
A Hardware-Based Performance Monitor for the Intel iPSC/2 Hypercube 

Allen D. Malony’ 

Center for Supercomputing 
Research and Development 

University of Illinois 
Urbana, Illinois 61801 

Abstract 

The complexity of parallel computer systems makes a 
priori performance prediction difficult and experimen- 
tal performance analysis crucial. A complete character- 
ization of software and hardware dynamics, needed to 
understand the performance of high-performance paral- 
lel systems, requires execution time performance instru- 
mentation. Although software recording of performance 
data suffices for low frequency events, capture of de- 
tailed, high-frequency performance data ultimately re- 
quires hardware support if the performance instrumen- 
tation is to remain efficient and unobtrusive. 

This paper describes the design of HYPERMON, a 
hardware system to capture and record software per- 
formance traces generated on the Intel iPSC/Z hyper- 
cube. HYPERMON represents a compromise between 
fully-passive hardware monitoring and software event 
tracing; software generated events are extracted from 
each node, timestamped, and externally recorded by 
HYPERMON. Using an instrumented version of the 
iPSC/S operating system and several application pro- 
grams, we present a performance analysis of an oper- 
ational HYPERMON prototype and assess the limita- 
tions of the current design. Based on these results, we 
suggest design modifications that should permit cap 
ture of event traces from the coming generation of high- 
performance distributed memory parallel systems. 
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1 Introduction 

To observe and measure the performance characteris- 
tics of a parallel system, the performance analyst must 
implicitly or explicitly solve several problems. First, 
one must specify the desired performance data and de- 
termine instrumentation points. Given a description of 
the desired data and associated data capture points, one 
must capture and record the data while balancing instru- 
mentation coverage against instrumentation intrusion. 
Finally, one must present, reduce, and analyze the data 
(e.g., via a statistical analysis or visualization tools). An 
integrated performance monitoring environment for a 
particular parallel computer system necessarily requires 
many design compromises in performance specification, 
data capture and recording, and data reduction and pre- 
sentation [6]. Further, performance measurement, no 
matter how unobtrusive, introduces perturbations, and 
the degree of perturbation must be balanced against the 
need for detailed performance data [7]. 

In this paper, we focus on the simple, though difficult, 
problem of data capture and recording. As technology 
makes possible the creation of parallel systems far from 
the center of the von Neumann architecture spectrum, 
we believe that capture of detailed performance data 
will become increasingly important to both system de- 
signers and application software developers. Although 
software performance data can take many forms, includ- 
ing samples, counts, and running sums, event traces pro- 
vide greater flexibility; given a trace, one can compute 
counts, sums, distributions, and profiles of both proce- 
dure occupancy and parallelism. 

Designing a machine independent data capture sys- 
tem is exceedingly difficult - the variety of system in- 
terfaces limits generality. Because message-based par- 
allel systems typically lack both a global clock for 
event timestamps and a common memory for event data 
buffering, they pose particularly vexing, and interesting, 
instrumentation problems. Without hardware support, 
event trace extraction either must compete with system 
and application programs for access to network com- 
munication bandwidth, or the traces must be buffered 
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locally in individual node memories, limiting both trace 
size and application program memory. Given these 
problems, hardware support for event data capture and 
recording is crucial to minimizing instrumentation per- 
turbations. 

In this paper, we describe the design of an opera- 
tional hardware prototype, called HYPERMON, that 
supports hardware capture, timestamp generation, and 
recording of software trace events from the Intel iPSC/Z 
hypercube. In addition to reporting the measured data 
capture rate, we compare the performance perturba- 
tions of software data recording and hardware data cap- 
ture using HYPERMON. Based on an analysis of this 
data and the HYPERMON design, we present some 
lessons that should guide design of performance data 
capture hardware for the coming generation of high- 
performance distributed memory parallel systems. 

The remainder of the paper is organized as follows. 
In 32, we briefly describe the Intel iPSC/P hypercube 
and its software environment. We follow in $3 with 
a detailed description of the HYPERMON design. In 
54, we describe the particular hardware configuration 
used to test HYPERMON, followed in 95 by a perfor- 
mance analysis of the HYPERMON design. Based on 
this data, in 36 we describe guidelines for the design of 
performance data recording systems. 

2 Intel iPSC/2 Description 

The design of hardware support for performance data 
capture necessarily depends on the underlying parallel 
system - system software and hardware determine the 
requirements for and limitations of the data capture in- 
terface. Thus, an instrumentation environment must be 
understood in the context of the intended architecture 
- the Intel iPSC/2, a second generation, distributed 
memory parallel system. 

