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ABSTRACT

Regular is an often used term to suggest simple and uniform structure
of a parallel processor’s organisation or a parallel algorithm’s opera-
tion. However, a strict definition is long overdue. In this paper, we
define regularity for processor array structures in two dimensions and
enumerate the eleven distinct regular topologies. Space and time
smulation schemes among the regular processor arrays are con-
structed to compare their geometric and performance characteristics.
The hexagonal array is shown to have the most efficient emulation
capabilities.

Keywords: regularity, processor arrays, emulation, interconnection
networks

INTRODUCTION

The most widely debated topic in parallel processing research is
how to interconnect multiple processors. The arguments take place
across many different cost/performance criteria such as algorithm
mapping, scalability, reconfigurability, communication efficiency,
graph embedding, fault tolerance, and VLSI implementation.

the layout of the communication geometry in a two-dimensional area
{22]. Simple and regular interconnection geometries that are two—
dimensional and plane filling lead to cheap implementations and high
chip density. Also, parallel algorithms with simple and regular com-
munication and data flows are more appropriate for VLSI implemen-
tation and will result in higher performance.

The choice of processor array design to achieve good generalised
communication performance conflicted with the simple processor
arrays favored for specialized VLSI systems. If only the more sophis-
ticated communication topologies were implemented in VLSI, then
their communication efficiencies could be combined with the faster
VLSI speeds. However, several recent results suggest that mesh—
connected arrays’ have comparable, if not better, general
communication efficiency and performance when implemented in
VLSI as compared to other networks [15] [19]. In addition, there has
been much work done on making regular mesh arrays more flexible
(3] [23] 4] [2] [20].

In this paper, we consider the question of what are the simple
and regular processor array topologies? The primary contribution of
this work is the enumeration and analysis of the "regular" two—
di ional pr array topologies using a geometric definition of

Mesh connected processor arrays were among the first prc
interconnection structures proposed for parallel processing [1] [7].
Their distinguishing feature is the connection of processors only to
immediate neighbors where the connection degree is uniform
throughout the array. The original motivation for mesh topologies
came from their ability to easily represent the natural data flow pat-
terns found in many algorithms (8] (7] [13] [18] [17] [27].

The thought of interconnecting thousands of processors brought
on a wave of new processor interconnection structures aimed at pro-
viding cost-effective solutions to certain key scalability issues such as
mean internode distance, communication traffic density, connections
per node, link visit ratios, and fault tolerance [21] [28]. The processor
arrays proposed included the torus, X-tree, chordal ring, R-ary N-
cube, cube—connected cycles, spanning bus hypercube, and dual bus
hypercube, in addition to the standard bus, crossbar, ring, and tree
architectures [28]. Although favored for their regular geometry, uni-
form communication and simple extension, the mesh connected pro-
cessor arrays were generally less desired because of the fact that inter-
node communication delays increase as the square root of the number
of nodes in the system.

Systolic array research approached the problem of designing
processor arrays by concentrating on requirements for an effective
VLSI implementation of a parallel algorithm [11] [9] [10]. Chip area,
time and power required to implement an algorithm in VLSI are
dominated by the communication geometry of the algorithm [25].
The effects of the area and time parameters of VLSI can be reduced to
a large degree if very simple and regular patterns of interconnections
between elements are used [18] [28]. The regularity requirement
imposed on interconnection structures, in a broad sense, deals with

This work was supported in part by the National Science Foundation under
Grants No. US NSF DCR84-10110, the U. S. Department of Energy under Grant
No. US DOE-DE-FG02-85ER25001, the U.S. Air Force Office of Scientific
Research Grant No. AFOSR-F49620-86-C-0136, and the IBM Donation.

499

CH2649-2/89/0000/0499$01.00 © 1988 IEEE

regularity. Several topologies are shown that have not appeared in
the computer science literature previously. Our analysis of the regu-
lar processor arrays is based on their ability to emulate the other
members of the class. We consider both space emulation (processors
of the host array are combined into "logical’ nodes of the target
array) as well as time emulation (the interconnection geometry of the
target array is provided by time-multiplexing the links).

