VII. Tools for Parallel Computing:
A Performance Evaluation Perspective

Allen D. Malony

Department of Computer and Information Science
University of Oregon

1. Imtroduction. 294
2. Motivation e 296
3. Environment Design.......... .. . i 299
4. Parallel Performance Paradigms 301
5. Performance Observability 304
6. Performance Diagnosis........ i 306
7. Performance Perturbation.......... 309
8. SUmMMAry 313

Summary. To make effective use of parallel computing environments, users have
come to expect a broad set of tools that augment parallel programming and exe-
cution infrastructure with capabilities such as performance evaluation, debugging,
runtime program control, and program interaction. The rich history of parallel tool
research and development reflects both fundamental issues in concurrent processing
and a progressive evolution of tool implementations, targeting current and future
parallel computing goals. The state of tools for parallel computing is discussed from
a perspective of performance evaluation. Many of the challenges that arise in paral-
lel performance tools are common to other tool areas. I look at four such challenges:
modeling, observability, diagnosis, and perturbation. The need for tools will always
be present in parallel and distributed systems, but the emphasis on tool support
may change. The discussion given is intentionally high-level, so as not to exclude
the many important ideas that have come from parallel tool projects. Rather, |
attempt to present viewpoints on the challenges that I think would be of concern
in any performance tool design.

Keywords: parallel performance environments, performance evaluation,
performance diagnosis, perturbation, observability, measurement, prediction,
parallel tools

1. Introduction

Computer systems are arguably the most complex machines ever invented,
and parallel computers and distributed computers are the most complex com-
puter systems. In simple terms, parallel and distributed systems are designed
to support concurrent computer operations. Although concurrent actions are
a common phenomenon in the natural world, encoding concurrency in a com-
puter system such that the computation is “correct” is not a simple task, even
for seemingly trivial problems. Parallel systems also have a more specific aim

VII. Tools for Parallel Computing: Performance Evaluation ... 295

to support the simultaneous execution of concurrent operations for achieving
high performance. Maintaining high efficiency in parallel execution further
complicates how parallel systems are programmed and used.

Parallel systems are important as computing platforms because they offer
the potential to solve problems requiring multiple computing resources and
high-end performance. However, this potential cannot be actualized without
the support of tools, particularly tools for performance analysis and debug-
ging. Designing and developing tools for parallel systems is intrinsically dif-
ficult due to the complexity, both architecturally and operationally, of the
computing space represented. In general, a tool should

— Incorporate a model of the system and its operation in order to reduce
problem complexity;

— Be sensitive to observability constraints that limit the scope of what is
knowable of and about the system;

— Diagnose important system states so as to aid the user in analysis; and

— Account for possible perturbation of the system caused by instrumentation
intrusion or perturbation of the model results cause by model abstractions.

A tool’s utility 1s determined partly by the sophistication of the system
model on which it 1s based, and this sophistication requires knowledge of sys-
tem operation and behavior. Given the complexity of parallel platforms, this
knowledge may be difficult to obtain. Utility is also affected by the ability
to capture the requisite information about the system under certain access,
accuracy, and granularity constraints. Certain information may be unobtain-
able and, hence, unavailable to the tool. Perhaps the most important aspect
of a tool is its benefit to problem solving. A tool can be a tremendous aid
in discovering and avoiding parallel computing problems if it supported the
ability to diagnose system states. However, tools can also influence the system
when making measurements for purposes of analysis. In the worst case, sys-
tem behavior can be perturbed to the point that observations are unreliable
and the models that use the data lead to misleading conclusions.

There is a rich research history in the field of parallel and distributed tools.
Many important contributions have been made to understand concurrency,
control program behavior, debug program correctness, evaluate performance,
and present results to users. Rather than attempt a comprehensive summary
of these contributions, the reader is directed to the conference proceedings,
journals; and bibliographic databases given in the references for the extensive
background in the field. In particular, the reader can find excellent recent
research surveys of the field in [HM98, RB98, RWM+98, HML95, RC98].
This chapter instead presents a higher-level view of parallel tools than what
might be appear in tool surveys. Out of respect for the many important
tools that have been developed, only a few will be cited as examples of more
general themes. The perspective presented is based on a consideration of the
four challenging problems for tools listed above — modeling, observability,

296 Allen D. Malony

diagnosis, and perturbation — specifically as they concern tools for parallel
performance evaluation. It is my hope that this more abstract discussion
of parallel performance evaluation tools will provide some insight into the
parallel tools field as a whole.

In the remainder of the chapter, T first introduce (Section 2) the gen-
eral problem of parallel performance evaluation as a motivation for tools.
In Section 3, a performance environment is advocated as a general guiding
framework for tool development. Section 4 discusses the use of models in
tool design and how, given a model, performance measurement and analy-
sis techniques are implemented. The problem of performance observability is
discussed in Section 5. In Section 6, the concept of a performance diagno-
sis system is introduced. Parallel performance can be perturbed by several
factors. The challenge of performance perturbation analysis is considered in
Section 7. Finally, concluding remarks are given in Section 8.

2. Motivation

Two years after Scherr’s classic Ph.D. dissertation [Sch65], considered by
some to be the seminal work in computer systems performance evaluation
[Fer78], Amdahl published his now famous paper on the limits of parallel
performance speedup [Amd67]. Although there have been significant advance-
ments in performance evaluation techniques since Scherr’s thesis (particularly
in the areas of monitoring, simulation, analytic modeling, and bottleneck
analysis), “Amdahl’s Law”! has arguably remained the most fundamental
(and the most controversial) result in parallel systems performance evalua-
tion:

“For over a decade prophets have voiced the contention that the
organization of a single computer has reached its limits and that
truly significant advances can be made only by interconnection of a
multiplicity of computers in such a manner as to permit coopera-
tive solution. ... Demonstration is made of the continued validity of
the single processor approach. ... A fairly obvious conclusion which
can be drawn at this point is that the effort expended on achieving
high parallel processing rates is wasted unless it is accompanied by
achievements in sequential processing rates of very nearly the same
magnitude. ... At any point in time it is difficult to foresee how the
previous bottlenecks in a sequential computer will be effectively over-

come.” [Amd67]

! Amdahl’s Law states that if s is the fraction of a computation that must be
executed serially, then the speedup of the computation is bounded above by

m, where n is the number of processors used. Note, lim,, m =

@ |~

VII. Tools for Parallel Computing: Performance Evaluation ... 297

Amdahl’s Law is fundamental in its simplicity and its generality: it defines
an upper bound on the performance of a parallel computation, relative to
its sequential execution time, in terms of a single software parameter (the
fraction of sequential computation) and a single hardware parameter (the
number of processors). Amdahl’s Law is controversial because this speedup
bound places severe limits on the performance benefits of parallel computer
systems; in general, it implies that achieving good parallel performance will
be exceedingly difficult.

