
Design and Implementation of a

Parallel Performance Data Management Framework

Kevin A. Huck, Allen D. Malony, Robert Bell, Alan Morris

Performance Research Laboratory, Department of Computer and Information Science

University of Oregon, Eugene, OR, USA

{khuck,malony,bertie,amorris}@cs.uoregon.edu

Abstract

Empirical performance evaluation of parallel systems
and applications can generate significant amounts of per-
formance data and analysis results from multiple ex-
periments as performance is investigated and problems
diagnosed. Hence, the management of performance in-
formation is a core component of performance analy-
sis tools. To better support tool integration, portability,
and reuse, there is a strong motivation to develop per-
formance data management technology that can provide
a common foundation for performance data storage, ac-
cess, merging, and analysis. This paper presents the de-
sign and implementation of the Performance Data Man-
agement Framework (PerfDMF). PerfDMF addresses
objectives of performance tool integration, interopera-
tion, and reuse by providing common data storage, ac-
cess, and analysis infrastructure for parallel performance
profiles. PerfDMF includes an extensible parallel profile
data schema and relational database schema, a profile
query and analysis programming interface, and an ex-
tendible toolkit for profile import/export and standard
analysis. We describe the PerfDMF objectives and ar-
chitecture, give detailed explanation of the major compo-
nents, and show examples of PerfDMF application.

1. Introduction

Performance evaluation of parallel programs and
systems, whether for purposes of benchmarking or ap-
plication tuning, requires the analysis of performance
data taken from multiple experiments [7, 12, 26]. While
sophisticated tools exist for parallel performance pro-
filing and tracing, allowing in-depth analysis of a sin-
gle execution run, there is significantly less support
for the processing and storage of multiple performance
datasets generated from a variety of experimentation
and evaluation scenarios. It might be expected that

each performance tool solve the problem of multi-
experiment performance data and results management
individually, but one can argue this is neither a rea-
sonable expectation, since resources may be unavail-
able to build such support for some tool projects,
nor a desired one, given the potential for building in-
compatible solutions. Instead, to promote performance
tool integration and analysis portability, and to foster
a multi-experiment performance evaluation methodol-
ogy in general, there is strong motivation to develop
open performance data management technology that
can provide a common, reusable foundation for perfor-
mance results storage, access, and sharing. Such tech-
nology could offer standard solutions for how to rep-
resent types of performance data, how to store perfor-
mance information in a manageable way, how to inter-
face with the performance storage system in a portable
manner, and how to provide performance information
services to a broad set of analysis tools and users. A
performance data management system built on this
technology could serve both as a core module in a per-
formance measurement and analysis system, as well as
a central repository of performance information con-
tributed to and shared by several groups.

This paper presents the design and implementation
of the PerfDMF parallel performance data manage-
ment framework. The research is motivated by our
work in parallel performance analysis and in the de-
velopment of the Tau parallel performance system
[27]. PerfDMF addresses critical requirements in Tau

for the storage, maintenance, and processing of multi-
experiment performance measurements and results.
However, our broader goal with the PerfDMF project
is to provide an open, flexible framework that can sup-
port common performance management tasks and be
extended and re-targeted to enhance performance data
integration as well as reuse across performance tools
used in the parallel computing community.

The objectives of our performance data manage-

ment research and the PerfDMF project are discussed
in Section 2. PerfDMF is designed for the management
of parallel performance profile data. The PerfDMF
architecture consists of four components: profile in-
put/output, profile database, database query and man-
agement interface, and profile analysis packages. Sec-
tion 3 describes the PerfDMF architecture in detail.
As performance tool technologists, the implementation
of PerfDMF reflects our strong concern for tool in-
tegration, reusability, portability, and open software.
Implementation choices we have made and API exam-
ples are discussed in Section 4. PerfDMF was devel-
oped specifically to handle large-scale performance pro-
files and a large number of profile results. We have in-
tegrated PerfDMF into the Tau performance system
and include it as part of Tau’s distribution. However,
PerfDMF provides importers for six common profile
formats and could be useful for performance tools other
than Tau. Section 5 demonstrates the application of
PerfDMF in Tau. Other projects have considered per-
formance databases for different purposes. We contrast
PerfDMF with these parallel performance tools in Sec-
tion 6. We conclude with a summary of the research
work and our future PerfDMF plans.

2. Objectives

Research in performance tools for parallel systems
is driven by two equally important concerns. The pri-
mary purpose of performance tools is, of course, the
effective evaluation of performance problems. The cre-
ation of powerful techniques for instrumentation, mea-
surement, analysis, and modeling are important for the
characterization, understanding, and tuning of parallel
performance, particularly for complex scientific appli-
cations on large-scale systems. Accomplishments across
the performance tools research community attest to the
significant advancements being made in performance
evaluation methods.

