
Design and Implementation of a Hybrid Parallel
Performance Measurement System

Alan Morris, Allen D. Malony, and Sameer Shende
Performance Research Laboratory

Department of Computer and Information Science
University of Oregon
Eugene, OR 97403

{amorris,malony,sameer}@cs.uoregon.edu

Kevin Huck
Barcelona Supercomputing Center

Centro Nacional de Supercomputación (BSC/CNS)
C/ Jordi Girona 29, Barcelona 08034, Spain

kevin.huck@bsc.es

Abstract—Modern parallel performance measurement
systems collect performance information either through probes
inserted in the application code or via statistical sampling.
Probe-based techniques measure performance metrics directly
using calls to a measurement library that execute as part of
the application. In contrast, sampling-based systems interrupt
program execution to sample metrics for statistical analysis
of performance. Although both measurement approaches are
represented by robust tool frameworks in the performance
community, each has its strengths and weaknesses. In this
paper, we investigate the creation of a hybrid measurement
system, the goal being to exploit the strengths of both systems
and mitigate their weaknesses. We show how such a system
can be used to provide the application programmer with a
more complete analysis of their application. Simple example
and application codes are used to demonstrate its capabilities.
We also show how the hybrid techniques can be combined
to provide real cross-language performance evaluation of
an uninstrumented run for mixed compiled/interpreted
execution environments (e.g., Python and C/C++/Fortran).

Keywords: parallel, performance, measurement, analysis,
sampling, tracing, profiling.

I. INTRODUCTION

In the field of scalable parallel performance tools there
are differences of opinion about how the performance of
a running program should be observed. The nature of the
differences is technical, but the opinions are more philosoph-
ical, metaphysical, and even religious. While healthy debate
is alive and well in the performance tools community, it has
not led to a consensus on performance observation, nor is
it likely to. Rather, performance tool research and devel-
opment has somewhat polarized itself in camps based on
two general performance measurement strategies: sampling-
based or probe-based. Sampling-based measurement (SBM,
a.k.a. statistical sampling) determines the performance of
an application’s execution by statistical observation via in-
terrupts. How interrupts are generated and what performance
information can be obtained distinguishes two SBM types:
event-based sampling (EBS) and instruction-based sampling

(IBS)1. In contrast, probe-based measurement (PBM, a.k.a.,
direct measurement) instruments the application code at
specific points to collect performance data at the time the
instrumented measurement code (the “probe”) is executed.
Once performance data is collected, application execution
continues.

The main technical difference between SBM and PBM is
clear. The controversy comes from the set of assumptions
each strategy makes concerning accuracy and intrusion.
SBM can measure and attribute performance information
accurately as long as 1) code segments are executed re-
peatedly, 2) the execution is sufficiently long to collect a
large number of samples, and 3) the sampling frequency is
uncorrelated with the execution behavior. In short, SBM is
grounded in statistical sampling theory. On the other hand,
PBM can measure performance information accurately as
long as 1) the overhead of executing the measurement code
is sufficiently small relative to the size of the entity being
measured, and 2) the intrusion due to measurement overhead
in one thread does not affect the performance of any other
threads. In short, PBM is grounded in measurement theory.

These two theoretical perspectives draw the dividing lines
for parallel performance tools. The SBM camp argues that
instrumentation is undesirable, that sampling results in much
lower overhead and distortion, and that only sampling can
observe fine-grained performance. The PBM camp argues
that inaccuracies in statistical measures are to be avoided,
that instrumentation is necessary for obtaining some perfor-
mance information, and that certain parallel interactions can
only be observed and understood with direct measurements.
Of course, the reality is that there are no truths in parallel
performance observation and each technique has its ad-
vantages and disadvantages, strengths and weaknesses. The
proper performance tool engineering response then would be
to develop a combined measurement approach. Indeed, the

1Instruction-based sampling is built on an event-based sampling sub-
strate.

opportunity has been there for quite some time. However,
given the complexity of performance tool development for
scalable parallel platforms, it is understandable that this has
not been previously pursued.

