MPF: A PORTABLE MESSAGE PASSING FACILITY
FOR SHARED MEMORY MULTIPROCESSORS

Allen D. Malony~i~
Center for Supercomputing
Research and Development

University of Illinois
Urbana, Illinois 61801

Abstract — A message passing facility (MPF) for shared memory
multiprocessors is presented. MPF is based on a message passing
model conceptually similar to conversaiions. The message passing
primitives for this model are implemented as a portable library of C
function calls. The performance of interprocess communication
benchmark programs and two parallel applications are given.

1. Introduction

Historically, programming models for parallel processing have
largely been architecture dependent. The underlying architecture
reflected in the programming support software encourages efficient
use of the hardware, but constrains the programmer to a single world
view. Although some algorithms are naturally expressed in a certain
type of programming paradigm, the algorithm formulation must be
adapted to the available programming model. Unfortunately, this
adaptation may incur a substantial performance penalty.

Snyder [4] has argued for a set of type architectures that elide
unnecessary architectural details while retaining those necessary to
reflect the performance constraints imposed by the hardware. These
type architecture abstractions would permit an algorithm designer to
accurately estimate the performance penalties when moving from one
type architecture to another. To investigate the performance
tradeoffs between the shared memory and message passing paradigms,
we developed a message passing facility (MPF) using the existing
primitives of a shared memory machine.

2. The MPF Message Passing Model

To assess the advantages and disadvantages of message passing
on a shared memory architecture, it is crucial that the
implementation be based on a fully general message passing model.
‘We develop the notion of logical, named virtual circuits as a basis for
the MPF message passing semantics.

A virtual circuit is a logical connection between two
communicating entities, In the MPF model, the communicating
entities are sets of processes whose membership can change during the
lifetime of a virtual circuit. For this reason, messages are directed to
a virtual circuit, not individual participants. By defining names for
virtual circuits, participants can join or leave the associated
conversations [1). The resulting abstraction is a logical, named
virtual circuit (LNVC).

LNVGC's provide a fully general communication paradigm.
Each process that is a member of an LNVC conversation is either a
message sender or receiver, or both; see Figure 1. Message receivers
identify themselves as FCFS (first—come, first-serve) or
BROADCAST when they join the conversation.” Only one FCFS
receiver will receive each message, whereas, all messages are received
by each BROADCAST receiver. Both FCFS and BROADCAST

receivers can exist simultaneously during a conversation.

Justification for this LNVC model comes from two sources:
conversation-based electronic mail {1] and distributed variables [2].
Like LNVC’s, conversation—based mail permits participants to enter
or leave the discussion at their discretion. In contrast, distributed

t Supported in part by NSF Grant Nos. NSF DCR 84-10110 and NSF DCR 84~
06816, DOE Grant No. DOE DE-FG02-85ER25001, and a donation from IBM.

E Supported in part by NSF Grant No. NSF DCR 84~17948 and NASA Contract
No. NAG-1-613.

t Present address: Hewlett Packard Laboratories, Palo Alto, CA.

739

Daniel A. I%.’ezdi
Patrick J. McG’uireﬁ
Department of Computer Science
University of Illinois
Urbana, Illinois 61801

variables arose as a programming paradigm for message passing
systems. A distributed variable supports multiple readers and
writers, as well as, general process interaction semantics.

3. MPF Programming Environment

The MPF user interface is a library of C interface routines for
LNVC management, protocol establishment and message transfer.
The programming primitives are:

init (max LNVC’s, max_processes)

open_send (process_id, Invc_name)

open_receive (process_id, Invc_name, protocol)
close_send (process_id, Inve_id)

close_receive (process_id, Invc.jd)

message_send (process_d, Inve_id, send buff, length)
message_receive (process_id, Invc_id, receive_buff, length)
check_receive {process_id, Invc_id)

Init() is the initialization routine for MPF. The parameters
maz_ LNVC’s and maz_processes, the maximum number of LNVC’s
and processes, respectively, are used to estimate the amount of shared
memory that must be allocated.

Open_send() establishes a send connection for the process
process_sd on the LNVC Inve_name. Open_receive() establishes 2
receive connection for the process process_sd on the LNVC Inve_name
with the communication protocol protocol (FCFS or BROADCAST).
Close_send() and close_receive() remove send and receive
connections, respectively.

Message_send() transfers a message from process process_id to
the LNVC Inve_id. Message sending is asynchronous; a process can
proceed before the message reaches its destination(s).
Message_receive() transfers a message from LNVC lnvedid to the
process procecss_id. Message_receive() is blocking; it returns only
after 2 message has been received. Check_receive() checks for the
existence of any messages in LNVC Inve_id.

4. MPF Implementation

Intuitively, one would expect a significant performance and
programming overhead to realize LNVC conversations. Our
implementation experience on a Sequent Balance 21000%® suggests
that this is not the case. The only system dependent code involves
shared memory allocation and synchronisation allowing MPF to be
easily ported to any system providing these facilities.

