
Parametric Studies in Eclipse
with TAU and PerfExplorer

Kevin A. Huck, Wyatt Spear, Allen D. Malony,
Sameer Shende and Alan Morris

Performance Research Laboratory
Department of Computer and Information Science

University of Oregon, Eugene, OR, USA
{khuck,spear,malony,shende,amorris}@cs.uoregon.edu

http://www.cs.uoregon.edu/research/tau

Abstract. With support for C/C++, Fortran, MPI, OpenMP, and per-
formance tools, the Eclipse integrated development environment (IDE)
is a serious contender as a programming environment for parallel appli-
cations. There is interest in adding capabilities in Eclipse for conducting
workflows where an application is executed under different scenarios and
its outputs are processed. For instance, parametric studies are a require-
ment in many benchmarking and performance tuning efforts, yet there
was no experiment management support available for the Eclipse IDE.
In this paper, we describe an extension of the Parallel Tools Platform
(PTP) plugin for the Eclipse IDE. The extension provides a graphical
user interface for selecting experiment parameters, launches build and
run jobs, manages the performance data, and launches an analysis appli-
cation to process the data. We describe our implementation, and discuss
three experiment examples which demonstrate the experiment manage-
ment support.

Keywords: parallel, performance, experiment management, Eclipse.

1 Introduction

Integrated development environments (IDEs) help to facilitate software devel-
opment and maintenance. IDEs provide a consistent development environment,
numerous enhancements to the development process, and are the standard in
industrial software development. IDEs are not very common in parallel applica-
tion development, but improving toolkit functionality makes it possible to write,
compile, launch and run large-scale parallel applications on a local machine or
on a remote resource.

Parametric studies are necessary in many benchmarking and performance
tuning efforts. This is especially true for parallel applications, where scaling
studies are key to exploiting highly parallel hardware for maximum return. Para-
metric studies are helpful in finding scaling bottlenecks and communication de-
sign flaws, and improving algorithmic efficiency. However, parametric studies can



2 Huck, Spear, Malony, Shende, Morris

consist of hundreds or thousands of application configurations, and automated
parametric studies can be complex to perform. Traditional parametric studies
on parallel hardware requires scripts for building configurations, scripts for sub-
mitting batch jobs to the queue, scripts for data management, and the eventual
analysis processing at the end of the executions. Script programming is error
prone, and particularly costly if mistakes are not found until after hundreds of
processing hours have been consumed. Parametric study scripts are frequently
re-usable only with considerable effort, as the differences between two or more
parallel applications can be significant. There is a clear opportunity to improve
upon the parametric study process.

Eclipse [1] is a user configurable software development IDE with a plugin-
centric design. Plugins have been developed for a wide range of development
purposes. A TAU [2] performance analysis toolkit plugin for Eclipse has been
written, and can be used for instrumentation and measurement of C, C++,
Fortran and Java applications developed in Eclipse [3, 4]. However, there was no
mechanism in the various plugins for experiment management with regards to
performance studies. For that reason, we extended the Parallel Tools Platform
(PTP) plugin for Eclipse to include a parametric study framework for the TAU
plugin in Eclipse. Users can set up a desired study, launch the experiment, and
the framework will automatically compile and execute the application with the
specified configuration combinations, storing the performance result after each
run in a PerfDMF [5] repository. When the experiment is complete, the multi-
experiment analysis and data mining tool PerfExplorer [6] is launched, and the
automated comparative analysis results are produced. While TAU, PerfDMF
and PerfExplorer are the tools we used in our experiments, consideration was
given to the implementation to ensure that other performance tools could be
used in the same framework.

The remainder of this paper is as follows. Section 2 will provide some back-
ground discussion of Eclipse and the plugin components involved. Section 3 will
describe the experiment management support implementation. Section 4 will
describe some analysis examples using the experiment management support.
Section 5 will describe related work in parametric study support, and Section 6
will describe our conclusions and future work.

