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Multiprocessor Instrumentation:
Approaches for Cedar

Allen D. Malony!

1.1 Introduction

Parallel systems pose a unique challenge to performance measurement and in-
strumentation. The complexity of these systems manifests itself as an increase
in performance complexity as well as programming complexity. The complex
interaction of the many architectural, hardware, and software features of these
systems results in a significantly larger space of possible performance behavior
and potential performance bottlenecks. Programming parallel systems requires
that users understand the performance characteristics of the machines and be
able 10 modify their programs and algorithms accordingly. The instrumentation
problem, therefore, is to develop tools to aid the user in investigating perfor-
mance problems and in determining the most effective way of exploiting the
high performance capabilities of parallel systems.

This paper gives observations on the parallel system instrumentation prob-
lem in the context of the Cedar multiprocessor. The Cedar system integrates
several architectural, hardware, and software concepts for parallel operation.

1This work was supported in part by NSF Grant Numbers NSF MIP-8410110 and NSF
DCR 84-06916, DOE Grant Number DOE DE-FG02-85ER25001, the Air Force Office
?]g 1f/{ciemiﬁc Research Grant Number AFOSR-F49620-86-C~0136, and a donation from
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The combination makes Cedar a particularly interesting machine for investigat-
ing instrumentation issues and developing prototype tools. The different needs
for performance evaluation on the Cedar machine define the instrumentation
requirements. The implementation of instrumentation tools, however, involves
tradeoffs in design, resolution, and accuracy, and must be weighed against the
payoff in better performance evaluation. This discussion of instrumentation tools
targeted for Cedar considers these tradeoffs.

The following presentation is somewhat historical in that it describes the
tools in the order in which they were developed. It is important to understand
that these tools are targeted to an actual machine and therefore might lack
certain instrumentation sophistication possible in less restrictive environments,
as in the case of simulation. Nevertheless, to develop good instrumentation
techniques for generating detailed performance data of parallel system execution,
it is instructive to study prototype tools designed within the constraints placed
by real parallel machines.

One of the goals of the performance evaluation activities of the Cedar
project is to build a prototype of a performance instrumented computer [1,2)
(sec Figure 1.1). The concept is one of a standard computer system that con-
tains additional performance measurement hardware and software. The addi-
tional hardware allows easy access to performance-critical information in the
machine (e.g., cache misses, memory conflicts); it allows measurements of these
points to be easily made in response to various triggers, and it allows easy stor-
age of selected results. The additional software allows a user to specify which
measurements to make; it allows the user to observe performance results and
store these results in a database of performance information.

1.2 The Cedar System

The Cedar system of the University of Illinois is characterized by the hierar-
chical organization of both its computational capabilities and memory system
[3.4]. It consists of multiple clusters, each of which is a multivector processor
comprising eight computational elements (CEs) (see Figure 1.2). Parallelism
can be exploited at three levels. Within each CE, operations on vectors can be
done in vector mode. Each cluster is a tightly coupled multiprocessor that can
exploit fine grained parallelism through loop-level concurrency. Finally, mul-
tiple clusters can be used for medium and large grain parallelism, as well as
extended forms of fine grain parallelism. Presently, each cluster is a modified
Alliant FX/8.

The memory organization is hierarchical as well, with communication in-
creasing in cost at each level. At the lowest level, each CE has a set of private
scalar and vector registers. The next two levels, a cache and a cluster memory,
are shared by the CEs within the same cluster. Finally, all clusters have access
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1o a large global memory. This global memory is accessed through two unidi-
rectional switching networks, one for downloading data from memory, the other
for uploading. These switching networks are 2-stage omega networks built from
8 x 8 crossbar switches.

The Cedar operating system, Xylem, is a modification of Alliant’s Concen-
trix operating system extended for multitasking and virtual memory management
of the Cedar memory hierarchy [5,6]. A Xylem process consists of one or more
cluster tasks. Miultiple cluster tasks execute asynchronously across the Cedar
system. Xylem provides system calls for starting and stopping tasks and waiting
for tasks to finish. System calls are also provided for coarse-grained intertask
synchronization. In addition to multitasking, Xylem supports multiprogramming
whereby multiple processes can be executing simultaneously. The Xylem vir-
tual memory system provides convenient access to the Cedar physical memory
hierarchy.

