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Abstract

The Alliant FX/8 multiprocessor implements several high-speed
computation ideas in software and hardware. Each of the 8
computational elements (CEs) has vector capabilities and mul-
tiprocessor support. Generally, the FX/8 delivers its highest
processing rates when executing vector loops concurrently [5].
In this paper, we present extensive empirical performance results
for vector processing on the FX/8. The vector kernels of the
LANL BMKS8al benchmark are used in the experiments. We
execute each kernel on 1 and 8 CEs and show the measured exe-
cution rate (in MFLOPS) as a function of vector length. We
assess the performance of 1 CE as a vector processor by finding
the vector lengths where vector processing exceeds that of scalar
processing and calculating Hockney’s Tiyy. For 8 CEs, we give
upper/lower bounds on the achieved speedups and on the mul-
tiprocessing overhead. We also show the speedup variation as
the number of CEs increases from 2 to 8. Our results reveal
some interesting phenomena. Vector processing performance in
a machine with a multi-level memory hierarchy, such as the
FX/8, depends significantly on where the referenced vectors
reside. Execution from memory, rather than from cache,
degrades performance by a factor up to 3.7. Although speedups
around 7 can be achieved for most stride-1 kernels when exe-
cuted on 8 CEs, the maximum execution rates occur only for a
narrow range of vector lengths (0{1000)). Performance drops
rapidly when the vector lengths deviate slightly from the
optimal values. This phenomena is not observed when executing
on 2 single CE; the peak performance is obtained when the vec-
tors are 32 elements long and remains close to the maximum for
longer vector lengths (O{1000)). The kernels do not gain any
appreciable speedup when the number of CEs is increased
beyond 4 for short (0{100)) or long (0(10,000)) vectors. Mul-
tiprocessing of some indexed vector kernels results in almost no
speedup due to the synchronization necessary to enforce output
dependencies.

1. Introduction

The Alliant FX/8 is a shared memory multiprocessor system
with 2 maximum advertised performance of 94.4 millions of
floating point operations per second (MFLOPS) for single preci-
sion computations [5}. Each of its 8 computational elements
(CEs) has vector processing capability with a peak advertised
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execution rate of 11.8 MFLOPS. The FX/8 is one of the several
machines which have been announced in the last few years that
use different forms of parallelism to exceed the performance
attainable from the technology used in the implementation(®).
The FX/8 combines several interesting high-speed computation
ideas in both software and hardware {12], [20], [21], (19}, [13],
[17]. It has an interactive optimizing Fortran compiler which
transforms loops in subroutines to execute in vector mode on a
single CE, vector-concurrent mode on multiple CEs, or scalar-
concurrent mode on multiple CEs [5]. The operating system,
Concentrix, is a multiprocessor Unix based on Berkeley 4.2 BSD.
Multiprocessing is realized by concurrency control hardware in
each CE which is accessed using special concurrency instruc-
tions. The 8 CEs of the system are crossbar connected to a
shared, direct mapped, cache. The cache is connected to the
shared memory via a bus. A more detailed description of the
FX/8 is presented in the Section Two.

The performance assessment of a vector multiprocessor machine,
like the FX/8, is important because of the great amount of effort
that was spent in the last decade to develop vector algorithms
for different applications and to enhance the capabilities of vec-
torizing preprocessors to detect vector loops in dusty deck codes
[19]. In addition, there is little empirical data in the literature
modeling the behavior of vector multiprocessors 7], [11]. This
paper presents empirical results on the vector performance of
the Alliant FX/8 multiprocessor. The thirteen vector kernels of
the Los Alamos National Laboratory benchmark BMK8al (for
double precision computations) were used in our experiments
[14].

In Section Three we report and discuss the experimental results.
We show the delivered performance for each kernel when exe-
cuted on one CE. A single CE demonstrates the classical perfor-
mance behavior of a vector processor where the maximum per-
formance is sustained over a wide range of vector lengths. How-
ever, as cache misses increase for longer vector lengths, the per-
formance drops sharply to a rate where the cache hit ratio is at
a minimum. To characterize the vector performance of 1 CE,
we determine the vector length where each kernel starts execut-
ing faster in vector mode than in scalar mode and calculate n,, ,
the vector length at which the CE is supposed to deliver half of
its peak performance (r_ ), as described by Hockney in [16].
These results indicate that a single CE processes short vectors
efficiently.

