
A Holistic Approach for Performance
Measurement and Analysis for Petascale

Applications

Heike Jagode1,2, Jack Dongarra1,2

Sadaf Alam2, Jeffrey Vetter2
Wyatt Spear3, Allen D. Malony3

1 The University of Tennessee
2 Oak Ridge National Laboratory

3 University of Oregon
{jagode,dongarra}@eecs.utk.edu

{alamsr,vetter}@ornl.gov
{wspear,malony}@cs.uoregon.edu

Abstract. Contemporary high-end Terascale and Petascale systems are
composed of hundreds of thousands of commodity multi-core processors
interconnected with high-speed custom networks. Performance charac-
teristics of applications executing on these systems are a function of sys-
tem hardware and software as well as workload parameters. Therefore,
it has become increasingly challenging to measure, analyze and project
performance using a single tool on these systems. In order to address
these issues, we propose a methodology for performance measurement
and analysis that is aware of applications and the underlying system
hierarchies. On the application level, we measure cost distribution and
runtime dependent values for different components of the underlying pro-
gramming model. On the system front, we measure and analyze infor-
mation gathered for unique system features, particularly shared compo-
nents in the multi-core processors. We demonstrate our approach using a
Petascale combustion application called S3D on two high-end Teraflops
systems, Cray XT4 and IBM Blue Gene/P, using a combination of hard-
ware performance monitoring, profiling and tracing tools.

Key words: Performance Analysis, Performance Tools, Profiling, Trac-
ing, Trace files, Petascale Applications, Petascale Systems

1 Introduction

Estimating achievable performance and scaling efficiencies in modern Terascale
and Petascale systems is a complex task. A diverse set of tools and techniques
are used to identify and resolve their performance and scaling problems. In most
cases, it is a challenging combination of tasks which include porting the various
software components to the target systems, source code instrumentation usually
associated with performance tests and management of huge amounts of perfor-
mance measurement data. The complexity of analysis concepts is extensively
described in [1]. In order to address these issues, we propose a methodology for

2 Performance Measurement and Analysis for Petascale Applications

performance measurement and analysis that is aware of applications and the
underlying system hierarchies. On the application level, we measure cost distri-
bution and runtime dependent values for different components of the underlying
programming model. On the system front, we measure and analyze informa-
tion gathered for unique system features, particularly shared components in the
multi-core processors.

A detailed analysis of the massivly parallel DNS solver - S3D - on the latest
generation of large scale parallel systems allows a better understanding of the
complex performance characteristics of these machines. As part of the Petas-
cale measurement effort, we target a problem configuration capable of scaling
to a Petaflops-scale system. A complete performance analysis approach requires
studying the parallel application in multiple levels such as the computation level,
communication level, as well as cache level. This multilayered approach makes
it a challenging exercise to monitor, analyze and project performance using a
single tool. Hence, a combination of existing performance tools and techniques
have been applied to identify and resolve performance and scaling issues. In
this context, we are evaluating the collected performance data of S3D using the
PAPI library [2] as well as TAU [3], VampirTrace [4], and Vampir [5] toolsets
for scalable performance analysis of Petascale parallel applications. Such tools
provide detailed analyses that offer important insight into performance and scal-
ability problems in the form of summarized measurements of program execution
behavior.

The report is organized as follows: first we provide a brief description of the
target systems’ features. This is followed by a summary of the applied perfor-
mance analysis tools. A brief outline of the high-end scientific application that is
targeted for this study is provided at the end of section 2. In section 3, we pro-
vide extensive performance measurement and analysis results that are collected
on the Cray XT4 as well as IBM BlueGene/P system using a set of scalable
performance tools. We then provide an insight into the factors resulting in the
load imbalance among MPI tasks that cause signifcant idle time for the S3D
application runs on a large number of cores. Finally, we outline conclusions and
a list of future plans.

2 Background

2.1 Computer Systems

We start with a short description of the key features, most relevant for this study,
of the super computer systems that had the following characteristics in December
2008. The Jaguar system at Oak Ridge National Laboratory (ORNL) is based on
Cray XT4 hardware. It utilizes 7,832 quad-core AMD Opteron processors with
a clock frequency of 2.1 GHz and 8 GBytes of memory (maintaining the per core
memory at 2 GBytes). Jaguar offers a theoretical peak performance of 260.2
Tflops/s and a sustained performance of 205 Tflops/s on Linpack [6]. In the cur-
rent configuration, there is a combination of processing nodes with DDR-667 and
DDR-800. Peak bandwidth of DDR-800 is 12.8 GBytes/s. If needed, especially
for benchmarking purposes, a user has an opportunity to specify memory band-
width requirements at the job submission. In this paper we merely use nodes

Performance Measurement and Analysis for Petascale Applications 3

with 800 MHz memory. The nodes are arranged in a 3-dimensional torus topol-
ogy of dimension 21×16×24 with full SeaStar2 router through HyperTransport.
The network offers toroidal connections in all three dimensions.