Fortran is the focus of language and compiler development for Cedar. Cedar
Fortran is derived from Alliant FX/Fortran with extensions for memory alloca-
tion, concurrency control, multitasking, and synchronization [7]. New data type
specification statements reflect the Xylem memory access and locality struc-
ture. Vector concurrency is available through array section notation, conditional
vector statements, and vector reduction functions. DOALL and DOACROSS
constructs specify parallel execution of loop iterations on processors within a
single cluster task or spread across multiple cluster tasks. Multitasking routines
provide an interface between Cedar Fortan and Xylem for task creation and
control. A set of synchronization functions allows access to the Cedar hard-
ware synchronization primitives. Cray-style synchronization operations are also
provided. Multitasking and synchronization routines are implemented as part of
a Cedar Fortran run-time library [8]. Compiler optimizations for vectorization,
parallelization, and memory allocation are also being developed for the Cedar
machine,

Due to the complexity of Cedar, a sophisticated performance analysis sys-
tem of integrated hardware and software tools to collect, present, and analyze
performance data is imperative if high performance is to be achieved across a
wide range of scientific applications. Such a system is being designed and im-
plemented and an overview of its capabilities is discussed in [9]. The following
sections give details of the instrumentation tools developed thus far,

1.3 Cluster Concurrency Instrumentation

The first Cedar performance instrumentation tool implemented was a tool to
measure the average number of processors physically active during a com-
putation on an Alliant FX/8 cluster [10-12]. To better characterize a parallel
program’s execution on the FX/8 it was important to determine the degree of
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physical parallelism actually being achieved. A basic performance efficiency
metric, concurrency efficiency or CEFF, can be derived from measuring the
amount of time ¢ processors are active, where ¢ = 1,n and n is the total num-
ber of processors available. CEFF indicates the percentage of available physical
parallelism being used by the program. It is an interesting performance metric
in that a bound on the maximum speedup possible on a cluster for the measured
program run can be obtained.

1.3.1 Concurrent Operation on an FX/8 Cluster

A program that has been compiled for concurrent operation on the FX/8 will
be allocated the entire computational complex. All processors are thus available
for use by the program during its execution. ! As the program advances through
periods of sequential and concurrent operation, the number of active processors
will change. Measurements of how the program’s execution time was spent in
the different levels of physical parallelism must be made to calculate the CEFF
metric.

1.3.2 CEFF Analysis

If T} is the amount of time a program spends executing with 7 processors active,
where i = 1,n and n is the total number of processors, concurrency efficiency
is defined as

=N T
CEFF = (-—-—':1-*————71'> * 100%
i=n
where T = ZT,
i=1

Given the concurrency timing information, T;, it is simple to derive con-
currency utilization results, CU;, as the percentage of time : processors are
active:

CU; = % * 100%

The CEFF metric indicates the average percentage of the available parallel
processing resource used by the program. The CU values give a breakdown of
execution time spent in each concurrent execution state. 2 The average concur-

1 The same is true for a Xylem task that runs concurrently on a cluster.

2 A concurrent state is defined for each possible number of active processors. Concurrent
state 1 is the state where only ¢ processors are active.
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rency, defined as CAVG = nx CEFF, gives the average number of Pprocessors
active as well as an upper bound on program speedup possible for this run. It
is an upper bound because active processors may not be directly contributing to
the overall program progress; such is the case with synchronization operations.
Whereas a low CEFF value implies a low level of concurrent processor activity
and, therefore, a poor speedup performance, a high CEFF value is only an indica-
tion of high processor concurrency and does not necessarily reflect good parallel
performance. CEFF and CU values must be considered with other performance
metrics to determine the degree of effective parallelism being achieved.

