
Towards a Performance Tool Interface for OpenMP:

An Approach Based on Directive Rewriting

Bernd Mohr+, Allen D. Malony∗, Sameer Shende∗, and Felix Wolf+

∗Dept. of Computer and Information Science +Research Centre Jülich, ZAM

University of Oregon Jülich, Germany

{malony,sameer}@cs.uoregon.edu {b.mohr,f.wolf}@fz-juelich.de

Abstract. In this article we propose a “stan-
dard” performance tool interface for OpenMP, sim-
ilar in spirit to the MPI profiling interface in its in-
tent to define a clear and portable API that makes
OpenMP execution events visible to performance li-
braries. When used together with the MPI profil-
ing interface, it also allows tools to be built for hy-
brid applications that mix shared and distributed
memory programming. We describe an instrumen-
tation approach based on OpenMP directive rewrit-
ing that generates calls to the interface and passes
context information (e.g., source code locations) in
a portable and efficient way. Our proposed OpenMP
performance API further allows user functions and
arbitrary code regions to be marked and perfor-
mance measurement to be controlled using new pro-
posed OpenMP directives. The directive transfor-
mations we define are implemented in a source-to-
source translation tool called Opari. We have used
it to integrate the Tau performance analysis frame-
work [13] and the automatic event trace analyzer
expert [17, 18] with the proposed OpenMP perfor-
mance interface. Together, these tools show that a
portable and robust solution to performance analy-
sis of OpenMP and hybrid applications is possible.

1 Introduction

With the advent of any proposed language sys-
tem for expressing parallel operation (whether as a
true parallel language (e.g., ZPL [6]), parallel ex-
tensions to sequential language (e.g., UPC [4]), or
parallel compiler directives (e.g., HPF [9])) ques-
tions soon arise regarding how performance instru-
mentation and measurement will be conducted, and
how performance data will be analyzed and mapped
to the language-level (high-level) parallel abstrac-
tions. Several issues make this an interesting prob-

lem. First, the language system implements a model
for parallelism whose explicit parallel operation is
generally hidden from the programmer. As such,
parallel performance events may not be accessible
directly, requiring instead support from underlying
runtime software to observe them in full. When
such support is unavailable, performance must be
inferred from model properties. Second, the lan-
guage system typically transforms the program into
its parallel executable form, making it necessary to
track code transformations closely so that perfor-
mance data can be correctly mapped to the user-
level source. The more complex the transformations,
the more difficult the performance mapping will be.
Last, high-level language expression of parallelism
often goes hand-in-hand with an interest for cross-
platform portability of the language system. Users
will naturally desire the programming and perfor-
mance tools to be portable as well.

For the performance tool developer, these issues
complicate decisions regarding choice of tool tech-
nology and implementation approach. In this paper,
we consider the problem of designing a performance
tool interface for OpenMP. Three goals for a perfor-
mance tool interface for OpenMP are considered:

• Expose OpenMP parallel execution to the per-
formance system. Here we are concerned
about what execution events and state data
are observable for performance measurement
through the interface.

• Make the interface portable across different
platforms and for different performance tools.
Portability in this regard requires the defini-
tion of the interface semantics and how infor-
mation is to be accessed.

• Allow alternative implementations of the in-
terface. Since OpenMP programs can be com-
piled in different ways, similar flexibility is im-
portant for the performance interface.

X

X
X

EVENTS
master slave

X

X

X
XX

X
X

���

���

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

Parallel Region Operation

master starts serial execution

parallel region begins

slaves started
team begins parallel execution

team threads hit barrier
slaves end; master exits barrier

master resumes serial execution

S

P

S

STARTUP

SHUTDOWN

Figure 1: OpenMP Parallel Region Operation Showing States and Events

While our study focuses mainly on the instrumen-
tation interface, as that is where events are moni-
tored and the operational state is queried, clearly
the type of performance measurement will determine
the scope of analyses possible. Ideally, the flexibility
of the interface will support multiple measurement
capabilities.

2 A Performance Model for
OpenMP

OpenMP is a parallel programming language sys-
tem used to express shared memory parallelism. It
is based on the model of (nested) fork-join paral-
lelism and the notion of parallel regions where com-
putational work is shared and spread across multiple
threads of execution (a thread team); see Figure 1.
The language constructs provide for thread synchro-
nization (explicitly and implicitly) to enforce consis-
tency in operation. OpenMP is implemented using
comment-style compiler directives (in Fortran) and
pragmas (in C and C++).