In this paper we introduce a parallel performance obser-
vation strategy based on a hybrid measurement framework
combining probe-based measurement, based on the TAU
performance system [1] technologies, and sampling-based
measurement, using technologies from HPCToolkit [2] and
others. Our goal is to demonstrate how an integrated mea-
surement approach can be used to gain advantages of dual
techniques and deliver effective utility in practice. Section II
describes our approach to the design of the hybrid measure-
ment system and includes a description of our prototype
implementation. In Section III, we describe approaches to
the analysis of the output from the hybrid measurement
system, including both profile and trace analysis. Some
simple examples are used to highlight the capabilities of
the hybrid measurement system in Section IV. Section V
covers the use of the prototype on real world codes at
larger scale. Section VI compares our approach with related
work. Finally, future directions of this work along with final
remarks are detailed in Section VII.

II. MEASUREMENT SYSTEM DESIGN

The overall design of a hybrid measurement system will
include both probe-based and sampling-based measurement
components with integration points between them. A rea-
sonable starting point is to just use two tools, one of each
type, at the same time. For instance, we could instrument a
program with TAU and execute it with a statistical profiler
turned on. Thus, one of the key questions of a hybrid
measurement design is how to gain measurement synergy
through more tightly coupled integration.

The design strategy we adopted in our hybrid measure-
ment system is to have the direct measurement system runs
as before, measuring performance characteristics of regions
of user code, or on abstract regions/phases/data. Meanwhile,
the sampling subsystem is fully active and receives interrupts
from the system, either based on timer signals or hardware
counter overflows. Now, it is what happens at points where
the hybrid system gains control – probe and interrupt – that
represent integration opportunities. For instance, at measure-
ment start and stop points, information could be passed to
the sampling subsystem to perform necessary bookkeeping.
At interrupt sampling points, information could be retrieved
from the direct measurement subsystem to better qualify the
execution states.

Our hybrid measurement system, called TAUebs, inte-
grates the TAU performance system with event-based sam-
pling measurement. The internal sampling technology in
TAUebs is built upon previous work by several different
research groups. Hardware counter sampling and measure-

ment is made possible by the PAPI project [3]. The timer-
based sampling capability is borrowed from the PerfSuite
project [4]. Callstack unwinding on fully optimized codes
is provided by an adaptation of the HPCToolkit [2] toolset
developed at Rice University. The instrumentation and direct
measurement infrastructure is based on TAU, which is also
the basis for the integration. It should be noted that a hybrid
measurement system could also be based off of a sampling
tool with instrumentation/measurement technology folded in
from other tools. We chose the former for our familiarity
with the code and methodology of the TAU performance
system.

In a sampling-based measurement tool, the interrupt han-
dler gathers information for a sample and either updates an
aggregated data structure, such as a program counter (PC)
histogram for online profiling, or writes the information to a
trace. The sample information contains PC context data and
performance data. The PC context can include the PC calling
path obtained by unwinding the calling stack frames. In
our hybrid scheme, there is additional information available.
TAUebs can capture the active context as seen by direct mea-
surement system by interrogating TAU’s event stack (we call
this the TAU context). The PC context and the TAU context
may share entries when routines have been instrumented.
However, when non-routine level instrumentation is inserted
in user codes (e.g., loops, phases, abstract user-level events),
these events may only be visable in the TAU context and
can be stored with the sample.

When recording both the PC calling context and the TAU
context at a sample point, there is a possibility that the
two will overlap. One objective of a hybrid approach is
to use direct measurement for events where probe-effects
are minimal and sampling-based measurement for small-
grained observation. The appearance of an overlap affords
an opportunity to optimize retention of context information.
One approach we attempted was to simply store both
contexts and attempt to resolve them post-mortem. This has
a higher overhead due to the full unwinding of the callstack
beyond the overlap point. To improve speed, we perform
some bookkeeping at region start/enter hooks by walking
back a few steps of the program counter callstack. We store
this callstack snippet temporarily for the sampling subsystem
to compare against. The sampling subsystem can then stop
walking the stack when it matches against any address in
the stored snippet. We found that we needed to store a
small section of addresses in the snippet rather than a single
address due to the fact that our instrumentation hooks are
encountered at different levels based on the instrumentation
language and layer (e.g., MPI wrapper library).

The interrupt context is also an opportunity to store
additional information from the direct measurement tool
such as the delta time to the start of the currently active TAU
event, which can be used for code folding analysis[5]. We

can also store delta-end values by doing some bookkeeping
at direct-measured event stop hooks, when a sample has
been captured during the event’s lifetime.