The Argonne National Laboratory (ANL) Intrepid system is based on IBM
BlueGene/P technology. The system offers 163,840 IMB PowerPC 450 quad-
core processors with a clock frequency of 850 MHz and 2 GBytes of memory
(maintaining the per core memory at 500 MBytes). The peak performance of the
system is 557 Tflops/s and the sustained Linpack performance is 450.3 Tflops/s
[6]. The processors are arranged on a torus network of maximum dimension
40× 32× 32, which can be divided into sub-tori - as one example, the smallest
torus is of dimension 8×8×8 - or even smaller partitions with open meshes. An
individual partition can not be shared between several users. In contrast to the
Cray XT architecture, the BlueGene/P offers the user full control over how the
tasks are placed onto the mesh network. At the time of the experiments, hardware
counter metrics, such as cache misses and floating point operations were not
immediately available on BG/P because of an incomplete PAPI implementation
on the platform.

2.2 Performance Analysis Tools

Before we show detailed performance analysis results, we will briefly introduce
the main features of the used profiling and tracing tools that are relevant for
this paper.

The TAU Performance System is a portable profiling and tracing toolkit for
performance analysis of parallel programs [3]. Although it comes with a wide se-
lection of features, for this paper it is mainly used to collect performance profile
information through function and loop level instrumentation. TAU profiling col-
lects several metrics for each instrumented function or section of code. Here we
focus on the exclusive values. These provide the time or counter value accrued
in the body of a function over the program’s execution and exclude the time
or value accrued in the function’s soubroutines. TAU also provides a number of
utilities for analysis and visualization of performance profiles.

To analyze details of the S3D application, event-based program traces have
been recorded using VampirTrace [4]. The generated Open Trace Format (OTF)
[7] trace files have then been analyzed using the visualization tool Vampir [5].
Vampir is a tool for performance and optimization that enables application de-
velopers to visualize program behavior at any level of detail. For this paper, a
considerable amount of performance measurement data has been produced. For
that reason, the huge data volume has been analyzed with the parallel version
of Vampir [5].

2.3 Application Case Study: Turbulent Combustion (S3D)

The application test case is drawn from the workload configurations that are
expected to scale to large number of cores and that are representative of Petas-
cale problem configurations. S3D is a massively parallel DNS solver developed
at Sandia National Laboratories. Direct numerical simulation (DNS) of turbu-
lent combustion provides fundamental insight into the coupling between fluid

4 Performance Measurement and Analysis for Petascale Applications

dynamics, chemistry, and molecular transport in reacting flows. S3D solves the
full compressible Navier-Stokes, total energy, species, and mass continuity equa-
tions coupled with detailed chemistry. The governing equations are solved on a
conventional three-dimensional structured Cartesian mesh. The code is paral-
lelized using a three-dimensional domain decomposition and MPI communica-
tion. Ghost zones are constructed at the task boundaries by non-blocking MPI
communication among nearest neighbors in the three-dimensional decomposi-
tion. Time advance is achieved through a six-stage, fourth-order explicit Runge-
Kutta method [8]. S3D is typically run in weak-scaling mode where the sub-grid
size remains constant per computational thread.

3 Measurements and Analysis Methodology

As indicated earlier, one of the key goals of this study is to understand and cat-
egorize the application behavior on Teraflops-scale leadership computing plat-
forms. In order to achieve this goal, we propose a methodology for performance
measurement and analysis that is aware of applications and the underlying sys-
tem hierarchies as well as the underlying programming model adopted by the
application and implemented by the system. We systemetically gathered and
analyzed data that enabled us to understand the control flow of critical com-
putation and communication phases, utilization of system features in terms of
hardware counter data and behavior of MPI communication operations. The
next subsections summarize results collected from a set of profiling, tracing and
analysis tools.