A performance model for OpenMP can be defined
based on its execution events and states. We ad-
vocate multiple performance views based on a hier-
archy of execution states where each level is more

refined in focus:

• Level 1: serial and parallel states (with nest-
ing)

• Level 2: work sharing states (per team thread)

• Level 3: synchronization states (per/across
team threads)

• Level 4: runtime system (thread) states

In this way, performance observation can be tar-
geted at the level(s) of interest using events specific
to the level. Events are defined to identify points
of state transitions (begin/end, enter/exit), allow-
ing OpenMP programs to be thought of as multi-
threaded execution graphs with states as nodes and
events as edges. A performance instrumentation in-
terface would allow monitoring of events and access
to state information.

Figure 1 shows a diagram of OpenMP parallel region
operation. Identified are serial (S) and parallel (P)
states, parallel startup (STARTUP) and shutdown
(SHUTDOWN) states, and different events at differ-
ent levels for master and slave threads. Based on this
diagram, and given a workable performance instru-
mentation interface, we can develop measurement
tools for capturing serial and parallel performance.

Before After Before After

!$OMP PARALLEL

structured block

!$OMP END PARALLEL

call pomp parallel fork(d)

!$OMP PARALLEL

call pomp parallel begin(d)

structured block

call pomp barrier enter(d)

!$OMP BARRIER

call pomp barrier exit(d)

call pomp parallel end(d)

!$OMP END PARALLEL

call pomp parallel join(d)

!$OMP DO

do loop

!$OMP END DO

call pomp do enter(d)

!$OMP DO

do loop

!$OMP END DO NOWAIT

call pomp barrier enter(d)

!$OMP BARRIER

call pomp barrier exit(d)

call pomp do exit(d)

Before After Before After

!$OMP WORKSHARE

structured block

!$OMP END WORKSHARE

!$OMP BARRIER

call pomp workshare enter(d)

!$OMP WORKSHARE

structured block

!$OMP END WORKSHARE NOWAIT

call pomp barrier enter(d)

!$OMP BARRIER

call pomp barrier exit(d)

call pomp workshare exit(d)

call pomp barrier enter(d)

!$OMP BARRIER

call pomp barrier exit(d)

!$OMP SECTIONS

!$OMP SECTION

structured block

!$OMP SECTION

structured block

!$OMP END SECTIONS

call pomp sections enter(d)

!$OMP SECTIONS

!$OMP SECTION

call pomp section begin(d)

structured block

call pomp section end(d)

!$OMP SECTION

call pomp section begin(d)

structured block

call pomp section end(d)

!$OMP END SECTIONS NOWAIT

call pomp barrier enter(d)

!$OMP BARRIER

call pomp barrier exit(d)

call pomp sections exit(d)

Before After Before After

!$OMP CRITICAL

structured block

!$OMP END CRITICAL

call pomp critical enter(d)

!$OMP CRITICAL

call pomp critical begin(d)

structured block

call pomp critical end(d)

!$OMP END CRITICAL

call pomp critical exit(d)

!$OMP SINGLE

structured block

!$OMP END SINGLE

call pomp single enter(d)

!$OMP SINGLE

call pomp single begin(d)

structured block

call pomp single end(d)

!$OMP END SINGLE NOWAIT

call pomp barrier enter(d)

!$OMP BARRIER

call pomp barrier exit(d)

call pomp single exit(d)

Before After Before After

!$OMP ATOMIC

atomic expression

call pomp atomic enter(d)

!$OMP ATOMIC

atomic expression

call pomp atomic exit(d)

!$OMP MASTER

structured block

!$OMP END MASTER

!$OMP MASTER

call pomp master begin(d)

structured block

call pomp master end(d)

!$OMP END MASTER

Table 1: Proposed OpenMP Directive Transformations.

3 OpenMP Performance Tool
Interface

How should a performance interface be developed
to meet the goals for OpenMP? Although different
interfaces are possible (see [5, 10]), the basic idea
behind our proposal is to define an API to a stan-
dardized performance monitoring library that can
be used to instrument the user’s application pro-
gram. This instrumentation could be done by a
source-to-source translation tool prior to the actual
compilation or within an OpenMP compilation sys-

tem. Performance tool developers then only need
to implement the functions of this interface to en-
able their tool to measure and analyze OpenMP
programs. Different measurement modes (e.g., pro-
filing [2] and tracing [5, 7, 10]) can easily be accom-
modated in this way. In the following, we present
various aspects of our proposal for a standardized
performance tool interface using directive rewriting
for its implementation. Fortran90 OpenMP 2.0 syn-
tax is used in examples and tables. Of course, the
transformations equally apply to C/C++.