However, unless performance tools can be used in
practice, in large-scale and diverse production environ-
ments, the advantages of new performance evaluation
methods will go largely unnoticed. Performance tech-
nology must be built to higher tool engineering stan-
dards. Interestingly, the tool technology and engineer-
ing requirements that arise in parallel scientific com-
puting pose research problems equally challenging to
those in performance evaluation. These include tool
portability (e.g., across architectures, computing mod-
els, and languages), scalability (e.g., to thousands of
threads of execution), robustness (e.g., integrated with
compilers, libraries, and runtime systems), and au-
tomation. There is also strong present motivation for

tool integration, inter-operation, and reuse, and the
development of performance technology following an
open source methodology. We believe that by address-
ing these two general concerns – performance tool “sci-
ence” and tool technology engineering – more sophisti-
cated tools can be realized, built to high software qual-
ity standards, and readily assimilated in production en-
vironments.

In relation, the PerfDMF project represents pri-
marily research in performance technology engineer-
ing. Most empirical parallel performance tools are tar-
geted to the analysis of performance data from a sin-
gle performance experiment. However, current inter-
est in multi-experiment performance analysis is moti-
vated by several purposes: benchmarking, procurement
evaluation, modeling, prediction, and application op-
timization, to name a few. Indeed, several researchers
have demonstrated the importance of multi-experiment
methodology and tools [12, 16, 22, 26, 28]. Although
there is an obvious degree of overlap in the profile
data representation, organization, and basic methods
of analysis in these projects, unfortunately, there is lit-
tle technology sharing. From a tool engineering per-
spective, if the important profile data management fea-
tures and functions could be captured in a common
framework, performance tools could incorporate the
framework in their design and interoperate with other
tools that use the framework, resulting in several ad-
vantages for both enhancing performance tool capabil-
ities and improving tool deployment.

The PerfDMF research focuses on the design and
development of a common, reusable performance data
management and analysis framework. The primary ob-
jectives of the PerfDMF research work are:

• Import/export of data from/to leading parallel
profiling tools.

• Handle large-scale profile data and large numbers
of experiments.

• Provide a robust profile data management system
that is portable and easily reused.

• Support abstract profile query and analysis API
that offers an alternative Data Management Sys-
tem (DMS) programming interface.

• Allow for extension and customization in the per-
formance data schema and analysis API.

The following sections discuss how the PerfDMF design
and implementation meets these objectives in more
detail. It is important to note that we use the term
“framework” to emphasize the intention of PerfDMF to
be used as a component in an integrated performance

tool environment, one that can be configured and ap-
plied for the particular performance analysis purposes.
It is the framework concept for performance data man-
agement and its representation in PerfDMF that is the
primary contribution of our research.

3. PerfDMF Design Architecture

Empirical performance evaluation of parallel and
distributed systems or applications often generates sig-
nificant amounts of performance data and analysis re-
sults from multiple experiments and trials as perfor-
mance is investigated and problems diagnosed. How-
ever, the management of performance data from mul-
tiple experiments can be logistically difficult, imped-
ing the effective analysis and understanding of perfor-
mance outcomes. The Performance Data Management
Framework (PerfDMF) provides a common foundation
for parsing, storing, querying, and analyzing perfor-
mance data from multiple experiments, application ver-
sions, profiling tools and/or platforms. The PerfDMF
design architecture is presented in this section. We de-
scribe the main components and their interoperation.
Attention is also given to the profile database schema
as the core of the PerfDMF database support.

3.1. PerfDMF Components

PerfDMF consists of four main components: pro-
file input/output, profile database, database query
and analysis API, and profile analysis toolkit. Fig-
ure 3.1 shows a representation of these four compo-
nents, and their relationships. PerfDMF is designed
to parse parallel profile data from multiple sources.
This is done through the use of embedded transla-
tors, built with PerfDMF’s data utilities and targeting
a common, extensible parallel profile representa-
tion. Currently supported profile formats include
gprof[9], Tau profiles[27], dynaprof[19], mpiP[29],
HPMtoolkit (IBM)[6], and Perfsuite (psrun)[20]. (Sup-
port for SvPablo [24] is being added.) The profile data
is parsed into a common data format. The format spec-
ifies profile data by node, context, thread, metric and
event. Profile data is organized such that for each com-
bination of these items, an aggregate measurement
is recorded. The similarities in the profile perfor-
mance data gathered by different tools allowed a com-
mon organization to be used. Export of profile data
is also supported in a common XML representa-
tion. In the future, we may also offer exporters to a
subset of the formats above.

The profile database component is the center of
PerfDMF’s persistent data storage. It builds on ro-

PerfDMF Analysis Toolkit

Perf

raw
profiles

profile
tools

(Weka)

Relational Database

* DB2, Oracle

* PostgreSQL, MySQL

profile data
formatted

document

Explorer

XML

* dynaprof
* HPMtoolkit
* psrun

analysis
ParaProf

scalability

* mpiP

metadata
profile

Performance Analysis Programs

* gprof

Data Mining

...