3.1 Hardware event data profile

To generally measure the computational efficiency of the S3D application, the
ratio of instructions executed per CPU cycle (IPC) has been computed using the
following PAPI native events [2]: IPC = RETIRED INSTRUCTIONS / CPU CLOCKS NOT HALTED

All the performance analysis utilities summarized in section 2.2 support PAPI
counter data. The TAU performance system was used to collect these events. For
the hardware performance event measurements, S3D was run on 64 processors
on Jaguar. IPC indicates the degree to which the hardware is able to exploit
instruction level parallelism in the S3D program [9]. Figure 1 presents the ef-
fective instructions per CPU cycle, computed for the 13 most time consuming
functions in S3D. Higher is better and low IPC may indicate the presence of
performance issues. The AMD Opteron processor can issue up to three AMD64
instructions per cycle and per core [10]. A comparison of the measured IPC with
the maximum number reveals the low processor efficiency for most of the time
consuming functions.

In order to investigate causes of low IPC, we quantitatively evaluate the
performance of the memory sub-system. For that purpose the application was
run in SMP (1 core per node) as well as VN mode (4 cores per node). We see
a significant slowdown of 25% in VN mode as compared to single-core mode
on Jaguar only. Table 1 shows the total execution time for runs on Jaguar and
BG/P using the two different modes. We do not see such a serious performance

Performance Measurement and Analysis for Petascale Applications 5

Fig. 1. Instructions per cycle (IPC) for the 13 most time consuming S3D functions
(mean)

discrepancy on BG/P. Note, that BG/P also utilizes quad-core nodes but with
PowerPC 450 processors that offer a much lower clock frequency (850 MHz)
which results in a longer execution time. On both systems - Cray XT4 and
BG/P - the L3 cache is shared between all four cores. We collected hardware
performance events using the PAPI library [2] that confirms our findings. L3
cache requests are measured and computed using the following PAPI native
events: L3 REQUESTS = READ REQUESTS TO L3 + L3 FILLS CAUSED BY L2 EVICTION

Note: In VNM all L3 cache measurements have been divided by 4 (4 cores per node on Jaguar)

Figure 2 (a) depicts the number of L3 cache misses and requests when using
4 cores versus 1 core per node for the 13 most expensive functions of the S3D
application. It appears that the performance degradation in VN mode is due
to the L3 cache behavior. In VN mode we see roughly twice as many L3 cache
requests and misses compared to SMP mode. It is not surprising that L3 cache
misses increase with VN mode since if every thread is operating on different
data, then one thread could easily evict the data for another thread if the sum
of the 4 working threads is greater than the size of the L3 cache. However, the
increase of L3 requests is rather questionable. The L3 cache serves as a victim
cache for L2. In other words, if data is not in L2 cache then L2 TLB checks the L3
cache which results in a L3 request. As mentioned earlier the L3 cache is shared
between all four cores while the L2 cache is private. Based on this workflow,
it is not clear why the number of L3 requests increases so dramatically when
using all 4 cores per node. As verification we measure the L2 cache misses in
SMP and VN mode and Fig. 2 (b) presents the comparison. It clearly shows
that the number of L2 cache misses does not increase when all four cores are
used compared to SMP mode. All the more it is a moot point where the double
L3 cache requests come from when VN mode is used. Note that Fig. 2 (a) and
(b) use S3D function numbering only while in Fig. 1 the numbers are associated
with the corresponding name of the S3D functions.

6 Performance Measurement and Analysis for Petascale Applications

Table 1. S3D total execution time (s)

Architecture VNM SMP

Jaguar 813 s 613.4 s
BG/P 2920.41 s 2918.99 s

(a) (b)

Fig. 2. (a) L3 cache misses and requests (mean); (b) L2 cache misses (mean)

Recent discussions with the research lead 4 for the PAPI project have led us to
wonder if this is an artifact of the measurement process. The L3 events in AMD
Opteron quad-core processors are not monitored in four independent sets of
hardware performance registers but in a single set of registers not associated with
a specific core (often referred to as ”shadow” registers). There are independent
counter registers on each core for most performance events. When an L3 event
is programmed into one of these counters on one of these cores, it gets copied by
hardware to the shadow register. Thus, only the last event to be programmed
into any core is the one actually measured by all cores. When several cores try to
share a shadow register, the results are not clearly defined. Performance counter
measurement at the process or thread level relies on the assumption that counter
resources can be isolated to a single thread of execution. That assumption is
generally no longer true for resources shared between cores - like the L3 cache
in AMD quad-core nodes. New methods need to be developed to appropriately
collect and interpret hardware performance counter information collected from
such multi-core systems with interesting shared resources. This is an open area
of on-going research.