3.1 OpenMP Directive Instrumenta-
tion

We specify the instrumentation of OpenMP direc-
tives in terms of directive transformations because,
first, this allows a description independent of the
base programming language, and second, the specifi-
cation is tied directly to the programming model the
application programmer understands. Our transfor-
mation rules insert calls to pomp NAME TYPE(d) in
a manner appropriate for each OpenMP directive,
where NAME is replaced by the name of the directive,
TYPE is either fork, join, enter, exit, begin, or
end, and d is a context descriptor (described in Sec-
tion 3.5). fork and join mark the location where
the execution model switches from sequential to par-
allel and vice versa, enter and exit flag the entering
and exiting of OpenMP constructs and finally, begin
and end mark the start and end of structured blocks
used as bodies for the OpenMP directives. Table 1
gives an overview about our proposed transforma-
tions and performance library routines. To improve
readability, optional clauses to the directives, as al-
lowed by the OpenMP standards, are not shown.

In order to be able to measure the synchroniza-
tion time at the implicit barrier at the end of DO,
SECTIONS, WORKSHARE, or SINGLE directives, we use
the following method: If, as shown in the table,
the original corresponding END directive does not
include a NOWAIT clause, NOWAIT is added and the
implicit barrier is made explicit. Of course, if there
is a NOWAIT clause in the original END directive, then
this step is not necessary. To distinguish these bar-
riers from (user-specified) explicit barriers, in this
case the pomp barrier ###() functions are passed
the context descriptor of the enclosing construct (in-
stead of the descriptor of the explicit barrier).

Unfortunately, this method cannot be used for
measuring the barrier waiting time at the end of
parallel directives because they do not have a
NOWAIT clause. Therefore, we add an explicit bar-
rier with corresponding performance interface calls
here. For source-to-source translation tools imple-
menting the proposed transformations, this means
that actually two barriers get called. But the sec-
ond (implicit) barrier should execute and succeed
immediately because the threads of the OpenMP
team are already synchronized by the first barrier.
Of course, a OpenMP compiler can insert the per-
formance interface calls directly around the implicit
barrier, thereby avoiding this overhead.

Transformation rules for the combined parallel
work-sharing constructs (PARALLEL DO, PARALLEL

SECTIONS, and PARALLEL WORKSHARE) can be de-
fined in the same manner. They are basically the
combination of transformations for the correspond-
ing single OpenMP constructs. The only difference
is that clauses specified for the combined construct
have to be distributed to the single OpenMP con-
structs in such a way that it complies with the
OpenMP standard (e.g., SCHEDULE, ORDERED, and
LASTPRIVATE clauses have to be specified with the
inner DO directive). Table 2 shows the proposed
transformation for the OpenMP combined parallel
work-sharing constructs.

3.2 OpenMP Run-time Library Rou-
tine Instrumentation

To monitor OpenMP run-time library routine calls,
the transformation process replaces these calls by
calls to the performance tool interface library. For
example, a call to omp set lock() is transformed
into a call to pomp set lock(). In the implemen-
tation of the performance tool interface function,
the original corresponding OpenMP run-time library
routine must be called, and in addition, all necessary
data for the performance tool can be collected. Cur-
rently, we think it is sufficient to use this procedure
for the omp ### lock() and omp ### nest lock()

routines, because they are most relevant for the ob-
servation of OpenMP performance behavior.

3.3 Performance Monitoring Library
Control

In addition to the performance library interface, we
propose to add a new directive to OpenMP to give
the programmer control over when the performance
collection is done:

!$OMP INST [INIT|FINALIZE|ON|OFF]

For normal OpenMP compilation this directive is ig-
nored. Otherwise, it is translated into pomp init(),
pomp finalize(), pomp on(), and pomp off() calls
when performance instrumentation is requested.
Another approach (which does not extend the set
of OpenMP directives) would be to have the pro-
grammer add the performance tool interface calls
directly, but this then requires either stub routines,
conditional compilation, or the removal of the in-
strumentation to be used when performance moni-
toring is not desired. Our proposed new directive
approach is more portable, effective, and easier to
maintain.

Before After

!$OMP PARALLEL DO clauses ...

do loop

!$OMP END PARALLEL DO

call pomp parallel fork(d)

!$OMP PARALLEL other-clauses ...

call pomp parallel begin(d)

call pomp do enter(d)

!$OMP DO schedule-clauses, ordered-clauses, lastprivate-clauses

do loop

!$OMP END DO NOWAIT

call pomp barrier enter(d)

!$OMP BARRIER

call pomp barrier exit(d)

call pomp do exit(d)

call pomp parallel end(d)

!$OMP END PARALLEL

call pomp parallel join(d)

Before After

!$OMP PARALLEL SECTIONS clauses ...