The output of our hybrid system is the standard pro-
file/trace output from the code instrumented and measured
with TAU, as before, plus the new data from the sampling
subsystem. Our current approach is to output the samples
as traces where each record contains a timestamp, a key to
the currently active TAU context, and a key to the sampled
callstack. Additionally, we measure the actual values of
hardware counters and store them with each record, if
desired. TAUebs also have record holders for delta start and
stop values for each metric, if desired.

One of the more powerful capabilities of the TAUebs
hybrid measurement system is the capability to fuse a
program counter callstack view with an interpreted lan-
guage’s internal callstack. Typical sampling-based tools such
as HPCToolkit are “language independent” because they
operate on application binaries rather than source code. For
programming languages that are compiled to machine code
with debugging information, this works just fine because that
information can be used to map instructions back to appli-
cation source code. However, attempts to use this approach
with a mixed Python/C/Fortran code or Java/JNI code will
fail because the callpaths shown by the performance tool will
contain references to the internal implementation routines of
the interpreter or virtual machine. This data is nearly useless
and most likely meaningless to the application programmer
whose interpreted code regions are not shown in the reported
performance data.

Probe-based measurement systems can easily use the
hooks provided by interpreters and virtual machines such as
Python and Java to generate events for direct observation.
Indeed, they generally do so without any modifications to
user’s source code. Using our hybrid approach, we can
measure both interpreted code and uninstrumented, fully
optimized C/C++/Fortran libraries in the same execution.

III. DATA ANALYSIS

Our initial prototype system processes the EBS traces
in two distinct ways: merged profile creation and trace
conversion.

A. Merged profile creation
In the profile merge mode, the ParaProf parallel profile

viewer reads the TAU measured profile and then augments
it with data from the EBS trace. The traces contain both the
TAU event stack and the callstack obtained through program
counter stack walking. These callstacks are merged and the
data is stored into the ParaProf profile. The basic idea behind
the combination of the two types of profiles is a simple
count of the number of samples encountered for a given
TAU event path (i.e., callpath). We know the total overall
time spent in a given TAU callpath from the standard profile.

If ten samples occurred while this callpath was active, we
can distribute the time associated with the callpath among
the 10 samples. For example, if eight of the samples were
from one particular location and two of them from another,
we would assign 80% of the time to the first location, and
20% to the second.

When dealing with the program counter callstacks, we
will have intermediate parent nodes between the location
where the sample took place and the currently active TAU
callpath. These intermediate nodes will be inserted into the
profile and be assigned the appropriate amount of inclusive
time. They will not have any exclusive time associated
because no samples occurred for that location. We have
multiple methods for handling the intermediate parents. In
one mode, we can treat the translated addresses as singular
locations that represent the callsite of the calling context.
The callsite is distinguished by the fact that it describes
where in the parent routine, the call took place. Instead of
only showing that routine A called routine B called routine
C and the sample occurred at line 45 of routine C, we could
show routine A calling routine B at line 23 of routine A,
calling routine C at line 36 of B, calling C, and the sample
occurring at line 45 of C. Another mode of interpreting the
data is to not use the callsites, but just use the routine name
(and possibly the filename as well, which will not change for
any location in the routine). The advantage of this approach
is that it aggregates all the callsites for a particular function
so that the user can see the total amounts across them all.
It also makes tree-like callpath display easier to navigate
since it avoids the proliferation of intermediate nodes. We
have the capability to perform both kinds of interpretation
in our processing.

It should be noted that the amount of performance data
from direct measurement or sampling can be adjusted from
one side of the measurement spectrum to the other. At
one extreme, we could use no direct measurement, or
instrument only ”main” with a singular top level timer. Here
the processed data would equate to a sampling-only based
tool where the overall time is divided amongst the samples
encountered over the entire execution. At the opposite end
of the spectrum, all user routines could be instrumented, and
the sampling data would provide only the fine-grained line
number information within routines. No single approach is
necessarily better or worse, but should instead be adapted
to the situation.

B. Trace conversion
The other method of trace processing that we have de-

veloped in our prototype implementation is that of an EBS
trace to OTF converter. The objective here is to visualize
the EBS trace data in a powerful trace visualizer such as
Vampir [6]. The challenge here is to convert the samples
in the trace to an enter/exit style trace that still retains the
essence of the collected data.