1.3.3 CEFF Implementation

Ideally, changes in the number of active processors should be detected to mea-
sure the time spent in the different concurrent states. However, detecting changes
in concurrent state is difficult on the FX/8 because it occurs at the instruction
level. One alternative considered for the Cedar system was to build a special
hardware monitor to look at processor activity signals. This had several draw-
backs including signal accessibility, design complexity, and the ability to filter
the timing data on a per process basis. The second alternative was to instrument
the object code to monitor the instructions that resulted in concurrency state
changes and to keep software time measurements. Although exact timing could
be maintained by this approach, it was intrusive and its implementation required
a more complete tracing facility (see Section 1.4).

A desirable implementation would be easy to design and build, would
minimally affect program operation, but would give reasonably accurate CEFF
statistics. The approach taken was based on a sampling technique commonly
used for profiling. Concentrix was modified to implement the CEFF measure-
ments.

When concurrency efficiency measurements are enabled, the program is
interrupted every 10 msec and the state of each processor in the computational
complex is sampled. It is possible to determine if a CE is inactive when the
program is interrupted by comparing the CE’s program counter to a known idle
value. The total number of active CE’s, 7, is determined with each interrupt and
a counter associated with each concurrent state, N;, is incremented. The N;s
are set to zero at the beginning of the program.

At the end of the program’s execution, the time spent in concurrent state
i, T3, is calculated by multiplying the jth concurrency count value, N;, by 10
msec. The CEFF and CU values can then be easily computed as shown in
Section 1.3.2.

From an implementation standpoint, maintaining the information necessary
to calculate concurrency efficiency is simple and cheap. Only eight concurrency
state counters are needed for the FX/8. These counters can easily be placed in the
user’s process structure along with the other timing and profiling information.
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Determining the active processors and incrementing the appropriate N; counter
is the only real-time processing required.

1.3.4 CEFF Resuits

CEFF results can be produced for a program’s entire execution or for user-
selected program sections. The results produced include T;, CU;, T, CAVG,
and CEFF. An example of the output is shown in Table 1.1.

There are several things to consider when interpreting the CEFF results. The
timing measurements assume that the current process was executing throughout
the last 10-msec time interval. Because of the 10-msec sampling procedure,
the concurrent state timing data is only a statistical approximation to the actual
concurrency timing information. Furthermore, determining CE cluster utilization
from a single measurement made every 10 msec is prone to errors because the
number of CEs used by the program can change many times during a 10-msec
time interval.

It is important also to remember that the concurrency efficiency results only
represent measurements of physical processor activity. No analysis is made of
what the processors are actually doing when they are active. Thus, the CEFF
results should not necessarily be interpreted as effective parallelism.

CEFF results can be used with other measurements to better characterize
program performance. For instance, speedups from 1 processor to n processors
can help to clarify the effective parallelism. Suppose a program running on eight
processors, as opposed to one, achieves a speedup S = 6 and a CEFF value of
80% (CAV G = 6.4). Although only 80% of the processors are utilized on av-
erage, almost all of the average processor concurrency is being used effectively.
In this case, the user might conclude that the ability to keep more processors
active is the problem. However, S = 2 for a program with CEFF = 80%
indicates a low effective parallelism, likely due to synchronization overhead or
a large sequential component.

The CU measurements are interesting because they give a histogram of
concurrent activity. The CU; values where i < n are important because they
represent periods of reduced parallelism when processors are actually idle. The
value CU; is most important since it is the percentage of time the program is
executing sequentially. The CU; value can be plugged directly into Amdahl’s
equation to get the projected maximum program speedup for p processors. 3 For
the results produced by CEFF above:

3 Amdahl’s equation is defined as limp—.co Sp = 7=~ Where F; is the fraction of time

all p processors are active. We assume that the percen}iages of all concurrent activity are
summed to get Fy,. Thus, the calculated asymptotic speedup is actually optimistic.
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TABLE 1.1
CEFF Results

Number of active CEs Seconds Concurrency (%)

1 3.37 28.25%

2 0.39 3.27%

3 0.30 251%

4 0.51 4.28%

5 0.75 8.29%

6 1.02 8.55%

7 1.49 12.49%

8 4.10 34.37%

avg. active CEs total seconds efficiency
5.05 1.93 63.07%

lim S, = m— = —=— = 3.54

Although CAV G = 5.05, the asymptotic speedup is limited by the signif-
icant sequential component.