The Intel iPSC/2 hypercube [l, 3] incorporates evo- 
lutionary advances in technology, including an Intel 
80386/80387 microprocessor pair, a 64K byte cache, and 
up to 16 megabytes of memory on each node, The 
iPSC/2 includes an autonomous routing controller to 
support fixed path, circuit-switched communication be- 
tween nodes. This communication system eliminates 
most of the store-and-forward latency that existed in 
earlier distributed memory systems. 

The software development interface for the iPSC/2 is 
a standard Unix system that transmits executable pro- 
grams to the nodes, accepts results from the nodes, and 
can, if desired, participate in the computation. Finally, 
the Unix host supports node file I/O to its local disk 
and to remote disks via a network file system protocol. 

To reduce dependence on the Unix host and to 
provide input/output performance commensurate with 
computing power, the Intel iPSC/S nodes also support 

link connections to I/O nodes. Eiach I/O node is identi- 
cal to a standard compute node, with the exception of 
an additional daughter card that provides a SCSI bus 
interface. The SCSI bus supports up to seven peripher- 
als and has a peak transfer rate d 4 megabytes/second. 
Physically, the I/O sub-system can be packaged as a 
separate cabinet with cable connections to the compute 
nodes. 

Because the I/O nodes provide a superset of the com- 
pute node functionality, software support for disk and 
file access is realized by augmenting the NX/2 node op- 
erating system on both the compute and I/O nodes. 
The Concurrent File System (CFS) allows application 
programs to create, access, or modify files on both the 
hypercube host and the individual hypercube disks. As 
we shall see, this provides the mechanism for archiving 
performance data after its capture by our HYPERMON 
instrumentation support hardware. 

Although each iPSC/2 node contains a local clock 
with one microsecond resolution, the node clocks are not 
globally synchronized and can drift apart at a measur- 
able rate. Consequently, event timestamps on different 
nodes may violate casuality (e.g., a message might ap- 
pear to be received before its transmission). Although 
software techniques can ameliorate the effects of clock 
drift by synchronizing the clocks and reordering times- 
tamped events, a high-resolution, global time reference 
is the simplest and most desirable solution.’ Even with 
a global time reference, the distributed event data still 
must be collected for analysis and presentation. 

3 HYPERMON Design 

The absence of a global, accurate, and consistent 
time exacerbates the already difficult measurement and 
recording of distributed events 153. The constraints 
on measurement resolution created by distributed clock 
synchronization, coupled with the overheads of software 
tracing, limit the range of performance behavior that 
can be accurately observed. The design of the HY- 
PERMON architecture attempts to circumvent these 
problems. Below, we describe the design and opera- 
tion of HYPERMON, followed in 55 by a summary of 
results obtained from HYPERMON bandwidth experi- 
ments and performance tests using real message passing 
programs. 

3.1 iPSC/2 Event Visibility 

The hardware basis for HYPERMON is a little-known, 
though standard, feature of the iPSC/2 that makes pos- 
sible external access to software events generated by 
each node, Five “performance” bits from a port in 

1 See [8] for a description of software causality maintenance and 
its limitations. 
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the I/O address space on each iPSC/2 node board are 
routed via the system backplane to an empty slot in 
the system cabinet. The standard cabinet holds up to 
32 iPSC/2 nodes and all 160 signals are present at the 
spare node slot. However, the current HYPERMON 
prototype supports data capture from only the first 16 
nodes. 

Because the software performance instrumentation 
generates event data by writing to an I/O port, one bit 
must be reserved as a software strobe to signal that the 
remaining four event data bits are valid. The five data 
bits written to the I/O port are interpreted 8s follows. 

4 3 0 
Strobe 1 Event Data 

A software event is generated by writing the event data 
to the 5-bit port, first with a strobe of zero then with a 
strobe of one. The 16 MHz 80386 microprocessor in the 
Intel iPSC/Z requires approximately six cycles to com- 
plete an I/O write operation, versus two for a standard 
memory access. Thus, a minimum of twelve cycles are 
needed to write a 4-bit software event. 

Clearly, the sixteen possible events representable with 
a 4-bit event identifier greatly restrict the range of pos- 
sible instrumentation. If additional events are needed, 
or, equally likely, if data are associated with an event, 
multiple I/O write operations will be required. A per- 
formance instrumentation of the Intel NX/2 operating 
system [lo], produces a range of event sizes, ranging 
from two to thirteen bytes plus a timestamp. More- 
over, an analysis of these operating system traces shows 
that most events are four or more bytes, excluding the 
software timestamp. 