4.1. Data Structures

The fundamental data structure is the MPF message. During
MPF initialization, a free list of linked message blocks is created in
shared memory. Messages are composed of linked message blocks
together with a header for saving pertinent message information.
During execution of a message_send(), the sending buffer is copied
into the message block data fields. The message is then copied into
the receiving buffer as part of the message_receive() operation.

The key MPF design problem was identifying an effective data
structure for an LNVC. Time—ordered message delivery must be
supported, and BROADCAST and FCFS receiving processes must be
effectively managed. A FIFO queue suffices to maintain sequentiality -
of messages between sending and receiving processes. Each
BROADCAST receive process will have its own queue head pointer,
and the FCFS receive processes share a head pointer.

4.%. rrogramming Primitives

The constraints necessary to insure consistent and efficient
access to the MPF data structures by concurrently executing
processes, dictate the implementation of the MPF programming
primitives. Rather than describing the details of data structure
manipulation and process mutual exclusion, we comment on one
interesting design issue that arose during the implementation.

Implementing the LNVC close operations raises the
fundamental question of LNVC lifetime. We generally regard an
LNVC as existing only when there is a connected sending or receiving
process; the current implementation is based on this principle. The
semantics of the close operations state that the entire LNVC FIFO
structure is discarded, including messages, if the closed sender or
receiver process is the last one connected to the LNVC. However, this
implementation decision has ramifications on process interaction.
Some care must be taken to ensure that messages will not be lost due
to unconnected processes.

5. MPF Experiments

To investigate the ease of use and the performance of MPF, we
developed several test programs for the Sequent Balance 21000 [5].
The parallel programs consist of a group of Unix processes that
interact using LNVC’s. The shared memory used by MPF is
implemented by mapping a region of physical memory into the
virtual address space of each process.

To determine the throughput characteristics of a single LNVC,
we designed a simple program that establishes a loop—back connection
through an LNVC for a single process, and alternates between
sending and receiving fixed-length messages. Throughput increases
as message length increases because the fixed-time LNVC updates
decrease in relative cost. However, copying overhead limits
throughput for large messages. A throughput of 25,000 bytes per
second was achieved with 2048-byte messages.

In general, the message transfer rate for parallel programs
depends on the relative amounts of FCFS and BROADCAST
communication. However, it is possible to compare the throughput
performance of a set of parallel processes that use FCFS LNVC's to a
similar set using BROADCAST LNVC’s; Figures 2 and 3 show the
results. Because only only one FCFS process can receive each
message, the FCFS benchmark is limited by the message transmission
rate. The decreasing throughputs for 16-byte and 128-byte messages
are caused by increased LNVC contention with additional receiver
processes. For larger messages, this contention is masked by message
copying costs.

The BROADCAST throughputs illustrate MPF’s support for
concurrent message_receive() operations by BROADCAST
receivers. Although the actual message transmission rate is
unchanged from the FCFS benchmark, all message receivers obtain a
copy of each message. Thus, by allowing the receiver processes to
copy messages concurrently, higher throughputs can be achieved.
The maximum attainable BROADCAST throughput is limited by the
concurrent efficiency of MPF, as well as the memory bandwidth.

As a final throughput benchmark, we constructed a synthetic
program whose processes can each send to and receive from all other
processes. The communications pattern is fully-connected with a
FCFS LNVC defined for each destination process. In this benchmark,
each process sends a specified number of fixed-length messages;
destinations are selected randomly.

Figure 4 shows the results obtained with this benchmark
program. Although message throughput increases as additional
processes are added to the benchmark, overhead also increases
resulting in the decreasing slope of the throughput curves. When a
large number of processes are transmitting large messages, MPF must
allocate a large amount of memory for message buffers. The larger
the memory requirements for message transfer, the more susceptible
MPF performance is to virtual memory overheads. For 1024-byte

740

messages, paging overhead increases rapidly for more than 10
processes; this is the reason for the decrease in observed throughput.

As an application test program, the Gauss-Jordan algorithm
(with partial pivoting) for solving linear systems is ideal; it contains
both one-to—one and broadcast communications. The parallel
implementation of this algorithm partitions a matrix A into equal
sized groups of contiguous rows; each partition is assigned to a
process. Each process searches for the maximum element in the
current column, and sends it to an arbiter process. The arbiter
process identifies the global maximum, and advises the process
holding this value. The identified process broadcasts the selected
pivot row to all other processes. The processes then sweep the rows
of their partition using this pivot row and begin a new iteration.

Figure 4 shows the speedup for the Gauss-Jordan algorithm as
a function of matrix size and the number of processors. Speedup is
greater with larger matrices; this is the classic computation versus
communication balance faced by message—passing systems. Increased
parallelism increases the number of FCFS messages sent to the
arbiter process during pivot selection. Similarly, increased
parallelism means additional processes must capture the pivot row as
it is broadcast. Conversely, increased parallelism decreases the
number of matrix rows assigned to each task. Hence, the
computation per process decreases while the communication cost
increases. In the extreme, excessive parallelization yields insufficient
computation per iteration, and speedup declines. Larger matrices
permit effective use of more processors. The most important
conclusion to be drawn from Figure 5 is that real speedups can be
obtained in the MPF environment.

