
An Integrated Performance Data Collection,

Analysis, and Visualization System

Allen D. Malony

�

Daniel A. Reed

y

Center for Supercomputing

Research and Development

University of Illinois

Urbana, Illinois 61801

Ruth A. Aydt

y

James W. Arendt

y

Dominique Grabas

y

and Brian K. Totty

y

Department of Computer Science

University of Illinois

Urbana, Illinois 61801

Abstract

The lack of tools to observe the operation and perfor-

mance of message-based parallel architectures limits the

user's ability to e�ectively optimize application and sys-

tem performance. Performance data collection, analysis,

and visualization tools are needed to manage the complex-

ity and quantity of performance data. Furthermore, these

tools must be integrated with the machine hardware, the

system software, and the applications support software if

they are to �nd pervasive use in program development and

experimentation.

In this paper, we describe an integrated performance

environment being developed for the Intel iPSC/2 hyper-

cube. The data collection components of the environment

include software event tracing at the operating system

and program levels plus a hardware-based performance

monitoring system used to unobtrusively capture software

events. A visualization system, based on the X window

system, permits the performance analyst to browse and

explore interesting data components by dynamically in-

terconnecting new performance displays and data analysis

tools.

1 Introduction

Despite continued technical advances, parallel system de-

sign remains ad hoc, an art form practiced by a small

cadre of experienced, highly valued designers. No known,

general purpose methods can predict the performance of

a proposed system design. Moreover, seemingly minor

perturbations of parallel architecture, system software, or

application algorithms can induce large changes in ob-

served performance. In numerical analysis, such prob-

lems are called ill-conditioned | small changes in the in-

put x of a function f(x) yield large changes in f(x) (i.e.,

f(x + �) 6� f(x)). Clearly, approximating f(x) by f(x),

by f(x), or by max

x

f(x), is dangerous, if not wrong. Yet,

�
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peak performance ratings in MIPS (millions of instruc-

tions per second) or MFLOPS (millions of 
oating point

operations per second) are precisely such an approxima-

tion.

In reality, the performance of a parallel computing sys-

tem is the complex product of its component interactions.

A complete performance analysis requires both static and

dynamic characterizations. Static or average behavior

analysis may mask transients that dramatically alter sys-

tem performance. By analogy, biological researchers have

long recognized the importance of both in vitro and in

vivo measurements. Laboratory measurements of isolated

cells or biological molecules often di�er from similar mea-

surements in natural environments. Similarly, the perfor-

mance of parallel system components depend on the fre-

quency and types of their interactions; these interactions

often cannot be predicted, but they can be measured.

Despite the manifest need for dynamic performance in-

strumentation and data capture, its e�cient implementa-

tion is non-trivial. Instrumentation, no matter how un-

obtrusive, introduces performance perturbations, and the

degree of perturbation is proportional to the fraction of

the system state that is captured | volume and accuracy

are antithetical. The degree of uncertainty manifested de-

pends on the programming paradigm, the system software,

and the underlying hardware. Some systems are more con-

ducive to instrumentation than others.

Message passing systems, such as the Intel iPSC/2, pose

particularly acute instrumentation problems. First, de-

tectable events occur locally at each processor. Identifying

global events requires associating two or more events from

di�erent processors. The obvious approach imposes a total

order on events, based on event timestamps, and identi-

�es global events from temporally proximate event groups.

Unfortunately, the second problem complicates solutions

to the �rst: most message passing systems, including the

Intel iPSC/2, lack a globally synchronized clock to create

event timestamps | this clock is needed to maintain event

causality. Given a global time reference, the distributed

event data still must be collected for analysis and presen-

tation.

Given the existence of a minimally intrusive perfor-

mance instrumentation system, a message passing system

can quickly generate vast quantities of performance data.

This data must be presented in ways that emphasize im-

portant events while eliding irrelevant details. Just as

visual presentation of scienti�c data can provide new in-



sights, a performance visualization system would permit

the performance analyst to browse and explore interest-

ing data components by dynamically interconnecting new

performance displays and data analysis tools.