The last thirty years attest to the veracity of Amdahl’s arguments. Several
studies have extended his simple speedup model to further quantify parallel
execution overheads, effects of execution partitioning strategies, and tradeoffs
in speedup versus efficiency. The principal issue is one of parallel performance
scalability: how does the performance of a parallel system change relative to
the hardware and software effects of increasing the number of processors used
to execute a program and/or increasing the size of a program’s input? Various
scalability metrics have been defined to evaluate whether parallel computers
can deliver their performance potential. The most recognized of these, “scaled
speedup,” has even been used to refute the suitability of Amdahl’s Law for
evaluating the performance of large-scale parallel systems [Gus88]. However,
regardless of the metric used, the critical performance question remains: how
is the performance potential offered by parallel computer systems achieved
by general-purpose parallel applications?

Ferrari characterized a performance evaluator as one that tries to solve
computer systems problems and uses the most appropriate techniques and
tools at hand (a process Ferrari calls applied performance evaluation) [Fer78].
In the context of parallel computer systems, two questions are of importance:

— What is the role of the performance evaluator (and, in general, performance
evaluation)?

— What are the performance problems and the appropriate techniques and
tools used to solve them?

The discussion of Amdahl’s Law gives us a point of reference for addressing
these questions in parallel computing.

First, delivered performance is the raison d’¢tre of parallel computer sys-
tems: if the purpose of a sequential computer system is to execute a program
to perform a computation, the purpose of a parallel computer system is to ex-
ecute a program faster than a sequential computer system. Amdahl presents
this purpose in the form of a single performance metric, speedup, which can
be use to evaluate the effectiveness of a parallel program’s execution on a
parallel machine. Although Amdahl’s Law was used to downplay the impor-
tance of parallel systems, it equally represents a challenge: good performance
is possible, but it will be difficult to obtain. In this respect, the role of per-
formance evaluation in parallel systems is to understand the causes of actual
performance behavior for purposes of performance optimization.

298 Allen D. Malony

Second, parallel performance is an inherently complex metric. Although
the limits of parallel performance (both offered potential and speedup bounds)
are relatively simple to define (e.g., Amdahl’s Law), the performance space is
large, ranging from the performance achieved on one processor to the peak
performance on all processors. Furthermore, the difference between potential
and delivered performance on a parallel machine can be significant. Amdahl’s
Law describes these variations in terms of a single parameter, but, in general,
many factors can contribute to performance variability. These factors are in-
terdependent, and seemingly minor changes in their relationship can often
induce large changes in the performance achieved. Hence, the performance
space is multi-dimensional and can be highly irregular.

Third, parallel performance 1s difficult to measure, characterize, and un-
derstand. It is known that Amdahl’s Law is an oversimplification of the cause
of parallel performance degradation (i.e., sequential execution); clearly, other
overheads limit performance. Even so, determining the amount of time a
parallel computation spends in sequential execution can be nontrivial. In
general, parallel performance factors are dynamic in time, distributed in lo-
cation and state, and parallel in occurrence. Although a parallel system is
a deterministic automaton, and, in principle, one could envision having full
knowledge of system activities, the complexity of hardware and software re-
stricts performance observation: any measurement will be incomplete and any
characterization will be an abstraction of true performance behavior. More-
over, performance behavior (the interaction and importance of performance
factors) can be highly sensitive to changes in execution context.

Finally, parallel performance is the product of a specific combination of
parallel system (hardware and system software) and application program.
The performance evaluation requirements are therefore dictated by the spe-
cific needs of the problem context and the user. In contrast to sequential
computers, the performance evaluation of parallel systems is more special-
ized in its role and more personalized in its application; in fact, the “per-
formance evaluator” is most often the parallel program developer, because
intimate knowledge of the program is usually required to hunt down “perfor-
mance bugs.” Although the advances in performance evaluation technology
for sequential systems can be leveraged in the parallel domain, the individ-
uality and complexity of the parallel performance problem mandates that
the techniques be uniquely and carefully applied. New parallel performance
evaluation techniques must also be developed, with an orientation towards
performance optimization.

Since Amdahl’s paper was published, there has been a growing crisis in
parallel performance evaluation: the technological advances in parallel com-
puter systems (hardware and software) are increasing the complexity of the
computational environment, progressively diminishing the general user’s abil-
ity to operate these systems near the high-end of their performance range.
Presently, the crisis is acute. There are scalable parallel machines being intro-

VII. Tools for Parallel Computing: Performance Evaluation ... 299

duced today whose performance characteristics are reported only as unachiev-
able peak performance numbers. Furthermore, the system support for obtain-
ing performance data and the integration of this data into the overall system
environment are woefully inadequate. Although the growing acceptance of
massively parallel computing and the arguments for performance scalability
continue to uphold the promise of parallelism, the intellectual challenge to
achieve good parallel performance, as originally articulated by Amdahl over
thirty years ago, remains.

The development of performance evaluation environments for parallel
computer systems is one approach to overcoming this crisis. The idea is
to develop an environment for solving performance problems based on a
methodology of applied parallel performance evaluation and an integrated
set of tools for performance modeling, measurement, analysis, presentation,
and prediction. The goal is to relieve the user of the manual effort of perfor-
mance investigation while reducing the intellectual burden of understanding
complex performance behavior. The above discussion supports the need for
environments for parallel performance evaluation as a way to reduce the com-
plexities of the performance problem for the user. However, to be effective,
performance evaluation environments must be carefully developed to be an
integral component of a parallel system’s design and use.

3. Environment Design

The scientific method — the systematic testing of hypotheses through con-
trolled measurement of observable phenomena, analysis of collected data, and
modeling of empirical results — has been advocated as the working definition
of “experimental (computer) science” [Den80] and as the basis of the “quan-
titative philosophy of performance evaluation” [Fer78]. Denning remarked
that “science classifies knowledge”, and that “experimental science classifies
knowledge derived from observations” [Den80]. The advancement of computer
science knowledge will increasingly require an experimental approach — the
building of experimental apparatus to understand new ideas and to validate
their usefulness in practice. Denning commented that the experimental appa-
ratus is not usually the subject of such research and that unless the apparatus
is used to obtain significant new knowledge, the research is not substantive.
However, in any field (and performance evaluation, in particular), progress
in experimental science is inextricably coupled with advances in observa-
tional technology; the ability to test hypotheses that predict the existence of
heretofore undetected phenomena intimately depends on the requisite tools
to more accurately measure and analyze known phenomena. In performance
evaluation, the new “scientific” knowledge sought is the understanding of and
solution to computer systems problems. The quantitative tools used are the
experimental apparatuses of applied performance evaluation. Better tools to

300 Allen D. Malony

observe and model performance will lead to better solutions to performance
problems.