As a final test of the flexibility of the MPF programming
environment, we adapted a parallel, elliptic partial differential
equations solver, writter for a hypercube [3]. The solver iterates over
a grid of points, using successive over-relaxation (SOR), until the
grid converges to a solution of the partial differential equation. If the
grid of points contains PXP points, it is partitioned into NXN
subgrids of size (P/N)X(P/N). Each subgrid is assigned to a
processor, and each processor iterates over its subgrid. On each
iteration, the boundaries of each sub—grid must be exchanged with
the four neighboring processors. In addition, the processors
determine if the local sub-grid has converged and send this status
information to a monitoring process. Because the computation cost
for an iteration is proportional to the area of the sub-grids, and the
communication cost is proportional to their perimeter, the
computation/communication ratio can be adjusted by varying the
number of processors.

Porting the hypercube program to MPF was simple. The
interprocess communication among neighbors corresponds naturally
to FCFS LNVC’s. Similarly, BROADCAST LNV(’s were used to
broadcast convergence information. Figure 6 shows speedup as a
function of grid size and number of processes; all speedups are
relative to the smallest parallel solver: 4 processes.

8. Conclusion

A message passing environment for shared memory
multiprocessors is interesting for several reasons. As a parallel
programming paradigm conceptually different from the shared
memory approach, message passing offers the user a different
programming alternative. A particularly interesting benefit of a
message passing facility for shared memory machines is the ability to
develop a program using a hybrid parallel programming paradigm.

MPF supports the paradigm with a general message passing
model and an implementation that hides the details of the underlying
message communications. Programs destined for message passing
systems can be easily prototyped in the MPF environment.
Furthermore, the MPF implementation is completely portable
between shared memory multiprocessors that provide locking and
memory sharing between concurrently executing processes.

7. Acknowledgments

Jack Dongarra and the Advanced Computing Research Facility

of Argonne National Laboratory graciously provided both advice and
access to the Sequent Balance 21000.

References

D. E. Comer and L. L. Peterson, "Conversation-Based Mail,"
ACM Transactions on Computer Systems, Vol. 4, No, 4, pp.
299-319, November 19886.

E. P. Debenedictis, "Multiprocessor Programing with
Distributed Variables," Proceedings of the First Conference on
Hypercube Multiprocessors,” 1986, SIAM Press, pp. 70-86.

Figure 1
MPF Message Passing Model

FCFS
Receiving
Processes

Throughput (bytes/sec)

(5]

Figure 2
Fefs Benchmark
Throughput vs Receiving Processes

J. Rattner, "Concurrent Processing: A New Direction in
Scientific Computing, Conference Proceedings of the 1985
National Computer Conference, AFIPS Press, Vol. 54, pp. 157~
166, 1985.

L. Snyder, "Type Architectures, Shared Memory and the
Corollary of Modest Potential,” University of Washington,
Department of Computer Science, Technical Report No. TR
86-03-04, 1988,

Sequent Computer Systems, Guide to Parallel Programming on
Sequent Computer Systems, 1986.

Figure 3
Broadcast Benchmark
Throughput vs Receiving Processes

Throughput {bytes/sec)
50000 D—“-—;’_’______:______"_.__————~ 700000 T T T
. « 16 byte messages
600000~ o 128 byte messages 4
D 1024 byte messages
400004 T T ———————
500000 E
« 16 byte messages
o 128 byte messages
O 1024 byte messages 400000-] R
Logical 30000 B
Named
Virtual 300000 ~
Circuit
Sending 20000-! R 200000+)
Processes /\‘\
. 1000004 i
BROADCAST /
Receiving
Processes 10000 T T T o . . .
[4 8 12 16 0 4 8 12 16
Number of Receiving Processes Number of Receiving Processes
Figure 4 Figure 5 Figure 8
Random Benchmark Gauss Jordan Poisson Elliptic PDE Solver with SOR Iterations
Throughput vs Processes Speedup vs. Processes Per Iteration Speedup va. Dimension (N)
Throughput (bytes/sec) Speedup

270000

240000+

210000+

1800004

150000+

120000

90000

60000

30000+

T T T [

Per Iteration Speedup

1 byte messages

8 byte messages

64 byte messages
256 byte messages
1024 byte messages

« 32x32 matrix
o 48x48 matrix
54 O 64x64 matrix
X 96x96 matrix

.
°

=]
X
v

i T T 0

3

65 x 65 problem
33 x 33 problem
17 x 17 problem
x 9 problem

14

2 3 4

5 10 15 20 0 4
Number of Processes

8

741

Number of Processes

T Dimension (NxN Processors)