2 Background

Eclipse Eclipse[1] is a popular software platform with support for customized
IDE functionality. Its default set of plugins is designed for Java development, but
the Eclipse community has provided support for other languages such as C/C++
and Fortran. Support for high performance computing has also been provided
via the Parallel Tools Platform (PTP). Two distinct advantages of the Eclipse
platform are its portability and extensibility. The former is provided largely by
Eclipse’s Java-based implementation, which means it can be run consistently
on Windows, Macintosh and many Unix based OSes. Because Eclipse is open
source, users are free to modify and extend its functionality as they see fit. As a



Parametric Studies in Eclipse 3

result, there is a diverse array of enhancements and plugins available to increase
Eclipse’s functionality for software development, as well as other tasks. A longer
description of Eclipse can be found in [3, 4] and elsewhere.

Eclipse Plugins There are four Eclipse plugin collections, or projects, that are
related directly to the integration of the TAU performance analysis tools. The
Java Development Tools (JDT) [7], the C/C++ Development Tools (CDT) [8],
the Photran Development Environment [9], and the Parallel Tools Platform
(PTP) [10] all facilitate the development of programs and the use of program-
ming paradigms that are supported by TAU and none include their own internal
mechanisms for performance analysis.

JDT The JDT assists with Java development by providing a context sensitive
source editor, project management and development control facilities, among
other features.

CDT Many of the CDT’s features are comparable to those of the JDT. However,
the build system of the CDT is naturally quite different. It supports both the
use of external makefiles and an internally constructed “Managed” makefile
system. In either case the compilation and linking of programs within the
CDT is accomplished via user specified compilers and compiler options.

Photran Photran is a Fortran development environment, based on CDT. Pho-
tran has support for Fortran 77, 90 and 95.

PTP PTP provides the ability to write, compile, launch and debug parallel
programs from within Eclipse. PTP supports both OpenMP and MPI based
parallelism, and is also based on CDT.

TAU TAU [2] is a mature performance analysis system designed to operate
on many different platforms, operating systems and programming languages. In
addition to collecting a wide range of performance data it includes resources for
performance data analysis and conversion to third party data formats.

Many of TAU’s functions are closely bound to the underlying architecture of
the system where the analysis takes place. Therefore, TAU is generally config-
ured and compiled by the user to create custom libraries for use in performance
analysis. In addition to generating system specific libraries, this configuration
process allows specification of many performance analysis options allowing an
extremely diverse range of performance experiments to be carried out with TAU.
Each separate configuration operation produces a stub makefile and a library file
that is used to compile an instrumented program for analysis.

Instrumentation TAU’s fundamental functionality is based on source code
instrumentation. At the most basic level this consists of registering the entry
and exit of methods within the program via calls to the performance analysis
system. Performance analysis of a given program can be focused on a given set
of functions or phases of the program’s execution by adjusting which functions
are instrumented. A common application of such selective instrumentation is to
exclude small, frequently called routines to help reduce performance monitoring



4 Huck, Spear, Malony, Shende, Morris

overhead. TAU includes utilities to perform automatic instrumentation of source
code. TAU provides compiler scripts which act as wrappers of the compilers
described at TAU’s configuration. Use of these scripts in place of a conventional
compiler results in fully instrumented binary files without modification to the
original source.

Analysis Depending on the configuration settings provided to TAU, it can
generate a wide variety of performance data. TAU includes utilities to convert
both its profile and trace output to a diverse array of other performance data
formats, allowing performance analysis and visualization in many third party
performance analysis programs. Performance profiles are automatically uploaded
to a PerfDMF [5] repository for analysis.

Additionally, TAU includes its own facilities for analysis of performance data.
The ParaProf[11] profile analysis tool, for example, provides a full set of graphical
tools for evaluation of performance profile data. PerfExplorer [12] is a multi-
experiment analysis and data mining tool, designed to provide parametric study
analysis and intelligent analysis of results using performance data, metadata,
analysis scripts, and inference rules.

TAU Plugin for Eclipse PTP Currently, three separate TAU plugins have
been developed for Eclipse. Each allows performance analysis within the scope of
a different Eclipse IDE implementation, one for the JDT, one for the CDT and
one for the PTP. The TAU JDT plugin requires only the standard Eclipse SDK
distribution and allows TAU analysis of Eclipse Java projects. The TAU CDT
and TAU PTP plugins allow performance evaluation of C and C++ programs
within the standard, sequential, C/C++ IDE implementation and the PTP’s
parallel implementation respectively. Both the TAU CDT and TAU PTP plugins
support Fortran when the Photran plugin is installed.