Although the scientific method’s systematic measurement and hypothe-
sis testing is both necessary and desirable for parallel performance evalua-
tion, the limited understanding of parallel execution and the complexities of
performance observation make the construction of parallel performance envi-
ronments based on the scientific approach especially difficult. In general, the
environment design must meet two basic requirements:

— The need to specify new parallel performance problems in terms of the
characteristics of the parallel system, the structure and parameters of the
application program, the stored performance knowledge, and the current,
empirical performance data (performance hypothesis formulation).

— The need to conduct performance experiments (including measurement,
analysis, presentation, and modeling) to assess performance behavior (per-
formance observation).

The first requirement reflects the notion that effective parallel perfor-
mance evaluation will involve the application of a cyclic (scientific) method-
ology of designing new performance experiments based on cumulative system
and performance information. This includes the initial targeting of perfor-
mance hypotheses from experiences with other performance problems and the
progressive refinement of the hypotheses as a result of performance experi-
ments. The second requirement focuses on the issues concerned with building
and applying tools to test performance hypotheses. In particular, the need for
performance data to validate a hypothesis must be balanced against the ob-
servational capabilities of the performance tools as constrained by the parallel
system hardware and software.

Fig. 3.1 shows a general design framework for a parallel performance eval-
uation environment based on the scientific approach. This framework is more
a reflection of an idealized environment than one that might be realized in
practice, due to the design complexities and implementation tradeoffs in-
volved. However, our belief is that this design view serves as a useful basis to
discuss some of the challenges that arise when attempting to develop parallel
performance tools. Because the development of any set of performance tools
will involve tradeoffs between feasibility, functionality, accuracy, and cost,
considering these issues in a general context will provide us with a founda-
tion to evaluate the capabilities of present environments and to describe the
requirements of parallel performance environments of the future.

The Pablo? project [RAN493] best exemplifies our environment design
model as a methodological and experimental framework for developing a suite
of parallel performance tools driven by the evolving requirements for perfor-
mance analysis in parallel systems and by the types of performance problems
these systems present. The Pablo research has explored all aspects of the

2 The Pablo project homepage is hittp://www-pablo.cs.uiuc.edu.

VII. Tools for Parallel Computing: Performance Evaluation ... 301

Parallel Parallel

System Program

constraints on observational
system/program characteristics e .
plus performance knowledge capabilities, invocation of
used for initial hypotheses measurement tools

Performance Performance
Hypothesis Observation

hypothesis refinement
from empirical results

analysis,

modeling, and
presentation of
empirical data

Sored
Performance
Knowledge

Experimental

Performance
Data

Y
general performance results add

to performance knowledge base

Fig. 3.1. Parallel Performance Evaluation Environment Design

model throughout the last ten years, demonstrating a range of techniques
for modeling, measurement, analysis, and visualization. Its current use in the
Delphi system [RPF99] demonstrates the logical extension of a performance
evaluation model into an integrated environment that includes knowledge
of the parallel computing platform for modeling at multiple system levels,
parallelizing compiler technology for language-level performance instrumen-
tation, mapping, and prediction, and distributed computing support for tool
interoperation.

4. Parallel Performance Paradigms

As suggested in Fig. 3.1, the characteristics of the parallel system (hardware
and software) and the application program will be important determinants
in the development and use of a parallel performance environment. Although
performance problems are often addressed in a specific system/program con-
text, the ability to apply conceptual abstractions of parallel performance to
guide performance investigation and to generalize results from performance
experiments will be important for effective environment use. Here we use the
term parallel performance paradigm to represent the combination of an ab-
stract model of performance and the processes (measurement and analysis)

302 Allen D. Malony

needed to apply and integrate the model in performance problem solving.
To the extent that parallel performance paradigms can be realized in actual
performance environments, they will serve to help reduce the intellectual
complexity of performance evaluation for the user.

What counts as a useful parallel performance paradigm? On a basic level,
this question implies that there is (are) accepted definition(s) of parallel per-
formance. There are three classes of quantitative “performance indices” for
evaluating computer systems: productivity (i.e., throughput), responsiveness
(i.e., turnaround or response time), and utilization. Of these, responsiveness is
the index of merit for parallel performance. Thus, for our purposes, good par-
allel performance paradigms will be those that can express, in some general
manner, the influence of the most important parallel system and application
factors on response time performance.

The execution time speedup model, represented in Amdahl’s Law, 1s an
example of a simple, universal parallel performance paradigm. It is simple
because the number of processors and sequential execution time are the only
performance factors that matter in the model. It is universal because the
paradigm can be used for any parallel environment or program both for per-
formance experimentation — the measurement of speedup as function of the
number of processors — and for performance prediction — the estimation of
the performance on n processors based on the sequential execution time mea-
surements on m processors. However, execution speedup is a poor paradigm
for investigating performance problems (i.e., performance diagnosis), serv-
ing only an indicator of good or bad parallel performance. The performance
scalability extensions to the basic speedup models help to quantify the in-
fluence of additional performance factors, but are still too general to explain
performance behavior.

The power of a parallel performance paradigm comes from both its ability
to represent performance abstractly, for comparative and predictive purpose,
and its ability to characterize performance specifically, for reasons of diagnosis
and tuning. The generality of the underlying model can be at odds with
the specificity needed in performance measurement and execution analysis.
Paradigms can either be extended to add performance metrics while keeping
the analysis models simple, or be made more specific with greater model
detail and analysis resolution, but at the risk of less general application.

A paradigm based on the parallel execution profile of a particular perfor-
mance metric (e.g., execution time or degree of parallelism) is important be-
cause it expresses a procedure for evaluating performance limiting behavior.
The profile might be coarse-grained, describing parallel performance by a set
of summary statistics, or fine-grained, representing parallel performance as
a time sequence of metric values. For instance, the common execution time
profile orders code segments according to their impact on total execution
time; code segments representing a higher percentage of the total time might
be candidates for performance optimization. A parallelism profile, on the

VII. Tools for Parallel Computing: Performance Evaluation ... 303

other hand, reflects a history of parallelism behavior and highlights regions
where there is the potential for parallelism improvement. However, parallel
performance paradigms based on profiles alone are insufficient as a basis for
formulating performance hypotheses because they offer no explanation as to
why the performance behavior occurred.