3.2 Tracing Analysis using Vampir

The results that have been presented so far show aggregate behavior or profile
during the appliction run and does not provide an information about the time line
of these operations. Unlike profiling, the tracing approach records function calls,
messages, etc. as timed events; that is as a combination of timestamp, event type,
and even specific data [1]. Tracing experiments allow users detailed observations
of their parallel application to understand a time dependent behavior of the

4 Dan Terpstra is the research lead for the PAPI project: terpstra@eecs.utk.edu

Performance Measurement and Analysis for Petascale Applications 7

application run. However, the tracing approach also indicates the production of
a very large protocol data volume. This is a good time to mention once more the
advantage of using a mixture of profiling and tracing tools to overcome those
obstacles. Using a profiler prior to the application of a trace tool, for example,
can facilitate the exclusion of functions which have a high call frequency [1]
and low inclusive time per call. Otherwise, those trivial routines take up most
of the time for accessing system clock and maintaining callstack information
which makes its timing less accurate. On this account, the TAU profiling tool
has been used to create a list of S3D functions that can be excluded from tracing.
Turning off those frequently called low level functions results in a S3D trace of
a reasonable size while the data accuracy is maintained.

Derivitive_x|y|zDerivitive_x|y|z

RHSFRHSF RHSFRHSF

MPI --> 70% MPI_WaitMPI --> 70% MPI_Wait MPI --> 70% MPI_WaitMPI --> 70% MPI_Wait

Derivative_x|y|z_Derivative_x|y|z_
comm|calccomm|calc

Derivative_x|y|z_Derivative_x|y|z_
comm|calccomm|calc

co
m

pu
te

sp
ec

ie
sd

iff
flu

x
co

m
pu

te
sp

ec
ie

sd
iff

flu
x

co
m

pu
te

he
at

flu
x

co
m

pu
te

he
at

flu
x

Vampir Summary Timeline:

Vampir Summary Chart:

(a)

(b)

Fig. 3. S3D performance analysis via Vampir

8 Performance Measurement and Analysis for Petascale Applications

For recording and analyzing event-based program traces, the Vampir suite
- a widely recognized tracing facility - has been used. The suite itself is briefly
summarized in section 2.2. For the performance analysis via VampirTrace and
Vampir, the S3D application has been run on 512 processors in VN mode on
Jaguar. Figure 3 (a) presents the number of processes that are actively involved
in a given activity at a certain point in time. This information is shown as a
vertical histogram. It can be identified how the computation and communica-
tion is distributed for a sequence of operations that are repeated in x-, y-, and
z-dimensions in one logical time step of the S3D application. Even with visual-
ization tools that graphically present performance data - like TAU and Vampir
- for the manual analysis approach some expertise in the field of parallel com-
puting is required to identify possible performance problems [1]. From the high
level perspective shown in Fig. 3 (a) together with Fig. 3 (b), it appears that
computational work in S3D is not well-balanced in its distribution between the
computing resourses. The Summary Chart (Fig. 3 (b)) gives an overview of the
accumulated time consumption across all processes and activities. We split MPI
times up so that we can see that more than 70% of the entire MPI time is spent
in MPI_Wait. The rest of the MPI time is spent in non-blocking send and receive
operations. Our present main intent is to identify the root causes of load imbal-
ance on large-scale runs and reduction in performance efficiencies on multi-core
processors.

3.3 Weak-Scaling Results and Topology Effects on BlueGene/P

Using TAU we collected data from S3D on BlueGene/P for jobs ranging from 1
to 30,000 cores. From this weak-scaling study it was apparent that time spent in
communication routines began to dominate as the number of cores increased. A
runtime breakdown over trials with increasing numbers of cores, shown in Fig. 4,
illustrates this phenomenon. In the 30,000 core case the time spent in routines
MPI_Barrier, MPI_Wait and MPI_Isend rose as high as 20.9, 12.7 and 8.7 per-
cent respectively while the time spent in compute routines was not significantly
different from lower processor counts.

We further observed deviation between individual threads in time spent in
communication routines. The pattern of deviation suggested a load imbalance
impacted by node topology. We tested this hypothesis by running an 8000 core
test with a random node mapping replacing the default. The default trial had a
runtime of 60 minutes and 26.4 seconds. The random node map decreased the
runtime to 56 minutes and 47.4 seconds, a speedup of approximately 6%. The
change in runtime was almost entirely the result of MPI behavior. The random
map saw an average per-thread increase in the MPI_Wait routine from 202.3
to 297.4 seconds. However time in MPI_Barrier dropped from 349.2 to 48.5
seconds.

