
1

Integrated Performance Views in Charm++:

Projections Meets TAU

Scott Biersdorff, Allen D. Malony

Performance Research Laboratory

Department of Computer Science

University of Oregon, Eugene, OR, USA

email: {scottb, malony}@cs.uoregon.edu

Chee Wai Lee, Laxmikant V. Kale

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL, USA

email: {cheelee, kale}@cs.uiuc.edu

Abstract—The Charm++ parallel programming system pro-
vides a modular performance interface that can be used to extend
its performance measurement and analysis capabilities. The inter-
face exposes execution events of interest representing Charm++
scheduling operations, application methods/routines, and com-
munication events for observation by alternative performance
modules configured to implement different measurement features.
The paper describes the Charm++’s performance interface and
how the Charm++ Projections tool and the TAU Performance
System can provide integrated trace-based and profile-based per-
formance views. These two tools are complementary, providing
the user with different performance perspectives on Charm++
applications based on performance data detail and temporal and
spatial analysis. How the tools work in practice is demonstrated
in a parallel performance analysis of NAMD, a scalable molecular
dynamics code that applies many of Charm++’s unique features.

Keywords-Charm++; TAU; Projections; NAMD;

I. INTRODUCTION

High-level parallel languages seek to improve programmer

productivity by providing rich abstractions for application

development while hiding the low-level complexity of coding

computations designed to run effectively on HPC platforms.

However, there is a natural tension between more power-

ful programming environments, with their compilers, library

frameworks, and multi-layered middleware, and the potential

to achieve scalable performance on high-end systems. Gener-

ally, the further the developer is from the raw machine, the

more susceptible the application code will be to performance

inefficiencies. Furthermore, sources of performance behavior

and possible performance problems become more difficult

to observe and to map back to the high-level programming

paradigm. It is therefore critical for performance measurement

tools to be integrated in a seamless manner with the paral-

lel programming system, and for knowledge about language

abstractions, libraries, and runtime systems to be used to

understand low-level performance dynamics.

There are several challenges to overcome. First, it is impor-

tant to provide performance tools access to execution events

of interest from different levels of language and runtime

abstraction. These events can be used to trigger measure-

ments that record performance metrics specific to the event

semantics. The language runtime system should support event

observation as part of its execution model. Second, to enable

alternative techniques for different performance perspectives,

it is necessary to build measurement interfaces and runtime

support that can integrate multiple performance technologies.

Third, performance analysis should attempt to map low-level

performance data to high-level language constructs by incor-

porating knowledge of events and the computational model.

The goal should be to identify performance factors to the

application developer and language system at a level where

the information can be most productively applied.

In this paper we present an integrated performance frame-

work for the Charm++ [9][8] parallel programming system.

Section §III introduces Charm++ and describes the design

of its performance interface used to observe important per-

formance events of interest. The performance interface al-

lows Charm++ to be configured with different performance

measurement and analysis capabilities. First the trace-oriented

Projections tool is described then in §IV we discuss how the

Charm++ performance interface can be leveraged to integrate a

parallel profiling system. In particular, we look at configuration

and use of the TAU Performance System [13] in Charm++

for profile-based performance measurement and analysis. We

discuss issues of integration, runtime support, and overhead.

Section §V demonstrates the advantages of using Projections

and TAU on a Charm++ application for molecular dynamics,

NAMD. Our experiments show how alternative measurement

and analysis methods can be used to gain comprehensive

performance insight for HPC applications developed using a

high-level parallel programming paradigm.

II. RELATED WORK

The challenge of integrating performance tools in parallel

language systems has been faced in other projects. The Rice

Fortran D language [14] offered a high-level data-parallel

programming model that was portable to scalable clusters.

Like High Performance Fortran, Fortran D allowed program-

mers to specify parallelism abstractly using data layout di-

rectives. The Fortran D compiler applied the directives to

synthesize a SPMD program with explicit data placement,

node-level parallelism, and message passing communication.

The performance problem was how to interpret the low-

level explicit measurements with respect to the source-level

data-parallel abstractions. The Pablo performance environment

was used to collect static and dynamic performance data

provided through Fortran D compiler instrumentation [1].

With additional semantic information, Pablo could associate

measurements with their high-level language generators in its

analysis and presentation methods.

We faced similar challenges in the pC++ language system

[3] where C++ extensions were used to specify collections

of objects on which data-parallel methods could be applied.