The TAU CDT and PTP plugins extend the CDT and PTP launch config-
uration systems, respectively. They allow the selection of a TAU stub makefile,
which will determine which TAU libraries are used at the program’s compi-
lation. The plugins also allow specification of selective instrumentation, other
TAU-specific compilation options and data collection options.

When an application is launched within Eclipse using the TAU plugins an
instrumented executable will be generated and run using the selected options.
This executable will then be run by the CDT or PTP launch management sys-
tem. When execution is complete profile data may be stored automatically in
a local PerfDMF database and viewed in ParaProf. Essentially, once the TAU
plugins for the desired IDEs have been installed and configured, obtaining per-
formance data from an Eclipse project is simplified to a sequence of mouse clicks.
A complete description of the plugins can be found in [3].

3 Design and Implementation

The initial implementation of the performance analysis work-flow system fol-
lowed a linear three-step process. Compilation, execution and analysis were per-



Parametric Studies in Eclipse 5

PROPER Workshop at EuroPar 2008 August 25, 2008 10 

Experiment Management UI 

Enable/disable Optimization 

Num MPI 

Processes 

Application 

Arguments 

Tuples or 

matched pairs 

Environment 

variables Analysis 

application 

Fig. 1. The Experiment Management user interface.

formed using the parameters specified by the user in the launch configuration
interface. Each step was handled by the job management system provided by
the Eclipse API. However the respective jobs made assumptions about their
execution order. To add support for multiple parametric combinations it was
necessary to make significant changes to the existing work-flow system.

The first such change was to allow the user to specify lists of parameters
in a new UI component specific to parametric analysis, as shown in Figure 1.
The values available for parametrization are build optimization options, proces-
sor count, application arguments and run-time environment variables. Initially
we generated one set of parameters for each combination of list elements. Sub-
sequently we added the ability to limit parameter sets to those required such
as for weak scaling studies. This was accomplished by creating tuples from the
parameter lists, where each parameter list had the same number of potential val-
ues. Each index of the parameter lists were matched up (i.e. the first parameter
value in each populated list for one experiment, the second parameter value in
each populated list for the second experiment, etc.) In the case of weak scaling
studies, for each of M processor count values, there would be N input problems
(where M = N) so rather than generating M ∗ N experiments, there are only
N experiments.

The procedure for each parameter set generated is similar to the linear system
used in the earlier implementation. However, some modifications were needed
to improve efficiency and provide each step with data required from previous
steps. For example, because the build and launch steps are independent in the
Eclipse environment, only one build operation needs to be performed for each



6 Huck, Spear, Malony, Shende, Morris

PROPER Workshop at EuroPar 2008 August 25, 2008 11 

Parametric Study Workflow 

Jobs created,

 queued!

Parameter

 selection!

PerfDMF!

Jobs

 Processed!

Results

 Stored!

PerfExplorer

Analysis!

Analysis

 Script!

(a) Parametric study workflow.
PROPER Workshop at EuroPar 2008 August 25, 2008 13 

Analysis Job!

Nested, Queued Jobs 

!!Outer loop of build jobs 

!! Inner loop of run jobs 

!!Each run is followed by a

 post-processing step,

 where performance data

 is uploaded to PerfDMF 

!!After all build and run

 jobs are complete, the

 analysis job is run 

Build Job(s)!

Run Job!
Run Job!
Run Job(s)!

Post!

Processing!

Job!

(b) Nested, queued
jobs.

Fig. 2. 2(a) shows the overall parametric study workflow. 2(b) shows the nesting of
jobs. There is an outer loop of build jobs and an inner loop of run jobs. Each run is
followed by a post-processing step, where performance data is uploaded to PerfDMF.
After all build and run jobs are complete, the analysis job is run.

set of build parameters. Each combination of launch parameters is run once on a
single executable generated by a build step. Then the executable is rebuilt with
the next set of build parameters and the process repeats.