Unfortunately, transmitting larger events is expen- 
sive. In addition to the twelve cycle memory access 
penalty for each 4-bit I/O operation, there is software 
shift and mask overhead to extract 4-bit items from 
event words. Clearly, a larger I/O event field is desirable 
to increase event bandwidth and to reduce the cost of 
bit field extraction. However, backplane hardware con- 
straints limit the number of available backplane signals. 
Despite these limitations, hardware support for data 
collection permits real-time extraction of performance 
data and, consequently, capture of larger traces than 
otherwise possible with node memory trace buffering.2 

3.2 Hypermon Architecture 

Figure 1 shows the primary components of the HYPER- 
MON architecture and their physical relation to the In- 
tel iPSC/Z. Reflecting the physical packaging of the 

‘In 55 and $6, we will return to the question of node hardware 
support for data extraction. The current HYPERMON design 
reflects the 5-bit iPSC/P data extraction interface. 

iPSC/2, HYPERMON is partitioned between the cab- 
inet that contains the iPSC/S compute nodes and the 
cabinet containing the I/O nodes and disks. As just 
described in 53.1, each iPSC/2 compute node indepen- 
dently sends C-bit (four bits and a strobe) event data to 
HYPERMON. 

In the compute node cabinet, the HYPERMON event 
regeneration board (ERB) converts the 5-bit TTL-level 
event signals from each node into differential form be- 
fore transfer to the event capture board (ECB) residing 
in the I/O cabinet. The ECB captures the events, gen- 
erates global timestamps, and stores the resulting event 
data in internal memory buffers for access by I/O nodes. 
To prevent disruption of event data capture and pertur- 
bation of user I/O requests, one or more I/O nodes are 
dedicated to event data recording. 

In principle, the I/O nodes can be used for prelimi- 
nary analysis of the event data. In practice, however, 
the desirability of real-time data reduction, with a possi- 
ble decrease in disk I/O requirements for data recording, 
must be balanced against the probability of ECB data 
buffer overruns if too many I/O node compute cycles are 
diverted from disk service. Clearly, the most efficacious 
mix of real-time data reduction and disk recording, with 
post-mortem analysis, depends on the event data rate 
and instrumentation requirements. 

3.2.1 Event Capture 

Figure 2 shows the functional design of the event cap- 
ture board, the primary hardware component of HY- 
PERMON. There are five major parts: event data 
queueing, event strobe synchronization, timestamp gen- 
eration, event frame construction, and I/O node inter- 
face; each is described below. 

After signal regeneration by the HYPERMON ERB 
board, the $-bit event data from each iPSC/Z node are 
placed in a separate FIFO buffer that is clocked by the 
corresponding software event strobe signal (i.e., the fifth 
bit from each node). Each node FIFO is 64,4-bit entries 
deep and provides buffering during the event frame con- 
struction process; see below. Figure 3 shows the timing 
diagram for the two writes needed to assert valid event 
data from a node. 

Because the individual node clocks are asynchronous, 
this is no direct timing relationship among the valid 
event data in FIFOs for different nodes. Thus, early 
in the HYPERMON design, we were forced to decide 
where to synchronize the externally received event data 
with the internal ECB clock. Because the event data 
FIFOs provide implicit synchronization of the data bits, 
only the event strobe signals need be sampled relative 
to the internal ECB clock. In the HYPERMON design, 
the software event strobes are sampled in successive 800 
nanosecond time windows.8 Valid event strobes within 

5The syncbronieationperiod can be shortened to 400 nanosec- 
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a time window are marked in an event strobe uector and 
stored in the strobe vector FIFO. 

Figure 4 illustrates event strobes from different nodes 
and the corresponding strobe vectors during three suc- 
cessive time windows. The shaded bits in each strobe 
vector indicate which event data FIFOs have valid data 
from compute nodes. 

Separate fzorn the synchronization issue is the gen- 
eration of event data timestamps. Although high-level 
events can be of any length, and one need generate only 
one timestamp for each event, the HYPERMON hard- 
ware must assume that every four bits of event data 
represent a separate software event. Why? The IIY- 
PERMON hardware embodies no notion of event types 
or lengths. Thus, each event data nibble must be as- 
signed a 32-bit timestamp. 

To avoid the expense of separate timestamp hardware 
for each node, a single timestamp generator is used. 
For each generated strobe vector, a timestamp also is 
stored in the timestamp FIFO. In general, the choice 
of timestamp resolution need not be dependent on the 
event strobe synchronization period. However, in the 
current ECB hardware, they are equal. 