An early generation of the TAU system utilized information

about collective identity to map performance data from parallel

method invocation and message communications to individual

collective instances. Because the pC++ method calls were

synchronous, we could develop simulation tools to model

scalability [12].

OpenMP’s shared-memory parallelism directives and

compiler-based translation posed problems for open perfor-

mance tools because performance events were unexposed. The

POMP research defined an event model and call-back interface

for performance tools [10]. The OpenMP information provided

by the API to configure measurement systems provides region

context information to map thread-level measurements to par-

allel region locations. Both TAU and the Kojak/Scalasca per-

formance tools have been successfully integrated in OpenMP

programming environments using POMP.

III. CHARM++ PERFORMANCE FRAMEWORK

Charm++ is a parallel object-oriented programming system

based on C++. Charm++ is designed with the goal of en-

hancing programmer productivity by providing a high-level

abstraction of a parallel program while delivering good per-

formance on a wide variety of underlying hardware platforms.

Programs written in Charm++ are decomposed into a set

of parallel communicating objects. The Charm++ runtime

system automatically maps sets of objects onto processors or

threads across the parallel machine. Computation is triggered

by the invocation of entry methods via messages on objects by

other objects. This is similar to asynchronous Remote Method

Invocation (RMI) except no return values are allowed. When a

message for an entry method of an object arrives on a remote

processor, the message is queued and eventually scheduled to

start execution by that processor’s Charm++ runtime scheduler.

Once started, entry methods are executed to completion on a

processor before another entry method on the same processor

is allowed to start.

Figure 1 shows a logical view of interacting Charm++ ob-

jects and how these are subsequently mapped onto processors

by runtime system.

A. Charm++ Performance Events

Gaining insight into a Charm++ application’s parallel per-

formance depends on what events are observable during execu-

tion. There are several points in the Charm++ runtime system’s

code base that can capture important events and information

about their execution context. These include:

1) Start of an entry method.

2) End of an entry method.

3) Sending a message to another object.

Programmer (logical) view Parallel system (implementation) view

Process 1 Process 2 Process 3

Figure 1. Charm++ programming model.

4) Change in scheduler state: active to idle (entry method

completes and no new message is available, idle to active

(new message is available)

The first two relate directly to Charm++’s logical execution

model. Observing message sends provides a runtime level

perspective of object interaction. Scheduler state transitions

expose resource-oriented aspects of the execution. The point is

that the observation of multiple events at different abstraction

levels is needed to get a full characterization of performance

in a parallel language system such as Charm++.

B. Performance Call-back (Event) Interface

How a parallel language system operationalizes events is

critical to building an effective performance framework. We

use the term performance event to represent the execution

of instrumentation code associated with any of the above

points for purpose of making a performance measurement. The

Charm++ performance framework implements performance

events using a call-back mechanism, whereby instrumentation

in the runtime system’s code invokes any performance module

(performance client) registered in the framework interested

in the event. The framework forwards basic default event

information, such as the event ID and time of occurrence,

as well as other event-specific information to clients. As a

performance module, a client will also have access to internal

runtime routines and metadata not normally available to user

code. These runtime routines and meta-data might then be used

to derive more pertinent event-related information.

The framework exposes the set of key runtime events as

a base C++ class (Figure 2). A new performance module

like TAU (Figure 3) would inherit from this base class and

implement methods for the interpretation and storage of in-

formation derived from individual runtime events. The client

module need not handle every runtime event, merely the ones

that are of interest to the module. The initialization of the

performance framework initiates client module initialization

through statically determined methods.

The call-back approach utilized by Charm++ has several

advantages. Foremost, it separates concerns for performance

event visibility from performance measurement. The call-

back mechanism defines a performance event interface, but

does not mandate how measurements are made. The abil-

ity to register different modules allows measurements to be

configured for the desired performance experiment. It also

allows the available measurement capabilities to be extended.