For 8 CEs, we present the delivered performance, speedup, and
multiprocessing overhead for each kernel. We observe that the

{8) For a rather comprehensive survey of such machines and
brief descriptions see [9], [10].



execution rate increases as the vector length increases and then
drops significantly to a minimum rate. The results show that
the maximum performance for each kernel on 8 CEs is sustained
over a significantly smaller range of vector lengths than for 1
CE. This is reflected in the speedup and multiprocessing over-
head calculations. Speedup, S_(n), is defined as tl/t where ¢
and ¢_ are the execution times of a kernel for vector length n
executed on 1 and p CEs, respectively. We define the machine
efficiency, E_(n), as the maximum delivered execution rate
divided by the peak advertised execution rate of the machine
and multiprocessor efficiency, E (n), as S_(n)/p. Multipro-
cessing overhead, OV _(n), is equal to 1-E_(n). Our results indi-
cate that only modest improvements in speedup are achieved
when processing short { <=100) and long (>10,000) vectors on
more than 4 CEs.

To determine the effect that the cache has on performance, we
repeat the experiments for each kernel such that cache misses
will be encountered whenever possible. Our measurements show
that the performance decreases by a factor up to 3.7 when the
vectors are referenced from memory instead of from the cache.

The BMK8al benchmark contains kernels with subscripted vec-
tors. These vector kernels run slower than the stride-1 kernels.
In Section Three, using one of the indexed kernels, we briefly
discuss issues which affect the performance of such kernels. In
Section Four we make some concluding remarks.

2. The Experimental Environment

We performed our experiments at the Center for Supercomput-
ing Research and Development (CSRD)} of the University of
Ilinois®). The configuration of the FX/8 used for these experi-
ments is shown in Figure 1. The computational complex of the
FX/8 contains 8 CEs. When executing concurreney instructions,
the CEs communicate via a concurrency control bus. Each CE
has a computational clock period of 170 nsec with a peak execu-
tion rate of 11.8 MFLOPS and 5.9 MFLOPS for single and dou-
ble precision computation, respectively [5], [9]. With the 8 CEs
working concurrently, the FX/8 advertised peak performance is
47.2 MFLOPS for double precision computations. The CEs are
connected by a crossbar switch to a direct-mapped, write-back,
shared cache of 16K double precision words(®). The cache is
implemented in 4 quadrants with a peak interleaved bandwidth
to the CEs of 47.125 MW /sec. It is connected to a 4 MW shared
memory via a bus with a peak bandwidth of 23.5 MW /sec. The
system also contains 6 interactive processors (IPs) connected to
their own caches as shown in Figure 1. The IPs primarily per-
form operating system related functions and I/O operations.

A computational element has vector processing capabilities as
well as multiprocessing support. It has a rich set of arithmetic,
logical and comparison vector instructions plus vector move
instructions including scatter, gather and merge. There are 8
32-bit data registers, 8 address registers, 8 double precision float-
ing point registers, and 8 32-element, double precision vector
registers in each CE. Operands of vector instructions can come
from vector registers, vector and floating point registers, or vec-
tor registers and the cache. Chaining is also supported for vec-

(®) At the time the work reported in this paper was performed,
the machine did not run production releases of the OS and the
compiler. However, we believe that our conclusions will not
change significantly when these releases are available.

(2} A double precision word is 64 bits wide.
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tor add-multiply and vector multiply-add instructions. Mul-
tiprocessing is supported by concurrency instructions which per-
mit iterations of a loop to be executed concurrently across multi-
ple processors in the CE complex.

The Alliant FX/8 Fortran compiler provides automatic detection
of vector and/or multiprocessed loops. It optimizes code for
scalar, vector and concurrent execution. Based on data depen-
dency analysis, loops are optimized to execute in one of four
modes:  vector, scalar-concurrent, vector-concurrent, orf
concurrent-outer/vector-inner {5]. The FX/8 operating system,
Concentrix, extends Berkeley Unix 4.2 to provide support for
multiple processors and a large virtual space.

The FX/8 system maintains timing information for each
program which is accessible through Fortran library routines
and can be used for measurement purposes. Our experimenta-
tion procedure attempted to remove any inconsistencies that
might result in the performance measurements due to the resolu-
tion of these timing tools by assuring a long running time rela-
tive to the granularity of the timed event. This was achieved by
enclosing each kernel in a serial timing loop which repeats the
execution of the kernel as many times as needed to obtain reli-
able timing data. All measurements were performed in stand-
alone mode. Each vector kernel was executed five times for vec-
tor lengths varying between 1 and 100,000. The repetition of
the experiments was necessary due to significant variations in
the execution rates from one run to another for certain regions
of vector lengths.