1.4 Timing Instrumentation

After the implementation of the CEFF utility, it was clear that a more exten-
sive overall process timing utility was required for Cedar. There are two main
issues in measuring process execution time on a high-performance multipro-
cessing system: the time measurement accuracy and the timing of concurrent
operation. The need for more accurate time measurements increases as system
performance increases because of the finer time granularity of events of inter-
est. Measurement techniques based on periodic sampling of the system state
are insufficient for a high-performance multiprocessing environment. Strategies
to directly measure execution time using a high-resolution real-time clock pro-
vide more accurate and detailed execution time measurements. Moreover, tasks
can be in various states of execution requiring a more detailed breakdown of
execution time measurements [13,14].

A timing utility, called HRTIME, has been implemented for the Cedar
system [15]. The goal of the HRTIME utility is to provide high-resolution,
detailed timing measurements of parallel operation of multitasked Xylem pro-



1.4. Timing Instrumentation 9

cesses. HRTIME gives a complete timing account of both execution and non-
execution task states. In addition, HRTIME provides individual processor timing
measurements to give a detailed account of the time spent in various states of
sequential and concurrent execution.

1.4.1 HRTIME Motivation

HRTIME addresses several shortcomings of the standard UNIX approach to
process timing found on most multiprocessor systems and exemplified by Con-
centrix. When HRTIME was implemented, Concentrix was using the UNIX
sampled execution time technique. More accurate timing can be gained through
measured execution time. Briefly, measured execution time is based on deter-
mining the elapsed time, spent in a particular process state by recording the
value of a high-resolution real-time clock when the state begins and when it
ends. The difference between the two recorded time values is the elapsed time
which is added to a total execution time kept for that process state. Measured
execution time forms the basis for HRTIME and recently has been incorporated
by Alliant into Concentrix.

However, Concentrix only records a single USER and SYSTEM time value
for each process; for concurrent operation, HRTIME should keep separate time
values for each processor used by a program. Additionally, the operating system
(OS) instrumentation required to measure execution time allowed the execution
state types to be extended as well as nonexecution states to be monitored. These
features have been included in the HRTIME design.

Finally, Cedar requires a timing facility that maintains time measurements
for a multitasked Xylem process. In particular, there needs to be a way to record
a single global process time and to time various levels of task concurrency.
HRTIME provides these mechanisms as well.

1.42 HRTIME Design

HRTIME is based on measured task timing with all times measured at 10-
psec resolution [13,14]. The Concentrix USER and SYSTEM process states are
extended to four task execution states, and the measured times spent in these
states are kept on a per-processor basis. Nonexecution states are also defined to
track the time a task spends ready, blocked, or idle.

Execution States. Generally, task execution states can be partitioned accord-
ing to the type of code being executed. Four execution states are defined by
HRTIME: USER, SYSTEM, OVERHEAD, and KERNEL. The USER state is
active when user code is being executed. Processing of system calls occurs in
- the SYSTEM state. Interrupt processing that can be attributed to the current
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task falls into the OVERHEAD state; this includes interrupts for page faults and
general exceptions, such as a floating point exception. Interrupts not directly
associated with the current task are processed in the KERNEL state; cross-
processor interrupts, device interrupts and timer interrupts are considered part
of the KERNEL state. Actually, the KERNEL state is not a task execution state
at all, but a state in which the operating system itself is executing, For this
reason, only the USER, SYSTEM and OVERHEAD states are timed for a task.

In a multiprocessor system such as Cedar, it is possible for a task to be
executing sequentially on one processor or concurrently on several processors.
To further audit execution time, HRTIME keeps time measurements on a pro-
cessing resource basis. In Cedar, a sequential task executes on an interactive
processor (IP), a detached CE, and/or one CE of a cluster. HRTIME main-
tains a USER, SYSTEM, and OVERHEAD timer for each of these sequential
processing resources as part of the overall task time measurements.