The single data structure previously responsible for management of the build,
execution, and analysis steps was divided into three task-specific components to
better support the decoupling of the steps in parametric analysis. Because the
launch and analysis jobs relied on data created by the build job, it had been
necessary to perform a full build before performing any of the subsequent steps.
Thus, another change necessitated by the more flexible parametric analysis sys-
tem was to initialize the relevant data in the build job object upon its instanti-
ation rather than upon being run. This enables each job to be created and put
into a queue before any job is run. The jobs can then be run in succession. A
similar dependency existed between the launch job and the post-launch job - the
performance data cannot be archived until the execution is complete. These ar-
chitectural changes will help with the future addition of more complex work-flow
capabilities.

The full operating procedure of the parametric analysis system, shown in
Figure 2, is as follows. Given the lists parameters from the user, a list of distinct
build and launch parameter sets is generated. For each build parameter set in
the list, a build job is created and placed in a job queue. After every such build
job, for each launch parameter set, launch and analysis jobs are created and
placed in the queue. When the queue is fully populated the first job is run. The
last action of each job is to initiate the subsequent job in the queue. The final



Parametric Studies in Eclipse 7

analysis job in the queue contains additional instructions to launch any final
analysis operations on the whole of the data generated by the parametric run.

As of this writing the parametric analysis system’s support for user specifi-
cation of build parameters remains rudimentary. The build system provided by
Eclipse contains compiler-specific options which must have valid values selected.
Thus, providing a relatively simple UI for specification of arbitrary build param-
eters requires some foreknowledge of the implementation of Eclipse build-chains
for specific compilers. This is in contrast to the launch configuration system
where the user may specify arbitrary strings as environment variables or pro-
gram arguments.

The parametric analysis system was developed to inter-operate directly with
the TAU performance analysis system. However the Eclipse performance frame-
work is designed for more general applications. Presently the TAU plug-in is the
only component of the performance framework which fully exploits the capabili-
ties of the parametric analysis system. Fully incorporating support for arbitrary
analysis tools remains a priority.

4 Examples

To demonstrate the functionality of the experiment management support we
added to Eclipse PTP, we constructed a number of parametric study examples.
In this section, we describe two applications, Sweep3D and LU from NPB3.2.1,
used in three different parametric studies.

4.1 Sweep3d

Sweep3D [13] solves a 1-group, time-independent, discrete ordinates, 3D Carte-
sian geometry neutron transport problem. The main algorithm is a wavefront
process across the I and J dimensions, and is pipelined along the K dimension.
The algorithm gets its parallelism from the I, J domain decomposition. Sweep3D
is written in Fortran 77, and uses MPI. There is also a timer routine written
in C, but in this experiment, the timer routine was disabled, as we were using
TAU for instrumentation. The code was also modified to take the name of the
input file as a command line argument, to allow for parametric studies. This
was necessary, as the input file also specifies the domain decomposition in each
direction, and the total number of processes has to match the number of MPI
processes.

The first parametric study was a compiler optimization study. Sweep3D was
compiled with the GNU Fortran compiler [14], using four different optimization
settings: -O0 (no optimization), -O1 (some optimizations), -O2 (more optimiza-
tions), and -O3 (most optimized). The results of the parametric study are shown
in Figure 3.

In order to process the experiment, four build jobs were automatically con-
structed, each with a different compiler optimization setting. Each of the build
jobs had a corresponding run job, and a post-run job. The post-run job for each



8 Huck, Spear, Malony, Shende, Morris

PROPER Workshop at EuroPar 2008 August 25, 2008 15 

Example problem: Optimization Settings 

Optimization: 

0,1,2,3 

(correlates to 

-O0, -O1, 

-O2, -O3) 

(a) Compiler Options selected in
Eclipse.

PROPER Workshop at EuroPar 2008 August 25, 2008 17 

PerfExplorer Analysis Result 

PerfExplorer launches, 

script is executed which 

generates graphs 

(b) PerfExplorer output.