To provide insight into dynamic system performance,

we are developing an integrated data collection, analysis,

and data visualization system for the Intel iPSC/2 hyper-

cube. In x2, we begin with a system overview. The data

collection components of the environment, discussed in x3

and x4, include software event tracing at the operating sys-

tem and program level plus a hardware-based performance

monitoring system used to unobtrusively capture software

events. In x5, we describe a visualization system, based on

the X window environment, that permits dynamic display

and reduction of performance data. Finally, x6 summa-

rizes our experience and development plans.

2 Environment Organization

Integration and 
exibility are the twin keys to an e�ec-

tive performance analysis environment. If the interac-

tions among environment components are awkward or in-

e�cient, the performance analyst will seek simpler tools.

Similarly, if the environment does not permit diverse ap-

proaches to performance data reduction and analysis, in-

cluding addition of new environment components (e.g.,

data �lters and displays), its functional lifetime will be

limited. Given the implications of integration and 
exi-

bility and our experience with an earlier environment de-

sign [1], we established several speci�c environment design

goals. Not all of these goals were simultaneously realiz-

able, but they provided a framework for system design.

� The individual analysis and visualization components

should be easy to build for many di�erent applica-

tion types and system software environments.

� The environment should be fast, preferably fast

enough to process bursts of real-time data.

� It should be possible to dynamically con�gure

data analysis and visualization components, allowing

the performance analyst to change data perspectives

during execution.

� Finally, the environment should be portable to dif-

ferent systems. Although the mechanisms for per-

formance data capture are inherently system depen-

dent, performance data reduction (e.g., computa-

tion of sliding window averages) and visualization are

largely system independent.

Given these design goals, Figure 1 shows the organiza-

tion of our performance environment. The environment's

fundamental performance measure is an event. Given a

\complete set" of event types, a timestamped event trace

su�ces to construct general performance measures. As

the �gure suggests, our performance instrumentation in-

cludes event tracing at both the program and operating

system levels.

At the program level, the performance analyst can di-

rect a modi�ed version of the GNU C compiler to automat-

ically generate code to create a timestamped log of proce-

dure entries and exits; this requires no modi�cation to the

application source code. Additional program performance

events can be generated by inserting calls to event tracing

routines; these include marking the entry and exit to code

sections and marking the occurrence of a user speci�ed

event [2, 3]. In our current implementation on the Intel

iPSC/2, all application program events are passed to the

hypercube operating system NX/2. NX/2 has been mod-

i�ed to record both these application events and operat-

ing system events corresponding to message transmissions,

process state changes, and system calls.

The events produced as a result of this instrumentation

are transmitted from each node to the hardware monitor

via additional signal lines on the iPSC/2 backplane.

1

Be-

cause the hardware monitor generates event timestamps

and can accept simultaneous events from all nodes, causal-

ity is assured. The resulting event stream can be either

stored in an event trace �le or, if the event frequency is

low enough to permit real-time processing, sent to a set

of data �lters and displays.

Clearly, the number of generated events is potentially

enormous; the event data must be presented in ways that

emphasize important primitive events (i.e., those gener-

ated during execution) and that re
ect aggregate system

behavior (i.e., by synthesizing compound events). The

environment includes a set of data �lters that process the

event data, either by eliding irrelevant events or by com-

puting dynamic statistics (e.g., sliding window averages).

Given the diversity of performance data and possible

statistics, a variety of performance displays (including me-

ters, plots, histograms, event graphs, dynamic call graphs,

and topological views) are needed to display the dynamics

of system performance. These displays are implemented as

X window widgets [4], providing display portability across

a variety of vendor workstations. Because the display �l-

ters isolate the semantics of performance data, the same

data can be displayed in multiple ways (e.g., histograms

and meters) without embedding the data semantics in

each display. Via an environment control, the binding

of data �lter and display can be changed dynamically, al-

lowing the user to select the �lters and display formats

best suited to the data. The remainder of this paper dis-

cusses the hardware and software implementation of this

environment, including examples of its use.

