiniband, serves as our test
environment. The metrics we use are the total runtime reported by LU and the
overhead as % dilation, computed as the total runtime under some configuration
divided by the total runtime of LU-none configuration.

In Figure 2 we plot the runtime of the LU benchmark under the different
configurations as the processor count increases. The following observations are
clear:

7

– TAU measurements (LU-PM) contributed 4.7% (N=128) to 24.6% (N=512)
overhead. Re-runing the LU-PM (N=512) with TAU configured to use the
light weight cycle counter (rdtsc) for timing brought the overhead down to
just 2.5%.

– Overhead of online performance measurement and data-retrieval using NFS
is at least 52.71% and grows super-linearly as the number of CPUs increase
to a staggering 1402.6%.

– Overhead of online performance measurement and data-retrieval using Su-
permon is close to the TAU overhead of post-mortem data retrieval (as low
as 6.83%).

– As LU scales, the savings obtained from using Supermon transport as op-
posed to NFS grow super-linearly.

It is remarkable that, for the test measurement and sampling rate, online mea-
surement with ToS can be provided nearly for free over the cost of the post-
mortem run. We also ran experiments for the 128 node case (Class B) on the
MCR cluster at Lawrence Livermore National Laboratory. There the following
dilations were observed: LU-PM 8.5%, LU-NFS 72.6% and LU-ToS 9.1%.

Type rename select open writev read close write

Tau-NFS 11.75 9.46 8.55 4.02 3.22 2.50 0.63
Tau-PM 0 5.94 0.03 3.95 3.22 0 0.60

Table 1. Comparing System Calls: Online TAU-NFS vs. Postmortem TAU (secs)

Why is there such a dramatic difference in performance between using the
NFS transport and Supermon? To further investigate what aspects of the system
contribute to the significant savings accrued, we use KTAU [9] to measure kernel-
level events. Smaller LU-PM and LU-NFS experiments on 4 nodes (of Pentium
III dual-CPU over Ethernet) are run, this time under a KTAU kernel. Table 1
compares the runtime of the largest system calls under both configurations, as
measured by KTAU. Surprisingly the largest differences are seen in sys rename
and sys open and not in the read/write calls. Why?

When files are used to transport performance data from TAU to a monitoring
client, there is a problem of read consistency. If the client polls for new data, how
does it know when and how much data is new? TAU uses a two-stage process: 1)
write to a temporary file, then 2) rename the file to the filename being polled by
the client. This approach employs the rename and open meta-data operations on
every performance data dump. These meta-data operations are synchronous and
blocking (between the client and the server), unlike the buffered read/write op-
erations in NFS. The impact of these simultaneous meta-data operations grows
significantly as node-count increases. In the case of the Supermon transport,
these operations are not performed locally. Instead they are also made asyn-
chronous (non-blocking) and performed by the sink (on the control/head node).

8

Another aspect to note is the ’per iteration sampling frequency’ used (instead
of, say, a fixed 1Hz sampling). Because of the strong scaling nature of LU, as the
number of nodes increase, the iterations become shorter and the overhead per
unit time from data retrieval increases. When the dump operation is relatively
costly, as in NFS, it results in the superlinear scaling behavior. In addition, the
variability in the time taken by each NFS dump operation across the ranks leads
to magnification of the overhead.

5 Online Application/System Performance Correlation

Fig. 3. Correlating Uintah Phases with System-level metrics

To give a sense of the power of online performance monitoring, we report
results from a performance investigation of the Uintah Computational Frame-
work [2] where the application performance is correlated with runtime system ac-
tions. Figure 3 shows the execution timeline of a single iteration of an Uintah ap-
plication (bigbar using the Material Point Method) where performance data from
1 Hz monitoring is plotted. The performance data is coming from two sources:
the application and the system-level monitoring. Both sources used Supermon
for the transport and the data streams were available as separate s-expressions
on the Supermon channel. The execution took place on a 32-processor Pentium
Xeon Linux cluster in our lab. The cluster is served by two separate physical
networks, one providing connectivity among back-end compute nodes (through
interface eth0) and another providing NFS connectivity (through eth1).