Fig. 3. The results of running the compiler optimization study - PerfExplorer is exe-
cuted, and the results of the study are visualized in two charts.

execution was to save the TAU performance profiles into the PerfDMF database
for that application, creating a new experiment in the database. After all of the
build and run jobs were complete, there was one final post-processing job which
ran PerfExplorer and executed an analysis script. The script loaded the perfor-
mance data into PerfExplorer and generated two charts, one showing the total
runtime for the application for the four optimization settings, and one chart
showing the runtime for the three most time-consuming instrumented regions in
the application.

The second parametric study was a weak scaling study. This was an inter-
esting challenge, as for each “number of processors” value, there was a corre-
sponding input problem which scaled at the same rate as the number of MPI
processes. In our study, we used 100 grid cells per processor in each direction,
and 100 planes in the K direction. Therefore, for 2, 4, 6, and 8 processors, the
problem size was 20,000, 40,000, 60,000 and 80,000 total grid cells, respectively.
The results of the study are shown in Figure 4.

In order to process the experiment, one build job was constructed, as only
one was necessary. Four run jobs were created, each with a different number
of MPI processes and a corresponding input file. Again, each of the run jobs
had a corresponding post-run job to save the performance profiles to PerfDMF.
After the one build and all four run jobs were complete, there was one final
post-processing job which ran PerfExplorer and executed an analysis script.
The script loaded the performance data and generated one chart showing the
runtime for the five most significant instrumented regions in the application.
The chart demonstrated that there was a slight increase in overhead in the main
computation routines (not uncommon, but ideally the time spent in computation
would stay level for all numbers of processors), and an increase in overhead in
the MPI communication routines, which is expected in scaling studies.



Parametric Studies in Eclipse 9

PROPER Workshop at EuroPar 2008 August 25, 2008 18 

Example problem: Weak Scaling 

Num MPI 

Processes 

Application 

Arguments 

“matched 

pairs” of 

parameters 

(4 of each) 

(a) MPI weak scaling options in
Eclipse.

PROPER Workshop at EuroPar 2008 August 25, 2008 19 

PerfExplorer Analysis Result 

PerfExplorer launches, 

script is executed which 

generates graph 

(b) PerfExplorer output.

Fig. 4. The results of running the MPI weak scaling study - PerfExplorer is executed,
and the results of the study are visualized in one chart.

4.2 NPB 3.2.1 LU

The NAS (NASA Advanced Supercomputing) Parallel Benchmarks (NPB)[15]
are a set of programs designed to evaluate the performance of parallel systems.
NPB 3.2.1 includes serial, MPI and OpenMP implementations of computational
fluid dynamics algorithms. We elected to use the LU benchmark in order to
evaluate the OpenMP parallelism functionality in the experiment management
system. The LU benchmark uses successive over-relaxation to solve a diagonal
system by splitting it into block lower and upper triangular systems.

Our third parametric study was a strong scaling study. In this study, we
varied the number of threads available to the OpenMP runtime, and compared
the results from each execution of the benchmark. In our study, we constructed
the “A” class problem, which solves a 64 ∗ 64 ∗ 64 system in 250 iterations.
We requested a study with all integer values of threads between one and eight,
inclusive. The results of the study are shown in Figure 4.

In order to process the experiment, only one build job was constructed. Eight
run jobs were created, each with a different number of OpenMP threads. This
was accomplished by setting the OMP NUM THREADS variable to a different value
for each run. As with the other examples, each of the run jobs had a correspond-
ing post-run job to save the performance profiles to PerfDMF. After the one
build and all eight run jobs were complete, there was one final post-processing
job which ran PerfExplorer and executed an analysis script. The script loaded
the performance data and generated two charts, one showing the total runtime
for the application for each of the eight thread values, and one chart showing
the runtime for the ten most time-consuming instrumented regions in the appli-
cation.



10 Huck, Spear, Malony, Shende, Morris

PROPER Workshop at EuroPar 2008 August 25, 2008 20 

Final Example: OpenMP Scaling Study 

!!NPB 3.2.1 

!!LU Factorization 

!!Threads: 

"! 1,2,3,4,5,6,7,8 Environment 

variable 

(a) OpenMP strong scaling op-
tions in Eclipse.