/ / Base c l a s s o f a l l t r a c i n g s t r a t e g i e s .

c l a s s Trace {

/ / c r e a t i o n o f message (s)

v i r t u a l vo id c r e a t i o n (e n v e l o p e ∗ , i n t epIdx , i n t num=1) {}

v i r t u a l vo id c r e a t i o n M u l t i c a s t (e n v e l o p e ∗ , i n t epIdx ,

i n t num=1 , i n t ∗ p e l i s t =NULL) {}

v i r t u a l vo id c r e a t i o n D o n e (i n t num=1) {}

v i r t u a l vo id b e g i n E x e c u t e (e n v e l o p e ∗) {}

v i r t u a l vo id b e g i n E x e c u t e (CmiObjId ∗ t i d) {}

v i r t u a l vo id b e g i n E x e c u t e (

i n t even t , / / e v e n t t y p e d e f i n e d i n t r a c e−common . h

i n t msgType , / / message t y p e

i n t ep , / / Charm++ e n t r y p o i n t

i n t s rcPe , / / Which PE o r i g i n a t e d t h e c a l l

i n t ml , / / message s i z e

CmiObjId∗ i d x) { } / / i n d e x

v i r t u a l vo id endExecu te (void) {}

v i r t u a l vo id b e g i n I d l e (double curWal lTime) {}

v i r t u a l vo id e n d I d l e (double curWal lTime) {}

v i r t u a l vo id b e g i n C o m p u t a t i o n (void) {}

v i r t u a l vo id endComputa t ion (void) {}

} ;

Figure 2. Simplified fragment of framework base class.

/ / TAU i m p l e m e n t s a per fo rmance module c l a s s i n h e r i t i n g

/ / from t h e base framework c l a s s .

c l a s s TraceTau : p u b l i c Trace {

/ / S t a t i c a l l y −d e t e r m i n e d method which i s i n v o k e d by t h e

/ / f ramework a t r u n t i m e i n i t i a l i z a t i o n .

void _ c r e a t e T r a c e T a u (char ∗∗ a rgv)

{

/ / TAU i n i t i a l i z e s t h e e v e n t s b u f f e r t o ho ld 5000

/ / d i f f e r e n t e v e n t s . . .

b z e r o (e v e n t s , s i z e o f (void ∗)∗5 0 0 0) ;

/ / . . .

/ / TAU c r e a t e s a new per fo rmance module i n s t a n c e and

/ / a t t a c h e s i t s e l f t o t h e Charm++ t r a c i n g framework

C k p v I n i t i a l i z e (TraceTau ∗ , _ t r a c e) ;

CkpvAccess (_ t r a c e) = new TraceTau (a rgv) ;

CkpvAccess (_ t r a c e s)−>addTrace (CkpvAccess (_ t r a c e)) ;

}

/ / Per formance module c o n s t r u c t o r .

TraceTau : : TraceTau (char ∗∗ a rgv)

{

i f (CkpvAccess (t r aceOnPe) == 0) re turn ;

/ / TAU does more i n i t i a l i z a t i o n , p r o c e s s e s commandline

/ / argument s . . .

/ / . . .

TAU_PROFILER_CREATE(main , " Main " , " " , TAU_DEFAULT) ;

TAU_PROFILER_CREATE(i d l e , " I d l e " , " " , TAU_DEFAULT) ;

/ / . . .

}

/ / TAU i n t e r p r e t s Charm++ r u n t i m e e v e n t s which are o f

/ / i n t e r e s t t o TAU .

void TraceTau : : b e g i n E x e c u t e (e n v e l o p e ∗e)

{

/ / . . .

s t a r t E n t r y E v e n t (e−>g e t E p I d x ()) ;

/ / . . .

}

Figure 3. TAU integration with framework.

Registering multiple modules allows measurement techniques

to be simultaneously applied.

It is interesting to note that a new measurement module

can introduce additional requirements for event information,

as seen with TAU. A call-back-based performance interface

also allows Charm++ developers to update the call-back in-

terface and/or runtime “performance support” library without

affecting the other measurement modules.

C. Charm++ Performance Analysis with Projections

The Projections performance analysis tool is the original

tool developed for Charm++. It utilizes the performance in-

terface to collect performance measurements with two client

module1:

• summary module: profile of message data volume

• projections module: full trace-based event logs

A detailed description of how the Projections tool is used to

study the performance of, and tune an application can be found

in here [7].

Projections parses the parallel event traces to generate multi-

ple views for the analyst, who looks for performance problems

such as load imbalance, unusually long entry methods, poor

granularity, and/or communication bottlenecks. The overview

display (Figure 5 A©) shows computational density (levels

of work) versus each processor’s data. This view can reveal

possible load imbalance. The time profile view (Figure 5 C©)

presents application performance in terms of how much work

was performed for each entry method over time, summed over

all processors. This view can be used to show if work from

various phases of an application were successfully overlapped.