What stands out in the figure are the phases of the application’s computation
and the correlated network demands on the two separate interfaces. The phases

9

are numbered (and distinctly colored) so as to differentiate them. On the xaxis
is the time elapsed since the start of the application (the iteration shown falls
between 850 and 1200 seconds). The left y-axis plots the difference in task du-
ration between consecutive samples. On the right y-axis are plotted differences
in bytes transmitted between samples and this is overlayed on the application
phases as two solid lines - magenta for interface eth0 and blue for interface eth1.

For each monitoring interval, the profile sample is drawn to show the perfor-
mance data for the dominant events. These phases would not be apparent if the
profile data was not sampled periodically by the monitor. In this way, application
and system performance can be correlated to better understand runtime effects.
For instance, the impact of MPI and checkpoint operations on communication
and I/O are clearly apparent. Tasks 1 through 8 mostly perform communication
(seen from the eth0 curve), whereas task 9 (which is checkpointing) performs
I/O to NFS (over eth1). Then Task 11 (MPI Allreduce) ends the iteration. This
correlation would be infeasible by direct measurement from within the applica-
tion alone as it is unaware of system-level factors (e.g. the network topology and
interfaces exercised).

6 Related Work

TAUoverSupermon owes its heritage to a long line of online performance moni-
toring projects. On-line automated computational steering frameworks like Fal-
con [16], Autopilot [10], Active Harmony [15], and MOSS [3] use a distributed
system of sensors to collect data about an application’s behavior and actua-
tors to make modifications to application variables. These systems have built-in
transport support and require the application to be modified to expose steerable
parameters. In contrast, ToS couples two independent, standalone systems, and
builds on a lower-level interface between TAU and Supermon which allows for
more flexibility in its specific use. While we have not applied ToS to steering, we
have demonstrated measurement control with Supermon using reverse channels
supported in the monhole. It is conceivable that higher-level methods provided
by these tools could also be layered on ToS.

It is important to distinguish between monitoring systems intended for intro-
spective versus extrospective use. Scalability and low overhead for global perfor-
mance access is important for introspective monitoring. Paradyn’s Distributed
Performance Consultant [8] supports introspective online performance diagnosis
and uses a high-performance data transport and reduction system, MRNet [11],
to address scalability issues [12]. Our TAUg [5] project demonstrated scalable,
online global performance data access for application-level consumption by build-
ing access and transport capabilities in a MPI library linked with the application.
On the other hand, monitoring systems to be used by external clients require
support for efficient network communications, in addition to source monitoring
scalability. The On-line Monitoring Interface Specification (OMIS) [6] and the
OMIS compliant monitoring (OCM) [17] system target the problem of providing
a universal interface between online, external tools and a monitoring system.

10

OMIS supports an event-action paradigm to map events to requests and re-
sponses to actions, and OCM implements a distributed client-server system for
these monitoring services. However, the scalability of the monitoring sources
and their efficient channeling to off-system clients are not the primary problems
considered by the OMIS/OCM project.

Fürlinger and Gerndt’s work on Periscope [4] addresses both the scalability
and external access problems by using hierarchical monitoring agents executing
in concert with the application and client. The agents are configured to imple-
ment data reduction and evaluate performance properties, routing the results
to interactive clients for use in performance diagnosis and steering. MRNet can
also be used for extrospective monitoring. It is organized as a hierarchy of pro-
cesses, created separately from the application processes, allowing it to connect
to remote monitor sinks. Like MRNet-based tools, TAU can use Supermon in a
flexible and scalable manner for both introspective and extrospective monitoring.
The ToS work reported here demonstrates this performance monitoring func-
tionality. It also shows how the ToS approach imposes few reengineering require-
ments on the monitoring sources and clients, allowing for a clean, light-weight
implementation. It is interesting to note, that we could build a TAUoverMRNet
monitoring system, and have plans in this regard.

7 Conclusions and Future Work

The desire to perform very-low overhead online application performance mea-
surement led us to investigate alternatives to the traditional ’store performance
data to shared-filesystem’ approach. We created a large-scale online applica-
tion performance monitor by using Supermon as the underlying transport for
the TAU measurement system. Experiments demonstrate that the TAUoverSu-
permon solution provides significantly lower overhead and greater scalability.
Another demonstrated advantage to using an existing cluster-monitor as the
transport is that it allows close correlation of application performance with
system-level performance information. This facilitates separating performance
effects that originate from within an application and those that are due to ex-
ternal effects outside the control of the application itself.