PROPER Workshop at EuroPar 2008 August 25, 2008 21 

PerfExplorer Analysis Result 

PerfExplorer launches, 

script is executed which 

generates graphs 

(b) PerfExplorer output.

Fig. 5. The results of running the OpenMP strong scaling study - PerfExplorer is
executed, and the results of the study are visualized in two charts.

5 Related Work

There are a few related experiment management systems, but to the best of
our knowledge, none of them are integrated into an application development
environment such as the Eclipse IDE, nor do they support resource managers
on large shared systems.

Prophesy [16] is an online database which uploads and stores data from in-
strumented parallel application runs. Prophesy applies the performance database
to manage multi-dimensional performance information for parallel analysis and
modeling. The data is accessible from a web interface, and various models can
be built, including curve fitting, parametric models, and kernel coupling. There
are data generation and submission (of the performance data to the Prophesy
database) utilities as part of Prophesy, but they are not automated.

Pythia-II [17] is a system for generating performance data from a large para-
metric space, with the goal of recommending optimized solutions to developers
from a number of alternatives. The Pythia-II system combines knowledge discov-
ery with recommender systems to mine performance data, and provide runtime
selection of application parameters. While Pythia-II has software for generating
performance data, it is for the purpose of searching within the recommender
system, and is not intended for general purpose parametric studies.

ZENTURIO [18] is an environment for generating parametric studies for
parallel performance analysis. On completion of an application execution, the
performance data is automatically stored in a repository. The environment in-
cludes a performance visualizer which can perform multi-experiment analysis.
ZENTURIO includes support for cluster and Grid computing.



Parametric Studies in Eclipse 11

Aksum [19] is a related multi-experiment performance analysis tool which
automatically instruments an application, builds and executes the application
with given parametric values, and analyzes the results with the goal of locating
performance bottlenecks.

6 Conclusion

The work reported here demonstrates initial steps toward integrating automated
performance analysis in the Eclipse IDE. In particular, we showed how para-
metric studies are made easier with Eclipse PTP and Experiment Management
support. Support for optimization settings, MPI processor counts, environment
variables, and application arguments were developed in Eclipse and used to gen-
erate experiments for execution with the TAU Performance System. The project
also expanded and improved the automation of analysis results using PerfEx-
plorer scripts.

While successful, there are a few open issues and related problems for our
chosen solution. The Eclipse PTP support for launch managers is limited, and
not yet robust unless specific versions of supported MPI libraries are used. There
are four resource managers supported in Eclipse PTP (ORTE [20], IBMLL [21],
PE [22], MPICH2 [23]), but they were either not in use on our parallel systems,
or did not work as advertised. For this reason, despite the fact that we had a
128-core system at our disposal, we were unable to perform parametric studies
which ran on more than one node. The parametric studies can be performed
at large scale on any system that properly supports the PTP. Hopefully, more
robust support in the PTP will be provided for more systems in the future.

We are also investigating better ways to handle unusual combinations of
parameters. Currently, either all combinations of all parameter values or matched
pairs are supported. Other possible ways to specify parameters include value
ranges or algorithmic expressions. There are also questions about whether values
in the experiment management support override the values in the application
build and run configurations, or add to them. Flexible parameter mechanisms
would allows the tools to be more broadly applied. In addition, the larger problem
of specifying complex combinations of parameters to the build process is as yet
unresolved, as described in Section 3.

In conclusion, we believe that as the Eclipse PTP support continues to im-
prove, we will see more parallel application development in Eclipse, and para-
metric studies submitted from IDEs will become more commonplace.

7 Acknowledgments

University of Oregon research is sponsored by contracts DE-FG02-07ER25826
and DE-FG02-05ER25680 from the MICS program of the U.S. DOE, Office of
Science and NSF grant #CCF0444475.