The histogram view shows the distribution of entry methods

based on the amount of work performed within each entry

method over a fixed time range. It helps us understand if

the application exhibits poor work grain size distributions that

could impact the effectiveness of load balancing or simply

restrict the application’s ability to scale. Lastly, the time

line view (Figure 5 B©) faithfully reconstructs exactly what

happened on each processor we wish to examine. This view

is most useful for discovering communication bottlenecks and

bad critical paths.

IV. TAU INTEGRATION IN CHARM++

While Projections provides powerful trace-based function-

ality for Charm++ performance analysis, the performance

framework gives the opportunity to extend measurement sup-

port for profiling. The integration of the TAU Performance

System R©[4] is the first demonstration of measurement ex-

tension for the Charm++ programming environment. Below

we discuss how this was accomplished and assess framework

integration aspects, such as interface overhead and needed

additions to the runtime system. However, it is also impor-

tant to evaluate the utility of alternative performance tools,

independently or together, and understand how best to apply

1Each module is activated by linking the user’s application with the
associated module library. The Projections module libraries are built by default
and the TAU module is built when charm++ is given the location of the TAU
distribution (released separately).

analysis techniques for the high-level programming paradigm.

As parallel performance tools research shows, there are strong

motivations overall for a range of techniques in performance

problem solving. A simple early reason for adding TAU

profiling support to Charm++ was to address a problem of

trace buffer overflow for long running applications. Greater

return on the investment in a flexible performance framework

can be seen in the benefits of Projections and TAU integration

for NAMD performance analysis (see Section §V).

A. TAU Parallel Profiling

TAU is an integrated parallel performance system providing

support for instrumentation, measurement, analysis, and visu-

alization for scalable parallel applications. The measurement

system is cross-platform and provides both profiling and

tracing support. Our interest for Charm++ is the integration

of parallel profiling. The TAU’s profiling model is based on

the notion that every “thread of execution” in the parallel

computation has an event stack that records the dynamic

nesting of performance events marking the begin/end of inter-

esting execution regions for measurement. Performance data

is measured for events to reflect the exclusive performance

(e.g., time) when the event was active (e.g., time spent in a

method). The event stack allows inclusive performance data

to also be kept (e.g., time spent in a method including time

spent in nested method calls). For each event, TAU can collect

performance data for execution time, hardware counters, and

other metrics.

There are other features that come with the integration TAU

profile measurements. For instance, Phase profiling enables

profiles to be captured with respect to user-specified “phases of

execution.” Also, TAU’s parallel profiling tools provide sophis-

ticated analysis, database and data mining, and visualization

capabilities. For more information on the TAU performance

system, see [4].

B. TAU Performance Module

The problem of integrating TAU profiling can be seen

as how to map the TAU profiling model onto the existing

Charm++ runtime performance framework. TAU associates for

each “thread of execution” an event stack (logically an event

tree) with a top-level event (root) which encloses all other

events. In normal TAU use, the top-level event can be thought

of as the main routine of the program. In Charm++, each

parallel process executes the scheduler as the top-level routine

and the methods are called within this process. Given the

performance events in the Charm++ performance framework,

we might then see Figure 4 as a logical event transition

diagram which could be profiled in TAU.

Following this approach, the TAU performance module was

patterned on the Projections module to capture all method

events. However, TAU requires a slightly different initializa-

tion to establish the scheduler creation as the top-level event.

We distinguish the performance when the scheduler is active

and processing messages (“Scheduler RUN” in Figure 4) as

the Main event in the TAU profile. When no methods are

executing and there are no messages to process (“Scheduler

Method

call

call

return

message
new

message
no

message available

.

.

.

Scheduler

IDLE

Scheduler

RUN

nested

methods

Figure 4. Charm++ runtime event transition.

IDLE”), performance data is associated with the Idle event.

By the nature of how scheduler transitions are observed in

the Charm++ runtime system for TAU profiling, there are

slight differences in what Main performance covers relative

to Projections. Method events appear naturally nested under

Main in a TAU profile.

TAU can observe events outside of those generated by

the Charm++ performance interface. These include user-level

events created at the application-level, as well as, library-level

events. In particular, TAU has the ability to measure MPI

events through library interposition using a separate PMPI

library included in TAU[4]. This allows the TAU performance

module to track MPI communication2 that occurs in the

Charm++ system.