3 Software Instrumentation

There are many levels in the hierarchy of performance in-

strumentation, including hardware, system software, and

application program. The answer to the oft-asked ques-

tion, \How fast is it?" depends on the intended use of the

performance data. Operating system instrumentation can

capture the interplay of hardware and system software,

but it cannot identify the performance bottlenecks in an

application program. Consequently, our instrumentation

system provides both, correlating system and application

performance.

1

Until the hardware monitor is complete, these events are times-

tamped and recorded in the memories of individual nodes [3].
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Figure 1: Environment Organization

3.1 Application Instrumentation

If extensive source code modi�cations are required to cap-

ture application performance data, analysis of many com-

peting application algorithms becomes infeasible. Thus,

the great appeal of compile time instrumentation is its


exibility and ease of use; no source code modi�cations

are required, yet execution traces or pro�les can be gen-

erated.

To capture application performance data, we have mod-

i�ed the Free Software Foundation's GNU C compiler [5]

to emit instrumented code for the Intel iPSC/2. Not only

is the source to the GNU C compiler readily available, it

generates code whose quality is competitive with commer-

cial compilers.

2

Compiler command line options enable generation of

instrumented code. If only selective instrumentation is

desired, the user can specify either the list of procedures

to be instrumented or, equivalently, those not to be in-

strumented. As each procedure is compiled, calls to mon-

itoring functions are inserted in the procedure's prologue

and epilogue. These calls are inserted in the intermediate

RTL representation used internally by the compiler, not

the generated assembly code. Thus, the instrumentation

is machine independent, and given the requisite support,

allows instrumentation of other machine architectures. At

execution time, the monitoring functions invoked by each

procedure's prologue and epilogue pass the procedure's

name and entry or exit events to NX/2, the iPSC/2 node

operating system. This creates a timestamped trace of

procedure entry and exit events for each hypercube node.

If additional application trace events are needed (e.g.,

the occurrence of a condition or the execution of a par-

ticular code section), the user can manually insert calls

to monitoring functions. Like the automatic instrumenta-

tion, these calls generate events that are passed to NX/2

and embedded in the event trace. From this trace, the

visualization subsystem can construct program execution

pro�les and dynamic displays of program activity.

2

Benchmarks show little di�erence between GNU C and the

Greenhills C provided with the Intel iPSC/2.

3.2 Operating System Instrumentation

As just noted, application performance events are passed

to NX/2. These application events are merged with

three classes of operating system events: message, pro-

cess, and system call. These operating system events are

captured by extensive instrumentation of the NX/2 op-

erating system source code [3]. For message transmis-

sions, NX/2 captures the parameters of the application

program's csend or isend call and the time that physical

transmission of the message began and completed. NX/2

captures corresponding events for message receipt, permit-

ting matching of message sends and receives on di�erent

nodes. In addition, the NX/2 instrumentation captures

context switches, including the identity of the processes,

and all system calls.

Because the hardware monitor is not yet operational,

NX/2 currently records both application and operating

system events in a portion of each node's memory. Af-

ter the application program completes, the individual

node traces are transmitted to the iPSC/2 host for post-

processing and display. The hardware monitor will permit

NX/2 to record each event by writing to an I/O port in

the Intel 80386; the monitor will capture and timestamp

each such write.

4 Hardware Monitoring

As mentioned at the outset, the lack of a global clock on

the Intel iPSC/2 exacerbates the already large data cap-

ture problems that exist in a distributed memory system.

To circumvent the data capture and event ordering prob-

lems, we are developing a hardware-based monitoring sys-

tem, called Hypermon, for the Intel iPSC/2. Below, we

describe the components of the Hypermon and Hyper-

mon's relationship to the remainder of the analysis and

visualization system.

4.1 Hypermon Architecture

As Figure 2 suggests, the Hypermon architecture in-

cludes four primary components: event capture, event pro-

cessing, performance data storage, and a system interface.