All concurrent tasks execute on the computational complex of the Alliant
FX/8. * However, it is possible for processors participating in a concurrent
computation to be in different states of execution; e.g., CE 0 is in USER mode
while CE 3 is in SYSTEM mode and CE 6 is in OVERHEAD mode, and so on
(see Table 1.2).

For this reason, the execution states should really be monitored at the
processor level. For concurrent tasks, HRTIME measures execution times per
processor per state. ® USER, SYSTEM, and OVERHEAD timers are therefore
defined for each of the eight CEs that can participate in a cluster task’s execution.

Although the execution state timers defined above give detailed timing
information, a complicated calculation must be made to determine total elapsed
time, especially in the case of a concurrent task. For this purpose, a VIRTUAL
execution state is defined; when any processing resource is executing in USER,
SYSTEM, or OVERHEAD state, the task is in a VIRTUAL execution state and
a VIRTUAL time value is being updated.

As mentioned before, Xylem supports multitasking of a process for parallel
execution across multiple Cedar clusters. Like the VIRTUAL timer for 2 Xylem
task, a Xylem process will also have a process virtual timer, P_.VIRTUAL.
The motivation for a Xylem process virtual timer is to determine total elapsed
execution time for an entire process. The update mechanism is the same as for
the task virtual timer except that it is based on when tasks are executing. When
any Xylem task is executing in USER, SYSTEM, or OVERHEAD state, the
Xylem process is in P_-VIRTUAL execution state and a P_VIRTUAL time value
is being updated.

% A task is said to be concurrent if it requires more than one CE during its execution,

*This is not done by Concentrix. Whenever Concentrix detects any processor to be in
SYSTEM state, the whole process is considered to be in SYSTEM state. USER time
accumulates only when all processors are in USER state.
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Concurrent Execution States
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Nonexecution States. In addition to the execution states, three nonexecution
task states are recognized by HRTIME: READY, BLOCKED, and IDLE. When
a task is ready to execute, but not currently running, it is in the READY state.
Similarly, a task is in the BLOCKED state when it is blocked from execution.
The IDLE state occurs when a task is waiting for some work to do. Because the
task is not executing, only one timer is needed for each of these non-execution
states.

1.43 HRTIME Use

The HRTIME utility is enabled for all processes. Xylem maintains the time
measurements as part of each process’s state. The state timers are stored as 64-bit
integer values indicating the number of 10-usec time units measured. The timer
data structures are allocated as part of a larger process measurement structure in
the process’s read-only address space. This allocation allows reference to any
of the timers directly from the user’s program.

The HRTIME utility allows a user to make timing measurements for se-
lected sections of a program as well as for the entire program [15]. The general
procedure for making time measurements of a section of a program task is
shown below:

1. Read HRTIME measurements for the current task
2. Execute program section

3. Read a second HRTIME measurement sample

4. Calculate the time differences between samples

The time required to execute the program section is the difference between
the two HRTIME samples taken before and after the program section. If the time
samples are saved, a time-sample trace can be kept during program execution
and a post processor used to calculate the desired incremental time values.

In some cases, the user will want to time a program as a whole. The hrtime
command will time a program and produce HRTIME results for all program
tasks. An example of the HRTIME output for one task of a multitasked parallel
program running under Xylem is shown in Table 1.3.

1.4.4 Interpreting HRTIME Measurements

HRTIME provides significantly more detailed execution timing information than
the standard Concentrix USER and SYSTEM times. Nonexecution times are
also generated. Interpreting the time measurements, however, requires some
understanding of the program’s operation.
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One aspect of HRTIME that might be curious is the definition of USER,
SYSTEM, and OVERHEAD states. Some system processing actually occurs on
behalf of the user and, therefore, should be measured separately from the over-
head of general OS operations. Separate measurements let the user know how
much overhead processing the program really experiences during its execution
as well as how much system support the program requires. By monitoring the
OVERHEAD times, as well as the USER and SYSTEM times, the user can
get a sense of how vulnerable the program’s performance is to the overhead
processing.