We perform the trace conversion using a tool that main-
tains a call stack at any given point. It processes the trace,
one sample at a time and after merging the TAU event
callpath with the program counter callstack given for each
sample, it inspects the differences in the resolved callpath.
If the resolved callpaths are the same, then current callpath
for the trace is unchanged for that timestamp. Because we
collect PAPI metrics at each sample point (whether we
are overflowing on a PAPI metric or not), we also write
the values of the PAPI metrics into the trace for hardware
counter analysis when looking at the trace data in Vampir.

Figure 1 shows the display of a simple EBS trace in
Vampir. The dynamic callstack is at the top with rates graphs
of floating point instructions and L1 data cache misses
below. The code performs two matrix multiplications: one
using improper loop indexing (slow matmult) and one using
proper index ordering (fast matmult). The floating point rate
and the L1 data cache miss rate show the difference. We can
also see that the proper loop indexing runs for less time (i.e.
shown horizontally) for the same amount of work.

IV. DEMONSTRATION

In order to demonstrate some of the capabilities of the
hybrid measurement system, we show some profile data
from a simple example. The example is a mixed C and For-
tran toy example where python code calls a matrix multiply
operation implemented in C. With the hooks provided by
the direct measurement system, we will show that the hybrid
approach presents the user with the most relevant picture of
the performance data. This example uses no instrumentation,
but instead, the python performance interface to gain hooks
into the system. So no code modifications or recompilations
were necessary, only a simple wrapping of the invocation to
start the profiler.

Figure 2 shows the callstacks from sampling-only based
measurement and probe-only based measurement. The user’s
Python routines and filename do not appear since they
are invisible to the measurement tool. Instead, the user is
presented with a very large callstack tracing through the
Python runtime system. The measurement only tree on the
right shows what a direct measurement system sees without
the use of any instrumentation on the C-based library used
in the example. We see only the user’s Python routines.

Figure 3 shows the combined hybrid approach where the
two callstacks are merged and resolved at the correct point
and only the user’s code is seen. Routine nesting is exactly
as the user expects.

V. EXAMPLES

We have tested our prototype hybrid measurement system
against a number of real world codes on a variety of plat-
forms, including leadership class machines. We picked three
to demonstrate different aspects of the hybrid measurement
system.

Tool Instrument Sample Period Runtime Overhead
None – – 654s –

HPCToolkit – 1/2000s 674.21s 20.21s (3.1%)
HPCToolkit – 1/1000s 682.97s 28.97s (4.4%)
HPCToolkit – 1/500s 704.06s 50.06s (7.7%)

TAU Main – 654.40s 0.40s (0.1%)
TAU Main 1/2000s 672.55s 18.55s (2.8%)
TAU Main 1/1000s 682.23s 28.23s (4.3%)
TAU Main 1/500s 701.23s 47.23s (7.2%)
TAU Limited – 663.05s 9.05s (1.4%)
TAU Limited 1/2000s 686.61s 32.61s (5.0%)
TAU Limited 1/1000s 697.15s 43.15s (6.6%)
TAU Limited 1/500s 714.91s 60.91s (9.3%)

TABLE I
RUNTIMES AND OVERHEADS FOR MADNESS

A. MADNESS
To evaluate our ability to handle codes that are tradition-

ally difficult to instrument either by source instrumentation,
compiler-inserted instrumentation, or binary instrumenta-
tion, we chose to look closely at MADNESS [7], a quantum
chemistry application. MADNESS makes heavy use of C++
templates, new C++ features, assembler regions/files, and
a significant amount of code in header files, all making
source instrumentation challenging. The use of compiler
instrumentation is difficult at this point since compiler
support for selective instrumentation is very limited and a
fully instrumented execution with GNU compiler instrumen-
tation incurred an overhead of 2901% due to the numerous
getter/setter routines and other small routines. Using source
based instrumentation with MADNESS was challenging,
but once performed, using selective instrumentation, we
saw more reasonable overheads of 4.6% to 6%. By using
selective instrumentation, we have introduced potential blind
spots, though they are known blind spots.

Using the hybrid measurement system, we can measure
these sections of uninstrumented code with the sampling
subsystem. This will also allow us to see inside any unin-
strumented math libraries used.