C. Performance Module Overhead

Before showing the TAU module in action with Projections

on the NAMD application, it is important to test whether it

is functioning correctly and assess its implementation effi-

ciency. We created a simple benchmark program to measure

module overhead under different instrumentation conditions.

Both Charm++ and TAU have mechanisms to control the

degree of enabled instrumentation (hence active events) and

we wanted to also evaluate how overhead changed with greater

measurement activity.

Table I shows the results from the overhead tests. We

used different times bases and varied instrumentation level.

Charm++ allows you to exclude entry events from the tracing

system by use of the [notrace] entry method attribute.

TAU’s selective instrumentation works by runtime selection.

In either case the performance frameworks callback routines

are executed and they incur a small amount of overhead. See

the NULL TRACE MODULE for the overhead when tracing

framework is active but no events are actually being measured.

We also show the overhead when both the projections and

TAU modules are enabled, this is accomplished by having

each performance module called individually, and thus results

a greater amount of overhead. Projections and TAU have

comparable overheads and these are relatively small. The

availability of event selection options can also have beneficial

effects in reducing overhead. Of course this depends on the

specific Charm++ application being measured.

2available only when Charm++ uses MPI as its underlying layer for
communication

Table I
OVERHEAD BY CHARM++ PERFORMANCE MODULE

(MICROSECONDS PER EVENT)

No measurement module

Charm++ fully optizimized 0.09
Null trace module loaded 0.44

TAU module

with [NOTRACE] option 0.55
with selective instrumentation 0.74
with fastest available timers 1.03
with GET_TIME_OF_DAY() timers 1.21

Projections module

with [NOTRACE] option 0.49
with fastest available timers 1.99

TAU and Projections modules

with fastest available timers 2.52

D. Profile Comparison

It is also important to compare the performance results

from Projections and TAU. We can use the summary trace

module to record some statistics on the entry event of a small

molecular simulation included in Charm++. This will help us

to understand what portions of the application the new events

that were created by the TAU module are capturing. This

information can also validate the correctness of measurements

that the TAU module makes. Table II compares the summary

and TAU modules. The TAU module records the inclusive

percentage, exclusive time (in milliseconds), inclusive time

(in milliseconds), number of time an events is called and how

many events are call from each event as well as the inclusive

time per call (in microseconds). The summary trace module

records just the percentage of the runtime for each event and

the number of calls made to each event.

As we can see the TAU module and summary module

agree on the number of times the COMPUTE::INTERACT event

was called. And the percentage of runtime accounted to the

COMPUTE::INTERACT and the IDLE
3 events are about the

same.

V. INTEGRATED ANALYSIS OF NAMD

The power of the Charm++ performance framework be-

comes apparent when the integration of Projections and TAU

is brought to bear on the analysis of a complex Charm++

application. NAMD [5] is a parallel molecular dynamics

code designed for high-performance simulation of large bi-

molecular systems. The computationally intensive part of

NAMD involves computing interactions between atoms. Using

Charm++, NAMD parallelizes these computations using a

hybrid decomposition approach. First, NAMD spatially groups

atoms into patch cells and distributes them across processors.

This is known as the spatial decomposition technique. At the

same time, NAMD employs force decomposition by creating

“compute” objects to handle interactions between atoms of

different patches. These “compute” objects need not reside on

the same processors as patches. Bhatele et. al. [2] describes

the NAMD parallel structure in detail.

3The Idle event’s usage percentage was gathered from the Projections trace
module.

Based on this approach, the path to good performance lies

in the ability to distribute the computational workload across

the parallel machine evenly while keeping communication

overhead to a minimum. NAMD implements a load balancing

framework to redistribute the “compute” objects across proces-

sors in order to maintain good performance as atoms can move

from patch to patch over the course of a simulation run. A full-

featured but expensive load balancing strategy is initially used

in the simulation followed by strategies that refine any load

imbalance after the simulation enters a steady state.

In reality, the performance achieved in a NAMD execution

is dependent on several other factors, including the complexity

of the bimolecular system, its size, the need for load balancing,

and its cost. Some of these factors can be controlled by

configuration parameters. Clearly, performance also depends

on the parallel machine environment and its influence on the

NAMD application. Providing a robust performance analysis

of NAMD allows us to explore and understand the influence

of these various factors on performance scaling.