REGULARITY

Intuitively, the term regular implies simplicity and uniformity
in space. A more quantitative geometrical definition of regularity can
be formulated from the extensive mathematical literature on graphs
(5] [6] [12] [24]. Although regularity can be defined for multiple
dimensions, our discussion is restricted to graphs that are two—
dimensional, i.e. planar. A second requirement is that the graph have
a simple description and be uniformly extensible following a basic set
of construction rules. By the graph being uniformly extensible, we
mean that the properties of the vertices and edges do not change as
the number of nodes is increased; e.g., the length of an edge. Another
requirement for regular graphs is that the vertices have equal degree.
The final requirement is that regular graphs be plane filling. That is,
the infinite graph completely covers the two-dimensional plane.

The requirements placed on regular graphs are not without
mathematical precedence. Justification comes from the old geometri-
cal problem of determining those convex polygon figures that tessel-
late the plane [5] [6]. In particular, the problem is to construct tilings
of the plane where a single convex polygon of r sides is used. Based
on Euler’s theorem v — ¢ + f=1 (v vertices, e edges and f faces of a
polygonal network of tiles) and basic Diophantine analysis, it is a
simple consequence that 3<r<8 [5].

Although there are eighty-one types of isohedral tilings in the
plane {5}, there are ONLY eleven topologically distinct types of Laves



nets [12] (also called regular or Subnikov nets [24]) which are the
"skeleton” graphs consisting of tile "vertices" (where three or more
tiles meet), and tile “edges” where two tiles intersect. Figure 1 shows
the eleven Laves nets along with symbols denoting the valences of the
vertices as the tessellating r-gon is traced; e.g., 32.4.3.4 describes a
pentagon tessellation where the pentagon meets 3 other tiles, then 3,
4, 3, and finally, 4 other tiles. The geometry of the distinct tessella-
tion topologies can be described from this simple vertex valency syn-
tax.

Tessellation structures embody the requirements set forth for
regular graphs: they are two-dimensional, they have a simple descrip-
tion (tile vertex valency syntax), all tiles used in a tessellation have
the same number of edges (r—gon), they are uniformly extensible, and
they are plane filling. If we associate a tile to a processor array node
and the links to tile intersections (tile edges), the resultant intercon-
nection topology will embody the same regular properties.

The regular processor interconnection graphs can be generated
by taking the dual of the Laves nets, i.e. the faces (tiles) are mapped
to vertices, the tile vertices are mapped to faces, and tile edges map
to edges between the new vertices [5]. Because the graphical duality
mapping is isomorphic, there are exactly eleven distinct regular pro-
cessor array topologies. These topologies are also known as the

familiar nearest neighbor topologies because all vertices are of equal
degree and each vertex connects to that many of its nearest neigh-
bors.

Definition: A graph is regular if it is two dimensional, all vertices
have equal degree and the dual of the graph is a tessellation.

Definition: A processor array is regular if its interconnection topo'-
ogy is a regular graph.

In the next section, we consider emulations among the regular
processor arrays. In particular, we focus on the triangular (6%), the
orthogonal (4*) and the hexagonal (3%) topologies. These have been
defined to be strongly regular because they form a set closed under
duality: the triangular graph is the dual of the hexagonal and vice
versa, and the orthogonal graph is the dual of itself [14].

REGULAR PROCESSOR ARRAY EMULATION

Although the number of regular processor arrays is finite, it
would be cost inefficient to include each array in a parallel processing
system and use an array only when there is an appropriate match
between an algorithm’s communication geometry and that array’s
topology. Instead, we would like to design the system with a single
processor array that offers good performance across a wide range of
algorithms. The versatility of a pr array is m ed not only
by the range of algorithms for which it is specifically suited but also
by the ease to which other algorithms can be mapped to its communi
cation geometry [2], and the ability of the array to reconfigure it
communication geometry to that of the algorithms or other array
topologies [3] [4] [23]. We evaluate the regular processor arrays based
on their ability to emulate other regular arrays.

Emulation Philosophy

The goal of emulating a target regular array by a host regular
array is to reproduce the communication properties of the target
array in the Fost. The emulation can take place either in space or in
time. Space emulation structurally maps the host array to the target
array by physically grouping host nodes into logical target nodes and
activating the appropriate host links such that the communication
topology of the target array is realised. If the target array cannot be
embedded in the host array with a one to one node mapping, the
space emulation will necessarily result in a reduction of the effective
sise of the emulated target array.