We ran MADNESS in SMP mode using 8 threads on
an 8-core 2.3Ghz machine. We experimented with different
source instrumentation levels and different sampling inter-
vals of 500 samples per second (1/2000s), 1000 samples per
second (1/1000s) and 2000 samples per second (1/500s). We
compared the overheads to HPCToolkit’s hpcrun with the
same sampling rates.

Table I shows the runtimes and overheads for MADNESS.
The overheads are comparable to that of HPCToolkit. The
instrumentation column represents the level of instrumen-
tation present. Where a double dash is in the column, it
is not applicable. For TAU, we have either Main which
refers to main-only instrumentation, which is effectively
the same as no instrumentation (only main is instrumented)
and limited instrumentation which refers to the automatic

Fig. 1. Vampir display of EBS trace converted to OTF, two PAPI counter rates are shown for two different matrix multiply routines.

Fig. 2. Call trees from sampling-only (left) based and probe-only (right) based measurement.

selective instrumentation done by TAU. We can see that the
TAU EBS approach is a bit more simplistic and at a low core
count generating minimal trace data with low sample rates,
the overhead is less than that of HPCToolkit, due primarily
to the fact that we are doing very little processing at runtime,
only writing a trace record. When TAU instrumentation is
used, there is more work to do, and we incur the overhead

of the measurement probes. These numbers are higher than
HPCToolkit, but are still comparable.

An eleven minute run of MADNESS on 8 threads using
1/1000s sampling period generated approximately 67MB of
trace data per thread, and a callpath profile of about 250KB.
Figure 4 shows the combined profile data for thread 0.
The first four routines in the tree are standard instrumented

Fig. 3. Call tree using hybrid measurement approach, representing the user’s view of both their Python and C code.

TAU events. The nodes labeled INTERMEDIATE are those
uninstrumented routines between the sample and the nearest
instrumented region. In this view, we see a significant
amount of time in .TKLOOP16 from mtxm gen.h, which
is an assembly file that the TAU source instrumentor cannot
instrument. In Figure 5, we can see the trace data visualized
in Vampir, showing a thread of execution for a small segment
of the trace. The routines are grouped and colored based on
the filename. Along the bottom, the rate of floating point
instructions is seen.

B. GPAW

Our simple example showed the potential power of our
method with mixed Python and C environments. For a real
world example of this approach, we applied our prototype
to GPAW (Grid-Based Projector-Augmented Wave Applica-
tion) [8]. GPAW is a DFT-based code that is built on the
projector-augmented wave (PAW) method and can use real-
space uniform grids and multigrid methods.

We did not instrument GPAW using source or binary
instrumentation. Instead, we used a simple wrapper to start
the Python profiling interface and used LD PRELOAD to
capture MPI events. In Figure 6, we can see the resulting
combined profile for node 0 from a 128 processor MPI
parallel run. In the figure, we can see both user Python
methods near the top of the calltree and lapack C routines
at the bottom of some callpaths.

C. FLASH

FLASH [9] is a parallel adaptive-mesh multi-physics
simulation code designed to solve nuclear astrophysical
problems related to exploding stars. The FLASH code solves
the Euler equations for compressible flow and the Poisson
equation for self-gravity.

Description Procs Runtime Overhead
uninstrumented 240 636s –
TAU measurement 240 648s 12s (1.9%)
TAU measurement and sampling 240 672s 36s (5.6%)
uninstrumented 484 674s –
TAU measurement 484 689s 15s (2.2%)
TAU measurement and sampling 484 713s 39s (5.8%)
uninstrumented 1004 649s –
TAU measurement 1004 670s 21s (3.2%)
TAU measurement and sampling 1004 697s 48s (7.4%)
uninstrumented 2176 656s –
TAU measurement 2176 695s 39s (5.9%)
TAU measurement and sampling 2176 699s 42s (6.6%)
uninstrumented 4416 669s –
TAU measurement 4416 729s 60s (9%)
TAU measurement and sampling 4416 771s 102s (15.2%)
uninstrumented 8192 729s –
TAU measurement 8192 847s 118 (16.2%)
TAU measurement and sampling 8192 863s 134s (18.4%)
uninstrumented 15812 781s –
TAU measurement 15812 997s 216s (27.7%)
TAU measurement and sampling 15812 1144s 363s (46.5%)

TABLE II
RUNTIMES AND OVERHEADS FOR FLASH

We ran FLASH on Intrepid, an IBM BlueGene/P at the
Argonne Leadership Computing Facility, on up to 15,000
cores to investigate scaling issues of our method.