The Los Alamos National Laboratory benchmark BMI{8al con-
tains thirteen vector kernels designed to reflect the vector state-
ments which are widely encountered in scientific codes [14].
Each kernel is a different combination of add and multiply
operations of vectors and scalars that stores the outcome into a
result vector. Some kernels use an additional vector to index an
operand or result vector. In our notation used to identify the
different kernels, v is a vector, & is a scalar, p denotes addition,
t denotes multiplication, and 7 denotes an indexing vector(d),
For instance, vts is the kernel v1 v2 * s and vi=vitv is the
kernel v1(7+k) == v2 * v8 where i is the indexing vector and k
is a constant. The complete list of vector kernels is:

vps vty vitsputs vips
vts vivps vivpv vi==viv
vpy vputs vtvpvty vpvtut

vi==vipviv
3. Experimental Results

The performance of a one CE system is measured in order to
calculate speedup and other performance metrics for multiple
CEs. Examining the one CE results reveals interesting charac-
teristics of the behavior of a vector processor when accessing
data in a multi-level memory. The 8 CEs results show the per-
formance improvement obtainable from vector-concurrent opera-
tion. The vector length region where maximum execution rate
is achieved using 8 CEs is narrower than for one CE. However,
the speedup in this region is around 7 for most stride-1 kernels.
Comparing the performance for one and multiple CEs reveals
important observations on the number of CEs which can be

{d) y¢ denotes a vector, v, indexed by another vector, 1.



efficiently employed in a vector multiprocessor system. The per-
formance results for the indexed kernels provides qualitative
measure of the difficulties encountered when attempting to
improve the performance of some codes using multiple vector
processors.

3.1. One CE Performance

Figure 2 shows the maximum measured execution rate as a func-
tion of vector length for each kernel running on 1 CE. We
observe that the behavior of all the kernels is similar; the com-
putational rate increases as the vector lengths increase and
reaches a maximum at vector length n ak’ For each kernel,
the execution rate stays within a small percentage of the max-
imum until the vector length reaches a value denoted by

Ndrop” The computational rate then starts to fall until a vec-
tor length denoted by noin is reached. For vectors longer than
n__ . the execution rate remains rather constant. These three

man
vector lerigth points are shown for the vtsputs kernel in Figure

2. We identify four regions for each performance curve: the
cache rate region (1<n<n ), maximum rate region
(npeak<n <"dra ), the falloff region (n < ngnmin),
an8 the minimurm rate region (n>n_ . ). In the cache rate
region, the size of the data referenced by each kernel is small
enough such that the cache hit ratio is maximized. The perfor-
mance in this region is characteristic of vector processors where
the execution rate rapidly increases to a maximum point which
is sustained as the vector length increases. The wide range of
vector lengths where the execution rate stays within a small per-
centage of the maximum identifies the maximum rate region.
The falloff region begins when the cache hit ratio starts decreas-
ing. As the cache hit ratio continues to decrease for longer vec-
tor lengths, the number of the references to the shared memory
increases and the performance drops until the cache hit ratio
reaches its minimum at n . In the minimum rate region, the
size of the referenced data is so large that a cache miss occurs
whenever the kernel accesses the first word of a cache block(®).

Several factors affect the delivered performance for a given ker-
nel at a particular vector length. These factors include the
number of memory references, the number of floating point
operations performed, the types of floating point operations, and
the degree of chaining in the kernel. The vps kernel runs faster
than the vts kernel because of operation type; vivps runs faster
than viv due to the number of floating point operations per-
formed and chaining; visputs runs faster than vivputv due to
the difference in the number of memory references. Table 1
shows the maximum MFLOPS measured for each kernel on 1
CE. The maximum execution rate occurs at vector length 32 for
all kernels. This is expected since the vector registers are full at
this vector length. Table 2 shows the execution rate for each
kernel in the minimum rate region. Performance in the max-
imum rate region can be two times greater than the performance
in the minimum rate region.