Alternatively, parallel performance paradigms based on the properties of
the parallel execution environment and the program’s computation have a
greater potential for investigating performance problems. For instance, per-
formance models can be defined with respect to computational structures
for parallel workflow (e.g., pipelined, master-slave, or work queue), or with
respect to parallel work synchronization mechanisms (e.g., fork-join, barrier,
or message passing) or scheduling algorithms (e.g., task level or loop level;
self scheduling or block scheduling). A parallel performance paradigm based
on such models will specify the required measurements for the type of struc-
tures, mechanisms, and scheduling algorithms used and will designate the as-
sociated types of analysis to be undertaken. Higher level performance models
are based on computational abstractions (e.g., control flow versus data flow;
control parallel versus data parallel; or single program, multiple data versus
bulk synchronous parallel), which can be used to refine and to prioritize lower
level measurements to performance problems in the computational domain.
The important point here is that the performance paradigm is founded on
the characteristics of the parallel execution of interest, thereby providing a
means for expressing and evaluating observed performance behavior.

Parallel performance paradigms provide a framework for defining perfor-
mance measurements, aiding in performance diagnosis, and supporting per-
formance prediction. During the performance evaluation process the paradigms
should be modified and refined as new performance knowledge is gained
through observation. For this reason, multi-paradigm approaches are com-
mon. A paradigm might employ resource usage models to identify perfor-
mance anomalies and then event models to identify computational states
that lead to the anomalies. The program activity graph is a well-known multi-
paradigm representation that uses nodes in the graph to signify significant
events in the program’s execution and arcs to show the ordering of events
within a process or the synchronization dependencies between processes. By
overlaying parallel program performance metrics one can see how the inter-
event, inter-process dependencies in a parallel program influence which pro-
cedures are important to a program’s execution time.

Many parallel tool researchers have naturally applied paradigms in their
work. In their paper ” Analyzing Parallel Program Execution Using Multiple
Views” [LMF90], LeBlanc, Mellor-Crummey, and Fowler emphasize the need
to develop a (general) unified approach to parallel program analysis that sup-
ports the creation and integration of multiple views of an execution and allows
the user to tailor views to specific analysis. The Paradyn® project [MCC95]

% The Paradyn project homepage is http://www.cs.wisc.edu/ paradyn.

304 Allen D. Malony

is an excellent example of this approach in practice. Paradyn is based on a
flexible model of performance instrumentation and a well-defined notion of
performance bottlenecks and program structure, so that measurements can
be made for investigating bottlenecks associated with specific causes and spe-
cific parts of a program. Measurements are possible at different levels of the
parallel system and open interfaces for performance analysis and visualization
are provided for constructing alternative performance tools.

5. Performance Observability

In order to evaluate the performance of a parallel application executing on a
parallel computer system, certain aspects of application and system behav-
ior must be made observable. Whereas a performance paradigm provides a
conceptual foundation for investigating and understanding performance prob-
lems, an environment must also support a means for performance experimen-
tation — the measurement, analysis, and presentation of parallel performance
phenomena. Parallel performance observability is the ability to accurately
capture, analyze, and present (collectively, to observe) information about the
performance of a parallel computer system [Mal90]. Tools for performance
observability must balance the need for performance data against the cost of
obtaining it (environment complexity and performance intrusion). Too lit-
tle performance data makes performance evaluation difficult; too much data
can be complex to analyze and might perturb the measured system. What
combination of tools for performance observation is appropriate for parallel
computer systems? How do the architecture, hardware, and system software
affect how performance data is collected? What performance events can and
cannot be observed? How do the performance evaluation tools affect the per-
formance being measured? How should performance information be conveyed
to the performance analyst? Unfortunately, there is no formal approach to de-
termine, given a parallel performance evaluation problem, how to accurately
“observe” parallel execution in order to produce the required performance
results. Furthermore, any parallel performance experiment will ultimately be
constrained by the capabilities of the available tools for performance obser-
vation.

Performance measurement is the foundation of performance observability.
If an experiment cannot be constructed, even in principle, to measure a phe-
nomenon, it cannot operationally be said to exist. If a phenomenon cannot
be measured in practice, it cannot be observed. The complexity of parallel
computer systems makes a prior: performance prediction difficult and exper-
imental performance measurement crucial. A complete characterization of
software and hardware dynamics is needed to understand the performance of
parallel execution and requires efficient techniques for runtime performance
instrumentation and data collection. Although performance measurement is
a necessary component of parallel performance environments, the degree and

VII. Tools for Parallel Computing: Performance Evaluation ... 305

type of performance measurement support depends on its intended purpose,
and the nature of the performance experiments to be conducted defines the
needed capabilities of the performance monitoring system, its observational
detail, and acceptable cost.

The diversity of parallel performance problems makes it difficult to de-
velop a single set of performance monitoring techniques. For every perfor-
mance experiment, there nonetheless exists a minimal set of required events
that must be captured. In general, a parallel execution can be regarded as a
sequence of actions representing the computational activities one wishes to
observe. The execution of an action generates an event, an encoded instance
of the action. A “performance measurement” can be viewed as the collection
of a (possibly infinite) set of events. Indeed, event-based models have been
widely used to describe program behavior and to define techniques for perfor-
mance measurement. A system can be represented in terms of the observable
effects and interactions of system components as represented by a stream
of characteristic atomic behaviors (i.e., events), giving an abstract view of
program behavior in terms of a sequence of hierarchically defined events. In
general, the more detailed the measurement, the more data can be provided
to a performance model, allowing for more detailed analysis.

However, before events can be analyzed, they must be detected and cap-
tured by a monitoring system. The selection of instrumentation and data
collection tools defines both the granularity and detail of performance data
that can be measured. Events of interest can occur at different observation
points (hardware and software), which may or may not be accessible. Fur-
thermore, depending on the type of measurement desired, the amount of
performance data that must be collected and stored can vary. In practice,
the need to observe time-dependent parallel performance behavior and the
problems associated with the specification of complex performance events
and their detection often necessitates measurement solutions that capture a
large volume of time-based event data (e.g., tracing) for later analysis.

The design and development of tools for detailed performance instrumen-
tation and data capture on parallel machines is non-trivial, often requiring
significant engineering effort for their implementation. Monitoring solutions
based on tracing must solve several implementation problems, including event
timestamp consistency (both in accuracy and synchronization), trace buffer
allocation, tracing overhead, and trace I/O. Although software recording of
performance data suffices for low frequency events, capture of detailed, high-
frequency performance data ultimately requires hardware support if the per-
formance instrumentation is to remain efficient and unobtrusive. Alterna-
tively, techniques to control monitoring overhead dynamically by changing
instrumentation during execution have been successful in reducing signifi-
cantly the amount of performance data captured.

The lesson of measurement detail versus accuracy is that because parallel
programs are composed of multiple threads of control, the accuracy of perfor-

306 Allen D. Malony

mance characterization depends on some global knowledge of program state.
Although behavioral models of parallel program execution allow events to
be measured independently for each thread of execution and then combined
to determine global states, certain measurements must additionally be made
to preserve global performance data integrity (e.g., “global” time measure-
ment). That is, parallel program measurement must not only capture thread
actions that reflect logical, operational behavior, but also data that will be
used to establish an accurate reference for performance analysis (e.g., global
time reference).