We begin with performance experiments for a bimolecular

model, ApoA1 which is a simulation of a solvated lipid-

protein complex in a periodic cell[11]. This is a relatively

small model of 92K atoms which will demonstrate the per-

formance impact of small computational grain at larger scale.

Figure 5 shows three performance views from a Projections

measurement of ApoA1 on a 256-processor Cray XT34. The

Projections overview (view A©) shows computational density

on each processor. The darker regions highlight periods of

lower utilization. The Projections timeline (view B©) shows

specific Charm++ activity in the zoomed time region, colored-

code to reveal execution and performance behavior. (Note,

only a small subset of processors are shown.) The Projections

time profile (view C©) gives a statistical accounting of activity

load across processors in time intervals. What these views

convey are NAMD’s performance dynamics and problematic

features, such as periods of poor utilization.

Turning to a model ten times larger, we ran the NAMD

STMV virus[6] benchmark with over 1 million atoms. To

observe NAMD scaling performance, we choose to observe

only a selected portion of the application, thereby removing

from consideration the time spent starting up the simulation as

well as writing out the results. We ran the simulation for 2000

steps during which the NAMD application turns performance

tracing on using an interface call provided by the performance

framework and then off again after an appropriate number of

time steps.

For our scaling studies, we ran experiments on 256, 512,

1024, 2048, and 4096 processors on three different machines:

BigBen, Ranger, and Intrepid5. We start with Projections to

analyze the performance. Figure 6 shows time profile (top)

and timeline (bottom) views for STMV runs on 1024, 2048,

and 4096 processors on BigBen. We see for each execution

two major periods of four timesteps in the NAMD algorithm.

The first step in this time period involves Particle Mesh

Ewald (PME) calculations where a series of FFTs are used to

4Pittsburgh Supercomputing Center’s Cray XT3 (BigBen).
5Intrepid is an IBM BG/P at Argonne National Laboratory.

Table II
COMPARISON OF TAU AND PROJECTIONS SUMMARY

TAU Name Projections

Time percent Ex. msec In. msec Call Subrs In. usec/call Usage percent Call

100.0 0.005 1043802 1 1 1043802042 .TAU application N/A N/A

100.0 1947 1043802 1 272025 1043802037 Main N/A N/A

88.2 919591 920479 16856 12040 54608 Compute::interact 88.22 16856

7.7 80344 80344 36214 0 2219 MPI_Recv() N/A N/A

2.1 21434 21877 1456 100371 15025 Idle 2.008 N/A

CA B

Figure 5. Projections overview A©, timeline B©, and time profile C© visualizations of a similar
time region of a NAMD ApoA1 simulation on 256 processors of PSC’s Cray XT3.

2048 processors 4096 processors1024 processors

Figure 6. Projections visualization of a NAMD stmv simulation on PSC’s Cray XT3
demonstrating the effects of scaling on NAMD’s performance structure.

compute long-range electrostatic forces. PME computations in

this experiment happens once every four timesteps and takes

place in parallel on a subset of processors. The different colors

indicate entry methods call during the PME time step: red

- force integration, green/orange/yellow - FFTs along X/Y/Z

planes with “pencil” parallelism. Three other times steps are

apparent, but without PME calculations. There are two shades

of blue, one for enqueueWorkA and enqueueWorkB. Notice

how the FFT work is being overlapped6.

There are obvious changes in the shape of the displays as

scaling occurs. The troughs between each time step becomes

deeper and wider. Also, the PME work spreads out and takes

longer relative to a time step. This causes other computational

dependencies to be pushed out, resulting in a utilization

depression prior to the second time step.

While Projections provides detailed views of a NAMD

execution, we can use TAU profiles to see relative changes

across executions. Figure 7 show a relative breakdown of

mean performance for different NAMD events for Intrepid

6Although it appears as if there is less PME activity in the 4096 timeline
display, it is an artifact of how the graphics are generated by Projections. Here
only every 409th processor is shown. Some processors involved in the PME
work are probably left out.

and Ranger from 64 to 4096 processors. It is interesting to

see the relative performance effects with scaling and between

the two systems, especially with respect to Idle (red) and Main

events. Increasing Idle percentage signifies lower utilization,

whereas as increasing Main percentage is capturing increased

communication overheads. We can probe further in the profiles

and compare scaling results for Ranger runs. Figure 8 shows

that while computational work time is decreasing, scaling

inefficiencies are being encountered.

