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Abstract

This prospectus describes research to simplify programing of parallel computers. It focuses specifically onperformance
diagnosis, the process of finding and explaining sources of inefficiency in parallel programs. Considerable research already
has been done to simplify performance diagnosis, but with mixed success. Two elements are missing from existing research:

1. There is no general theory of how expert programers do performance diagnosis. As a result, it is difficult for researchers to
compare existing work or fit their work to programers. It is difficult for programers to locate products of existing research
that meet their needs.

2. There is no automated, adaptable software to help programers do performance diagnosis. Existing software is either
automated but limited to very specific circumstances, or in general, not automated for most tasks.

The research described here addresses both of these issues. The research will develop and validate a theory of performance
diagnosis, based on general models on diagnostic problem-solving. It will design and evaluate a computer program (called
Poirot) that employs the theory to automatically, adaptably support performance diagnosis. © 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Parallel computers and software are being inten-
sively studied to solve “grand challenge” problems
[24]. In scientific parallel programs, which have se-
vere performance requirements, “performance bugs”
— programing mistakes that make a program slow or
inefficient — attract a good deal of attention. Con-
sequently, the job of the parallel programer includes
performance debugging— finding and repairing per-
formance bugs.
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Defense Advanced Research Projects Agency.
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This paper describes research to understand and im-
prove the process of performance debugging in paral-
lel scientific programs. The research focuses specifi-
cally on the problem of locating and explaining per-
formance bugs, which we callperformance diagno-
sis. Expert parallel programers often improve program
performance enormously by running their programs
experimentally on a parallel computer, then interpret-
ing the results of these experiments to suggest changes
to the program [9,12]. Researchers in parallel comput-
ing have developed integrated suites of computer pro-
grams (calledperformance diagnosis systemsin this
paper) to collect and analyze performance data from
performance experiments. However, performance di-
agnosis systems are not extensively used. Many obsta-
cles prevent performance diagnosis systems from es-
caping research into practice [20,25]. Two obstacles,
in particular motivate our current work:

0167-739X/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
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1. Lack of theoretical justification. Researchers lack a
theory of what methods work and why? There is no
formal way to describe or compare how expert pro-
gramers solve their performance diagnosis prob-
lems in particular contexts. There is no standard
theory for understanding diagnosis system features
and fitting them to the programer’s particular needs.
As a result, researchers cannot easily compare and
evaluate the systems they produce, and many po-
tential users do not find systems that are applicable
to their performance diagnosis problems.

2. Conflict between automation and adaptability. Per-
formance diagnosis systems are not easily adapt-
able to new requirements. Highly automated sys-
tems, while providing considerable help to the pro-
gramer are hard to change, hard to extend and hard
to combine with other systems [1]. As a result, pro-
gramers must do considerable work (re)programing
systems or converting data between systems, if ex-
isting automated systems do not fit their require-
ments. In fact, programers generally ignore systems
that do not fit their needs exactly. Instead, they col-
lect and analyze data manually [25], or construct
custom systems for their own projects [8].

Both the obstacles above, we believe, could be mit-
igated by a formal theory of performance diagnosis
processes. Such a theory should be able to describe
how programers solve problems and how diagnosis
systems help or hinder them. The theory could be
used by researchers to systematically compare and
evaluate performance diagnosis systems. In addi-
tion, the theory could be used to create automated
performance diagnosis systems that are adaptable to
particular requirements.

We are now developing and evaluating a formal
theory of parallel performance diagnosis by applying
models of diagnosis developed in the field of artificial
intelligence. We are incorporating that theory into the
design of a novel diagnosis system that is both auto-
mated and adaptable. This paper presents initial results
and planned research towards these ends.

1.1. Problem definition

To clearly define the research problem, we first
present a hypothetical example of scientific program-
ing on a parallel computer. The programer in the

example must write a program that correctly and ef-
ficiently simulates an interconnected system of brain
cells (aneural net) behaving according to some sci-
entific theory. Large neural nets must be simulated
over many different experimental conditions, so the
programer turns to a parallel computer. To trans-
late the scientific theory into a parallel program, the
programer must make numerous decisions. In the
neural net example, for instance, the programer must
decide:

• How should the state of the neural net be represented
computationally?