There have been many research studies on the different aspects of the
performance observability problem discussed above, particularly in respect
to the problem of instrumentation and monitoring. Modeling and evaluating
design alternatives for performance observability will always remain a chal-
lenge. Rover, Waheed, and Hollingsworth [RWH98] took on that challenge in
their study of design alternatives for on-line instrumentation systems based
on different criteria for effectiveness, intrusion, and complexity of implemen-
tation. Their results establish models based on metrics derived from these
criteria as they applied in different system architecture contexts: network
of workstations (NOW), symmetric multiprocessors (SMP), and massively
parallel processing (MPP) systems. These models are intended to be used to
provide early feedback to tool developers regarding instrumentation overhead
and performance.

6. Performance Diagnosis

Given a foundation for performance modeling and a means for performance
measurement, a parallel performance environment can support an process
commonly known as performance debugging. When a performance problem
(i.e., a performance bug) is present, tools in the environment can be used
to investigate the problem, identify its source, and provide data for perfor-
mance improvement. Performance debugging is the process of applying these
tools. How performance bugs are identified and how they are explained is
the problem of performance diagnosis [MH99]. Expert parallel programmers
often improve program performance enormously by experimenting with their
programs on a parallel computer, then interpreting the results of these ex-
periments to suggest changes. This expertise has had difficulty finding its
way into performance environments for two reasons. First, researchers lack
a theory of what diagnosis methods work, and why. There is no formal way
to describe or compare how expert programmers solve their performance
diagnosis problems in particular contexts. There is no standard theory for
understanding diagnosis system features and fitting them to the program-
mer’s particular needs. As a result, researchers cannot easily compare and
evaluate the performance debugging tools they produce, and many potential
users do not find systems that are applicable to their performance diagnosis

VII. Tools for Parallel Computing: Performance Evaluation ... 307

problems. Second, performance debugging tools are not easily adaptable to
new requirements. Highly automated systems, while providing considerable
help to the programmer, are hard to change, hard to extend, and hard to
combine with other systems.

In simple terms, performance diagnosis guides the programmer in identi-
fying poor decisions made in parallel programming or in configuring parallel
execution. By finding and explaining the chief performance problems of the
program, diagnosis helps the programmer determine which decisions had the
worst performance effects and how those effects might be repaired. During
performance diagnosis, the programmer decides which performance data to
collect, which features to judge significant, which hypotheses to pursue, and
what confirmation to seek. A performance diagnosis method can be defined as
the policies used to make such decisions, and a performance diagnosis system
as a suite of programs that supports some diagnosis method, ideally in an
automatic way. The research problem is to define a theory of performance di-
agnosis methods and to use that theory to create more automated, adaptable
performance diagnosis systems.

To attack the first obstacle to performance diagnosis systems, lack of
theoretical justification, a “knowledge-level” theory of performance diagnosis
must be developed. In particular, a knowledge-level theory must answer the
question, What knowledge does a programmer use to choose actions to meet
performance diagnosis objectives? The theory breaks the question down into
two parts: What methods do expert programmers use?, and How can we
rationalize the programmer’s choice of methods? Underlying the challenge
of developing a knowledge base is the fact that different performance met-
rics provide useful information for different types of performance bottlenecks
(bugs). This is one reason for the emphasis on an underlying parallel per-
formance paradigm: it provides a context for performance data interpreta-
tion. The use of multiple paradigms help to address different performance
issues. Since every parallel application may have a different set of possible
performance problems, the user is often left to select the appropriate appli-
cation; a comprehensive pre-enumeration of possible performance diagnoses
(hypotheses) is difficult. However, recent research has tried first to provide
better guidance to the user by treating the problem of finding a performance
bottleneck as a search problem, and second to define this space by describ-
ing “fault taxonomies” for the performance problems that commonly arise
[MH99].

The forgoing discussion suggests one reason why performance diagnosis
systems are not widely used: they are not adaptable to a wide variety of
contexts. To help arrive at an initial diagnosis, performance diagnosis sys-
tems define a limited fault taxonomy, a finite set of performance problems
to look for. To date, systems have derived this set from the workings of the
programming language and runtime system they support. It follows that the
diagnosis systems are limited to a particular class of target machines and

308 Allen D. Malony

environments (more abstractly, parallel performance paradigms). However, if
we could find methods and rationales that cut across a substantial number
of diagnosis systems, then we might be able to identify general methods, and
differences among systems could then be studied to extract rationale.

Problem

‘

Programmer

80e)su | JusUO . IAUT
/ A0S WL |qo.d

_|
8
[7)]
u
Il

il -~

Performance Environment

Fig. 6.1. Framework of a Parallel Performance Diagnosis System

The second obstacle to the acceptance of diagnosis systems — poor au-
tomation and adaptability — can be addressed by a new diagnosis system
framework (Fig. 6.1). Here, policies would be interpreted by a goal-oriented
problem solver to choose methods to pursue. The methods would in turn
interface with the programming environment to apply tools to carry out
experiments. The problem solver is based on knowledge-level theory of ex-
pert performance diagnosis and is able to perform actions to accomplish
a method’s diagnostic goal, often instructing a tool to perform some mea-
surement or analysis experiment that will add new information to the per-
formance database. The purpose of the environment interface is to support
adaptable diagnosis by separating diagnosis methods from the software tools
that support those methods. It specifies diagnosis actions in terms of their
effects on a high-level performance database. Methods can thus execute these
actions and track their effects without knowing what commands are sent to
tools, or how data and programs are stored in files. As a result, general meth-
ods can be adapted unchanged to new tools. One can reuse knowledge about
which steps to take in performance diagnosis in contexts where the manner
in which those steps are taken differs significantly.

The ideas above have been captured in our Poirot performance diagnosis
research [MH99]. One of the unique aspects of this work is that we have recon-

VII. Tools for Parallel Computing: Performance Evaluation ... 309

structed or “reverse engineered” some answers to the above questions (i.e.,
the knowledge-level theory) from a survey of research papers on performance
diagnosis systems, and from the case studies that appeared in those papers.
The goal was to find methods and rationale that cut across a substantial num-
ber of diagnosis systems. Each performance diagnosis system was viewed as a
collection of methods for heuristic classification. Similarities among systems
were analyzed to identify general methods, and differences among systems
were studied to extract rationale. The result of the survey is a rationalized
classification of performance diagnosis systems, a systematic description of
what methods performance diagnosis systems use, and why they use them.
These results can be found in [MH99].