The design motivation for strobe vector and times- 
tamp unification iz to reduce hardware complexity. As a 
design alternative, each event nibble, a 4-bit node iden- 
tifier, and a 32-bit timestamp could be sent to the I/O 
node. However, in this approach, 80 percent of the in- 
formation would represent timestamp data. Moreover, 
for events occurring within the same time 800 nanosec- 
ond window, the timestamps for these events would be 
redundant. Instead, we adopted a strategy that pack- 
ages event data as event frames. These event frames are 
the unit of transfer to the I/O node. 

In the event frame approach, the strobe synchroniza- 
tion period is the time basis for event frame construc- 
tion. Each such event frame consists of four 32-bit 
words; see Figure 5. Four event data bits from each 
node FIFO always are placed in the frame. However, 
only those FIFO’s with valid data, as determined by the 
strobe vector, for this time window, will be shifted into 
the event frame; the other event data fields in the frame 
are undefined. The strobe vector is recorded as part of 
the frame to identify the valid event data fields. Finally, 
the corresponding 32-bit timestamp is saved with each 
frame. Once an event frame is constructed, it is saved 
in the ECB’s frame FIFO, To eliminate useless data, 
an event frame is constructed for a time window only if 
at least one of the nodes produces an event during the 
window. 

If we compare separately transferring each event nib- 
ble to the use of event frames, it is clear that when there 
is only one valid event nibble in a frame, the overhead 

onds or 200 nanoseconds through jumpers on the ECB. This al- 
lows faster event gencrstion rates to be accommodated in the 
future. 

is substantial. In this case, only three percent of the 
frame is data. Only when four or more nodes have valid 
event data will transfer of event frames require fewer 
bits. The motivation for merging event data from mul- 
tiple nodes is that the efficiency of event transfer is more 
important when more nodes are producing event data. 
In thii case, the likelihood of multiple nodes producing 
event data within the same time window increases, and 
the ratio of valid event data to overhead also increases. 
When few nodes are generating event data, the need for 
efficient transfers to the I/O node is not as great. 

3.3 Event Processing 

The ECB supports a parallel bus interface (the PBX 
bus) to an iPSC/2 I/O node. Via this bus, event 
frames can be transferred to the I/O node’s memory. 
These PBX bus transfers are mapped through the I/O 
node’s memory space. In addition, the ECB provides a 
writable 8-bit control register to reset the board. There 
is a 4-bit status register used to signal error conditions, 
most often FIFO overruns. The number of event frames 
generated since the last reset is accessible through a 12- 
bit frame count register. Finally, the event frame can 
be accessed using a single frame FIFO address. Refer- 
encing thiz PBX address will transfer one 32-bit frame 
word to the I/O node. 

Once in the I/O node’s memory, event frames can be 
decomposed into separate event streams for each instru- 
mented node. Additionally, the I/O node’s processor 
can be used to compress the event trace by computing 
statistics directly from the event data. Finally, the event 
trace data can be stored on the I/O node CFS disks for 
post-mortem analysis or transferred to the iPSC/2 host 
and associated workstations for analysis and presenta- 
tion. 

The abiity to record trace data on local CFS disks or 
on remote disks attached to either the iPSC/P host or 
a workstation, coupled with real-time or deferred trace 
analysis, provides a wide variety of trace storage and 
analysis configurations with distinct costs; see Figure 6. 
Selection of a trace processing mode depends on event 
frequency, density, and complexity. If the mean time 
interval between valid event frames is small, and we have 
observed that thii often is true for operating system 
event traces, real-time event processing (e.g., statistical 
analysis) may not be possible -the I/O node minimally 
must record event data without loss. 

4 Current Configuration 

The HYPERMON prototype only recently became op- 
erational. It is implemented as a wire-wrapped, two- 
board set consisting of 115 integrated circuits - 20 on 
the ERB and 95 on the ECB. The experimental re- 
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sults reported in this paper were obtained with eight 
nodes. We currently are testing HYPERMON with six- 
teen nodes. 

Figure 7 shows the current HYPERMON configura- 
tion. At present, we are using a PBX-equipped node 
processor to communicate with HYPERMON. Disk ac- 
cess must be done through the iPSC/2 host using the 
hypercube message communication links. Upon addi- 
tion of an I/O node with PBX support, we will be able 
to test I/O transfer to CFS storage. 

5 HYPERMON Evaluation 

The value of the HYPERMON design can only be deter- 
mined through experiments with real applications and 
software instrumentation support. Architecturally, HY- 
PERMON has the advantages of external event capture 
and real-time data access, but this must be weighed 
against the substantial overheads in event production; 
see $3.1. 