• What kinds of parallelism should be used?
• How should simulation work be scheduled among

processors?

Performance diagnosis guides the programer to bad
decisions made during programing. By finding and ex-
plaining the chief performance problems of the pro-
gram, the programer determines which decisions had
the worst performance effects, and how those effects
might be repaired. As an example of performance di-
agnosis, suppose that the programer is studying the
performance of the neural net program. The programer
runs the program and finds that processors are idle
much of the time. The programer forms a hypothesis:
there is aload imbalance. Some processors have more
simulation work than others, so some processors are
wasting time waiting for the overloaded processors to
finish. However, this does not tell the programer which
decision should be changed. The programer hypoth-
esizes that the current scheduling scheme — static
scheduling — is the problem. This hypothesis impli-
cates a particular decision — the scheduling scheme
— and thus constitutes a useful diagnosis if it can
be confirmed. The programer switches to dynamic
scheduling and observes significantly improved load
balance confirming the hypothesis.

Given this example, we now (re)define some terms.
During performance diagnosis, the programer decided
which performance data to collect, which features
to judge significant, which hypotheses to pursue and
what confirmation to seek. We define aperformance
diagnosis methodto be the policies used to make such
decisions. In these terms, aperformance diagnosis
systemis a suite of programs that automatically sup-
ports some diagnosis method. The research problem
is to define a theory of performance diagnosis meth-
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ods, and to use that theory to create more automated,
adaptable performance diagnosis systems.

1.2. Research approach and thesis statement

To develop a theory of performance diagnosis, we
have turned to problem-solving models from the field
of artificial intelligence. Specifically, we have turned
to the model ofheuristic classification[5]. The first
claim of the research is that a theory based on heuristic
classification can effectively explain existing perfor-
mance diagnosis systems and the way they are used.
The theory has been used to characterize published
case studies of performance diagnosis, providing ini-
tial validation of this claim.

Work in artificial intelligence has also focused on
techniques to create adaptable, effective problem-
solving systems [4,19]. We have synthesized and ex-
tended several of these techniques in the design of
a novel performance diagnosis system called Poirot.
Poirot will encode, in a computer-interpretable form,
the theory of performance diagnosis that this research
develops. This will allow Poirot to automate many
aspects of performance diagnosis, while remaining
adaptable to changes in parallel computer, program
or programer. We have initially validated this claim
by showing how Poirot couldrationally reconstruct
or reproduce a set of existing performance diagnosis
systems.

We summarize our research approach with the fol-
lowing claim:

A classification model of problem-solving is a
sound basis for a theory of performance diagno-
sis, and for an automated, adaptable performance
diagnosis system.
This paper describes current results, remaining work

and future work in support of this claim. Section 2
presents current results and remaining work on the
theory of performance diagnosis. Section 3 does the
same for the diagnosis system, Poirot. Section 4 dis-
cusses future work on both of these topics.

2. A theory of performance diagnosis

To attack the first obstacle to performance diagno-
sis systems, lack of theoretical justification, this re-
search develops a “knowledge-level” theory of per-
formance diagnosis [23]. A knowledge-level theory

of performance diagnosis must answer the question
“What knowledge does a programer use to choose ac-
tions to meet performance diagnosis goals?” The the-
ory here breaks the question down into two parts:

1. What methods do expert programers use?
2. How can we rationalize the programer’s choice of

methods?

We have reconstructed or “reverse engineered”
some answers to these questions from a survey of
research papers on performance diagnosis systems
and from the case studies that appeared in those pa-
pers. The goal was to find methods and rationale that
cut across a substantial number of diagnosis systems.
Each performance diagnosis system was viewed as a
collection of methods for system for heuristic clas-
sification. Similarities among systems were analyzed
to identify general methods, and differences among
systems were studied to extract rationale.

The result of the survey is a rationalized taxonomy
of performance diagnosis systems, a systematic de-
scription of what methods performance diagnosis sys-
tems use, and why they use them. This section explains
how heuristic classification was used to generate this
performance diagnosis theory, summarizes the theory,
and identifies remaining work to validate the theory.