In order to determine how efficiently one CE processes short vec-
tors, we found the vector length where execution in vector mode
starts to be faster than in scalar mode. More performance can
be achieved in vector mode for vector lengths > 2 for the
stride-1 kernels and >6 for the indexed kernels. Hockney’s
(n%, roo) model can also be used to characterize the vector per-
formance for one CE [16]. Table 8 shows that all kernels have
an n,, < 4. This indicates that short vectors will be processed

(9)A cache block contains four double precision words.
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efficiently on the FX/8. However, most kernels deliver only
around 1/3 of the measured peak execution rate at mn,, when
executed on 1 CE instead of half the peak rate as expected by
Hockney’s model. It can be shown that Hockney’s two parame-
ter model (n,,, roo) is simplistic when used to model real vector
processors [4], [22].

3.2. Eight CEs Performance

Delivered Execution Rate

Figure 3 shows the maximum performance results when execut-
ing in vector-concurrent mode on 8 CEs. We observe that the
execution rate rises more slowly and reaches the maximum rate
region for much longer vectors than in the 1 CE case (O{1000)
compared to 32). This is partially due to the fact that vector-
concurrent execution partitions the vector operation equally
among the 8 CEs and longer vectors are required before the vec-
tor registers of each CE are maximally utilized(®. Multiprocess-
ing overhead associated with starting and sustaining vector-
concurrent operations accounts for the further increase needed
in vector length before the maximum rate is achieved. The per-
formance of a kernel on 8 CEs is affected by the multi-level
memory hierarchy for the same reasons as in the 1 CE case. In
fact, we observed that the falloff region in the 8 CE performance
curves coincides with the falloff region in the 1 CE performance
curves for each kernel. However, the percentage drop in
MFLOPS in the falloff region is greater with 8 CEs. Due to the
initial slow performance increase to the maximum rate and the
fixed falloff region, the maximum rate region spans a much
smaller vector length interval than in the 1 CE case. This result
has ramifications on how codes should be structured, with
respect to vector length, so as to maximize the vector-concurrent
performance when running on 8 CEs. In particular, we notice
that if vector lengths deviate slightly from the maximum rate
region, performance degrades rapidly.

Table 1 shows the maximum peak MFLOPS measured for each
kernel when executing on 8 CEs, the vector length where the
peak performance is delivered, and the machine efficiency (E_ )
at this vector length(g) The machine efficiency is less for 8 CEs
than for 1 CE due to multiprocessing overhead. All the kernels
achieve < 50% machine efficiency and 10 kernels are < 30%
efficient for 8 CEs. Table 2 is analogous Table 1 except the data
for the MFLOPS in the minimum rate region is presented. It -
can be seen from the MFLOPS and the machine efficiency that a
low cache hit ratio significantly reduces the performance. This
subject is discussed in more detail in the section 3.3.

Speedup Results

Speedup is defined as S (n) = ¢,/t_ where t; and t_ are the
execution times of a kernel for vector length n executed on 1
and p CEs, respectively(h). Since there were variations in
measuring ¢, and %, over the five runs, we define the lower
bound on the speedup of a kernel with vector lengths n, L )
to be the ratio of the smallest of the five t, ’s and the largest tgo.
The upper bound on the speedup, U is calculated as the
ratio of the largest measured t, to the smallest t8. Figure 4
shows the upper and lower bound speedup curve for the wiv

() This analysis is supported by the observation that the execu-
tion rate has a local maximum at vector length 256 for almost
all of the kernels. At vector length 256, the vector registers for
each CE are full.

(&) By definition, the maximum Em occurs at this vector length.
() In the remamder of the paper, S(n) will be used to denoted

8 g(n).



kernel®). We observe that for all kernels the speedup upper
bound is less than 4 for vector lengths smaller than 500 and less
than 5 for vector lengths greater than 10,000. The maximum
upper bound speedups for all the kernels are shown in Table 4.
Eight of the 13 kernels have a maximum upper bound speedup
greater than 7. The speedup of 4 of the remaining kernels is
between 5 and 7. The indexed kernels have the smallest speed-

ups; vi=vtv has a maximum upper bound speedup of only 1.32.

By comparing the vector lengths in Tables 1 and 4 we observe
that the vector lengths where the peak MFLOPS and maximum
speedup occur are not necessarily the same for a given kernel.
Table 5 shows the speedup upper bound at the vector lengths
where each kernel runs at its peak execution rate. We notice
from Figure 4 and Tables 4 and 5 that the lower and upper
bounds on speedup can differ significantly {up to 57%). This
variation occurs in the falloff region and is primarily a result of
the nondeterministic behavior of the cache in this region from
one run to another. However, this variation is insignificant for
short and long vector lengths (n< 500 and n>>10,000).