Nonexecution time measurements might be regarded as superfluous. How-
ever, these times can reflect interesting task operation behavior. For instance,
the READY time is a good indication of the amount of waiting a task experi-
ences in the scheduling queue. The BLOCKED time is more versatile in that
it encompasses all dependent waiting time encountered by the task. This time
not only includes blocking due to I/O operations but also represents waiting due
to intertask synchronization. IDLE time is particularly interesting for Xylem
tasks because it can be used to compute a task utilization metric indicating the
percentage of time a task executes some portion of the user’s program.

For the most part, the execution time measurements are well defined. The
complication comes when trying to work back from the measurements to what
the program is actually doing. For sequential, single-task programs, the HRTIME
measurements are easy to understand. In this case, the breakdown across the
different sequential processing resources is interesting because it shows how the
process was scheduled during its execution.

The HRTIME measurements for concurrent tasks are more difficult to un-
derstand. The goal of the CE execution time measurements is to give some
indication of CE resource usage. Ideally, a single global state space is defined
where each point describes a different combination of the CE execution states.
Time spent in each global state can then be measured. However, the imple-
mentation of this measurement model is impractical because of the complex
instrumentation needed to detect global state changes.

Using the individual CE measurements, it is difficult to determine the
amount of time CE 0 is in USER state when CE 1 is in SYSTEM state, and
so on with other CE state combinations. However, it is unclear whether such
time measurements have much value. Because the computational complex is
assigned to a task as a single resource, it is more important how the individ-
ual CEs themselves are utilized. The HRTIME measurements show this as a
breakdown between execution states for each CE.

Finally, the Xylem process virtual time, in conjunction with the individual
task timings, can be used to give a general impression of the level of parallel
task operation. A possible addition to the current HRTIME utility would be the
breakdown of the P_.VIRTUAL time into values reflecting different levels of
simultaneous task execution.
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1.5 Profiling Instrumentation

Timing alone is insufficient for characterizing the behavior of parallel programs.
Although the HRTIME utility is able to describe how a program spends its time
in different execution states on different processing resources, it is unable to
correlate the timing data with the code being executed. The approach that has
been taken in most multiprocessor systems is to adapt sample-based profiling
tools designed for sequential programs. This approach was initially attempted
for Cedar but was abandoned because of its fundamental limitations for par-
allel program performance characterization and its implementation complexity
[16,17]. The following describes the conclusions from this investigation that are
belicved to be generally applicable to other parallel systems.

1.5.1 Standard Sequential Profiling

The goal of program profiling is to provide an accurate characterization of a
program’s execution behavior and performance. Such information will help the
user evaluate alternative implementations and guide program optimization. Two
measurements are commonly defined for the profiling of sequential programs: (1)
counting the number of times routines are executed and (2) timing the execution
of routines. Focusing on routines is reasonable for sequential program profiling.
Because only one routine can be executing at any time, the characterization of
a routine’s execution in terms of call counts and execution times is a direct
measure of its individual performance and its relative importance to the overall
computation.

The standard profiling tools of the UNIX operating system are prof and
gprof [18]. Two types of profiling output are produced by these tools. The
flat profile shows all routines called during program execution with the count
of the number of times they were called and their direct execution time. ¢
The call graph profile lists each routine, together with information about its
parent routines and children routines. The flat profile results are augmented
with cumulative time for the routine, the number of calls to each descendant,
the time inherited from each of its descendants, and the fraction of total routine
time represented by the descendant’s times. 7 Similar results are shown for the
parents of the routine.

Timing in prof and gprof is based on sampled execution time. When pro-
filing is enabled, a histogram of the location of the profiled program’s program

¢ The direct execution time for a routine is amount of time spent executing the statements
of the routine.

7 The cumulative routine time is the elapsed time from routine entry to exit.
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counter is updated at the end of each interval timer interrupt. 8 Routine execu-
tion times are determined from a distribution of program counter samples within
the histogram. To determine a routine’s direct execution time, the PC histogram
counts for that routine are summed and multiplied by the interval timer period.
Obviously, such timing measurements are subject to statistical sampling errors
and have the potential for giving misleading results.