In the remainder of this section, we describe the re- 
sults of a set of experiments conducted with the HY- 
PERMON prototype. First, we used a series of syn- 
thetic benchmarks to measure the raw data bandwidth 
of the current configuration. Here, the goal was to deter- 
mine potential data recording bottlenecks. Second, we 
used a software instrumentation [8] of the Intel iPSC/2 
NX/2 operating system as a source of event data for HY- 
PERMON. This instrumentation generates a detailed 
event trace of operating system and application pro- 
gram interactions. The results of these experiments are 
discussed below. 

5.1 Bandwidth Tests 

A cursory examination of the HYPERMON architec- 
ture suggests several points where measurement of raw 
bandwidth might reveal fundamental performance con- 
straints. Below, we examine three: event generation 
from the node processors, ECB internal event frame 
construction, and PBX event frame transfers. 

Given the interface constraints on the individual 
iPSC/2 nodes (software event strobing, a three-fold in- 
crease in access time to an I/O port, and software ex- 
traction of event nibbles), the overhead to send event 
data to the HYPERMON ECB is substantially greater 
than that needed to record event data in a node’s mem- 
ory. To quantify this overhead, we began our tests with 
a simple, synthetic benchmark that generated events at 
the maximum possible rate on a single node. With soft- 
ware event recording, 3.9 seconds were needed to pro- 
duce l,OOO,OOO events (assuming four bytes per event). 
This translates to a maximum software event recording 
rate of 1.02 Mbytes/second. In contrast, HYPERMON 
recorded an equal amount of event data in 88.5 seconds, 
a hardware data recording rate of 45 Kbytes/second.4 
Simply put, the Intel iPSC/2 interface to HYPERMON 
transfers data at a rate roughly 22.7 times less than that 
for software recording. Although the timestamp gener- 
ation is done automatically by the HYPERMON hard- 
ware, this savings in data transfer is greatly overshad- 
owed by the costs of nibble extraction, software event 
strobing, and the use of an I/O instruction rather than 
a memory MOVE operation. 

Internally, the HYPERMON ECB can sustain a high 

‘Recall that the total amount of data recorded by HYPER 
MON is much larger and includes t:he strobe vectors and invalid 
data nibbles in each event frame. 
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Figure 8: IIYPERMON Bandwidth Results 

event frame production rate. Thii value can be cal- 
culated directly from the internal ECB timing. The 
finite state machine controlling event frame generation 
operates at 20 MHz and requires eight cycles to build a 
frame. When all sixteen nibbles of event data in a frame 
are valid, this translates to a peak event data band- 
width of 10 Mbytes/second. As the number of valid 
data nibbles decreases, the event bandwidth decreases 
proportionally. 

Finally, an I/O node must retrieve the event data 
from the ECB via the PBX bus. The PBX is an asyn- 
chronous, master-slave bus with a peak bandwidth of 
18 Mbytes/second. However, when synchronization, 
address decoding, and data enabling overheads are in- 
cluded, the potential transfer rate across the PBX inter- 
face drops to 8 Mbytes/second. In practice, the software 
overheads for PBX transfers to the I/O node (the mas- 
ter) degrade bandwidth performance further. Using op 
timized PBX interface software, we have achieved PBX 
transfer rates of 5 Mbytes/second to an I/O node. 

To assess the interactions of the bandwidth limita- 
tions just described, we constructed a synthetic bench- 
mark that generates a specified volume of event data for 
a user-selectable number of nodes. Figure 8 shows the 
maximum experimental bandwidths obtained via HY- 
PERMON when running this benchmark. In the bench- 
mark, a delay parameter controls each node’s event nib 
ble generation rate; this delay parameter is the number 
of iterations of a null wait loop on the 16 MHz 80386. As 
expected, when the delay interval decreases, the band- 
width through HYPERMON increases. 

When only one node generates event data, every four 
bits of event data forces the creation of a separate event 
frame. A single node can generate significant frame 

0 

0 wait loop 20 
0 wait loop 40 
o Wait loop 60 

1 2 3 4 5 6 7 

Node Processors 

Figure 9: Event Frame Merging 

bandwidth (113,000 frames/second, or equivalently, 1.8 
Mbytes/second at sixteen bytes per frame). However, 
when two nodes produce event data at their maxi- 
mum rates, the PBX bandwidth limits are challenged 
(202,000 frames/second or 3.2 Mbytes/second). Beyond 
two nodes, the ECB reports a frame FIFO overrun con- 
dition, and no experimental data can be obtained unless 
nodes delay the creation of successive event nibbles. 