Table II shows the resulting perturbation of our current ap-
proach. It is important to note that this does not include the
majority of I/O metadata operations such as file open/close
that can take significant amounts of time if one file is written
per processor on high core counts. The numbers presented
here represent only the increase in time for the actual
application runtime. It is clear that in the high core count
cases, the tracing we are performing is having a significant
impact. Further work needs to be done to determine the best
course of action to remedy this.

Fig. 4. MADNESS combined probe and sampling based profile. We see a hot path going down to some sampled routines implemented in assembly
from top level source events with probes.

Fig. 5. MADNESS Trace for one thread shown in Vampir. Routines are colored by filename and floating point counter rates are shown at the bottom.

ParaProf’s calltree viewer can also show reverse call trees.
For FLASH, we can see the reverse calltree in figure 7,
showing that some of the top routines were those sampled
from internal routines in the MPI communication library.
Using the reverse calltree, we can partition that time out, in
this case about 53 seconds, which is almost entirely from
MPI Barrier calls. Of those MPI Barrier calls, about half
the time was under the region *** custom:guardcell Barrier.
FLASH is internally instrumented with region timers that
can be configured to map to TAU timers, and those are

what we see. These regions do not correspond to routine
names, and so a sampling-only tool would not able to see
them. Figure 8 shows trace data for a 240 processor run,
zoomed to show about 40 seconds of execution time on 60
of the MPI ranks. The events are colored according to the
filename that each routine is from. Patterns of execution
are clearly seen. The alternating behavior seen between
consecutive nodes is due to the different internal routines
of the MPI implementation. We ran FLASH in dual mode,
meaning that two MPI ranks were assigned to each node,

Fig. 6. GPAW combined profile. We can see the application python routines call down into an uninstrumented lapack library.

Fig. 7. Reverse calltree of FLASH combined profile showing the probe-based parent routines in the MPI Wrapper library for internal MPI implementation
routines.

the MPI implementation has specialized routines for each
mode and global synchronizations make use of them. The
trace visualization and profiles shows this clearly.

VI. RELATED WORK

Our hybrid measurement system inherits ideas and build-
ing blocks from a rich parallel performance tools com-

Fig. 8. EBS trace data converted to OTF, shown in Vampir for FLASH
running on 240 processors (60 shown). Each horizontal line represents an
MPI rank. Routines are colored by filename.

munity. Related research is distinguished by the choice
of measurement technique – sample-based or probe-based
measurement – as well as by how performance data is
captured – profiling or tracing.

As described in the introduction, sample-based measure-
ment techniques are of two general types: event-based sam-
pling (EBS) and instruction-based sampling (IBS). When
an “event” (e.g., timer, performance counter overflow) in
EBS occurs, it triggers an interrupt, giving the measurement
system an opportunity to sample the program counter (PC).
The PC is then correlated with the event and the perfor-
mance data collected is defined by the event properties. For
instance, the classic Unix gprof [10] tool is based on timer-
generated interrupts, allowing a performance histogram of
time spent in code regions to be calculated. EBS tools such
as PerfSuite [11] can use other events (e.g., floating point
counter overflow) to observe different performance aspects.
It is also possible to interrogate the callstack at the time of
interrupt to determine the routine calling path. For instance,
Open|Speedshop [12] (O|SS) is a measurement tool that
utilizes the libunwind1 technology for callstack walking.
The StackWalkerAPI [13] is another library developed for
this purpose. HPCToolkit [2] and the Sun Performance
Analyzer are EBS measurement tools with stack walking
mechanisms built in. Our approach utilizes HPCToolkit’s
support, but we have tested with libunwind and StackWalk-
erAPI.

Instruction-based sampling is also interrupt-driven. In
addition to sampling the PC or calling stack, IBS uses

hardware support to follow the current (next) instruction
through the pipeline, collect information about its execution,
and pass this data back to the interrupt handler. The IBS
technique was introduced with the ProfileMe [14] tool for
use with in the Digital Alpha 21264 microprocessor. HPC-
Toolkit, the AMD CodeAnalyst [15], and the Memphis [16]
measurement tool all use IBS support in modern processors.
IBS can be beneficial in understanding memory-related
performance problems. Although our hybrid measurements
does not use IBS presently, we do not see any technical
limitations to do so in the future.