2.1. Heuristic classification in performance diagnosis

Heuristic classification is a way to solve problems
by matching them to previously stored solutions.
Clancey [5] identified heuristic classification as a
critical process in manyexpert systems, computer
programs that solve knowledge-intensive problems.
Fig. 1 depicts heuristic classification applied to per-
formance diagnosis. Heuristic classification solves
problems by looking up a solution in an exhaustive
solution space. In the central step of heuristic classi-
fication,heuristic match, the problem solver matches
the problem at hand (thecase) to a stored solution in
the solution space, based on the cases’s essential as-
pects orfeatures. For diagnosis, the solution space is
the set of allhypothesesthat could explain observed
performance. The features of the case are extracted
from raw information (data) by a process calledab-
straction. The solution selected by heuristic match is
refinedto fit additional features of the case. Abstrac-
tion, heuristic match and refinement do not need to
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Fig. 1. Heuristic classification.

occur in any fixed order. The way the three processes
are ordered or combined constitutes thestrategyof
the problem solver.

One can see the basic elements of the heuristic clas-
sification model — heuristic match, abstraction, re-
finement, and strategy in the example scenario of Sec-
tion 1.1. In that scenario, the programerheuristically
matchedthe essentialfeaturesof the program’s be-
havior to a well-known class of performance problem
(load imbalance) that could explain those features. The
features wereabstractedfrom therun spaceof the neu-
ral net program, the space of performance data from
all possible program runs. Abstraction involved com-
puting summary data (such as total idle time) from a
typical run. The generic hypothesis, load imbalance,
was refined into a more detailed explanation of the
program’s behavior (the poor scheduling scheme). The
programer’sstrategywas to perform abstraction, ar-

Table 2
Characterizing diagnosis systems

Aspect Questions

Heuristic match What is the hypothesis (solution) space?
What is the fault taxonomy?
What is the component structure?

How are features used to retrieve the most significant hypothesis?

Abstraction How are features abstracted within individual runs?
How are features abstracted across runs?

Refinement How are hypothesis explained by program behavior at the appropriate level of systems description?

Strategy What direction (data found to hypothesis, hypothesis to data needed) does reasoning flow?
How much is diagnosis overlapped with experimentation?

Table 1
Surveyed systems

System Paper citation

AIMS [30]
ATExpert [16]
ChaosMon [17]
IPS-2 [21]
MTOOL [12]
Paradyne (performance consultant) [15]
Paragraph [13]
PPP (parallel performance predicates) [6]
PTOPP [8]
Quartz [2]
SPT [28]

rive at an initial hypothesis, refine that hypothesis, and
then do diagnosis to confirm that hypothesis.

2.2. Thesis summary

Table 1 lists a set of performance diagnosis systems
that were re-examined as heuristic classification sys-
tems. Table 2 lists a set of questions we developed,
based on the heuristic classification model, to charac-
terize performance diagnosis systems.

Fig. 2 summarizes the results of our survey. We draw
two main points from these results about performance
diagnosis methods in general:

1. Many methods are shared among multiple diagno-
sis systems. While systems differ in implementa-
tion details, they frequently support similar patterns
of reasoning to arrive at a diagnosis.

2. Diagnosis systems considered as a whole are
fairly diverse. While the set of all methods is
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Fig. 2. Performance diagnosis systems as heuristic classification methods.

comparatively small, each system surveyed used
a different combination of methods. Systems dif-
fer particularly in their methods of abstraction and
in their strategies. Each represents a different set
of trade-offs among precision, accuracy, machine
resource cost, and programer set-up and analysis
time.
For heuristic classification, an issue of particu-

lar importance is the solution space: how does one
pre-enumerate the set of possible performance di-
agnoses (hypotheses)? Clearly, this is impossible in
general, since every parallel application has its own
set of possible performance problems. However, the
systems surveyed did generally list a set of standard
problems to look for, and the measurement, anal-
ysis, and displays of each system were integrated
to check those hypotheses. Fig. 3 summarizes such
“fault taxonomies” for the systems we surveyed. In a
few cases, systems look for faults associated with the
application currently being diagnosed (ChaosMon) or
on the class of parallel algorithm being used (Quartz).
However, most systems list performance problems
tied to particular programing language or program-

ing model constructs. As a result, the system can in
theory diagnose any application, albeit at a fairly low
semantic level.