!$OMP SECTION

structured block

!$OMP END PARALLEL SECTIONS

call pomp parallel fork(d)

!$OMP PARALLEL other-clauses ...

call pomp parallel begin(d)

call pomp sections enter(d)

!$OMP SECTIONS lastprivate-clauses

!$OMP SECTION

call pomp section begin(d)

structured block

call pomp section end(d)

!$OMP END SECTIONS NOWAIT

call pomp barrier enter(d)

!$OMP BARRIER

call pomp barrier exit(d)

call pomp sections exit(d)

call pomp parallel end(d)

!$OMP END PARALLEL

call pomp parallel join(d)

Before After

!$OMP PARALLEL WORKSHARE clauses ...

structured block

!$OMP END PARALLEL WORKSHARE

call pomp parallel fork(d)

!$OMP PARALLEL clauses ...

call pomp parallel begin(d)

call pomp workshare enter(d)

!$OMP WORKSHARE

structured block

!$OMP END WORKSHARE NOWAIT

call pomp barrier enter(d)

!$OMP BARRIER

call pomp barrier exit(d)

call pomp workshare exit(d)

call pomp parallel end(d)

!$OMP END PARALLEL

call pomp parallel join(d)

Table 2: Proposed OpenMP Combined Parallel Work-sharing Directive Transformations.

3.4 User Code Instrumentation

For large application programs it is usually not suf-
ficient to just collect OpenMP related events. The
OpenMP compiler should also insert appropriate
pomp begin() and pomp end() calls at the begin-
ning and end of each user function. In this case the
context descriptor describes the user function.

In addition, users may desire to mark arbitrary (non-
function) code regions. This can be done with a di-

rective mechanism similar to that described in the
last subsection, such as

!$OMP INST BEGIN (<region_name>)

arbitrary user code

!$OMP INST END (<region_name>)

The directives are translated into pomp begin() and
pomp end() calls. Again, techniques can be used to
avoid extending OpenMP, but with the same dis-
advantages as described in the last section. Fur-

thermore, the transformation tool / compiler cannot
generate the context descriptor for this user defined
region, so another (less efficient) mechanism would
have to be used here.

3.5 Context Descriptors

An important aspect of the performance instrumen-
tation is how the performance tool interface routines
get access to context information, in order to relate
the collected performance information back to the
source code and OpenMP constructs.

We propose the following: For each instrumented
OpenMP construct, user function, and user-specified
region, the instrumentor generates a context descrip-
tor in the global static memory segment of the com-
pilation unit which contains the construct or region.
All monitoring function calls related to this con-
struct or region are passed the address of this de-
scriptor (called d in Tables 1 and 2). The proposed
definition of the context descriptor (in C syntax) is:

typedef struct ompregdescr {

char* name;

char* sub_name;

int num_sections;

char* file_name;

int begin_line1, begin_lineN;

int end_line1, end_lineN;

WORD data[4];

struct ompregdescr* next;

} OMPRegDescr;

The fields of the context descriptor have the fol-
lowing meaning: name contains the name of the
OpenMP construct or the string "region" for user
functions and regions. sub name stores the name
of named critical regions or the name of user func-
tions and regions. In case of the sections OpenMP
directives, num sections provides the number of
sections, otherwise it is set to 0. The next
five fields (file name, begin line1, begin lineN,
end line1, end lineN) describe the source code lo-
cation of the OpenMP construct or user region: the
source file name, and the first and last line num-
ber of the opening and of the corresponding END

OpenMP directive. The field data can be used by
the performance tool interface functions to store per-
formance data related to this construct or region
(e.g., counters or timers). Finally, the next compo-
nent allows for chaining context descriptors together
at run-time, so that at the end of the program the
list of descriptors can be traversed and the collected
performance data can be stored away and analyzed.

This approach has many advantages over other
methods (e.g., using unique identifiers):

1. Full context information, including source
code location, is available to the performance
tool interface functions.

2. Run-time overhead for implementing this ap-
proach is minimal: just one address is passed
as an argument. In addition, providing space
for storing performance data (in the form of
the data field), the performance tool interface
functions do not need to dynamically allocate
memory for this purpose (which is very costly).

3. The context data is kept together with the
(instrumented) executable so it avoids prob-
lems of locating (the right) separate context
description file(s) at run-time.