Time emulation realizes the communication properties of the

target array by time multiplexing the host array links. Once a one to
one node mapping is made between the target and the host, the max-
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imum number of host "minor” communication time cycles needed to
realise the communication connectivity of one "major" target time
cycle can be determined. If the target array cannot be embedded in
the host array with a one to one link mapping (we already assume a
one to one node mapping), the time emulation will necessarily result
in an increase in the number of time cycles needed to execute an algo-
rithm on the emulated target array.

Space Emulation

An optimal space emulation scheme should minimise the aver-
age number of host nodes used to emulate a node in the target array.

Definition: The space emulation efficiency Sy(N) of a space emuls
tion scheme used by regular array M to emulate regular array N i
the average number of nodes of M required to emulate one node ot
N. If N contains n nodes, the sise of the emulated target array will
be n / Sy(N) nodes. A lower bound on Sy(N) can be determined by
calculating the number of host array nodes needed to match the node
degree of the target array. An optimal space emulation scheme
achieves the lower bound of the average number of host nodes
required for a node of the emulated target array. That is, no more
than the number of host nodes needed to meet the node degree
requirements of the emulated target array are used.

The process followed to construct an emulation scheme begins
by grouping adjacent nodes together to form logical nodes of the
emulated target array. "Active” host links are then selected to realise
the target communication geometry. During operation, nodes within
a group coordinate their actions to correctly communicate data across
the active links. Instead of enumerating all space emulations for all
regular host arrays ad nauseam, we instead concentrate on the
strongly regular arrays.

Theorem 1: The triangular array can optimally emulate the hexago-
nal array with a space emulation efficiency of four and the orthogonal
array with a space emulation efficiency of two.

Proof: The emulation schemes are shown in Figure 2.

Theorem 2: The orthogonal array can optimally emulate the hexag-
onal array with a space emulation efficiency of two and the triangular
array with a space emulation efficiency of one.

Proof: The emulation schemes are in [14].

Theorem 8: The hexagonal array can optimally emulate the orthog-
onal array with a space emulation efficiency of one and the triangular
array with a space emulation efficiency of one.

Proof: The emulation schemes are shown in Figure 3.

Theorem 4: S,
regular array.
Proof: Any space emulation scheme used by the triangular array to
emulate another regular array can also be used by the orthogonal and
hexagonal arrays since only one node is required by the orthogonal
and hexagonal arrays to emulate a node in the triangular array.
Therefore, ahy emulation scheme used by the orthogonal and hexago-
nal arrays for emulating another array must be at least as efficient as
the optimal scheme that would be used by the triangular array. A
similar argument is applied to show S,1ho0nai (R )< Shesagonat (R )-

ter (R)E S orthogonat (B ) Snesagonai(R) Where R is a

Space Emulation Schemes

The space emulation schemes for the regular processors arrays
using the strongly regular arrays are shown in Figure 2 for the tri-
angular host array and Figures 3 for the hexagonal host array [14].
Node groupings for the triangular host array are shown shaded. The
dashed lines in the hexagonal host array indicate inactive links.

Space Emulation Efficiency

The space emulation efficiencies of the sch pr ted for the

strongly regular arrays are shown in Tables 1. As expected, the hex-




agonal array shows the best efficiencies with nine of the schemes using
an optimal emulation of one. The inability to achieve optimal
schemes for 3%.8 and 3.6.3.6 is attributed to the rigid structure of
those topologies.

Notice that the triangular array was able to achieve more
optimal space emulations than the orthogonal array. In part, this has
to do with the orthogonal array’s inability to realise triangular inter-
connection paths present in some of the arrays such as 3.6, 32.4.3.4
and 3.6.3.6.

An interesting from the table
Striangular (3.4.6.4) = 3, Striongutar (4%) = 2

Sorthogonat (3-4.6.4) = 1 % One quickly realises that a better space

that
and

observation is

yet

emulation scheme could be achieve for 3.4.6.4 using the triangular
array if the orthogonal array was first emulated and then its emula-
tion scheme applied to realize 3.4.8.4. This would result in an emula-

tion efficiency of 2 -:— instead of 3.

Space emulation analysis allows a simple measure of cost,
Su(N), to be used for comparing the versatility of the different regu-
lar arrays. Additionally, the pay back for adding additional links to
the array can be easily discerned. Finally, algorithms be designed for
one particular regular array can executed on another array with
bounded performance degradation.