To determine cumulative execution times, the arc call counts are used to
calculate the amount of time that should be propagated from descendants to
ancestors in the dynamic call graph. Having determined a descendant’s cumu-
lative execution time, each ancestor is propagated a time equal to the fraction
of total calls to the descendant made by the ancestor times the descendent’s
cumulative time. The necessary, but possibly incorrect, assumption is that each
call to a routine takes the same amount of time. This assumption, coupled with
the statistical approximation of direct execution time, can produce invalid timing
measurements.

1.5.2 Parallel Profiling

The goal of traditional profiling tools is to optimize the performance of a pro-
gram by streamlining routines that are major consumers of execution time. Using
the routine call counts and execution times, iterative techniques can be applied to
integrate excessively called routines or to streamline routines that are execution
time bottlenecks. However, parallel program profiling calls for an extension to
the common profiling approaches to include measurements of the dynamic in-
teraction between concurrent execution threads. Unfortunately, there are certain
fundamental problems that limit such an approach.

The proposed profiling strategy for Cedar was to extend sequential profiling
techniques to gather additional information about parallel program activity. In
particular, because parallel program execution implies the potential for more than
one routine to be executing concurrently, the standard profiling measurements
were to be enhanced to include information about the parallelism present when
a routine was executing [16,17]. ’

The first conclusion reached is that sampling is totally inappropriate for
generating profile timing information for parallel programs. The reasons for this
are the same as for sample-based process timing. Furthermore, the assumptions
made about achieving statistical accuracy and propagating time back up the
calling tree to determine cumulative execution times are invalid for sample-
based parallel program profiling. The main reason for this is the inability of
sampling to capture changes in parallel execution state that directly affect how

8 The interval time interrupt usually occurs every Z-th of a second. On the Alliant FX/8,
it occurs every 10 msec.
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time intervals should be classified. Parallel profiling approaches must instead be
based on measuring time intervals between successive routine entry/exit events
and events reflecting changes in concurrency state.

Unfortunately, many additional execution events are required to capture
even basic concurrent activity. These events represent an enumeration of the
possible concurrent states that might occur during a program’s execution. More
importantly, the events do not necessarily occur at routine entry and exit. Thus,
a significant amount of additional code instrumentation would be required.

Other timing problems were also identified. In sequential profiling, it is
always clear how the current time should be accounted. This is not the case in
parallel profiling. Parallel execution necessarily implies that one or more rou-
tines are active simultaneously. Several issues arise with respect to accounting
execution time to routines in different parallel execution cases:

1. When a routine is executing concurrently with itself, how are direct time
and cumulative time for that routine measured?

2. When a routine, B, is called concurrently from the same calling routine, A,
how does B’s parallel execution time get accounted in A’s timing values?

3. When a caller and callee routine are executing concurrently, how are direct
and cumulative times being accumulated for the caller and the callee?

4. When there is a concurrent execution overlap of two callee routines (differ-
ent or the same) from the same caller, how is the overlap time accounted
for in the caller’s time values?

The root of these issues lies in the definition of execution time. If execu-
tion time is to mean elapsed time, execution time for a routine A accumulates
whenever A is executing, sequentially or concurrently. If, however, execution
time means CPU time, the time spent on different concurrent execution threads
must be accounted for in routine A’s execution times. Elapsed execution time
measurements are necessary for calculating speedup. On the other hand, CPU
time accounts for the amount of computing resources used by the program and is
necessary for utilization calculations. Both time values are needed for profiling
parallel programs.

The most important conclusion reached concemns profiling as a basis for
parallel program optimization. The goal of sequential profiling is to find the
routines that take the most time and optimize them. Doing so will directly
improve the overall performance of the sequential program. This profile-based
optimization strategy is faulty for parallel programs as shown by the simple
example in Figure 1.3 for a parallel program running on two processors. The
Main routine forks a thread that executes routine A on processor P1 for 10
seconds. The other fork of Main calls routines B, C, D, and E, in that order.
Each of these routines executes concurrently with A for 2.5 seconds. The forks
then join and the program ends.
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FIGURE 1.3
Parallel program example.