In case studies, the programer generally fills in
the missing details, refining an initial, low-level hy-
pothesis into a high-level explanation in terms of
application behavior. So, for example, MTOOL points
a programer to a memory problem in a block of
code, but the programer then “eyeballs” that block to
explain why it leads to poor memory performance.
Some systems provide particular assistance to this re-
finement process (Fig. 3). The most obvious form of
support, in MTOOL and elsewhere, is “source code
clickback”, which links a display of a bottleneck to
the associated source code. In trace-based systems,
such as Paragraph, programers in case studies use
the global synchronization of displays as a similar
form of “clickback”. By examining traces of commu-
nication patterns over a time interval, together with
performance displays to that interval, the programer
can relate program behavior to its performance con-
sequences. Finally, a few systems go further, linking
canned refinements to particular bottlenecks. For ex-
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Fig. 3. Fault taxonomies of surveyed systems.

ample, ATExpert provides the programer with text
“observations” that explain observed bottlenecks in
terms of likely program behavior.

The forgoing discussion suggests one reason why
performance diagnosis systems are not widely used,
they are not adaptable to a wide variety of contexts. To
help arrive at an initial diagnosis, performance diagno-
sis systems define a limited fault taxonomy, a finite set
of performance problems to look for. To date, systems
have derived this set from the workings of the pro-
graming language and runtime system they support.
It follows that the diagnosis systems are limited to a
particular class of target machines and environments.
Often this class is fairly restricted; MTOOL, for ex-
ample, requires a machine architectures with fixed la-
tency instructions. Of course, the implementation of
any diagnosis system will also frequently limit its ap-
plicability. However, we argue that existing systems
have conceptual limitations that prevent them from ac-
quiring a large base of potential users.

2.3. Remaining work

We have developed an initial theory of performance
diagnosis, as a process of heuristic classification. The
theory provides novel framework for characterizing

and comparing performance diagnosis systems, and
systematically organizes the knowledge that perfor-
mance diagnosis systems use. We have used the the-
ory to survey existing systems and identify some im-
portant distinctions and limitations in their designs.
However, the theory is limited. It is based on the case
studies reported by performance diagnosis researchers,
rather than directly by scientific programers. These
case studies may not accurately represent scientific
programing problems. We are currently seeking addi-
tional case studies from developers of scientific appli-
cations [18]. Also, the theory is insufficiently formal
to make testable predictions about performance diag-
nosis processes. To formalize and evaluate the theory,
we are building it into Poirot, a novel performance
diagnosis system. In the next section, we discuss the
architecture of Poirot and our initial results.

3. Poirot architecture

In this section, drawn partially from [14], we sketch
Poirot, a performance diagnosis system based on the
theory discussed above. Poirot is designed to over-
come the second obstacle to acceptance of diagnosis
systems, their poor combination of automation and
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Fig. 4. Integrated systems and toolkits.

adaptability. Existing performance diagnosis systems
tend to one of two types (Fig. 4).Integrated systems
(the type surveyed in the previous section) aim for high
automation by committing to a particular performance
diagnosis method, and to programs for performance
data collection, analysis and presentation (tools) that
are specialized for that method. However, as discussed
in Section 2.2, the method and tools are unlikely to be
effective outside of a narrow range of parallel com-
puters, programs, and programers; integrated diagno-
sis systems are therefore not adaptable. In reaction,
some researchers have developedtoolkits, which sup-
ply a general set of tools, and a programing system
for combining tools [22,27]. However, toolkits sacri-
fice automation; the programer must decide on a per-
formance diagnosis method and write additional pro-
grams to carry it out.

Poirot offers a third alternative (Fig. 5). The pro-
gramer using Poirot neither accepts a canned method,

Fig. 5. Overview of Poirot.

as in integrated systems, nor builds a custom method
from scratch, as in toolkits. Instead, the programer
defines policies, which are interpreted by Poirot’s
problem solverto choose a performance diagnosis
method. The programer also helps Poirot to use what-
ever tools are available, by extending Poirot’senvi-
ronment interface. This section explains how Poirot
works, presents evidence of its feasibility and identi-
fies additional work to implement and evaluate it.