Statistics

(R / Omega)

TAU Performance System

SQL Database API

Java PerfDMF API

Figure 1. TAU PerfDMF Architecture

bust SQL relational database engines, some of which
are freely distributed. The currently supported Re-
lational Database Management Systems (DBMS) are
PostgreSQL, MySQL, Oracle and DB2. The database
component must be able to handle both large-scale
performance profiles, consisting of many events and
threads of execution, as well as many profiles from mul-
tiple performance experiments. Our tests with large
profile data (101 events on 16K processors) showed the
framework adequately handled the mass of data.

To facilitate performance analysis development, the
PerfDMF architecture includes a well-documented data
management API to abstract query and analysis op-
eration into a more programmatic, non-SQL, form.
This layer is intended to complement the SQL in-
terface, which is directly accessible by analysis tools,
with dynamic data management and higher-level query
functions. It is anticipated that many analysis pro-
grams will utilize this API for implementation. Ac-
cess to the SQL interface is provided using the Java
Database Connectivity (JDBC) API. Because all sup-
ported databases are accessed through a common in-
terface, the tool programmer does not need to worry
about vendor-specific SQL syntax.

The last component, the profile analysis toolkit, is
an extensible suite of common base analysis routines
that can be reused across performance analysis pro-
grams. The intention also is to provide a common pro-
gramming environment in which performance analysis
developers can contribute toolkit modules and pack-
ages. As will be shown later in Section 5, analysis
routines are a useful abstraction for developing pro-
file analysis applications.

3.2. Profile Database Schema

A relational database schema is used to organize the
performance data. The top level table, application,

stores the data relevant to an application, such as
name, version, description, etc. The experiment table
contains a foreign key reference to the application

table, and stores all data relevant to an experiment,
such as the system information, compiler information,
and configuration information. The trial table con-
tains a foreign key reference to the experiment ta-
ble, and contains information relevant to a trial, such
as the date/time, problem definition, node count, con-
texts per node, and max threads per context. PerfDMF
provides a flexible schema for these three tables. The
schema requires that the id, name and foreign key ref-
erence columns exist in each of these tables, but ad-
ditional columns may be added to (or removed from)
the tables without requiring changes to the Java source
code. This ability is provided by the getMetaData() call
in JDBC, and provides flexible access to the columns in
the database. The schema is designed such that if cap-
turing such data as compiler names and versions, oper-
ating system attributes, etc. is important for analysis,
then those columns can be added to the database. In
addition, the analysis team is free to organize the per-
formance attribute data in any way they like - the com-
piler information can be stored in the application,
experimentor trial table, or not at all. These fea-
tures are important for the reusability of PerfDMF.

Some profiling tools, including Tau, collect more
than one metric when executing an experiment trial.
These metrics can include measurements such as CPU
time, data cache misses and floating point operations,
as well as derived metrics such as floating point op-
erations per second. Because there can be more than
one metric per trial, the schema includes a metric ta-
ble, which stores the name of the metric and a foreign
key reference to the trial table. Because some analy-
sis tools also generate derived data, derived metrics
can be saved with the profile data in the database us-
ing the PerfDMF API.

Performance profile instrumentation normally or-
ganizes interval data from a profile run according
to functions, or as blocks of code given a “func-
tion name”. Profiling tools can also organize inter-
val data in smaller logical blocks, such as loops, basic
blocks or even individual lines of code. The top level in-
terval data table within a trial is the interval event

table. The interval event table contains the name
of the event, an event group (i.e. computation, com-
munication, etc.), and a foreign key reference to
the trial table, indicating the trial to which it be-
longs. The interval location table contains the cu-
mulative data for each event, node, context, thread,
metric combination. The data captured includes in-
clusive time, inclusive percentage, exclusive time, ex-

clusive percentage, inclusive time per call, number
of calls and number of subroutines. For some pro-
filing tools, the value of one or more of these fields
may be undefined. The interval total summary

and interval mean summary tables contain the
interval location table total and mean values, re-
spectively, across all nodes, contexts and threads.

In addition to the regular instrumented profile data,
data from atomic events can be captured in profiles.
In Tau, for instance, users can define atomic events
at code locations to collect data which varies for each
instrumentation call, such as the current application
size in memory, or the size of an MPI communica-
tion. The atomic event table stores the atomic counter
information, such as the name and group name for
the counter. The atomic location profile table con-
tains a foreign key reference to the atomic event ta-
ble, as well as the sample count, maximum value, mini-
mum value, mean value and standard deviation for each
atomic event, node, context, thread combination.

4. Implementation

Our goals in developing PerfDMF are primarily in-
tegration, reusability, and portability. We also wanted
an implementation based on robust and open soft-
ware and protocols. We have decided to use Java,
JDBC, XML and ANSI SQL, for portability, standard
DBMS connectivity and profile data exchange. There
are four main components of PerfDMF, including pro-
file input/output, profile database access, profile man-
agement, and the analysis toolkit. All four are self-
contained modules, but they share common profile data
objects and API. This section discusses the PerfDMF
implementation from the perspective of analysis code
development. Particular attention is paid to the per-
formance database and the management component.