Figure 9 compares the two systems on a 1024 NAMD

execution. Oddly, the execution times for the computational

work is opposite from what we expect. Intrepid’s PowerPC

450 cores are roughly three times slower than Ranger’s AMD

Opterons (3.4 GFlops/core versus 9.2GFlops/core).

We initially suspected that excessive MPI communication

overhead is showing up in the measurements of the compu-

tational events. An MPI measurement (not shown) confirmed

this was not the case. However, by observing the “number

of calls” metric recorded by the TAU profile (Figure 10), we

noticed a ten-fold difference between the Intrepid data and

Ranger data. This led us to check exactly how many NAMD

time steps were actually being traced. It was discovered we

were recording performance data for 1,000 steps on Ranger

Figure 7. Relative Runtime Breakdown on Intrepid and Ranger showing the mean time across all processors which range from 126 to 4096.
Time spent in Idle is represented in Red, time spent in Main is represented in Blue.

Figure 8. TAU profile showing scaling effects on the average total exclusive
time per processor for the most time-consuming NAMD stmv events on
Ranger.

and only 100 steps on Intrepid. With this information, the

numbers now look reasonable – Ranger is taking 3 times

longer to do 10 times more work. This performance reflects

the fact that Ranger’s processors are more powerful than

Intrepid’s.

Another piece of information revealed that the Ranger

simulation became idle three times more often than Intrepid

over the same number of steps. This appears to be in line

with the expectation that the overlap of computation with

communication will be better on Intrepid than on Ranger,

again due to the differences in processor speeds. The basis

for this expectation lie with the fact that Intrepid has slower

processors than Ranger but possesses a slightly faster network

interface.

We round off the study by quantifying the overhead the

performance modules have on NAMD. We measured the in-

strumentation overhead on Ranger from 64 to 4096 processors.

Figure 11 shows the overhead for NAMD using both the

TAU module and the projections + summary module (in each

case the projections trace buffer is set so that no overflow

Figure 9. TAU profile showing the average total exclusive time per processor
for the most time-consuming NAMD stmv events executed on Intrepid against
Ranger.

Figure 10. TAU profile showing the average number of calls per processor
for the most time-consuming NAMD stmv events executed on Intrepid against
Ranger.

would occurred while NAMD was running.). We see that at

large scale (4096 processors), where the granularity of work

becomes small enough, the modules incur a nontrivial amount

of overhead. While 10% overhead is within the range of most

performance experimentation, further research could target

overhead reduction in the context of this framework.

n64 n128 n256 n512 n1024 n2048 n4096

Number of Processors

O
v
e
rh

e
a
d
 (

%
 o

f
R

u
n
ti
m

e
)

0
2

4
6

8
1
0

TAU

Projections

Figure 11. Instrumentation overhead for TAU and Projections.

VI. CONCLUSION AND FUTURE WORK

The design of the high-level Charm++ language system

includes a novel performance framework based on an open

call-back interface which can convey Charm++ runtime events

to performance measurement modules. We integrated the TAU

performance system in Charm++ using the framework to

demonstrate the power of the interface to extend performance

experimentation capabilities. TAU complements the Projec-

tions trace-oriented and summary analysis with a parallel

profiling perspective that exposes performance characteristics

within and between application runs. We showed how Pro-

jections and TAU can be used together to investigate NAMD

scaling performance on Linux and IBM platforms.

With the current implementation, we are in an excellent

position to begin applying more of TAU’s advanced pro-

filing features in Charm++ performance analysis scenarios.

For instance, TAU allows instrumentation of events at other

levels not exposed by the call-back interface, including user-

level code and MPI. These events will be captured in the

profiles allowing better understanding of event relationships.

Call-path profiling can be turned on in TAU to give further

elaboration. Of particular interest is the integration of TAU’s

phase profiling. We should be able to use this effectively to

separate performance profiles for different execution periods,

both functional (e.g., load balancing vs. computation) and

temporal (e.g., utilizing the time interval trigger for generating

the Projections time profile.)