4. Finally, it allows for separate compilation.
This is important for today’s large complex
application codes.

3.6 C/C++ OpenMP Pragma In-
strumentation

The transformations for Fortran OpenMP directives
described in Tables 1 and 2 equally apply to C/C++
OpenMP pragmas. The main difference is that the
extent of C/C++ OpenMP pragmas is determined
by the structured block following it, and not by an
explicit END pragma as in Fortran. This has the fol-
lowing consequences for pragma instrumentation:

• Instrumentation for the “closing” part of the
pragma follows the structured block.

• Adding a nowait clause (to allow the make im-
plicit barriers explicit) has to be done for the
“opening” part of the pragma.

• The structured block of a C/C++ OpenMP
pragma will be transformed by wrap-
ping it with pomp ### begin(d) and
pomp ### end(d) calls which in turn are en-
closed in a block (i.e., using {...}).

All other changes are simple differences in language
(e.g., no call keyword and using #pragma omp in-
stead of !$OMP).

4 Prototype Implementation

As a proof of concept and a means for experimen-
tation, we implemented Opari (OpenMP Pragma
And Region Instrumentor). It is a source-to-source
translator which performs the OpenMP directive
and API call transformations as described in this
paper, including the proposed !$OMP INST direc-
tives. The current prototype implements full For-
tran77 and Fortran90 OpenMP 2.0 and full C/C++
OpenMP 1.0 support. The instrumentation of user

functions (based on PDT [12]) is under way. The
tool consists of about 2000 lines of C++ code.

Being just a source-to-source translator based on a
(very) fuzzy parser, and not a full compiler, Opari

has the following small limitations:

Fortran

• The !$OMP END DO and !$OMP END PARALLEL

DO directives are required (not optional, as de-
scribed in the OpenMP standard).

• The atomic expression controlled by a !$OMP

ATOMIC directive has to be on a line all by it-
self.

C/C++

• Structured blocks describing the extent of an
OpenMP pragma need to be either compound
statements ({...}), or simple statements. In
addition, for loops are supported only after
omp for and omp parallel for pragmas.

• Complex statements like if-then-else or do-
while need to be enclosed in a block ({...}).

We did not find these limitations overly restrictive
during our tests and experiments. They rarely apply
for well-written code. If they do, the original source
code can easily be fixed. Of course, it is possible
to remove these limitations by enhancing Opari’s
parsing capabilities.

Finally, if the performance measurement environ-
ment does not support the automatic recording of
user functions entries and exits, and therefore can-
not automatically instrument the program’s main

function, the Opari runtime measurement library
has to be initialized by a !$OMP INST INIT direc-
tive / pragma prior to any other OpenMP pragma.

To integrate performance tools with the proposed
OpenMP performance interface, two issues must be
addressed. First, the OpenMP program must be in-
strumented with the appropriate performance calls.
We have shown how Opari provides the necessary
directive transformations to do this automatically.
Second, a performance library must be developed
to implement the OpenMP performance API for the
particular performance tool. The following describes
two performance tools, expert and Tau that have
been integrated with the proposed OpenMP perfor-
mance interface. In each case, both OpenMP ap-
plications and hybrid (OpenMP+MPI) applications
are supported. The latter demonstrates the ability
to combine the OpenMP performance interface with
other performance interface mechanisms in a seam-
less manner.

4.1 Integration into EXPERT

The expert tool environment [17, 18] is aimed at
automatically uncovering performance problems in
event traces of MPI, OpenMP, or hybrid applica-
tions running on complex, large SMP clusters. The
work on expert is carried out as a part of the kojak

project [11] and is embedded in the esprit working
group apart [1].

expert analyzes the performance behavior along
three dimensions: performance problem category,
dynamic call tree position, and location. Each of
the analyzed dimensions is organized in a hierar-
chy. Performance problems are organized from more
general (“There is an MPI related problem”) to very
specific ones (“Messages sent in wrong order”). The
dynamic call tree is a natural hierarchy showing call-
ing stack relationships. Finally, the location dimen-
sion represents the hierarchical hardware and soft-
ware architecture of SMP clusters consisting of the
levels machine, node, process, and thread.

The range of performance problems known to ex-

pert are not hard-coded into the tool but are pro-
vided as a collection of performance property spec-
ifications. This makes expert extensible and very
flexible. A performance property specification con-
sists of

• a compound event (i.e., an event pattern de-
scribing the nature of the performance prob-
lem),

• instructions to calculate the so-called severity
of the property, determining its influence on
the performance of the analyzed application,

• its parent performance property,
• instructions on how to initialize the property

and how to display collected performance data
or property related results.