EBS and IBS measurements are most often collected in
profiles calculated during execution for each thread. Of the
tools listed above, only HPCToolkit, the Sun Performance
Analyzer, and Memphis will collect time-sequenced samples
for post-processing. Our approach shares this features for
event-based sampling. However, none of these tools gath-
ers probe-based measurements, except in the case of MPI
communication events in the Sun Performance Analyzer.

In contrast to sample-based measurement, code instru-
mentation is required for probe-based measurement. This
allows for direct measurement of performance between
code points using timers or hardware counters. Typically,
application and communication routines are instrumented.
Probe-based measurements are captured in both profile
and trace form. Vampir [6] provides MPI communication
measurement using the PMPI interposition library, as does
O|SS, Sun Performance Analyzer, and several other tools.
Scalasca [17] implements both scalable profiling and trac-
ing, but has no support for sampling.

While some of the tools above support both sample-
based and probe-based alternatives (e.g., O|SS), none of
them implement a hybrid measurement capability like what
we report in this paper. The mpiP tool implements an
different hybrid technique for dynamic statistical profiling
of communication activity by sampling probe-based mea-
surements of MPI operations. Paraver [18] is developing a
novel technique for EBS tracing that allows high-resolution
performance analysis of routine execution using sampling,
folding those samples along iteration boundaries [5]. This
technique allows for detailed analysis of behavior in between
instrumentation boundaries, with low measurement over-
head. The inspiration for our hybrid measurement research
came from Paraver’s approach. In fact, we are working with
the Paraver team to capture EBS traces that are compatible
with their analysis tools.

VII. CONCLUSIONS AND FUTURE WORK

We have developed a hybrid parallel performance mea-
surement system integrating probe-based and sampling-
based strategies, and ideas and technologies from the TAU
performance system, PerfSuite, HPCToolkit, and Paraver.
Our initial TAUebs prototype has been tested on multiple

platforms with simple examples and advanced application
codes at small and relatively large scale. However, we
limited our current solution in several aspects. We made a
conscious decision to only implement EBS tracing because
it was more challenging and because it targeted requirements
for our interaction with the Paraver team. Though we have
demonstrated that this approach has a low overhead, there
are many reasons why the creation of a runtime hybrid
profiler for the sampling is desirable. The creation of trace
files can be problematic for systems without the necessary
I/O infrastructure and the post-processing of large numbers
of these files can be time consuming. A runtime aggregator
would save disk space and post-mortem workflow time
for the end user for those cases where traces are not
needed or desired. Although a runtime profiler based on
hybrid measurement is not necessary the same as a pure
statistical profiler, it would make sense to build on the work
previously done by other groups. One of the main problems
to overcome is the scalable data structure required for run-
time fine-grained profile generation. For instance, we could
borrow or adapt the calling context tree (CCT) approach
in HPCToolkit or the work from SGI/France on distributed
hash table (DHT) profile memory allocation being integrated
in PerfSuite. Any technique will be integrated with the TAU
profiling framework.

Also, we are not presently performing any binary analysis
of the executable code where the samples are taking place.
TAUebs is merely translating the addresses from the trace,
including the calling context, to function, source file, and
line number data. There is a great deal to be gained from
binary analysis to determine loop bounds and procedure
inlining. Considerable success has been achieved from years
of effort (e.g., see hpcstruct from HPCToolkit), and we
can certainly leverage the work done there to enhance our
sample-based analysis.

Our trace conversion tool does not currently allow the
merging of a direct measurement trace along with the
sampling trace. Such an addition would be a great ben-
efit for a number of reasons. Besides all of the benefits
from being able to see uninstrumented routines, TAUebs
can collect hardware performance periodically and show
a graph of hardware counter performance over time (e.g.,
see Figure 5). By indexing this information with an event
trace, the hardware performance can be correlated with the
application semantics at different levels.