3.1. Overview of Poirot

Poirot is an extension and redesign of the Glitter
system [11]. It consists of aproblem solverand an
environment interface. The problem solver selects and
carries out performance diagnosis actions. It is guided
by a formal encoding of the theory of performance
diagnosis, which supplies multiple performance di-
agnosis methods and their rationale. The problem
solver does not, however, interact with tools directly.
Instead, it performs abstract diagnosis actions that
are translated into commands by the environment
interface.

The problem solver is the most novel component of
Poirot. It is a knowledge-based system, which means
that it is structured around a program called theengine,
which carries out instructions in aknowledge-base.
The knowledge-base is divided into two parts, the
method catalogand the control knowledge. The
method catalog encodes methods from the theory of
performance diagnosis. The control knowledge en-
codes the rationale of these methods, along with the
programer’s preferences for method selection.
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The method catalog is an indexed library of perfor-
mance diagnosis techniques. Each method in the cat-
alog is effectively a small program that accomplishes
a particular performance diagnosis task. The task is
called the method’sgoal. Each method has a body that
gives a list of diagnosis actions for accomplishing its
goal. The actions in a method body fall into two types:

1. An action can start some subtask required to ac-
complish the method’s goal (post asubgoal).

2. An action can send a command via Poirot’s envi-
ronment interface (apply atransformation). This is
how Poirot can carry out low-level actions (called
transformations) such as program instrumentation
on behalf of the user. In some cases, applying a
transformation will simply ask the user to supply
some information or to take some action.

The engine of Poirot chooses and executes meth-
ods. The programer supplies an initial diagnosis goal,
which represents some diagnosis task to perform. The
engine then retrieves methods indexed to that goal, se-
lecting among alternative methods based on the con-
trol knowledge. The engine carries out the actions of
the method’s body in sequence. If actions post sub-
goals, the engine chooses one of the subgoals (again
using control knowledge), retrieves methods indexed
to that subgoal and repeats the cycle. The engine halts
when all goals have been accomplished. It interrupts
the cycle when it cannot proceed due to a gap in
the knowledge-base or environment interface. In such
cases, the programer fills the gap, by supplying miss-
ing information or by performing some diagnosis ac-
tion manually.

Diagnosis actions send commands to tools via the
environment interface. The environment interface con-

Fig. 6. Control knowledge for neural net example.

sists of a set oftransformationsthat represent primi-
tive diagnosis actions, and adatabasethat represents
stored performance data and program versions. The
purpose of the environment interface is to support
adaptable diagnosis by separating diagnosis methods
from the software that support those methods. It spec-
ifies transformations in terms of their effects on the
high-level database. Methods can thus apply transfor-
mations and track their effects without knowing what
commands are sent to tools, or how data and programs
are stored in files. As a result, general methods can
be adapted unchanged to new tools. One can reuse
knowledge about what steps to take in performance
diagnosis in contexts where how those steps are taken
differs significantly.

3.2. An example

We briefly illustrate the operation of Poirot as an
example. The programer in the example is looking for
performance problems in the neural net simulation
program, which is callednnet. The programer has
added information on available tools to the environ-
ment interface, and specified the control knowledge as
a set of rules for selecting goals and methods (Fig. 6).
Rule 1 selects the overall method for performance di-
agnosis, an implementation of heuristic classification
called “Establish–Refine” [3]. The Establish–Refine
method has two subgoals,establish (establish a
hypothesis) andrefine (refine a hypothesis). Estab-
lishing a hypothesis means finding evidence for the
hypothesis; in terms of heuristic classification, this
means doing abstraction and heuristic match to check
whether the hypothesis is valid for the program. Re-
fining a hypothesis, as in the heuristic classification
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Fig. 7. Goal–method–subgoal trace of example.

model, means generating the possible explanations for
that hypothesis. Each explanation generated is itself a
hypothesis, which is then processed in its turn by the
Establish–Refine method.