Performance property specifications are on a very
high level of abstraction that goes beyond simple
performance metrics and allows expert to explain
performance problems in terms of the underlying
programming model(s). Specifications are written in
the event trace analysis language earl [16], an ex-
tension of the Python scripting language. earl pro-
vides efficient access to an event trace at the level of
the abstractions of the parallel programming models
(e.g., region stack, message queue, or collective oper-
ation) making it easy to write performance property
specifications.

expert’s analysis process relies on event traces as
performance data source, because event traces pre-
serve the temporal and spatial relationship among
individual events, which are necessary to prove many

interesting performance properties. Event traces are
recorded in the newly designed epilog format that,
in contrast to traditional trace data formats, is suit-
able to represent the executions of MPI, OpenMP, or
hybrid parallel applications being distributed across
one or more (possibly large) clusters of SMP nodes.
It supports storage of all necessary source code and
call site information, hardware performance counter
values, and marking of collectively executed oper-
ations for both MPI and OpenMP. The implemen-
tation of epilog is thread safe, a necessary feature
not always present in most traditional tools.

Traces can be generated for C, C++, and For-
tran applications just by linking to the epilog

tracing library. To intercept user function calls
and returns, we use the internal profiling interface
of the PGI compiler suite [15] being installed on
our LINUX SMP cluster testbed. For capturing
OpenMP events, we implemented the pomp library
functions in terms of epilog tracing calls, and then
use Opari to instrument the user application. For
example, the omp for enter() and omp for exit()

interface implementation for instrumentation of the
#pragma omp parallel for directive for C/C++
would look like the following in epilog:

void pomp_for_enter(OMPRegDescr* r) {

struct ElgRegion* e;

if (! (e = (struct ElgRegion*)(r->data[0])))

e = ElgRegion_Init(r);

elg_enter(e->rid);

}

void pomp_for_exit(OMPRegDescr* r) {

elg_omp_collexit();

}

What is important to notice is how the region de-
scriptor is utilized to collect performance data per
OpenMP construct. For hybrid applications using
OpenMP and MPI, MPI-specific events can also be
generated by a appropriate wrapper function library
utilizing the MPI standard profiling interface.

4.2 Integration into TAU

The Tau performance system [13] provides robust
technology for performance instrumentation, mea-
surement, and analysis for complex parallel systems.
It targets a general computation model consisting
of shared-memory nodes where contexts reside, each
providing a virtual address space shared by multiple
threads of execution. The model is general enough
to apply to many high-performance scalable parallel
systems and programming paradigms. Because Tau

enables performance information to be captured at

the node/context/thread levels, this information can
be mapped to the particular parallel software and
system execution platform under consideration.

Tau supports a flexible instrumentation model that
allows access to a measurement API at several
stages of program compilation and execution. The
instrumentation identifies code segments, provides
for mapping of low-level execution events to high-
level computation entities, and works with multi-
threaded and message passing parallel execution
models. It interfaces with the Tau measurement
model that can capture data for function, method,
basic block, and statement execution. Profiling and
tracing form the two measurement choices that Tau

provides. Performance experiments can be com-
posed from different measurement modules, includ-
ing ones that access hardware performance moni-
tors. The Tau data analysis and presentation utili-
ties offer text-based and graphical tools to visualize
the performance data as well as bridges to third-
party software, such as Vampir [14] for sophisticated
trace analysis and visualization.

As with expert, Tau implements the OpenMP
performance API in a library that captures the
OpenMP events and uses Tau’s performance mea-
surement facility to record performance data. For
example, the pomp implementation of the same func-
tions as in Section 4.1 would look like the following
in Tau:

TAU_GLOBAL_TIMER(tfor,‘‘for enter/exit’’,

‘‘[OpenMP]’’,OpenMP);

void pomp_for_enter(OMPRegDescr* r) {

#ifdef TAU_AGGREGATE_OPENMP_TIMINGS

TAU_GLOBAL_TIMER_START(tfor);

#endif

#ifdef TAU_OPENMP_REGION_VIEW

TauStartOpenMPRegionTimer(r);

#endif

}

void pomp_for_exit(OMPRegDescr* r) {

#ifdef TAU_AGGREGATE_OPENMP_TIMINGS

TAU_GLOBAL_TIMER_STOP();

#endif

#ifdef TAU_OPENMP_REGION_VIEW

TauStopOpenMPRegionTimer(r);

#endif

}

Tau supports construct-based as well as region-
based performance measurement. Construct-based
measurement uses globally accessible timers to ag-
gregate construct-specific performance cost over all
regions. In the case of region-based measurement,
like expert, the region descriptor is used to select
the specific performance data for that context. Fol-

lowing this instrumentation approach, all of Tau’s
functionality is accessible to the user, including the
ability to select profiling or tracing, enable hardware
performance monitoring, and add MPI instrumenta-
tion for performance measurement of hybrid appli-
cations.