Hollingsworth’s W3 search model [HML95] is an excellent representative
of a diagnosis fault taxonomy that has been actualized in a working tool, the
Paradyn Performance Consultant [MCC95]. The W3 search model looks for
performance problems through an iterative process of refining the answers
to three questions: why is the application performing poorly, where is the
bottleneck, and when does the problem occur. To answer the why question,
tests are conducted to identify the type of bottleneck (e.g., synchronization,
I/O, computation). Answering the where question isolates a performance
bottleneck to a specific resource used by the program (e.g., a disk system, a
synchronization variable, or a procedure). Answering when a problem occurs,
tries to isolate a bottleneck to a specific phase of the program’s execution. The
Performance Consultant uses the W3 search model to automatically guide it
in instrumentation and analysis as the program is executing.

7. Performance Perturbation

Computer system performance evaluation is subject to the same instrumen-
tation pitfalls facing any experimental science; notably, uncertainty and in-
strumentation perturbation. Instrumentation, no matter how unobtrusive,
introduces performance perturbations, and the degree of perturbation is pro-
portional to the fraction of the system state that is captured: excessive in-
strumentation perturbs the measured system, but limited instrumentation
reduces measurement detail. Simply put, performance instrumentation man-
ifests an Instrumentation Uncertainty Principle [Mal90]:

— Instrumentation perturbs the system state.
— Execution phenomena and instrumentation are coupled logically.
— Volume and accuracy are antithetical.

The terms “Heisenberg Uncertainty” and “probe effect” have been used to
describe the error introduced in the performance measurement due to a mon-
itor’s intrusion on computer system behavior. The primary source of instru-
mentation perturbations is the execution of additional instructions. However,

310 Allen D. Malony

ancillary perturbations can result from disabled compiler optimizations and
additional operating system overhead. These perturbations manifest them-
selves in several ways: execution slowdown, changes in memory reference pat-
terns, event reordering, and even register interlock stalls. Perturbation due
to instrumentation has two effects on the events occurring during parallel
execution: temporal effects and resource assignment effects. In addition to
the slowdown caused by instrumentation overhead, temporal effects include
possible event re-orderings as the measurement changes the likelihood of dif-
ferent partial order executions. Resource assignment effects occur because the
instrumentation changes the dynamic resource demands. In instances where
the computation dynamically adapts to resource availability, instrumentation
can perturb resource allocation and utilization.

Performance measurements can differ significantly from actual execution
(where measurements are disabled) unless the perturbation effects are taken
into account by the performance environment during performance analysis.
The goal of performance perturbation analysis is the recovery of actual run-
time performance behavior from perturbed performance measurements. For-
mal models of performance perturbation are needed that permit quantitative
evaluation of perturbations given instrumentation costs, measured event fre-
quency, and desired instrumentation detail. Techniques based on timing and
event models have been applied with positive results [Mal90]. Because actual
performance behavior is inferred (approximated) by these models from the
performance measurements, however, no absolute means for testing the ac-
curacy of perturbation analysis is available. Rather, performance approxima-
tions were empirically validated with respect to two measures: total program
execution time and selected even timings.

It is not uncommon that execution time is degraded many-fold when a
program is measured. If total program execution time is accurately approxi-
mated after perturbation analysis is applied, the implication is that perturba-
tion analysis errors are not accumulating. On the other hand, the reason detail
performance measurements are made is to observe events of finer granularity.
Perturbation analysis must also accurately resolve individual event timings.
To determine the accuracy of trace events, one needs a standard of reference.
No such standard exists, because the actual event trace is unknown. Instead,
a sequence of event traces, each with successively smaller subsets of the de-
tailed trace measurement, must be produced and the approximated event
timings of correlated events compared. From the measurement uncertainty
principle, as the number of trace events decreases, the presumed accuracy
of the event timing approximations increases. If the approximated times of
events correlated across the traces correspond, then it follows that the timing
of other events in the detailed trace should also be accurate.

However, this validation approach is not wholely satisfying, because it
lacks a theoretical basis. In general, concurrent execution involves data de-
pendent behavior. The states of parallel programs inherently form a partial

VII. Tools for Parallel Computing: Performance Evaluation ... 311

order that must be followed during execution. If dependency control is spread
across threads of execution, instrumentation can perturb the timing relation-
ships of events and, thus, their actual execution ordering. If performance
instrumentation is designed correctly, an un-instrumented parallel execution
that satisfies Lamport’s sequential consistency criterion* [Lam79] implies that
the performance measurement will be non-interfering and safe. If the per-
formance measurements involve only the detection and recording of event
occurrence (i.e., tracing), the partial order relationships will be unaffected
and the set of feasible executions® will remain unchanged. Beginning with a
total ordering of measured events consistent with the happened before rela-
tion [Lam78] defined by the original partial order execution, time-based and
event-based perturbation analysis can be applied to thread events that oc-
curred either during independent execution to remove the instrumentation
overhead or in dependent execution to enforce the semantics of operations
that implement inter-thread synchronization. As long as the total ordering of
dependent events present in the measured execution is maintained during this
analysis, the final approximated execution will also be a feasible execution.

But is the final approximated execution a “likely” execution? That is,
would the approximated execution ever actually occur, and with what ex-
pectancy would it occur? Any perturbation analysis approximation must be
safe (i.e., must not violate partial ordering relationships) and, therefore, must
be provided sufficient measurements that capture the operations that enforce
ordering during execution. However, the accuracy of perturbation analysis de-
pends not only on more precise synchronization measurements, but also on
additional knowledge of actual (likely) execution behavior, which is unattain-
able from measurements alone. The set of likely executions is the subset of the
feasible executions that are most probable. In many cases, the complete range
of feasible executions will be restricted to a smaller set of likely executions
due to the computational environment. If instrumentation is added, the set of
likely executions can change. Computing the likelihood distribution of feasi-
ble executions is an extremely difficult problem, requiring an execution time
model of concurrent operation. Thus, the inability to predict likely execu-
tions makes it difficult to bound the error of measurement-only perturbation
analysis.

Simply put, performance measurement alone is insufficient to solve the
perturbation analysis problem. If additional information were provided to
the perturbation analysis process that describes certain behavioral properties
and resource allocation and usage of the parallel computation (e.g., data
dependency information, loop scheduling algorithms, processor allocation,
memory usage), the perturbation analysis could use this information to make

* A parallel execution is sequentially consistent if the result is the same as if
the operations were executed in some sequential order obtained by arbitrarily
interleaving the thread execution streams.

5 The set of program executions that could result from the partial order of pro-
gram events is known as the partially ordered set of (feasible) executions.