Fig. 7 shows a trace of the goals and methods pro-
cessed during the initial part of a diagnosis session. In
Fig. 7, goals are boldface, the methods proposed for
a goal are indented below the goal, and the subgoals
posted by a method are indented below the method.
An asterix marks methods chosen and goals solved
during the scenario. The programer initiates diagno-
sis by manually posting a goaldiagnose(h0), where
h0 is a hypothesis stating “There is an unspecified
performance problem in the main program (nnet)”.
The engine selects “Establish–Refine”, which posts
its subgoals. Theestablish subgoal is processed first;
the engine retrieves two methods, “Speedup” and
“TotalTime”. Each method represents a way to gather
evidence for performance problems in nnet; measure
its run time with increasing number of processors, or
simply measure its run time for comparison to the
programer’s expectations. Rule 3 causes the engine to

select the “Speedup” method. That method sets up an
experiment to measure the speedup of the program as
a whole. However, the experiment does not run. Rule
5 defers the experiment until the goalrefine(h0) has
been processed. This goal leads to the posting ofdi-
agnose goals for the subprograms init, pats and train,
initiating Establish–Refine three more times (not
shown). The effect is to add the three subprograms to
the speedup experiment. Finally, the experiment runs
and the results are presented to the user.

The preceding scenario illustrates two features of
Poirot. First, Poirot can potentially make the diagno-
sis process highly automated. Even if the programer
carried out all the steps corresponding to transfor-
mations, Poirot still helps to organize the diagnosis
process; the goal/subgoal structure serves a form
of “to-do” list, while the database keeps track of
performance data and their functions in the diagno-
sis process. If most transformations have automated
implementations, then Poirot can perform works au-
tonomously, guided only by the control knowledge.
In addition, Poirot achieves automation adaptably.
The programer can change Poirot’s diagnosis method
relatively easily, by changing control rules. Poirot
separates methods from the tools via the environment
interface, so most of the methods in the example
scenario could be adapted to other tools by changing
only the innards of the transformations.

3.3. Feasibility

The previous section showed that Poirot can di-
agnose performance automatically and adaptably.
However, there are some practical obstacles. To sup-
port diagnosis in diverse contexts, numerous meth-
ods and control strategies must be encoded in the
knowledge-base, and numerous tools and file formats
must be linked to the environment interface. We claim
that Poirot can, in fact, be made practical, by reusing
knowledge across multiple contexts. To demonstrate
this, one can assess how Poirot couldrationally re-
construct several published performance diagnosis
systems. In rational reconstruction, one shows how
Poirot can formally encode a system, mimic the prob-
lem solving of that system on a well-defined external
interface, and produce comparable results. If Poirot
can rationally reconstruct diverse systems without
wholesale changes to the knowledge-base and envi-
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Table 3
Reconstruction of three diagnosis systems

Paradyne Add method forestablish that evaluates hypotheses on-line
Add transformations to collect and interpret on-line time histograms
Add methods forrefine that refine hypotheses to processes, synchronization objects and phases
Add control rules for depth-first search, on-lineestablish, Paradyne “hints”

ChaosMon Add method forestablish goals that evaluates hypotheses on-line
Add transformations to collect and interpret on-line metric histograms
Add a method forrefine that queries the user for application-specific hypotheses and adds them to the database
Add control rules for exhaustive search, on-lineestablish

PTOPP Add method forestablish that uses perturbation
Add transformations for PTOPP’s perturbations
Add methods forrefine that refine hypotheses to loops
Add control rules for initialestablish with time profiles
High-scoring loops become key hypotheses as in example scenario

ronment interface, this suggests that it may be made
practical. One could develop a single, core version of
Poirot, that a programer could incrementally modify
for a particular set of requirements.

Table 3 summarizes the changes a programer would
have to make to Poirot to implement three perfor-
mance diagnosis systems that appeared in Section
2.2. The table assumes a version of Poirot that could
automatically perform the scenario of Section 3.2.
To summarize, the system Paradyne implements ex-
actly the Establish–Refine method of diagnosis, with
refinement to several kinds of program components
and phases. Both Paradyne and ChaosMon establish
hypotheses on-line, during a run of the program,
they differ only in that ChaosMon is continually
attempting to establish all hypotheses in the hypoth-
esis space, while Paradyne establishes only selected
hypotheses. PTOPP differs significantly from these
two systems, but still reuses the “Establish–Refine”
and “Time Profile” methods from the example sce-
nario.