We indicated earlier that HYPERMON was designed 
to be more efficient as the demand for event data band- 
width increased. This requires increased frame merging 
and amortization of the strobe vector and timestamp 
overhead over move valid event nibbles (i.e., the event 
frame creation rate should increase sublinearly with the 
number of nodes that simultaneously generate event 
data). Unfortunately, our experimental results suggest 
that the event data bandwidths must be very high to 
achieve effective merging. Figure 9 shows the percent- 
age of merged event data as a function of the number of 
active nodes. Although the figure suggests that a high 
merging percentage should occur with high event data 
rates, merging does not increase quickly enough to off- 
set the increase in the total event frame bandwidth seen 
at the PBX interface. 

Although the high event data rates that cause PBX 
bandwidth saturation (evidenced by frame FIFO over- 
runs) are beyond the sustained rate requirements for the 
HYPERMON design, such conditions can exist during 
event data bursts; see $6. Overrun conditions depend 
on the length of these bursts relative to the size of data 
buffers in the ECB. Our prototype implementation lim- 
its the frame FIFO size to 1K frames. As our results 
below suggest, this buffer size makes HYPERMON sus- 
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Code 

Simple2 

Life 

M&Mu1 

Place 

Description 

a parallel linear optimization pro- 
gram based on a column-wise 
Simplex algorithm [ll] 
8 parallel implementation of Con- 
way’s famous cellular automaton 

PI 
a simple distributed memory ma- 
trix multiplication code 
a standard cell placement algo- 

I rithm based on simulated anneal- 
inn 121 

Table 1: Application Test Programs 

ceptible to event data bursts of moderate duration. 

5.2 Monitoring Real Applications 

Ultimately, the software instrumentation level required 
to capture the execution behavior of a parallel compu- 
tation will dictate the frequency and volume of data 
that must be recorded by the monitoring system. Not 
surprisingly, certain instrumentation levels can exceed 
the capabilities of any data recording system. Event 
processing and analysis requirements impose additional 
constraints on feasible performance experiments. As a 
consequence, performance observability mandates a bal- 
ance between the rate of event data generation and anal- 
ysis, and the fundamental limitations of the monitor’s 
operation. 

To understand HYPERMON performance in an in- 
strumentation environment for real applications, we 
compared the execution of four programs in three mon- 
itoring environments: no event data generation (raw), 
software event recording to node memory, and hard- 
ware event recording with HYPERMON. The execu- 
tion data for the latter two cases was restricted to that 
captured by an instrumentation of the iPSC/2 NX/2 
operating system source code [9]. Thii system gener- 
ates three classes of operating system events: message 
transmissions, process states transitions including con- 
text switches, and system calls. Below, we describe 
the characteristics of the application programs, the ob- 
served performance data, and HYPERMON’s perfor- 
mance. 

5.2.1 Execution Statistics 

Table 1 shows the four application programs used in our 
study of data capture for operating system instrumen- 
tation. Each of these applications was run on 1, 2, 4, 
and 8 nodes for each of the three data capture scenar- 
ios. To prevent event data bursts that might saturate 
the PBX bandwidth and overrun the event frame FIFO, 

we set the delay interval for hardware event recording 
to twenty (i.e., writing of successive event nibbles waz 

separated by twenty iterations of a null loop). 
Not surprisingly, Table 2 shows that hardware 

data recording using HYPERMON consistently causes 
greater perturbations than software recording in the 
node memories. This was expected from our ear- 
lier analysis of performance penalties imposed by the 
node interface to HYPERMON. However, the degree 
of perturbation differs for each application program 
and number of nodes. Simply put, differences in pro- 
gram behavior are manifest as differences in the time 
varying demands placed on the data recording system. 
For instance, the minor perturbations of the MatMul 
code contrast sharply with the substantial slowdown 
of the Place code when data are recorded from eight 
nodes with HYPERMON. Unlike matrix multiplication, 
which,generates only a small number of instrumentation 
events, the cell placement code is highly dynamic and 
the variance in its event generation rate is high; see §S. 

Table 2 further shows that the difference in total data 
volume between software and hardware data recording 
is large. With software event recording in individual 
node memories, each recorded event includes the asso- 
ciated data and a 16-bit timestamp delta. In contrast, 
the total data volume recorded using HYPERMON is 
calculated from the total number of event frames trans- 
ferred across the PBX interface. With software data 
recording, only one timestamp is assigned to a multiple 
byte event; HYPERMON must timestamp each data 
nibble. 

Clearly there is greater overhead with hardware data 
recording, but one might expect merging to increase 
the efficiency at higher event rates by amortizing times- 
tamps across multiple event nibbles. Unfortunately, the 
software recording rates indicate that the potential for 
merging iz small. Thus, we conclude that the large dif- 
ference in the volume of recorded data reflects the fact 
that most event frames contain only one valid event data 
field. 