312 Allen D. Malony

- . Control/Data
Parallel Program Flow Analysis
event specification
Parallel t orderi performance data
ar event ordering annotations, system
Computer constraints Integrated :
P Performance parameters
Characterization
formance Parallel
Perturbation Performance

execution parallel Model
events execution

Performance simulation

M easurement System

performance
database

Anaysis

paralelism
representation

Fig. 7.1. Unifying Framework for Measurement-Based Experimental Performance
Analysis

more accurate approximations by modeling the effects of nondeterministic
execution in the presence of instrumentation.

This observation suggests a strong relationship between parallel perfor-
mance paradigms which are used to define methodologies for performance
measurement and diagnosis, and performance perturbation analysis.

— The accuracy of parallel performance models depend on the validity of the
performance data used.

— Performance perturbation analysis depends on knowledge of context-dependent
execution control and system performance information, which is provided
in the parallel performance models, to resolve perturbation errors.

This relationship can be captured in a framework for measurement-based ex-
perimental performance analysis, unifying performance perturbation analysis
and parallel performance modeling research; see Figure 7.1. The interesting
parts of the framework concern the feedback paths:

— to event specification and program analysis, for changing the granularity
of performance observation;

— to perturbation analysis, for preventing execution ordering violations; and

— to parallel performance modeling, for annotating the representational form
of the parallel program with measured performance data and system pa-
rameters.

One can consider performance perturbation more generally as a change to
“real”, unperturbed performance of a parallel computation as a result of some
change to the parallel execution environment. This change could be the result
of performance measurement, as we have discussed here, or the result of per-
formance analysis abstraction. Because we are trying to discover the “real”
performance by an analysis process, whether it is based on measurement, sim-
ulation, or analytical modeling, there is always a question about the accuracy

VII. Tools for Parallel Computing: Performance Evaluation ... 313

of the performance approximation. That accuracy can be perturbed not only
by instrumentation intrusion, but also by inaccurate or incorrect modeling
assumptions. The important insight is that perturbation analysis can be more
fully regarded as a general performance prediction problem. The goal is to
estimate (predict) performance based on stored performance knowledge cou-
pled with abstractions of parallel program and system behavior. Only by
understanding the interplay of performance knowledge with parallel models
(actual or abstract) can high confidence approximations be achieved. The
natural tension between the complexity of measurement and modeling makes
this an interesting challenge.

Our work on perturbation analysis [MR91, MRW92] demonstrates the ef-
fectiveness of perturbation models in approximating aggregate performance
data from traces gathered using intrusive monitoring, even in cases of behav-
ioral changes due to event ordering influences. We show that even in cases of
very high intrusion, accurate analysis is possible. The effect of perturbation
of an execution environment is considered in our work on performance ex-
trapolation [SM95]. Here we use measurements of a multithreaded program
running on a single processor to estimate the performance of the program on
a target parallel machine, substituting performance models for architectural
and system components (e.g., network and scheduling) that are being varied
(i.e., perturbed).

The trace recovery research of Gannon et al. [GWA+94] combines pertur-
bation analysis with software modeling. They develop a tool that generates
timed Petri net (TPN) models of intrusively monitored software; reinstru-
ments the software as needed; and then uses the TPN model to recover, from
the corrupted trace, the approximate trace that would have been observed
had monitoring-induced timing and event order changes not been present.
The amount and type of trace information provided by this approach is of-
ten sufficient to resimulate a system accurately to some known point. This
allows the user to not only determine when behavioral changes occur due to
intrusion, but also determine the sensitivity of program behavior to intrusion
(i.e.. program robustness). The correct trace can also be fed to a determinis-
tic TPN simulator to visualize the process, which may allow the programmer
to determine and alleviate bottlenecks that limit program performance.

8. Summary

The changing nature of the parallel computing platform extends the bounds
of how these systems are programmed and used, further increasing computa-
tional and performance complexity. Tools must adapt to this change. Design-
ing and building tools for parallel performance evaluation is one of the most
challenging research areas in computer science. Not only are there fundamen-
tal issues associated with modeling and observing concurrent, parallel oper-
ations, but the self-referential and self-diagnostic notions of computer-based

314 Allen D. Malony

tools trying to understand computational behavior are extraordinary. This

chapter has presented a performance evaluation perspective on the general

research area of parallel tools. The views presented on modeling, observabil-

ity, diagnosis, and perturbation are applicable to the more general field as a
whole. They are also useful as guideposts for understanding how tools should

evolve to meet the requirements of next-generation systems.

References

[Amd67]

[Che93]

[Den80]
[DT98]
[Eur]
[Fah95]
[Fer78]
[GWA+94]
[Gus88]
[HM95]
[HMR95]
[HMF95]
[Hol94]

[HMOg]

[HML95]

Amdahl, D., Validity of the single-processor approach to achieving
large-scale computer capabilities, Proc. of the AFIPS Conference,
1967, 483-485.

Cheng, D., A survey of parallel programming languages and tools,
Technical Report RND-93-005, NASA Ames Research Laboratory,
1993.

Denning, P., What is experimental computer sciene, Communications
of the ACM 23, 1980, 543-544.

Dongarra, J., Tourancheau, B., (eds.), Workshop on Environments and
Tools for Scientific Parallel Computing, 1992, 1994, 1996, 1998.
Eurotools working group, (See http://www.irisa.fr/EuroTools/).
Fahringer, T'., Estimating and optimizing performance for parallel pro-
grams, IEEE Computer 28, (Special issue on Performance Evaluation
Tools for Parallel and Distributed Computer Systems), 1995, 47-56.
Ferrari, D., Computer Systems Performance Fvaluation, Prentice-Hall,
Englewood Cliffs, 1978.

Gannon, J., Williams, K., Andersland, M., Casavant, T., Lump, J.,
Trace recovery in multiprocessing systems: Architectural considera-
tions, Proc. of the 1994 International Conference on Parallel Process-
ing, 1994, 97-101.

Gustafson, J., Reevaluating amdahl’s law, Communications of the
ACM 31, 1988, 532-533.

Heath, M., Malony, A., Rover, D., Parallel performance visualization:
From practice to theory, IEFE Parallel and Distributed Technology 3,
1995, 44-60.

Heath, M., Malony, A., Rover, D., The visual display of parallel perfor-
mance data, IEEE Computer 28, (Special issue on Performance Eval-
uation Tools for Parallel and Distributed Computer Systems), 1995.
Helm, B., Malony, A., Fickas, S., Capturing and automating perfor-
mance diagnosis: the poirot approach, Proc. of the International Par-
allel Processing Symposium, 1995, 606-613.

Hollingsworth, J., Finding Bottlenecks in Large-scale Parallel Pro-
grams, PhD thesis, University of Wisconsin, 1994.

Hollingsworth, J., Miller, B., Instrumentation and measurement, in
Foster, 1., Kesselman, C., (eds.), The GRID: Blueprint for a New
Computing Infrastructure, Morgan Kaufman Publishers, San Fran-
cisco, 1998, 339-366.