The results from the random mapping test indicate that it is possible to im-
prove significantly over BlueGene/P’s default mapping for the S3D application.
We are presently investigating alternative mapping schemes to find an optimal
topology for S3D on the platform.

Performance Measurement and Analysis for Petascale Applications 9

Other

RATX_I

RATT_I

MPI_Wail

MPI_Isend

MPI_Barrier

Loop: TRANSPORT_M::COMPUTECOEFFICIENTS

Loop: RATT_I

GETRATES_I

Fig. 4. S3D Scaling Study on BlueGene/P

4 Conclusion and Future Plans

This paper proposes a methodology for performance measurement and analysis
that is aware of applications as well as high-end Terascale and Petascale system
hierarchies. This approach is demonstrated using a Petascale combustion appli-
cation called S3D on two high-end systems, Cray XT4 and IBM Blue Gene/P.
Our way shows that using a mixture of profiling and tracing tools is highly advis-
able. It provides important insight into performance and scalability problems by
aggregating behavior indicated in profiles with temporal information from the
execution time line. This performance analysis approach allowed us to identify a
major load imbalance issue when the number of cores are increased. More than
70% of the communication time is spent in MPI_Wait on large-scale runs. Our
present main intent is to identify the root causes of this behavior.

A deeper investigation of the derivation of time spent in communication rou-
tines for individual processes on the Blue Gene architecture shows that the load
imbalance is impacted by the node mapping pattern. Using a random instead of
the default node mapping confirms the finding and yields a significant perfor-
mance improvement of about 6% for the entire S3D application. Beside random
mapping patterns, we are currently investigating alternative mapping schemes
to find an optimal topology for S3D on the Blue Gene/P platform.

Our data collection of hardware performance events shows questionable find-
ings for L3 cache behavior on AMD Opteron processors if all 4 cores on a node
are actively used. While only one core can monitor L3 events, it is not clear what
happens when several cores try to share the single set of hardware performance
registers that is provided to monitor L3 events. Conflicts in measuring those

10 Performance Measurement and Analysis for Petascale Applications

events related to resources that are shared between cores indicate the need for
further research on a portable hardware counter interface for multi-core systems.
It is a focus of on-going research in the Innovative Computing Laboratory of the
University of Tennessee to develop methods to address this issue.

Acknowledgements

The authors would like to thank the PAPI and Vampir team for their great sup-
port. Furthermore, Philip Roth (ORNL) is greatly acknowledged for providing
a working S3D version for the BG/P architecture. This research was sponsored
by the Office of Mathematical, Information, and Computational Sciences of the
Office of Science (OoS), U.S. Department of Energy (DoE), under Contract No.
DE-AC05-00OR22725 with UT-Battelle, LLC as well as by the University of
Oregon DoE grant from the OoS under Contract No. DE-FG02-07ER25826.
This work used resources of the National Center for Computational Sciences at
Oak Ridge National Laboratory, which is supported by the Office of Science of
the Department of Energy under Contract DE-AC05-00OR22725 and of the Ar-
gonne Leadership Computing Facility at Argonne National Laboratory, which
is supported by the Office of Science of the U.S. Department of Energy under
Contract AC02-06CH11357. These resources were made available via the Per-
formance Evaluation and Analysis Consortium End Station, a Department of
Energy INCITE project.

References

1. Brunst, H.: Integrative Concepts for Scalable Distributed Performance Analysis and
Visualization of Parallel Programs, PhD Dissertation, Shaker Verlag (2008)

2. PAPI Documentation: http://icl.cs.utk.edu/papi
3. TAU User Guide: www.cs.uoregon.edu/research/tau/docs/newguide/index.html
4. Jurenz, M.: VampirTrace Software and Documentation, ZIH, TU Dresden:

http://www.tu-dresden.de/zih/vampirtrace

5. VampirServer User Guide: http://www.vampir.eu
6. Top500 list: http://www.top500.org
7. Knüpfer, A., Brendel, R., Brunst, H., Mix, H., Nagel, W. E.: Introducing the Open

Trace Format (OTF), Proceedings of the ICCS 2006, part II. pp. 526-533 (2006)
8. Kennedy, C. A., Carpenter, M. H., Lewis, R. M.: Low-storage explicit Runge-Kutta

schemes for the compressible Navier-Stokes equations, Applied numerical mathe-
matics 35(3):177-264 (2000)

9. Drongowski, P.: Basic Performance measurements for AMD Athlon 64 and AMD
Opteron Processors, (2006)

10. Software Optimization Guide for AMD Family 10h Processors, Pub. no. 40546
(2008)