For historical reasons, there are two methods of data
access in PerfDMF. The first method provides an over-
all data management toolkit, including all of the file
parsers and database access for both querying and stor-
ing data. The other method provides access for just
querying and storing data to the database directly.
The nature of the analysis application will determine
which method to use. For example, if an analysis appli-
cation will only be a database client application, and
the application developer wants to selectively query the
data without having to load entire (possibly large) tri-
als, then the database-only interface should be used. If
the analysis application needs to support profile data
directly from profiling tools in the form of flat files,
and/or doesn’t need database support, then the first
method should be used. The selection of one method

does not preclude the use of the other, and the two are
not mutually exclusive.

The two methods logically organize the profile data
in the same way. Based on Tau’s generalized perfor-
mance data representation [27], PerfDMF structures
its data in a node, context, and thread manner. Each
thread then keeps track of a varying number of per-
formance events, which associate singleton or aggre-
gate data to named performance elements such as func-
tions, loops or other blocks of code. In addition, for
each node, context, thread, event, metric combination,
there is an event profile object which stores the per-
formance data for that particular combination. This
event mapping approach allows an efficient and flexible
method of performance data representation. Wrapped
around this representation is PerfDMF’s API for profile
query and management. This API is implemented en-
tirely in Java, and thus provides a completely portable
and consistent method of accessing data.

The profile input component is responsible for ob-
taining performance data from a wide variety of
sources, and converting it to PerfDMF’s inter-
nal representation. It does so by creating a profile
DataSession object specific to the profile format being
imported. The DataSession object forms the core ab-
stract object by which interactions with data sources
take place. For example, the GprofDataSession pro-
vides an interface to parse gprof data. Some profil-
ing tools output multiple files, one for each process
or thread of execution. In those cases, PerfDMF pro-
vides support for parsing a directory of files, or a
subset of files in a directory that start with a par-
ticular prefix or end with a particular suffix. The
profile input component manages the details of pars-
ing the output from the supported profiling tools.
There is also support for parsing and manag-
ing Tau user-defined events, as mentioned in Section
3.

PerfDMF database access is provided through the
use of interface functions that simplify the connection
to the database. When building a client, the application
developer need not concern herself with the details of
database connectivity or with constructing SQL queries
if she does not need or want to. It is relatively easy to
get a list of Application rows from the database (re-
turned as Java objects), and find an instance of in-
terest. Iterating through the objects is similar to it-
erating through the the tuples of a SQL query, but
with a simpler interface. The profile database compo-
nent is provided by the PerfDMFSession extension of
the DataSession class. Once the session has been ini-
tialized, a call to getApplicationList() will return a
list of Application objects, from which the desired ap-

plication is selected and set as a filter for subsequent
queries. The code is similar for listing and selecting
Experiment, Trial, IntervalEvent and AtomicEvent

objects. Once an object is selected, all further query op-
erations are filtered based on that particular context.
For example, if a particular Trial has been selected,
then any IntervalEvent objects that are queried are
only those from that particular trial. Alternatively,
an application could load an entire performance pro-
file from the database or import from a raw profile
dataset into a DataSession object (as was mentioned
earlier with the gprof example), and then apply selec-
tions with the PerfDMF API, setting node, context,
and thread parameters. Saving data to the database
is also easy, in that the Application, Experiment and
Trial objects all have Save() methods, which will save
the object and all of its related object references to the
database. The Trial object also has support for adding
new, possibly derived, metrics to an existing trial in the
database.

PerfDMF also provides an analysis toolkit compo-
nent. This utilizes API support for application, ex-
periment, and trial access to broaden single-trial pro-
file analysis to multiple experiment datasets. This par-
ticular component is only implemented minimally, as
the type of analysis done will be is somewhat appli-
cation specific. However, there are methods for do-
ing rudimentary multi-trial analysis, including perfor-
mance comparisons and speedup analysis.

5. Application

This section presents some applications of PerfDMF
to existing performance tools. We shall consider three
applications of PerfDMF: parallel profile analysis and
viewing, experiment trial browsing and scalability anal-
ysis, and performance data mining. Performance tools
for these applications have been developed to use the
PerfDMF API. Our ParaProf profile analyzer is partic-
ularly enhanced by the ability to parse additional pro-
file formats, and the ability to store data to a database.
The other two applications primarily demonstrate the
use of analysis interfaces with the database.

5.1. ParaProf

ParaProf[3] is Tau’s main profile browser, and is a
portable, extensible and scalable tool for parallel per-
formance analysis. ParaProf provides a mature, reli-
able platform on which to graphically browse parallel
performance profile data. It implements graphical dis-
plays of all performance analysis results in aggregate
and single node/context/thread forms. ParaProf also

Figure 2. ParaProf with PerfDMF support accessing HPMToolkit, mpiP, and TAU data from a database

archive. The top graph window shows the HPMToolkit data, the middle window is mpiP data, and the bot-

tom window is TAU data. ParaProf can also be used to input data into the database.

provides the ability to compare the behavior of one in-
strumented event across all threads of execution, and
offers summary text views of performance data, with
various groupings and contextual highlighting. The ini-
tial release of ParaProf could only read Tau data from
flat files, and though it could generate rudimentary de-
rived data, it had limited methods by which that data
could be saved for further analysis. With the addition
of PerfDMF, ParaProf is now able to parse profile data
from additional profile tools, and has database support
for accessing archived profile data and saving derived
metric data. ParaProf can also be used by an organiza-
tion as the primary interface to the performance pro-
file database, providing a graphical user interface which
analysts can use to store and view performance profiles
in a shared data repository.