Figure 5 shows the speedup as a function of the number of CEs
for stride-1 kernels. The envelopes in the figure enclose the
speedup curves for all kernels at vector lengths 100, 1K and
100K. The speedup curve for vtups is shown as a dashed line
and roughly represents the median speedup within each speedup
envelope. We observe that for both short and long vectors the
speedup gained by increasing the number of processors beyond 4
is modest for most kernels. As the number of CEs increase from
4 to 8, the speedups approach 4.5 and 4 for vector lengths of 100
and 100K, respectively. For vector lengths of 1K, speedups are
close to being linear in the number of CEs. These speedup
results could be very useful to designers of multi-million dollar
multiprocessor vector machines (e.g., the new Cray multiproces-
sors) in light of the mean vector lengths encountered in applica-
tion codes (<468 in the Lawrence Livermore National Lab work-
load [24]).

Maulti ing Overhead
The percentage multiprocessing overhead of a machine with p
processors when executing a kermel with vector length n,
OV _(n), is given by (1-S_(n)/p)*100%; OV{(n) denotes the
overﬁead when p=8. We let UOV - denote the upper bound
on the overhead and LOV n denote the lower bound. Figure 6
shows the upper and lower bound overhead curve for the vpuvts
kernell). For all kernels, UOV n is greater than 50% for short
{n< 100) and long (n> 10,000{ vectors. For six of the nine
stride-1 kernels, UOVér(z)é is less than 25% for vector lengths in
the region 1000 <n < 2000. The overheads of the indexed vector
kernels are greater than 30% for all vector lengths.

Table 6 identifies the vector lengths where the minimum
UOV{n{( occurs for all the kernels. We note that for the 9
stride-1 kernels the minimum UOVU(n is between 10-20%. For
the indexed kernels, the minimum is close to 30% for 1
kernel, 40% for 2, and 85% for the fourth kernel.

3.3. Execution from Memory

In order to measure the vector-concurrent execution rate for a
kernel with vector length n (1 <n<100,000) such that the the
maximum number of cache misses occurs, we reference the vec-

() The speedup curves for the other kernels are found in [3].
() The overhead curves for the other kernels are found in (3.
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tors as columns of two-dimensional arrays. The kernel is exe-
cuted for the first column (of length n), then the second column,

and so on. Since every column is distinct, new vectors are
always being referenced. Also, the two-dimensional array sizes
are declared such that when a column is referenced again by the
timing loop, none of the data from the previous reference of that
column will be present in the cache. We refer to the running of
a kernel in' this fashion as execution from memory. When a
kernel is not restricted to execute in this manner and is able to
take full advantage of the cache, we say that the kernel is exe-
cuting from cache.

Figure 7 shows the execution rate from memory and from cache
for the vtsputs kernel using 8 CEs. When the kernel executes
from memory, the execution rate rises slowly as the vector
length increases and reaches a2 maximum that coincides with the
rate obtained in the minimum rate region when the kernel exe-
cutes from cache. The same behavior is observed for the other
kernels {3]. Table 7 shows the maximum performance degrada-
tion factors when kernels execute from memory instead of from
the cache. This factor ranges between 1.35 and 2.26 when run-
ning on 1 CE. When executing on 8 CEs and using stride-1 ker-
nels, the degradation factor is larger and ranges between 3.03
and 3.67. For indexed kernels, the degradation factor is between
1.49 and 2.08.

It is obvious that if the memory speed were increased, the execu-
tion performance from memory would increase. It is also
expected that by increasing the size of the cache, the maximum
rate region of the execution from cache curve would be
extended. A current limitation to increasing the performance in
the minimum rate region of the two curves is the bandwidth
available on the Data Memory Bus [3]. Improving the data
memory bus bandwidth would have the effect of shifting the
minimum rate region of the two curves upward.

3.4. The Behavior of Indexed Kernels

When running on a single CE, the execution rate of a kernel will
drop if one or more of the referenced vectors are addressed
indirectly. This is mainly due to an increase in the number of
vector instructions generated by the compiler for an indexed
kernel (scatter/gather instructions, etc.). Moreover, the memory
access pattern of the indexed vector elements might result in an
appreciable decrease in the utilization of the bandwidth of the
interleaved memory modules.