Each iPSC/2 node independently sends event data to Hy-

permon via backplane connections. Hypermon captures



Figure 2: Hypermon Architecture

these events, generates global timestamps, and stores the

resulting event data in internal memory bu�ers. Because

Hypermon contains two internal processors, preliminary

analysis of the event data (e.g., format conversion) can

occur at the point of capture. The resulting performance

data can be stored on Hypermon's disk or transferred

via a network to a workstation for further analysis and

presentation.

There are two major requirements for the Hypermon

system. First, Hypermon must accept events from the

hypercube nodes at their natural generation rate. The

design guideline allows each node to generate an event ev-

ery 100 microseconds on average, and supports bursts of

up to 256 events with inter-event times as small as 10 mi-

croseconds. Second, Hypermon must support the trans-

fer and storage of event data. Assuming the representation

of each event requires at most 10 bytes, approximately 1.5

MBytes/second of event data must be transferred to disk

or across a network.

The prototype Hypermon implementation is built on

a Multibus II platform; see Figure 2. All components

are standard Multibus II cards except the custom event

capture board described in x4.3.

4.2 iPSC/2 Event Visibility

An Intel modi�cation of the iPSC/2 hypercube makes pos-

sible external access to software events on each node pro-

cessor. Five bits from an I/O port on each hypercube node

board are routed via the system backplane to an external

connector in the system cabinet. The ecb event capture

board attaches to this connector. Up to 16 iPSC/2 nodes

can be supported by one ecb.

Because the NX/2 operating system generates event

data by writing to an I/O port, one bit must be reserved

as a strobe to signal the ecb that valid event data are

present. Thus, software event generation proceeds in two

phases:

1. write: Event.strobe = 0, Event.data = unde�ned

2. write: Event.strobe = 1, Event.data = new event

data

The 80386 microprocessor in the Intel iPSC/2 requires

approximately six cycles to complete an I/O write opera-

tion. Thus, a minimum of 12 cycles are needed to write

a software event. Up to sixteen events can be uniquely

represented by four bits of data. If additional events are

needed, or if data is associated with an event, multiple I/O

write operations are required. The Hypermon processor

can reconstruct the software events from this data.

Although the four bit event �eld may seem limiting,

hardware constraints limit the number of available back-

plane signals. Despite this apparent limitation, the po-

tential software event rate remains substantial. Moreover,

higher rates would distort system performance.

4.3 Event Capture

Figure 3 shows the functional design of the event cap-

ture hardware. The event data for each hypercube node

is placed in a FIFO bu�er that is clocked by the corre-

sponding event strobe signal. All events occurring within a

given event time window, de�ned by the rate of the times-

tamp clock (approximately 4 MHz), are combined to form

an event frame.

3

Each event frame is then placed in the

event frame FIFO for transfer across the Multibus II to

the Hypermon processor or memory.

All events present within a time window are given the

same timestamp. Because the event signals are gener-

ated from processors with asynchronous clocks, the event

strobes for each node must be synchronized with respect to

the window to determine event presence. An event frame

is constructed for a time window only if one of the nodes

produces an event during the window. The strobe signals

are captured as part of the frame to indicate which nodes

generated events.

Each event frame consists of four 32-bit words; see Fig-

ure 4. A 32-bit timestamp is saved with each frame. As

mentioned above, the strobe vector identi�es which of the

event data are valid for the time window represented by

the frame. Four event data bits from each node FIFO are

always placed in the frame. However, only those FIFO's

with valid data for this time window will be shifted into

the event frame; the other event data �elds in the frame

are unde�ned. Once an event frame is constructed, it is

saved in the ecb's frame FIFO.

4.4 Event Data Management

The ecb supports a simple interface to a frame multi-

plexing board that provides Multibus II transfers to the

processor and memory from (potentially) several ecb's;

the prototype system has only one ecb.

The interface board contains an Intel 80186 micropro-

cessor, 512K bytes of memory, a DMA controller and some

3

The event data FIFO's provide data bu�ering during this

process.