Figure 2 shows an example of the enhanced ParaProf
using the PerfDMF API to interface with the database.
On the left side of the application window is a tree view
of the applications, experiments and trials which have
been loaded into the database. Three trials shown, all
from the same application, have been loaded into the
database using the PerfDMF API, and are expanded
in the tree. The three trials come from three differ-
ent profiling tools, specifically HPMToolkit, mpiP and
Tau. Additional application profile data is loaded into
the database, mostly from Tau data files. This figure
is not intended to show comparative analysis between
trials, but rather the use of PerfDMF to parse various
profile formats and store them in a database archive.
This archive could be made available in one physical
location for all analysts within an organization. Given

PerfDMF’s design, it would be a simple matter to im-
plement access authorization to enforce different poli-
cies for performance data security and sharing.

5.2. Trial Browser and Speedup Analyzer

One application we developed to test the PerfDMF
API was a trial browser and speedup analyzer. The
trial browser exercises a broad subset of the func-
tionality available in the API, and the speedup ana-
lyzer demonstrates the need for common analysis ca-
pabilities. We applied this tool to study the scalabil-
ity of the EVH1 benchmark [21]. Given performance
data from experiments with varying numbers of pro-
cessors, the tool automatically calculates the minimum,
mean and maximum values for the speedup every pro-
filed routine. The application has access to this data
through the PerfDMF API, including requesting stan-
dard SQL aggregate operations such as minimum, max-
imum, mean, standard deviation and others. The fact
that the database provides the data in such an orga-
nized fashion leaves the application programmer free
to develop analysis and visualization code, rather than
worry about data management.

5.3. PerfExplorer

The PerfExplorer application is a data mining ap-
plication for doing parallel performance analysis on
very large profile datasets. Because current visualiza-
tion tools are incapable of displaying thousands of data
points with hundreds of dimensions in a meaningful
way to a user, statistical analysis methods are used to
perform cluster analysis on the data, and then do sum-
marization of the clusters. Additional functionality is
currently being added to PerfExplorer to perform ad-
ditional data mining operations on the data.

PerfExplorer is designed as a client-server system.
The client makes requests to an analysis server back
end, which is integrated with a performance database,
using PerfDMF. Using the PerfExplorer client, the an-
alyst selects a particular trial of interest, sets analy-
sis parameters, and then requests data mining opera-
tions on the parallel dataset. Using the PerfDMF API,
the analysis server selects the data of interest, gets the
relevant profile data and hands it off to an analysis
application, R[23]. When R is done with the analy-
sis, the results are saved to the database, using the
PerfDMF API. When the analysis is complete, the user
can browse the results using the PerfExplorer client.
The browse requests are also processed by the PerfEx-
plorer server, using the PerfDMF API.

Analysis
Graphs

Analysis
Data

Raw
Performance

Data

Performance Explorer

DBMS

PerfExplorer
Server

R Analysis

Analysis
Graphs

Anslysis
Data

PerfExplorer
Client

Analysis
Requestor

Analysis Management

Analysis
Monitor

Raw
Performance

Data

PerfDMF/
JDBC

RMI

Omegahat RSJava

Figure 3. The PerfExplorer high-level design.

PerfDMF provides an interface between the

DBMS and the PerfExplorer server application.

Figure 3 shows how PerfDMF is integrated into the
PerfExplorer application. Because PerfDMF provides
database support, the PerfExplorer application devel-
opers are left to concern themselves with the user in-
terface and the analysis portions of the application.
Because PerfDMF is flexible and extensible, the Perf-
Explorer developers were able to extend the PerfDMF
database API to support saving and retrieving analy-
sis results.

The datasets that the PerfExplorer applica-
tion have analyzed to date include the ASCI Pur-
ple Benchmark[15] applications sPPM, SMG2000
and SPhot and the Miranda[5] application in pro-
duction at Lawrence Livermore National Labora-
tory (LLNL). The benchmark applications were run
in a number of configurations on large parallel ma-
chines available at LLNL. The profile data was gen-
erated by a number of profiling tools, including Tau,
gprof and in the case of sPPM, self-instrumented
data for which a custom parser was written. Up to
1024 threads of execution were available on the re-
sources at LLNL, and up to 7 PAPI[4] hardware
counters were collected at a time. PerfDMF was in-
strumental in organizing the performance data,
and providing easy access to the collected data us-
ing the PerfDMF API. Analysis results from Ahn and
Vetter[1] were reproduced with PerfExplorer, show-
ing interesting floating point operation behavior in the
sPPM application. Because targeted data mining anal-
ysis of parallel performance data is now available in
a reproducable, portable application, more interest-
ing results could be found in other applications by
other analysts.