In some cases, more thought will be required to further

integrate TAU and Charm++. Charm++ can execute in more

sophisticated ways using multi-threading, process migration,

and dynamic adaption. The performance framework will likely

need refinement to support additional requirements placed

on the performance modules. For instance, TAU can support

shared-memory multi-threading already, but it is important to

use the thread abstractions in Charm++ most appropriate for

performance analysis. In general, the goal is to continue to

support performance problem solving in association with the

high-level programming system.

Acknowledgments

NAMD was developed by the Theoretical and Computational
Biophysics Group in the Beckman Institute for Advanced Science
and Technology in collaboration with members of the Parallel Pro-
gramming Laboratory, both at the University of Illinois at Urbana-
Champaign. Access to the Ranger system at the University of Texas
at Austin and BigBen at the Pittsburgh Supercomputing Center
was granted through the NSF’s TeraGrid. Access to Intrepid was
granted by Argonne National Lab. The research was supported by
the National Science Foundation, Software Development for Cyber-
infrastructure (SDCI) (Grant No. NSF OCI-0722072). The authors
thank Abhinav Bhatele, Philip Blood and Eric Bohm for sharing their
expertise on running NAMD.

REFERENCES

[1] V. Adve, J. Mellor-Crummey, M. Anderson, J.-C. Wang, D. Reed, and
K. Kennedy. An integrated compilation and performance analysis envi-
ronment for data parallel programs. In Supercomputing ’95: ACM/IEEE

Conference on Supercomputing, 1995.
[2] Abhinav Bhatele, Sameer Kumar, Chao Mei, James C. Phillips, Gengbin

Zheng, and Laxmikant V. Kale. Overcoming Scaling Challenges in
Biomolecular Simulations across Multiple Platforms. In Proceedings

of IEEE International Parallel and Distributed Processing Symposium

2008, 2008.
[3] F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony,

and B. Mohr. Implementing a parallel c++ runtime system for scalable
parallel systems. In Supercomputing ’93: ACM/IEEE Conference on

Supercomputing, pages 588–597, November 1993.
[4] A. Malony et al. Evolution of a parallel performance system. In

Tools for High Performance Computing, pages 169–190. Springer Berlin
Heidelberg, 2008.

[5] J. Phillips et al. Scalable molecular dynamics with namd. Journal of

Computational Chemistry, 26(16):1780–1802, October 2005.
[6] Peter L. Freddolino, Anton S. Arkhipov, Steven B. Larson, Alexander

McPherson, and Klaus Schulten. Molecular dynamics simulations of the
complete satellite tobacco mosaic virus. In Structure, volume 14, pages
437–449, 2006.

[7] L. Kale, G. Zheng, C.W. Lee, and S. Kumar. Scaling Applications to

Massively Parallel Machines Using Projections Performance Analysis

Tool, volume 22 of 3, pages 347–358. Elsevier Science Publishers B.
V., February 2006.

[8] L. V. Kale and Sanjeev Krishnan. Charm++: Parallel Programming with
Message-Driven Objects. In Gregory V. Wilson and Paul Lu, editors,
Parallel Programming using C++, pages 175–213. MIT Press, 1996.

[9] Laxmikant V. Kale, Eric Bohm, Celso L. Mendes, Terry Wilmarth, and
Gengbin Zheng. Programming Petascale Applications with Charm++
and AMPI. In D. Bader, editor, Petascale Computing: Algorithms and

Applications, pages 421–441. Chapman & Hall / CRC Press, 2008.
[10] B. Mohr, A. Malony, S. Shende, and F. Wolf. Design and prototype

of a performance tool interface for openmp. In Los Alamos Computer

Science Institute (LACSI) Symposium, October 2001.
[11] James C. Phillips, Willy Wriggers, Zhigang Li, Ana Jonas, and Klaus

Schulten. Predicting the structure of apolipoprotein a-i in reconstituted
high density lipoprotein disks. In Biophysical Journal, volume 173,
pages 2337–2346, 1997.

[12] K. Shanmugam and A. Malony. Performance Extrapolation of Parallel
Programs. In International Conference on Parallel Processing (ICPP

’95), pages II:117–II:120, August 1995.
[13] S. Shende and A. Malony. The tau parallel performance system.

International Journal of High Performance Computing Applications,
20(2):287–331, 2006.

[14] C.-W. Tseng, S. Hiranandani, and K. Kennedy. Preliminary experiences
with the fortran d compiler. In Supercomputing ’93: ACM/IEEE

Conference on Supercomputing, pages 338–350, 1993.