Even when each node delays for twenty iterations 
of a null loop between transfer of event data nibbles, 
data overruns occur in real applications (e.g., the eight 
node Place execution). Although the sustained hard- 
ware recording rate of 2.5 Mbytes/second for this pro- 
gram (as extrapolated from the software recording rate) 
does not exceed the PBX bandwidth, the burst event 
rate is higher. In this case, the only alternative is to 
increase the interval between the output of successive 
event nibbles. 

5.2.2 Dynamic Monitoring Requirements 

AS just noted, sustained recording rates do not reflect 
instantaneous demands on the monitoring system. Un- 
derstanding the dynamics of event creation is important 
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Total Time Logged Data Logging Rate 
Application (seconds) (bytes) (‘bytes/second) 

Raw soft Hard Soft Hard soft Hard 

Simplez 
1 node 151.059 151.261 154.838 63437 2302144 419 14868 
2 node 77.850 78.396 86.524 417476 10273040 !;325 118730 
4 node 42.068 42.561 54.338 1245712 27763296 2!3269 510937 
8 node 24.277 24.931 41.045 3190873 67493104 127988 1644368 

&fe 
1 node 152.222 152.335 154.157 34103 1204608 224 7814 
2 node 111.869 112.274 120.280 277359 10155584 2470 84433 
4 node 78.505 79.112 93.048 752373 27607776 9510 296705 
8 node 43.981 44.741 58.202 1670188 60352768 37330 1036954 

MatMul (2562256) 
1 node 245.660 245.840 248.808 54706 1928096 223 7749 
2 node 123.118 123.210 124.696 55215 1947792 448 15620 
4 node 61.975 62.045 62.677 56277 1985376 907 31676 
8 node 31.369 31.423 31.859 58456 2069136 1860 64947 

Place 
1 node 318.012 318.473 322.325 74225 2628192 233 8154 
2 node 82.000 85.071 143.356 2018749 74003616 23730 516223 
4 node 69.668 72.851 137.145 4147564 149195680 56932 1087868 
8 node 38.498 41.427 102.221 7977226 (overrun) 192561 (overrun) 

Table 2: HYPERMON Application Results 

for two reasons. First, it suggests where buffers in HY- 
PERMON are most needed to ameliorate the effects of 
event data bursts. Second, it identifies those portions of 
a parallel computation where program execution might 
be most susceptible to performance perturbation from 
performance instrumentation. 

For each of the four application programs of Table 1, 
we used HYPERMON to record and compute statistics 
on the time varying rate of operating system event gen- 
eration. For each application program, we recorded in 
the PBX node’s memory the number of event frames 
and the elapsed time between the first and last frame 
for each group of event frames read.s 

To generate Figures 10-13, the elapsed time for each 
program was divided into one hundred intervals of fixed 
sise and the average event frame rate was computed for 
each interval. To show differing numbers of nodes on a 
single graph, we show normalized time intervals (i.e., for 
each number of nodes, an interval represents a different 
absolute amount of time). The total time range for each 
curve is shown in the legend. 

Figure 10 shows the time varying event frame rate for 
the Simplez code. Clearly, the event frame rates follow a 
periodic pattern, and analysis of the code shows a regu- 

‘Retell that the HYPERMON interface to the PBX I/O node 
includes a counter of the number of buffered event frames. This 
count defines the number of events read in each “group.” Due 
to PBX node memory limits, only the first 100,000 event rate 
distribution samples were recorded. 
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Figure 10: Simple2 Event Frame Rate Distribution 
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lar cycle of computation and global data exchange ill]. 
Communication generates a burst of operating system 
instrumentation events (e.g., context switches, message 
buffering, and message transmission) [S], and this is re- 
flected in the event frame rate. As the number of nodes 
increases, the ratio of communication to computation 
increases and the event frame rate increases commensu- 
rately. 

Unlike the Simplez or MatMul codes, where the 
amount of computation on each node varies little during 
successive computation cycles, the Life code updates a 
grid of cells whose sparsity changes over time. Figure 
11 shows that the data recording requirements of such 
codes can change substantially as the computation load 
balance changes. 

The MatMu event frame rate distribution in Fig- 
ure 12 reflects the simple structure of the application 
code. The computation first distributes the matrix to 
the nodes, where they compute independently until re- 
turning their partial results to the host. The initial ma- 
trix broadcast is not shown in Figure 12, but the trans- 
mission of sub-matrices to the host is clearly visible. 
Because no communication occurs during the compu- 
tation phase, most recorded events are node time slice 
context switches. Finally, the event rates for PIace ap- 
plication, shown in Figure 13, are random, bursty, and 
high. In $6, we describe the underlying reasons for this 
behavior and the implications for hardware event data 
recording. 