The Miranda application data was provided by

LLNL, in the form of Tau profile data from test
runs on Bluegene/L[14], currently in development.
When completed, Bluegene/L will have over 64K pro-
cessors. The test data we were provided was from
runs of 8K and 16K processors. Over one hun-
dred events were instrumented, and only one metric
was available, wall clock time. The 16K proces-
sor run consisted of over 1.6 million data points, and
the PerfDMF API was able to handle the data with-
out problems.

6. Related Work

The PerfDMF project inherits from a rich back-
ground of research work in the fields of parallel perfor-
mance benchmarking, performance analysis tools and
environments, and performance experiment manage-
ment systems. The need to manage performance data is
a basic requirement of performance benchmarking ac-
tivities, but is often accomplished in ad hoc ways. Both
the Graphical Benchmark Information Service (GBIS)
[8] and the more general Performance Database server
(PDS) system [13] demonstrate the utility of a high-
level access to a performance experiment repository
that allows for meaningful queries without user-level
knowledge of performance data storage details. With
similar goals, PerfDMF intends to provide a common
DMS substrate as a robust part of the framework for
the development of performance analysis tools.

Directly relevant to PerfDMF are the projects
that utilize a performance database as a compo-
nent of a performance analysis system, particularly for
multi-experiment performance analysis. The SIEVE
(Spreadsheet-base Interactive Event Visualization En-
vironment) system [25] showed the benefit of a simple
table-based structuring of performance data cou-
pled with a programmable analysis engine. More so-
phisticated performance data models, such as found
in Paradyn [18] and CUBE [26], allow a richer analy-
sis algebra to be applied to multi-experiment perfor-
mance information. Both SIEVE and CUBE would
naturally extend to implementation on top of a per-
formance data management system such as PerfDMF.

Similar to PerfDMF, the HPCToolkit [16] tar-
gets profile-based performance analysis. It is able
to merge data from multiple performance experi-
ments in a database that is correlated with the pro-
gram source and hyperlinked for analysis and viewing
with the HPCView [17] tool. Performance data ma-
nipulated by HPCView can come from any source, as
long as the profile data can be translated or saved di-
rectly to a standard, profile-like input format. To date,
the principal sources of input data for HPCView have

been sample-based hardware performance counter pro-
files. In addition to measured performance metrics,
HPCView allows the user to define expressions to com-
pute derived metrics as functions of the measured data
and of previously-computed derived metrics. In con-
trast, PerfDMF can work with true parallel profiles
from large-scale parallel executions and provides a pro-
grammatic interface for building analysis packages,
such as those to compute common derived met-
rics. However, the two systems are complementary in
many ways and we will investigate support for import-
ing HPCToolkit profile data into PerfDMF.

The Prophesy system [28] successfully applies a per-
formance database to manage multi-dimensional per-
formance information for parallel analysis and model-
ing. The database is a core component of the system,
implemented using relational DBMS technology and
storing detailed information from the Prophesy mea-
surement system and performance modeling processes.
The Prophesy architecture has enabled it to be ap-
plied to both parallel and grid applications. PerfDMF
follows in the spirit of Prophesy, with a specific focus
on the performance DMS as a robust, open, and re-
targetable framework, and on analysis programming.
PerfDMF supports the import of profile data from mul-
tiple sources and Prophesy’s database schema suggests
it could be a source of performance data as well. De-
signed as a framework, PerfDMF would enable open
access to the archived performance data and provide
a programming interface for building multiple analy-
sis components. This could allow Prophesy’s modeling
algorithms to be captured as part of a broader analy-
sis library. In this way, several performance tools could
benefit from the advanced modeling analysis Proph-
esy provides.

The PPerfDB project [11] comes closest to sharing
the broader objectives as PerfDMF. PPerfDB is de-
veloping methods for diagnosing the performance of
large-scale applications using data from multiple exe-
cutions over an application’s lifetime. It supports the
import of performance data produced from multiple
sources and allow performance results to be exchanged
and compared across geographically disperse sites. Per-
formance information is related through hierarchical
property, resource, and event mappings that enable
PPerfDB to support powerful comparison and analy-
sis operations. The PPerfXchange component enables
distributed PPerfDB-enabled performance repositories
to interoperate (see PPerfGrid [10]). We view PPerfDB
and PerfDMF as complementary, rather then compet-
ing, systems. The PPerfDB architecture provides the
opportunity for the two systems to co-exist in a per-
formance analysis environment. PerfDMF might be

used, for instance, to store high-volume Tau perfor-
mance results for an application suite, while supporting
PPerfXchange-compatible interfaces that tie the per-
formance data to a global PPerfDB system. We hope to
work with PPerfDB developers on PPerfDB-PerfDMF
integration in the coming months.