Time Emulation

Time emulations among the regular processor arrays are more
complex to construct because a mapping from nodes of the host array
to nodes of the target array must first be devised. We employed some
convenient shortcuts that allowed us to develop a collection of time
emulations for the strongly regular arrays as target topologies.

Definition: The time emulation efficiency Ty (N) of a time emula-
tion scheme used by regular array M to emulate regular array N is
the number of communication time cycles required in M to realise the
data transfer between nodes possible in one cycle in N. Assuming the
processor array speeds are equal, if N completes an algorithm in ¢
time cycles, the time emulation scheme used by M will finish in
Ty(N) * t time cycles.

Notice that if Sy (N)=1, Ty(N)=1. We can make use of this fact to
compute bounds on time emulations based time emulations already
known. That is, if Ty(N)=t, and Ty(O)=t,, then Ty(0)<t,*,.

Initial time emulations can be constructed by looking at the
space emulations with efficiency one. Since these already give a one
to one node mapping, an optimal time emulation of the host array (in
the space emulation) by the target array (in the space emulation) can
be devised and its efficiency calculated by visually following the shor-
test path to establish the single link connections of the underlying
host array. For instance, we compute Ty 4 ,(3%) to be three by look-
ing at the space emulation scheme of 3.4.6.4 by 3° and following the
shortest path between connected hexagonal nodes using only the
3.4.8.4 links. :

Following the above procedure, we were able to construct
optimal time emulations of the hexagonal array for most regular
arrays. The time emulation efficiencies are shown in Table 2. The
parentheses indicate upper bounds determined by applying the above
formulas to these optimal hexagonal and orthogonal time emulations.
Other entries in the table come from visually mapping one processor
array onto another as in the case of the square array onto 32.4.3.4
and 3%.42%

The interest in time emulations comes from the fact that the
emulated target array is not reduced in size. Instead, a more complex
routing of data in multiple time steps is required to emulate the tar-
get array’s communication properties. However, we cannot ignore
the time needed to route data in a space emulation scheme. In fact,
we see that there are cases where a time emulation will be actually
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faster than a space emulation; a time emulation of a hexagonal array
using a triangular array will take three time cycles whereas the space
emulation requires four. In other cases, the opposite is true; consider
the triangular array emulating the orthogonal array.

CONCLUSION

Processor interconnection topologies incorporating communica-
tion and spatial regularity will become increasingly important as
VLSI dimensions continue to decrease. Although mesh processor
arrays have known scalability limitations with respect to communica-
tion (28], several recent reports suggest that the communication
efficiency of two dimensional meshes is better than other interconnec-
tion topologies when compared for VLSI implementation [15] [19].

The regular processor arrays described in this paper are
geometrically defined based on nearest neighbor connections and
space-filing properties. Interestingy, only eleven processor arrays of
regular topology exist in two dimensions. We have enumerated these
arrays as well as presented space and time emulation schemes. A
natural extension of the work presented here concerns regular three
dimension organisations. Research in this area will become more
important and necessary as VLSI begins to offer three dimensional
interconnects.
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Figure 1

Optimal Emulation Emulation Efficiency
Target (host/target) (host/target)
Topology
Tri. | Ortho. | Hex. Tri. Ortho. | Hex
3¢ 4 2 1 4 2 1
346 3 2 1 3 21/8 | 11/8
33,42 3 2 1 3 2 1
32.4.3.4 3 2 1 3 21/4 1
3.4.6.4 2 1 1 3 11/3 1
3.6.3.8 2 1 1 2 11/3 | 11/3
3.12% 1 1 1 2 2 1
4t 2 1 1 2 1 1
4.6.12 1 1 1 22/3 | 11/3 1
4.82 1 1 1 2 1 1
[ 1 1 1 1 1 1

Table 1. Space Emulation Efficiency

Host Emulation Efficiency in Cycles
Topology
Hexagonal | Orthogonal | Triangular

3¢ 1 1 1
33.4? 2 1 1
32.4.3.4 2 1 1
3.4.6.4 3 3 3;
3.122 8 6 6
44 2 1 1
4.8.12 5 (5) (5
4.82 4 3 3

63 3 3 3

Table 2. Time Emulation Efficiency
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Fiéure 2
TRIANGULAR SPACE EMULATION
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