We believe that both probe-based and sampling-based
measurement tools have their place in the modern HPC
performance tool eco-system. The advantages of a hybrid
measurement system become significant when the limita-
tions of only a single approach become a challenge to per-
formance problem solving. By building hybrid capabilities
in the TAU performance system, it is possible to “dial in” the
degree of integration to target measurements needs. Based

on our TAUebs findings, we plan to continue to pursue
this approach to provide a more complete, more capable
performance measurement system.

REFERENCES

[1] “TAU: Tuning and Analysis Utilities,”
http://www.cs.uoregon.edu/research/paracomp/tau/.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. Tallent, “Hpctoolkit: Tools for performance analysis
of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, 2010.

[3] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A Portable
Programming Interface for Performance Evaluation on Modern Pro-
cessors,” International Journal of High Performance Computing Ap-
plications, vol. 14, no. 3, pp. 189–204, Fall 2000.

[4] National Center for Supercomputing Applications, University of
Illinois at Urbana-Champaign, “Perfsuite.” [Online]. Available:
http://perfsuite.ncsa.uiuc.edu/

[5] H. Servat, G. Llort, J. Giménez, and J. Labarta, “Detailed performance
analysis using coarse grain sampling,” in PROPER 2009, 2009.

[6] H. Brunst, D. Kranzlmüller, and W. E. Nagel, “Tools for Scalable
Parallel Program Analysis - Vampir NG and DeWiz,” Distributed and
Parallel Systems, Cluster and Grid Computing, vol. 777, 2004.

[7] R. J. Harrison, G. I. Fann, T. Yanai, and G. Beylkin, “Multiresolution
quantum chemistry in multiwavelet bases.” in International Con-
ference on Computational Science, ser. Lecture Notes in Computer
Science, P. M. A. Sloot, D. Abramson, A. V. Bogdanov, J. Dongarra,
A. Y. Zomaya, and Y. E. Gorbachev, Eds., vol. 2660. Springer, 2003,
pp. 103–110.

[8] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, “Real-space grid
implementation of the projector augmented wave method,” Phys. Rev.
B, vol. 71, no. 3, p. 035109, Jan 2005.

[9] R. Rosner et. al., “Flash Code: Studying Astrophysical Thermonuclear
Flashes,” Computing in Science and Engineering, vol. 2, pp. 33–41,
2000.

[10] S. Graham, P. Kessler, and M. McKusick, “gprof: A Call Graph Exe-
cution Profiler,” SIGPLAN ’82 Symposium on Compiler Construction,
pp. 120–126, June 1982.

[11] R. Kufrin, “PerfSuite: An Accessible, Open Source Performance
Analysis Environment for Linux,” in Sixth International Conference
on Linux Clusters (LCI), 2005.

[12] M. Schulz, J. Galarowicz, and W. Hachfeld, “Open—speedshop:
open source performance analysis for linux clusters,” in SC ’06:
Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
2006, p. 14.

[13] StackWalkerAPI. [Online]. Available:
http://www.paradyn.org/html/stackwalker1.1-features.html

[14] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Chrysos,
“ProfileMe: hardware support for instruction-level profiling on out-
of-order processors,” in MICRO 30: Proceedings of the 30th annual
ACM/IEEE International Symposium on Microarchitecture, 1997, pp.
292–302.

[15] Advanced Micro Devices, “AMD CodeAnalyst performance ana-
lyzer,” http://developer.amd.com/cpu/codeanalyst.

[16] C. McCurdy and J. Vetter, “Memphis: Finding and Fixing NUMA-
related Performance Problems on Multi-core Platforms,” Proceedings
of the IEEE International Symposium on Performance Analysis of
Systems and Software, 2010.

[17] F. Wolf, B. Wylie, E. Ábrahám, D. Becker, W. Frings, K. Fürlinger,
M. Geimer, M. Hermanns, B. Mohr, S. Moore, M. Pfeifer, and
Z. Szebenyi, “Usage of the SCALASCA toolset for scalable per-
formance analysis of large-scale parallel applications,” in Proc. of
the 2nd HLRS Parallel Tools Workshop. Springer, July 2008, pp.
157–167.

[18] I.-H. Chung, S. Seelam, B. Mohr, and J. Labarta, “Tools for scal-
able performance analysis on petascale systems,” in IPDPS ’09:
Proceedings of the 2009 IEEE International Symposium on Paral-
lel&Distributed Processing, 2009, pp. 1–3.