The results of these cursory reconstructions are
encouraging. There is substantial sharing and reuse
of knowledge among the method catalogs of the three
reconstructed systems. There is also some reuse of
environment interface components and control rules
among the three systems. Most of the effort in recon-
structing the three systems is confined to the control
knowledge and the environment interface. A core
knowledge-base and environment interface might
therefore suffice to make Poirot practically adaptable
in diverse contexts.

3.4. Summary and remaining work

Poirot’s is a novel diagnosis system, although it is
grounded in previous work in parallel processing and
artificial intelligence. Poirot will be developed into a
working program, to validate its design and the theory
of performance diagnosis that underlies it. This vali-
dation will take place in two phases. In phase 1, Poirot
will be used to diagnose multiple test programs for two
different platforms (parallel computers and program-
ing languages). The test programs will have known
performance bugs on the two platforms; the task of
Poirot will be to find these bugs. Poirot will operate as
an advisor, suggesting diagnosis actions to the exper-
imenter, who will carry out the suggested actions and
report results. During phase 1, Poirot will be evaluated
on two dimensions:

1. Competence. How useful is the guidance Poirot
provides to the experimenter? How much control
knowledge must be added to find performance bugs
autonomously?

2. Cost. How much knowledge must be added to
Poirot to get competence on a new platform, given
that Poirot has achieved competence on a previous
platform?

In phase 2, the experiments of phase 1 will be re-
peated, but Poirot will now interact directly with data
collection and analysis tools. In this phase, Poirot will
be judged on slightly different criteria:

1. Cost. How much must be added to the environment
interface of Poirot to link it to a platform? How
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much of the interface must be changed when Poirot
is moved to a new system?

2. Automation. How many manual steps can Poirot
replace, given a particular environment interface?
How does Poirot’s time-to-solution and error rate
compare with manual operation?

High competence and automation in these experi-
ments will demonstrate the validity of the theory of
performance diagnosis Poirot embodies. If that com-
petence and automation can be obtained at a rea-
sonable cost, this will demonstrate Poirot’s practical
adaptability and validate its design.

4. Conclusions and future work

This research is developing a novel, knowledge-level
theory of expert performance diagnosis. It will vali-
date that theory both by further examination of case
studies, and by direct testing of Poirot, a computa-
tional model. Poirot is also a performance diagnosis
system, constructed on novel principles. The research
will evaluate the ability of Poirot to competently
and cost-effectively automate performance diagnosis
in contexts more diverse than existing performance
diagnosis systems.

The anticipated results have obvious limits that
future work should target. There are at least two
points on which the theory of performance diagno-
sis outlined here fails. Such failures do not render
the theory valueless; it is incomplete, but it is suf-
ficiently detailed and explicit that one can sayhow
it is incomplete. The first failure concerns cluster-
ing of components. In Clancey’s original framework,
the hypothesis space is pre-enumerated both in the
sense that it is entirely determined before reasoning
begins, and in the sense that it is not case-specific.
Neither statement is true for performance diagnosis.
In one case study, for example [12], a programer
notes that certain subprograms are sufficiently alike
in structure and behavior, that the most time-intensive
member of the set can be diagnosed, and the oth-
ers assumed to operate similarly. This represents a
clustering of the solution space, lumping multiple hy-
potheses into a single hypothesis based on the facts
of the specific case. As such, it does not fit the model
of heuristic classification that underlies the present
theory.

In addition, many diagnoses concluded in case stud-
ies appear difficult to anticipate and store in advance,
as required by the theory. For example, in another case
study [29], the programer identifies unexpected de-
lays in a sequence of program events. The key word
is “unexpected” — the programer has expectations of
how the sequence of events should play out, and those
expectations are specific to the case (program). With
the exception of ChaosMon, none of the surveyed sys-
tems provide systematic support for detecting viola-
tions of case-specific expectations of behavior, and
even the facilities of ChaosMon provide limited sup-
port for checking sequences of events. Performance di-
agnosis research may have to recapitulate diagnosis re-
search in AI, and turn increasingly to “first principles”
models of structure and behavior [7]. Future research
will extend the theory of performance diagnosis to fill
these gaps. Future work is also needed to extend the
theory beyond performance bugs in parallel systems
to similar bugs in distributed systems, and to validate
the theory by direct observational studies of working
programers. With such a theory in hand, researchers
may be able to close the gap between current perfor-
mance diagnosis systems and their potential users.
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