Hollingsworth, J., Miller, B., Lumpp, J., Techniques for performance
measurement of parallel programs, in Casavant, T., Tvrdik, P., Plasil,
F., (eds.), Parallel Computers: Theory and Practice, IEEE Computer
Society Press, 1995.

[Int98]
[Jou90]

[Jou93]

[Lam78]

[Lam79]

[LMF90]

[Mal90]

[MH99]

[MR91]

[MRW92]

[MCC95]

[Pas]

[RCOS]

[RADOS]

[RAN+93]

[RPF99]

VII. Tools for Parallel Computing: Performance Evaluation ... 315

International Conference on Modelling Techniques and Tools for Com-
puter Performance Fvaluation, 1991-1998.

Journal of Parallel and Distributed Computing 9, (Special issue on
Sofware Tools for Parallel Programming and Visualization), 1990.
Journal of Parallel and Distributed Computing 18, (Special issue on
Tools and Methods for Visualization of Parallel Systems and Compu-
tations), 1993.

Lamport, L., Time, clocks, and the ordering of events in a distributed
system, Communications of the ACM 21, 1978, 558-565.

Lamport, L., How to make a multiprocessor computer that correctly
executes multiprocess programs, [FEFE Transactions on Computers 28,
1979, 690-691.

LeBlanc, T., Mellor-Crummey, J., Fowler, R., Analyzing parallel pro-
gram executions using multiple views, Journal of Parallel and Dis-
tributed Computing 9, 1990, 203-217.

Malony, A., Performance Observability, PhD thesis, University of Illi-
nois, Urbana-Champaign, 1990.

Malony, A., Helm, R., A theory and architecture for automating per-
formance diagnosis, Fifth Generation Computing Systems, Special Is-
sue on Performance Data-mining in Parallel and Distributed Comput-
ing, 1999.

Malony, A., Reed, D., Models for performance perturbation analysis,
Proc. of the Workshop on Parallel and Distributed Debugging, 1991,
1-12.

Malony, A., Reed, D., Wijshoff, H., Performance measurement intru-
sion and perturbation analysis, ITEEFE Transactions on Parallel and
Distributed Computing 3, 1992, 433-450.

Miller, B., Callaghan, B., Cargille, J., Hollingsworth, J., Irvin, R., Kar-
avanic, K., Kunchitkapadam, K., Newhall, T., The paradyn parallel
performance measurement tools, IEEE Computer 28, (Special Issue on
Performance Fvaluation Tools for Parallel and Distributed Computer
Systems), 1995, 37-46.

Pancake, C., Parallel debugger bibliography, (See
http://www.cs.orst.edu/ pancake/papers/biblio.html/).

The parallel tools consortium, (See http://www.ptools.org/).
Pasadena Workshop on System
Software and Tools for High Performance Computing Environments,
1992, 1995, (See http://cesdis.gsfc.nasa.gov/PAS2/index.html/).
Rajamony, R., Cox, A., Parallel programming tools, Technical Report,
Rice University, 1998,

Reed, D., Aydt, R., DeRose, L., Mendes, C., Ribler, R., Shaffer, E.,
Simitci, H., Vetter, J., Wells, D., Whitmore, S., Zhang, Y., Perfor-
mance analysis of parallel systems: Approaches and open problems,
Proc. of the Joint Symposium on Parallel Processing (JSPP), 1998,
239-256.

Reed, D., Aydt, R., Noe, R., Roth, P., Shields, K., Schwartz, B.,
Tavera, L., Scalable performance analysis: The pablo performance
analysis environment, in Skjellum, A., (ed.), Proc. of the Scalable Par-
allel Libraries Conference, 1993, 104-113.

Reed, D., Padua, D., Foster, 1., Gannon, D., Miller, B., Delphi: An
integrated, language-directed performance prediction, measurement,
and analysis environment, Frontiers '99: The 9th Symposium on the
Frontiers of Massively Parallel Computation, 1999.

316 Allen D. Malony

[RBYS]

[RS99]

[RWHOS]

[RWM-+98]

[Sch65]

[SMO5]

[SHB+94]

[SHB+96]

[SKB89]

[SKB9O]

[Sym9g]
[Wor93]

[YP95]

[YPS95]

Reed, D., Ribler, R., Performance analysis and visualization, in Foster,
1., Kesselman, C., (eds.), The GRID: Blueprint for a New Computing
Infrastructure, Morgan Kaufman Publishers, San Francisco, 1998, 367-
394.

Rover, D., Shanblatt, M., (eds.), International Journal of Parallel and
Distributed Systems and Networks, 1999.

Rover, D., Waheed, A., Hollingsworth, J., Modeling and evaluating de-
sign alternatives for an on-line instrumentation system: A case study,
IFEFE Transactions on Software Engineering 24, 1998, 451-470.
Rover, D., Waheed, A., Mutka, M., Bakic, A., Software tools for com-
plex distributed systems: Toward integrated tool environments, IEFE
Concurrency 6, (Special Issue on Engineering of Complex Distributed
Computing Systems), 1998, 40-54.

Scherr, A., An Analysis of Time Shared Computer Systems, PhD the-
sis, Massachusetts Institute of Technology, Cambridge, 1965.
Shanmugam, K., Malony, A., Performance extrapolation of parallel
programs, Proc. of the International Conference on Parallel Process-
ing, 1995, 117-120.

Simmons, M., Hayes, A., Brown, J., Reed, D., (eds). Debugging and
Performance Tuning for Parallel Computing Systems: Toward a Uni-
fied Environment, 1994.

Simmons, M., Hayes, A., Brown, J., Reed, D., (eds.), Debugging and
Performance Tuning for Parallel Computing Systems, IEEE Computer
Society Press, 1996.

Simmons, M., Koskela, R., Bucher, 1., (eds.), Instrumentation for Fu-
ture Parallel Computing Systems, ACM Press, 1989.

Simmons, M., Koskela, R., Bucher, 1., (eds.), Parallel Computer Sys-
tems: Performance Instrumentation and Visualization, ACM Press,
1990.

Symposium on Parallel and Distributed Tools, ACM Press, ACM SIG-
METRICS, 1996, 1998.

Workshop on Parallel and Distributed Debugging, ACM SIG-
PLAN/SIGOPS and Office of Naval Research, 1988, 1991, 1993.

Yan, J., Pancake, C., Simmons, M., (eds.), IEEE Computer 28, (
Special issue on Performance Evaluation Tools for Parallel and Dis-
tributed Computer Systems), 1995.

Yan, J., Pancake, C., Simmons, M., (eds.), IEEE Parallel and Dis-
tributed Technology, Special issue on Performance Fuvaluation Tools
for Parallel and Distributed Computer Systems, 1995.