5 Related Work

Given the interest in OpenMP in the last few years,
several research efforts have addressed performance
measurement and analysis of OpenMP execution,
but none of these efforts have considered a common
performance tool interface in the manner proposed
in this paper. The Ovaltine tool [2] helps deter-
mine relevant overheads for a parallel OpenMP pro-
grams compared to a serial implementation. It uses
the Polaris Fortran 77 parser to build a basic ab-
stract syntax tree which it then instruments with
counters and timers to determine overheads for var-
ious OpenMP constructs and code segments. The
nature of the Ovaltine performance measurements
suggests that our OpenMP performance API could
be applied directly to generate the OpenMP events
of interest, allowing greater range to performance
tools for use in overhead analysis.

OMPtrace [5] is a dynamic instrumentation pack-
age used to trace OpenMP execution on SGI and
IBM platforms. It provides for automatic capture
of OpenMP runtime system (RTS) events by in-
tercepting calls to the RTS library. User functions
can also be instrumented to generate trace events.
The main advantage of OMPtrace is that there is
no need to re-compile the OpenMP program for
performance analysis. In essence, OMPtrace uses
the RTS interface as the performance tool inter-
face, relying on interception at dynamic link time for
instrumentation. Unfortunately, this approach re-
lies on OpenMP compiler transformations that turn
OpenMP constructs into function calls, and on dy-
namic shared library operation. To bypass these
restrictions, the OpenMP performance interface we
propose could provide a suitable target for the per-
formance tracing part of OMPtrace. A compatible
pomp library would need to be developed to generate
equivalent OMPtrace events and hardware counter
data. In this manner, the Paraver [7] tool for anal-
ysis and visualization of OMPtrace data could be
used without modification.

The VGV tool combines the OpenMP compiler
tools (Guide, GuideView) from KAI with the
Vampir/Vampirtrace tracing tools from Pallas for
OpenMP performance analysis and visualization.

OpenMP instrumentation is provided by the Guide
compiler for both profiling and tracing, and the
Guide runtime system handles recording of thread
events. Being compiler-based, the monitoring of
OpenMP performance can be quite detailed and
tightly integrated in the execution environment.
However, the lack of an external API seriously
prevents other performance tools for observing
OpenMP execution events. The performance inter-
face we proposed could be applied in the VGV con-
text in the same manner as above. The pomp calls
could be implemented in a library for VGV, mapping
the OpenMP actions to Vampir state transition calls
at appropriate points. Another approach might be
to have the Guide compiler generate the pomp in-
strumentation, allowing other pomp-compatible per-
formance interface libraries to be used.

Lastly, the JOMP [3] system is a source-to-source
compiler that transforms OpenMP-like directives for
Java to multi-thread Java statements that imple-
ment the equivalent OpenMP parallel operations.
It has similarities to our work in that it supports
performance instrumentation as part of its directive
transformation [8]. This instrumentation generates
events for analysis by Paraver [7]. In a similar man-
ner, the JOMP compiler could be modified to gen-
erate pomp calls. In this case, since JOMP manages
its own threads to implement parallelism, it may be
necessary to implement runtime support for pomp

libraries to access thread information.

6 Conclusion and Future Work

This paper proposes a portable performance inter-
face for OpenMP to aid in the integration of per-
formance tools in OpenMP programming environ-
ments. Defined as a library API, the interface ex-
poses OpenMP execution events of interest (e.g., se-
quential, parallel, and synchronization events) for
performance observation, and passes OpenMP con-
text descriptors to inform the performance inter-
face library of region-specific information. Because
OpenMP uses compiler directives (pragmas) to ex-
press shared memory parallelism, our definition of
the performance tool API must be consistent with
the operational semantics of the directives. To show
how this is accomplished, we describe how the API
is used in rewriting OpenMP directives in func-
tionally equivalent, but source-instrumented forms.
The Opari tool can perform this OpenMP directive
rewriting automatically, inserting pomp performance
calls where appropriate.

The benefits of the proposed performance interface

are several. First, it gives a performance API tar-
get for source-to-source instrumentation tools (e.g.,
Opari), allowing for instrumented OpenMP codes
that are portable across compilers and machine plat-
forms. Second, the performance library interface
provides a target for tool developers to port perfor-
mance measurement systems. This enables multiple
performance tools to be used in OpenMP perfor-
mance analysis. We show how expert and Tau are
integrated by redefining the pomp calls. Third, the
API also offers a target for OpenMP compilers to
generate pomp calls that can both access internal,
compiler-specific performance libraries and external
performance packages. Finally, if the OpenMP com-
munity could adopt an OpenMP performance in-
terface such as the one we proposed, it would sig-
nificantly improve the integration and compatibil-
ity between compilers and performance tools, and,
perhaps more importantly, the portability of perfor-
mance analysis techniques.