The scalability of a parallel performance monitoring system depends on sev-
eral factors related to how it is designed and engineered as well as to how the
system is used. Here we have demonstrated reduction in overheads for source
data generation and transport. We are also experimenting with strategies to
improve scalability further by reducing the number of nodes touched per query
(e.g., using sampling [7]) and/or by reducing the data generated per node per
query through aggregation. By having greater control over the transport and
by being able to add extra intelligence into it, the ToS system can allow easy
implementation of the above strategies. Other directions along which we would
like to take this work include experimentation on very large scale platforms such
as BG/L (already ported and functional), and adding new custom transports to
TAU such as MRNET.

11

References

1. D. H. Bailey et. al. The nas parallel benchmarks. The International Journal of
Supercomputer Applications, 5(3):63–73, Fall 1991.

2. J. D. de St. Germain, S. G. Parker, J. McCorquodale, and C. R. Johnson. Uintah:
A massively parallel problem solving environment. In HPDC’00: International
Symposium on High Performance Distributed Computing, pages 33–42, 2000.

3. G. Eisenhauer and K. Schwan. An object-based infrastructure for program moni-
toring and steering. In 2nd SIGMETRICS Symposium on Parallel and Distributed
Tools (SPDT’98), pages 10–20, 1998.

4. M. Gerndt, K. Fürlinger, and E. Kereku. Periscope: Advanced techniques for
performance analysis. In Parallel Computing: Current & Future Issues of High-
End Computing, In the International Conference ParCo 2005, 13-16 September
2005, Department of Computer Architecture, University of Malaga, Spain, pages
15–26, 2005.

5. K. A. Huck, A. D. Malony, S. Shende, and A. Morris. TAUg: Runtime Global Per-
formance Data Access Using MPI. In Recent Advances in Parallel Virtual Machine
and Message Passing Interface, volume 4192/2006 of Lecture Notes in Computer
Science, pages 313–321, Bonn, Germany, 2006. Springer Berlin / Heidelberg.

6. T. Ludwig, R. Wismüller, V. Sunderam, and A. Bode. Omis – on-line monitoring
interface specification (version 2.0). LRR-TUM Research Report Series, 9, 1998.

7. C. Mendes and D. Reed. Monitoring large systems via statistical sampling. In-
ternational Journal of High Performance Computing Applications, 18(2):267–277,
May 2004.

8. B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic,
K. Kunchithapadam, and T. Newhall. The paradyn parallel performance measure-
ment tool. Computer, 28(11):37–46, 1995.

9. A. Nataraj, A. Malony, S. Shende, and A. Morris. Kernel-Level Measurement
for Integrated Parallel Performance Views: the KTAU Project. In CLUSTER’06:
International Conference on Cluster Computing. IEEE Computer Society, 2006.

10. R. Ribler, H. Simitci, and D. Reed. The Autopilot performance-directed adaptive
control system. Future Generation Computer Systems, 18(1):175–187, 2001.

11. P. Roth, D. Arnold, and B. Miller. Mrnet: A software-based multicast/reduction
network for scalable tools. In SC’03: ACM/IEEE conference on Supercomputing,
2003.

12. P. Roth and B. Miller. On-line automated performance diagnosis on thousands
of processes. In 11th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 69–80, 2006.

13. S. Shende and A. D. Malony. The TAU parallel performance system. The In-
ternational Journal of High Performance Computing Applications, 20(2):287–331,
Summer 2006.

14. M. Sottile and R. Minnich. Supermon: A high-speed cluster monitoring system.
In CLUSTER’02: International Conference on Cluster Computing, 2002.

15. C. Tapus, I.-H. Chung, and J. Hollingworth. Active harmony: Towards automated
performance tuning. In SC’02: ACM/IEEE conference on Supercomputing, 2002.

16. W. Gu et. al. Falcon: On-line monitoring and steering of large-scale parallel
programs. In 5th Symposium of the Frontiers of Massively Parallel Computing,
McLean, VA,, pages 422–429, 1995.

17. R. Wismuller, J. Trinitis, and T. Ludwig. Ocm – a monitoring system for interop-
erable tools. In 2nd SIGMETRICS Symposium on Parallel and Distributed Tools
(SPDT’98), pages 1–9, 1998.

12