In [12], multi-experiment performance data is man-
aged to encompass executions from all stages of the
lifespan of an application. Here all experiment infor-
mation is gathered in a program space which can be
explored with a simple naming mechanisms to answer
performance questions that span multiple program in-
stances. With this interface, it is possible to automati-
cally describe differences between two runs of a pro-
gram, both the structural differences (differences in
program source code and the resources used at run-
time), and the performance variation (how were the
resources used and how did this change from one run
to the next). As this work demonstrates, the ability to
easily access performance data history and compara-
tively process the data has high payoff for automating
performance diagnosis. Our objectives with PerfDMF
to implement necessary performance data management
and analysis programming infrastructure are consis-
tent with these aims of automated performance regres-
sion analysis and diagnosis. With a extensible program-
ming layer for query and analysis, it is conceivable that
higher-level abstract interfaces, such a program space,
can be implemented using PerfDMF to offer more so-
phisticated diagnosis support.

ZENTURIO [22] is another performance experiment
management system that incorporates an experiment
data repository at the core of its architecture. While
ZENTURIO shares features of Prophesy, PPerfDB,
and HPCToolkit, it is remarkable for its implementa-
tion as a set of services for experimentation and analy-
sis, with a graphical portal for user interaction. In com-
parison to all of these efforts, PerfDMF is specifically
advocating a performance DMS component and anal-
ysis programming interface that is flexible for a broad
range of applications and is based on open, standard
implementations and reusable, pluggable toolkits. We
believe PerfDMF could address much of the data man-
agement functionality present in these tools.

7. Conclusion and Future Work

The PerfDMF project is developing performance
data management infrastructure that we hope will be
leveraged by the performance tool community for pur-
poses of tool integration, interoperation, data sharing,
and next-generation performance analysis. The utility
of PerfDMF is demonstrated in our own Tau paral-

lel performance system, which has fully integrated the
framework in its ParaProf profile analysis tool. Addi-
tionally, we have developed a performance data mining
prototype, PerfExplorer, that incorporates PerfDMF
for performance storage and shows how packages such
as R can be easily integrated. PerfDMF is being re-
quested by an increasing number of Tau users for
application performance analysis as well as systems
benchmarking.

We believe the support in PerfDMF for importing
common profile data formats and developing reusable
and scriptable profile analysis functions will appeal to
tools developers and users alike. We hope to work with
the University of Tennessee to integrate the CUBE [26]
algebra with PerfDMF to implement high-level com-
parative queries and analysis operations. Tau already
supports translation of parallel profiles to CUBE for-
mat for presentation with the Expert [30] tool. We also
are working with Portland State University (PSU) and
LLNL to apply PerfDMF to performance benchmark-
ing for large-scale systems procurement. This work
will involve building translational interfaces between
PerfDMF and the PPerfDB/PPerfXchange [11] tool
suite. Additionally, we hope to began work soon with
ORNL on a multi-platform code evaluation study of
the PERC benchmarks [21] and PERC performance
tools, with PerfDMF being used to store the perfor-
mance results. These efforts will be important steps
forward in linking sophisticated performance technol-
ogy and tools through open interoperable interfaces
and standard data management technology.

Longer term we envision the development of per-
formance profile data and analysis servers that are
PerfDMF-compliant and can be easily configured and
deployed for specific performance management tasks.
The PerfDMF technology will be equally valuable in
the creation of shared performance repositories for per-
formance benchmarking purposes as it will for effi-
ciently tracking the performance history of a single ap-
plication code. We will continue to enhance the fea-
tures of PerfDMF to address these broader concerns.

8. Acknowledgments

The authors wish to acknowledge the contribution of
Li Li, a Ph.D. graduate student in the Department of
Computer and Information Science at the University of
Oregon, to an earlier design of a parallel performance
database that served as a conceptual framework for
PerfDMF. This research is supported by the U.S. De-
partment of Energy, Office of Science, under contracts
DE-FG03-01ER25501 and DE-FG02-03ER25561.

References

[1] D.H. Ahn and J.S. Vetter., “Scalable Analysis Tech-
niques for Microprocessor Performance Counter Met-
rics.”, Proceedings of Supercomputing, 2002.

[2] APART, IST Working Group on Automatic Per-
formance Analysis: Real Tools. See http://www.fz-
juelich.de/.

[3] R. Bell, A. D. Malony and S. Shende, “ParaProf: A
Portable, Extensible and Scalable Tool for Parallel Per-
formance Profile Analysis,” Proc. Europar 2003 Confer-
ence, LNCS 2790, Springer, Berlin, pp. 17–26, 2003.

[4] S. Browne, J. Dongarra, N. Garner, G. Ho, and P.
Mucci, “A Portable Programming Interface for Per-
formance Evaluation on Modern Processors,” Interna-
tional Journal of High Performance Computing Appli-
cations, 14(3):189–204, Fall 2000.