Figure 3: Hypermon Event Capture

Unused Strobe Vector

Timestamp

Event 15 Event 14 Event 13 Event 12

Event 11 Event 10 Event 9 Event 8

Event 7 Event 6 Event 5 Event 4

Event 3 Event 2 Event 1 Event 0

Figure 4: Hypermon Event Frame

custom logic. Events are transferred via DMA from the

ecb to the memory of the interface board. The inter-

face board's processor provides the 
exibility to do lim-

ited event preprocessing. Events are bu�ered on the in-

terface board and transferred in blocks across the bus to

the primary Hypermon memory. Although this bu�ering

increases the e�ciency of bus transfers, a timeout mech-

anism is needed to insure that event transfers continue

when the e�ective event arrival rate is low.

All events are accessible to the primaryHypermon pro-

cessor, a 20 MHz 80386 that supports Unix System V. This

processor can be used to compress or preprocess the event

trace. Finally, the Hypermon architecture provides two

external interfaces: a SCSI Winchester disk interface and

a high-speed external channel. The disk interface includes

a DMA control, established by the primary processor, to

transfer data between the Hypermon memory and disk.

The disk is used primarily for storing event data. The

high-speed external channel provides an interface from the

Hypermon system to a workstation. The channel design

depends on the interconnect options available with the

workstation; the prototype system uses Ethernet.

5 Data Analysis and Visualization

As discussed in x2, 
exibility and dynamic recon�gurabil-

ity were primary design goals for the data analysis and

visualization environment. Thus, the environment infras-

tructure permits addition of new data analysis functions

and data views.

5.1 Infrastructure Design

The data analysis and visualization system contains a user

interface, an event preprocessor, a set of generic data anal-

ysis �lters, a set of �lter-display interfaces called strainers,

and a set of display views. The event preprocessor con-

verts the event stream produced by both the software in-

strumentation and the hardware monitor into a standard

format for use by the event �lters.

4

The event �lters accept the trace events and maintain

an internal event summary for each node. At present,

these include

� message counts and message volume, ordered by mes-

sage type, message size, and source and destination

node,

� processor state, including utilization, context

switches, and system calls, and

� program state, including current procedure and exe-

cution pro�le.

Although the semantics of each �lter's internal state di�er,

these semantics need not be known by the display tools.

By isolating semantic issues, di�erent �lter data can be

displayed in multiple ways using standard views (e.g., bar

charts and meters). Thus, each �lter has an associates

set of event strainers that, via access to the internal �lter

state, create a view speci�c data representation.

Given the diversity of data �lters, a correspondingly rich

set of performance views are needed. In addition, standard

view interface mechanisms must be provided to permit

rapid construction of new views, based on speci�c paral-

lel system requirements. Although the most useful set of

views can be determined only from experience, we have

constructed a prototype set of views using the widgets of

the X window system [4]. These include dials, bar charts,

LEDs, Kiviat diagrams, matrix views, 3-dimensional per-

spective plots, and a general purpose graph display used

for both procedure call graphs and hypercube topological

views. Each display is con�gurable, via the environment

control and the X window manager, and is capable of dis-

playing data from a variety of sources. In addition, the

portability provided by X permits the display environment

to execute on a wide variety of vendor workstations.

The user interface allows the performance analyst to

con�gure and manage the �lters, strainers and views. Via

this interface, the user can change the attributes of perfor-

mance views, open new views or close existing ones, and

4

This isolates idiosyncrasies of the hardware event format and

permits compact data representations for network transfer and disk

storage.



change the binding of view and data �lter (e.g., by replac-

ing the strainer for a bar graph of processor utilization

with a strainer for a utilization meter).

The environment de�nes several interface standards, al-

lowing addition of new �lters, strainers and views. These

include standards for module initialization, termination

and user customization. The builder of a standard mod-

ule (i.e., �lter, strainer, or view) need only meet these

interface standards. The environment intrastructure then

provides intermodule communication. Early experience

suggests that this design promotes extensibility and de-

sign 
exibility.

5.2 Examples

TO BE ADDED.

6 Conclusions

TO BE ADDED.
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