As Figures lo-13 show, the dynamics of event frame 
rates are closely tied to application behavior and can 
vary widely across application types. This disparity in 
burst rates has important implications for capture hard- 
ware design, the subject of the next section. 

6 Lessons Learned 

The design of HYPERMON was subject to the engi- 
neering constraints imposed by the iPSC/S system: the 
4-bit I/O event data interface, the physical separation 
of event regeneration from event capture, and the PBX 
I/O node interface. Although the larger overhead for 
recording event data via HYPERMON was expected, 
and we knew that many applications exhibited cyclic 
communication behavior, we did not foresee all the im- 
plications of bursty event data rates. 

The lesson regarding decreased execution time pertur- 
bations with hardware data recording is clear. External 
interfaces used to record event data via hardware should 
have sufficient bandwidth to avoid delaying the compu- 
tation processors. Ideally, the access time to the inter- 
face should be no larger than that needed to write the 
event words to memory (i.e., hardware event recording 
should have less overhead than that for software buffer 
management and data recording). 

Regarding bursty event data rates, further investigcc 
tion of event data bursts using software event traces 
reveals significant variances in event data rates during 
the lifetime of most computations, Figure 14 shows 
the event data volume generated by our NX/2 operat- 
ing system instrumentation [S] in one millisecond inter- 
vals for the Place application 011 four, eight and six- 
teen nodes. Although the average event data rates 
are 82 Kbytes/second, 276 Kbyteslsecond, and 629 
Kbytes/second, respectively, event data bursts signifi- 
cantly exceed these rates. In particular, the data rate 
for the sixteen node Place execution can reach two to 
three Mbytes/second in twenty millisecond bursts. To 
support this type of software performance instrumen- 
tation, a hardware data recording system must be de- 
signed with sufficient buffer capacity to accommodate 
event data bursts. Analysis of software event traces 
can be instrumental in defining buffer requirements. At 
present, we are using the software traces as input to 
simulation models of monitor designs to understand dy- 
namic buffering requirements. 

An important decision in the HYPERMON design 
was to treat each 4bit event datum as a potentially 
unique event. This determined timestamp generation 
and motivated the notion of event frames to amortize 
timestamp overhead. In practice, our NX/2 operating 
system instrumentation produced logical events com- 
posed of multiple event data nibbles. Significant reduc- 
tions in the volume of data recorded by HYPERMON 
would have been possible had we chosen to timestamp 
larger data units (e.g., 32-bit quantities). In this case 
we would accumulate a 32-bit word on each 4-bit input 
port before storing it in the event data FIFO. The size 
of timestamped quantities should be chosen so that only 
a small fraction of the avsilable bandwidth is lost. Ide- 
ally, there should be support for selective timestamping 
of event data such that timestamps are produced only 
when directed by the software. 

The experiments conducted with the instrumented 
NX/2 operating system, described in $5.2, represent 
HYPERMON stress tests. Clearly, there exists a spec- 
trum of data recording and data analysis alternatives. 
No reduction of event data occurred in our experiments 
prior to writing data to HYPERMON. The use of par- 
allel, on-the-fly data reduction, possibly in the form of 
periodic statistical summaries, would eliminate many of 
the problems encountered during our stress tests of HY- 
PERMON operation. Although improvements in the 
HYPERMON design can extend its operational range, 
there are many performance experiments that can take 
advantage of the current prototype’s real-time monitor- 
ing capabilities. 
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7 Conclusions 

Despite the manifest need for dynamic performance in- 
strumentation and data capture, their efficient imple- 
mentation is non-trivial. HYPERMON was designed in 
response to the iPSC/2 hardware interface for captur- 
ing software event traces. In contrast to software-based 
recording in individual node memories, HYPERMON 
uses external memory for trace storage and generates 
globally-synchronized timestamps automatically. 

In addition to the considerable development effort 
for the HYPERMON prototype, our initial experience 
clearly indicates the need for careful analysis of the in- 
teractions with the iPSC/Z’s hardware interface. For 
example, the 4-bit I/O interface from each node has ob- 
vious performance limitations; only a wider I/O port 
will alleviate the instrumentation perturbations when 
HYPERMON is used. 

The experiments conducted with the instrumented 
NX/2 operating system, described in $5.2, represent 
HYPERMON stress tests. The spectrum of data record- 
ing and data analysis alternatives is vast. The use of 
parallel, on-the-fly data reduction, possibly in the form 
of periodic statistical summaries, rather than the de- 
tailed operating system performance instrumentation 
used in our stress tests, seems the best match to the 
4-bit I/O interface and HYPERMON’s buffer require- 
ments. 
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