In the future, we hope to work with the OpenMP
standards organization to promote the definition
for a performance tool API, offering our pro-
posal here for consideration. We will enhance the
Opari source-to-source instrumentation approach
with support for user function instrumentation using
PDT [12]. Other opportunities are also possible with
the integration of the API in OpenMP compilers and
the use of other performance technologies for instru-
mentation and measurement. We hope to work with
KAI and Pallas to investigate the use of our pro-
posed performance tool interface in the KAP/Pro
Guide compiler with Vampirtrace as the basis for
the pomp performance library implementation.

References

[1] ESPRIT Working Group APART (Automatic
Performance Analysis: Resources and Tools).
http://www.fz-juelich.de/apart/.

[2] M. Bane and G. Riley, “Overheads Profiler
for OpenMP Codes,” European Workshop on
OpenMP (EWOMP 2000), September, 2000.

[3] J. Bull et al., “Towards OpenMP for Java,”
European Workshop on OpenMP (EWOMP
2000), September, 2000.

[4] W. Carlson et al. “Introduction to UPC
and Language Specification,” Technical Re-
port CCS-TR-99-157, George Mason Univer-
sity, May, 1999.

[5] J. Caubet et al., “A Dynamic Tracing Mech-
anism for Performance Analysis of OpenMP
Applications,” Workshop on OpenMP Applica-
tions and Tools (WOMPAT 2001), July, 2001.

[6] B. Chamberlain et al., “The Case for High Level
Parallel Programming in ZPL,” IEEE Compu-
tational Science and Engineering, 5(3):76-86,
1998.

[7] European Center for Parallelism of
Barcelona (CEPBA), Paraver – Paral-
lel Program Visualization and Analysis
Tool – Reference Manual, November, 2000.
http://www.cepba.upc.es/paraver.

[8] J. Guitart et al., “Performance Analysis Tools
for Parallel Java Applications on Shared-
memory Systems,” Int’l. Conf. on Parallel Pro-
cessing (ICPP’01), September, 2001.

[9] HPF. http://softlib.rice.edu/HPFF/.

[10] J. Hoeflinger et al., “An Integrated Per-
formance Visualizer for MPI/OpenMP Pro-
grams,” Workshop on OpenMP Applications
and Tools (WOMPAT 2001), July, 2001.

[11] KOJAK (Kit for Objective Judgment and
Knowledge-based Detection of Bottlenecks).
http://www.fz-juelich.de/zam/kojak/.

[12] K.A. Lindlan, J. Cuny, A.D. Malony, S.
Shende, B. Mohr, R. Rivenburgh, C. Ras-
mussen, “Tool Framework for Static and Dy-
namic Analysis of Object-Oriented Software
with Templates,” Proc. Supercomputing 2000,
Dallas/Texas, USA, November, 2000.

[13] A. Malony, S. Shende, “Performance Technol-
ogy for Complex Parallel and Distributed Sys-
tems,” Proc. 3rd Workshop on Distributed and
Parallel Systems, DAPSYS 2000, (Eds. G. Kot-
sis, P. Kacsuk), pp. 37–46, 2000.

[14] Pallas GmbH, “VAMPIR: Visualiza-
tion and Analysis of MPI Resources”.
http://www.pallas.de/pages/vampir.htm.

[15] Portland Group Inc. Private Communication.

[16] F. Wolf, B. Mohr, “EARL - A Programmable
and Extensible Toolkit for Analyzing Event
Traces of Message Passing Programs,” Proc. of
the 7th Int’l. Conf. on High-Performance Com-
puting and Networking, HPCN’99, A. Hoek-
stra and B. Hertzberger, eds., Amsterdam (The
Netherlands), 1999, pp. 503–512.

[17] F. Wolf, B. Mohr, “Automatic Performance
Analysis of MPI Applications Based on Event
Traces,” Proc. of the European Conf. on Par-
allel Computing, Euro-Par 2000, Munich (Ger-
many), August 2000, pp. 123–132.

[18] F. Wolf, B. Mohr, “Automatic Performance
Analysis of SMP Cluster Applications,” Tech.
Rep. IB 2001-05, Research Centre Jülich, 2001.