The execution rate of a multiprocessed vector kernel could
degrade significantly if the result vector is addressed indirectly.
This can be seen clearly in Figure 3 when comparing the execu-
tion rate curves for kernels vtv and vi=vtv. Examing the
assembly code generated for the two kernels reveals that while
the wtv kernel is executed as a single concurrent vector loop, the
concurrent loop of the vi=uvtv kernel encloses two vector loops.
Each CE first executes the vector statement temp+—viv, where
temp is a temporary vector. While CE_ continues by executing
a second vector loop to scatter the contents of temp to the
specified elements of the result vector, each CE. (i=1,...,7) waits
for a synchronization signal from CE._1 indicating that it has
finished scattering its results. In this fashion, any output depen-
dence relationships between different instances of the original
statement vi==vtv will be preserved. Figure 8 shows the execu-
tion scheme of this kernel using 8 CEs. This explains the lack of
any speedup when this kerne] is executed concurrently. Syn-
chronization is not required in kernels with no potential output



dependencies. Kernels with output dependencies will gain
speedup if the time spent evaluating the right hand side expres-
sion of the kernel is significantly larger than the time spent in
the scattering loop by each CE. This is the case for the kernel
vi—uvipvty where it is possible to attain a maximum speedup of
5.86 compared to 1.32 for the kernel vi=vtv.

Conclusion

Using the vector kernels of the LANL BMKS8al, this paper
assesses the performance of the Alliant FX/8 multiprocessor for
vector processing. One CE of the FX/8 shows the classical vec-
tor processor behavior where the performance increases as the
vector length increases to a maximum which is maintained for
larger vector lengths. However, because of the memory hierar-
chy, the vector performance of 1 CE falls to a rate dependent on
the shared memory access speed when the cache size is not large
enough for the referenced vectors to be cache resident.
Although vector processing performance on 8 CEs shows the
same rise and fall as vector length increases, parallel execution
accentuates this behavior. First, the increase in execution rate
is slower for short vectors due to the partitioning of the vectors
across multiple processors and the multiprocessing overhead.
Second, although speedups greater than 7 are achieved for most
stride-1 kernels for vector lengths of O{1000), the region of max-
imum performance is narrower than for 1 CE. Third, the
speedup gain by increasing the number of computational ele-
ments beyond four is small for short (O{100)) and long
(0(10,000)) vectors. The multiprocessing overhead exceeds 50%
for short and long vectors for all kernels. It is less than 25% for
most stride-1 kernels for vector lengths of O(1000). Lastly, the
performance of the FX/8 on stride-1 kernels can drop by a fac-
tor greater than 3 if the vectors are referenced from the shared
memory.

The lower performance of the machine for kernels with indexed

vectors is partially due to the increase in the number of vector
instructions needed to execute the kernel. However, interproces-
sor synchronization to satisfy potential output dependencies is
the major reason for performance degradation of indexed ker-
nels.