12 Huck, Spear, Malony, Shende, Morris

References

1. The Eclipse Foundation: Eclipse.org Home. http://www.eclipse.org (2008)
2. Shende, S., Malony, A.D.: The TAU parallel performance system. The International

Journal of High Performance Computing Applications 20(2) (Summer 2006) 287–
331

3. Spear, W., Malony, A.D., Morris, A., Shende, S.: Integrating TAU with Eclipse:
A Performance Analysis System in a Integrated Development Environment. In:
High Performance Computing and Communications (HPCC) Conference. Volume
4208/2006 of LNCS., Springer (September 2006) 230–239

4. Spear, W., Malony, A.D., Morris, A., Shende, S.: Performance Tool Workflows. In:
International Conference on Computational Science (ICCS) in publication. (June
2008)

5. Huck, K., Malony, A., Bell, R., Morris, A.: Design and Implementation of a Parallel
Performance Data Management Framework. In: Proceedings of the International
Conference on Parallel Computing, 2005 (ICPP2005). (2005) 473–482

6. Huck, K.A., Malony, A.D., Shende, S., Morris, A.: Scalable, Automated Perfor-
mance Analysis with TAU and PerfExplorer. In: Parallel Computing (ParCo),
Aachen, Germany (2007)

7. The Eclipse Foundation: Eclipse Java Development Tools (JDT) Subproject. http:
//www.eclipse.org/jdt (2008)

8. The Eclipse Foundation: Eclipse C/C++ Development Tooling - CDT. http:

//www.eclipse.org/cdt (2008)
9. The Eclipse Foundation: Photran - An Integrated Development Environment for

Fortran. http://www.eclipse.org/photran (2008)
10. The Eclipse Foundation: PTP - Eclipse Parallel Tools Platform. http://www.

eclipse.org/ptp (2008)
11. Bell, R., Malony, A., Shende, S.: A Portable, Extensible, and Scalable Tool for

Parallel Performance Profile Analysis. In: Proc. EUROPAR 2003 Conference (EU-
ROPAR03). (2003)

12. Huck, K.A., Malony, A.D., Shende, S., Morris, A.: Knowledge Support and Au-
tomation for Performance Analysis with PerfExplorer 2.0. Scientific Programming,
special issue on Large-Scale Programming Tools and Environments 16(2-3) (2008)
123–134

13. LLNL: The ASCI Sweep3D Benchmark.
http://www.llnl.gov/asci/purple/benchmarks/limited/sweep3d/ (2006)

14. Free Software Foundation, Inc.: GNU Fortran - Free Number Crunching FOR All!
http://www.gnu.org/software/gcc/fortran/ (2008)

15. Bailey, D., Harris, T., Saphir, W., van der Wijngaart, R., Woo, A., Yarrow, M.:
The NAS Parallel Benchmarks 2.0. Technical Report Technical Report NAS-95-
020, NASA Ames Research Center (December 1995)

16. Taylor, V., Wu, X., Stevens, R.: Prophesy: An Infrastructure for Performance
Analysis and Modeling of Parallel and Grid Applications. SIGMETRICS Perform.
Eval. Rev. 30(4) (2003) 13–18

17. Houstis, E.N., Catlin, A.C., Rice, J.R., Verykios, V.S., Ramakrishnan, N., Houstis,
C.E.: PYTHIA-II: a knowledge/database system for managing performance data
and recommending scientific software. ACM Trans. Math. Softw. 26(2) (2000)
227–253

18. Prodan, R., Fahringer, T.: On Using ZENTURIO for Performance and Parameter
Studies on Cluster and Grid Architectures. In: 11th EuroMicro conference on
Parallel Distributed and Network-Based Processing (PDP 2003). (February 2003)



Parametric Studies in Eclipse 13

19. Fahringer, T., Clovis Seragiotto, J.: Aksum: a performance analysis tool for parallel
and distributed applications. (2004) 189–208

20. The Open MPI Project: Open MPI: Open Source High Performance Computing.
http://www.open-mpi.org/ (2008)

21. IBM: IBM Redbooks — Workload Management with Load Leveler. http://www.

redbooks.ibm.com/abstracts/SG246038.html (2008)
22. IBM: IBM POWER processor-based servers: Software, Parallel Environment (PE).

http://www-03.ibm.com/systems/p/software/pe/index.html (2008)
23. http://www.mcs.anl.gov/research/projects/mpich2/: MPICH2: High-performance

and Widely Portable MPI. http://www.mcs.anl.gov/research/projects/

mpich2/ (2008)