[5] W. Cabot, A. Cook and C. Crabb, “Large-Scale Simula-
tions with Miranda on BlueGene BlueGene/L”, Presen-
tation from BlueGene/L Workshop, Reno, 14–15 Octo-
ber, 2003.

[6] L. DeRose, “The Hardware Performance Monitor
Toolkit,” Euro-Par 2001, 2001.

[7] T. Fahringer and C. Seragiotto, “Experience with
Aksum: A Semi-Automatic Multi-Experiment Perfor-
mance Analysis Tool for Parallel and Distributed Appli-
cations,” Workshop on Performance Analysis and Dis-
tributed Computing, 2002.

[8] Graphical Benchmark Information Service,
http://www.netlib.org/parkbench/gbis/html/.

[9] S. Graham, P. Kessler, and M. McKusick, “gprof: A Call
Graph Execution Profiler,” SIGPLAN ’82 Symposium
on Compiler Construction, pp. 120–126, June 1982.

[10] J. Hoffman, A. Byrd, K. Mohror, and K. Karavanic,
“PPerfGrid: A Grid Services-based Tool for the Ex-
change of Heterogeneous Parallel Performance Data,”
HIPS-HPGC Joint Workshop on High-Performance
Grid Computing and High-Level Parallel Programming
Models, in conjunction with IPDPS 2005, April 2005, to
appear.

[11] K. Karavanic, PPerfDB.
http://www.cs.pdx.edu/∼karavan/research.htm.

[12] K. Karavanic and B. Miller, “A Framework for Multi-
Execution Performance Tuning,” in On-Line Moni-
toring Systems and Computer Tool Interoperability ,
Thomas Ludwig and Barton P. Miller, editors, Nova Sci-
ence Publishers, New York, USA, 2003.

[13] B. LaRose, “The Development and Implementation of
a Performance Database Server,” M.S. thesis, Univer-
sity of Tennessee, Technical Report CS-93-195, August
1993.

[14] Lawrence Livermore National Laboratory (LLNL),
“Bluegene/L”,
http://www.llnl.gov/asci/platforms/bluegenel/.

[15] Lawrence Livermore National Laboratory (LLNL),
“The ASCI sPPM Benchmark Code”,
http://www.llnl.gov/asci/purple/benchmarks/.

[16] J. Mellor-Crummey, “HPCToolkit: Multi-platform
tools for profile-based performance analysis,” 5th Inter-
national Workshop on Automatic Performance Analy-
sis (APART), November 2003.

[17] J. Mellor-Crummey, R. Fowler, and G. Marin,
“HPCView: A Tool for Top-down Analysis of Node Per-
formance,” The Journal of Supercomputing, 23:81–104,
2002.

[18] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth,
R. Irvin, K. Karavanic, K. Kunchithapadam, and T.
Newhall, “The Paradyn Parallel Performance Measure-
ment Tool,” IEEE Computer, 28(11):37–46, November
1995.

[19] P. Mucci, “Dynaprof.”
http://www.cs.utk.edu/∼mucci/dynaprof/.

[20] National Center for Supercomputing Applications
(NCSA), “PerfSuite”, http://perfsuite.ncsa.uiuc.edu/,
University of Illinois at Urbana-Champaign.

[21] National EnergyResearch ScientificComputingCenter,
“Performance Evaluation Research Center (PERC)”,
http://perc.nersc.gov/.

[22] R. Prodan and T. Fahringer, “On Using ZENTURIO for
PerformanceandParameterStudiesonClusterandGrid
Architectures,” 11th EuroMicro Conference on Parallel
Distributed and Network-Based Processing (PDP 2003),
February 2003.

[23] R-Project, “R”, http://www.r-project.org/.

[24] D. Reed, L. DeRose, and Y. Zhang, “SvPablo: A Multi-
LanguagePerformanceAnalysis System,” 10th Interna-
tional Conference on Performance Tools, pp. 352–355,
September 1998.

[25] S. Sarukkai and D. Gannon, “SIEVE: A Performance
Debugging Environment for Parallel Programs,” Jour-
nal of Parallel and Distributed Computing, 18:147–168,
1993.

[26] F. Song, F. Wolf, N. Bhatia, J. Dongarra and S. Moore,
”An Algebra for Cross-Experiment Performance Anal-
ysis,” International conference on Parallel Processing
(ICPP’04), pp. 63–72, August 2004.

[27] Tau (Tuning and Analysis Utilities).
http://www.acl.lanl.gov/tau/.

[28] V. Taylor, X. Wu, and R. Stevens,”Prophesy: An Infras-
tructure for Performance Analysis and Modeling of Par-
allel and Grid Applications,” ACM SIGMETRICS Per-
formance Evaluation Review, 30(4), pp. 13–18, March
2003.

[29] J. Vetter and C. Chambreau, “mpiP: Lightweight, Scal-
able MPI Profiling”.
http://www.llnl.gov/CASC/mpip/.

[30] F. Wolf and B. Mohr, “Automatic Performance Analy-
sis of SMP Cluster Applications,” Technical Report IB
2001-05, Research Centre Jülich, 2001.