The successful use of an 8 CEs FX/8 for vector processing
depends on observing the principle of locality of reference [8].
This implies that the programmer {or optimizing compiler)
should structure the code such that once certain sections of the
program’s data are resident in the cache, as much computation
as possible is performed using this data before processing other
sets of data (1], [2], [B], [18). Some of the other factors that
enhance the delivered performance are reducing the number of
memory references in the vector statement, increasing the
number of floating point operations performed using the same
operands, and taking advantage of the chaining capabilities of
the processors.
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T T T i Maximum Upper Bound Speedups Lower /Upper Bound on Speedups
[ 1 1 1 at Vector Lengths where Peak
Il temp+—v1*ve | ! | Benchmark | Vector Max. Upper Lower Execution Rates Occur
% ! ! ! ! Length | Bound Speedup { Bound
% - - - - M ‘71838 25;’) g’lj Benchmark (| Vector | Speedup
. . . .1 2
| scatter wait wait wait vis Length | Bounds |
! 1',emp for for for vov 2000 0.68 417 vps 4000 | 5.13 / 6.67
I linto va CE, CE, CE, vt 2000 7.22 5.73 vis 4000 | 5.88 / 7.36
b —_— . . vivps 1400 8.05 6.04 vpv 2000 | 4.17 / 0.68
- i vpvis 4000 7.56 4.54 viv 2000 5.73 / 7.22
Iscatt Vispvis 2000 7.86 7.05 vivps 2000 | 5.60 /7.08
| Seatter vtvpy 3000 7.84 4.90 vpvis 3000 | 5.15/6.99
L.\:‘ vivpvty 2000 8.20 5.42 vtspvis 3000 | 6.04 /7.21
- vips 7000 845 4.44 vtvpv ||, 2000 | 6.14 /7.07
' VI=VbY 3500 1.32 1.10 vivpvty 2000 5.42 / 8.20
| scatter vpvivi 500 6.08 4.53 vips 6000 | 4.15/4.83
I vi=vipvtv | 2500 5.86 5.20 vie=viv 2500 | 1.08 / 1.24
[ \ vpvivi 700 4.32 / 4.58
.~ Vis=vipviy 2500 5.20 / 5.86
Figure 8. e
Vector-Concurrent Execution of the |
Kernel v8(i) = vl * v2 | Scatter
|
Table 8
Minimum Upper Bound
Multiprocessing Overheads
Table 1 "
. . Benchmark | Vector Min. Upper Lower
Peak Execution Rates of Elementary Vector Operations Lensth | Bound Overhead | Bound
vps 1400 25.0% 22.5%
1CE 8 CEs vis 3000 10.3% 6.0%
Benchmark vpv 1400 16.0% 13.3%
MFLOPS | Length E_ (%) | MFLOPS | Length B (%) viv 1800 13.7% 11.6%
vivps 1000 21.8% 20.9%
we | e | e | ar | nm | dm | s v |z | e | e
. . . . vtspvts 2000 11.9% 1.7%
Tl R || | um e
. 5 . . vivpviv 1200 8.6 7.2
vivps 2.37 32 40.2 16.23 2000 34.4 vil;s 3000 41.472 40.97‘;
vpvts 2.37 32 40.2 16.08 3000 34.1 Vi==viv 1200 84.8% 84.5%
vispvis 2.91 32 49.3 20.33 3000 43.1 vpvivi 500 43.4% 24.0%
vivpy 1.94 32 32.9 13.03 2000 27.6 vi=vipvtv 700 29.2% 27.3%
vtv_pvw 1.71 32 29.0 12.40 2000 26.3
vips 1.14 32 18.3 5.22 6000 11.1
vi=vty .80 32 13.6 97 2500 2.1
vpvivi 1.60 32 271 7.07 700 15.0
vi=vipviv 97 32 16.4 5.61 2500 11.9
Table 7
Degradation of the Peak Execution
Rates when Executing from Memory
Table 2
Execution Rates at Vector Length 100K
of Elementary Vector Operations 1CE 8 CEs
Benchmark
Degradation | Degradation
1 Computational 8 Computational Factor * Factor ¥
Processor Processors vps 2.26 3.36
Benchmark Table 3 vts 1.78 3.34
MFLOPS | E_, (%) | MFLOPS E_ (%) ny, and the Percentage vpv 2.13 3.67
of Peak Execution Rate at Ty viv 1.86 3.52
vps 0.98 16.6 4.06 8.6 vivps 1.85 3.33
vis 0.90 15.3 3.36 71
-~ Benchmark | n,* | % of Peak vpvts 1.85 3.45
vpv 0.74 12.3 2.87 6.1 % ts
viv 0.66 11.2 2.44 5.2 vvu):v“s 12; by
vivps 1.20 21.9 4.80 10.2 Vs g s0% o . 508
.2 vis 3 35% vivpvty 1.69 3.03
vpvis 1.29 21.9 4.65 9.9 vpv 3 33% vips 1.43 1.49
vispvts 1.74 .5 . B j=
vt.\}:pv 1.02 ?? 3 g gg 12 g viv 3 36% i e bos
vivpviv 1.01 171 4.00 8.7 vivps 3 34% il e e
vips 0.80 18.5 3.49 74 vpves 3 3% = 138 100
vi=vty 0.52 8.8 0.60 1.3 vispvis ; §°? .
vpvtvi 0.05 16.1 3.37 71 ‘:"VP‘: ; 5570 degradation factor is calculated as
vi=vipvty 0.72 12.2 3.38 79 vivpvty 1% the peak execution rate divided by the execution
vips 3 31% rate at 100K
vis=viv 4 36%
vpvtvi 3 33%
vi=vipvty | 4 40%

* n%is calculated using a linear
least-squares approximation of the vector
execution times for vector lengths between

1 and 256.
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