The standard optimization strategy based on profiling results would be to
optimize A. However, there are several situations in which this strategy would be
incorrect. For instance, suppose there existed dependencies between the routines
as shown by the dashed lines. Clearly, A is not the bottleneck since B, C, D, and
E have an execution flow dependency. Optimizing A would have little effect
on run time of the program. Instead, the programmer should concentrate on
improving the performance of the other routines.

The problem is that the profiling data does not make the needed optimiza-
tion obvious. In order to optimize parallel programs, it is necessary to observe
the dynamic interaction of the multiple threads of execution. A parallel profiling
approach must describe and measure all the possible parallel execution interac-
tion that might occur as individual events. The instrumentation required to do
this would be overly complex to implement.
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The instrumentation complexity required for parallel profiling does not pay
off in better characterization and optimization. Profiling only summarizes par-
allel execution information in terms of event counts and times. Unfortunately,
it is the dynamic execution information that is required for effective parallel
program performance evaluation. Statistical summaries are interesting for some
characterization purposes, but parallel program analysis requires the ability to
observe and analyze time-ordered concurrent events. A different instrumentation
approach is required to achieve this result.

1.6 Tracing Instrumentation

The standard profiling instrumentation approach proved too limited in its abil-
ity to measure and characterize parallel execution. Instead, what was needed
was a general instrumentation approach simple enough to be efficient but robust
enough to capture execution data that could describe complex parallel program
behavior. Program event tracing was implemented as an instrumentation tech-
nique for performance evaluation of parallel programs written for Cedar [19].
The versatility of tracing comes from the ability to combine low-level primitive
event traces to produce information about more complex higher-level events. In
the case of parallel program analysis, this is a necessary requirement because
of the difficulty of monitoring complex parallel execution states at run time.

1.6.1 The Tracing Approach

The execution of a program can generally be described as a time-ordered se-
quence of events. The events can be defined to be any logical or physical con-
sequence of program execution. The goal of program performance evaluation is
to capture information about these events in meaningful ways that can be used
to guide performance optimization.

Three operations can be identified in this process: (1) event detection, (2)
event measurement, and (3) event analysis. For an event to be observed, its
occurrence must first be detected. The complexity of event detection depends
on the scope of the event. For instance, if the event is the entry to a routine,
monitoring the routine for an entry event is sufficient. If, however, the event is
defined to be a certain number of processors being active, the detection mech-
anism must continually be testing all processors simultaneously. The scope is
broader and, thus, the detection is more difficult.

Event measurement records information about event occurrence and event
analysis uses the data to derive various performance results. If event analysis
is done at the same time as event detection, all measurement information that
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describes an event must be known at a central point. Not only does the de-
tection have to be centralized in this case, but so does the measurement. This
requirements makes it difficult to define very complex events about program
execution. Unfortunately, the scope of many parallel program events is broad.
That is, interesting parallel program events tend to be defined with respect to
some global parallel execution state, such as the level of parallelism.

The profiling instrumentation discussed in the previous section suffered
from a requirement to perform event detection, measurement, and analysis at the
same time during program execution. Each event had to be completely described
in the profiling instrumentation, including the complex events regarding global
parallel execution state. This severly limited the range of events that could be
realistically profiled.

The functions of event detection, measurement, and analysis must be sep-
arated if practical performance tools are to be realized. Furthermore, complex
events must be defined hierarchically as combinations of more primitive events
which are monitored during program execution.

Event tracing is an instrumentation technique whereby data about an event
are saved in a buffer whenever the event occurs during program execution. Part
of the data is a timestamp indicating the actual time the event took place. The
subtle power of timestamped event tracing is that all information required for
analysis is saved. The analysis function, therefore, can take place independently
of the event detection. Furthermore, detection and measurement of complex

“events can often be derived from the data saved for the low-level events. Thus,
only primitive event measurement is necessary during execution.

The benefit of tracing as an instrumentation technique for parallel program
performance evaluation is that very detailed information about a program’s exe-
cution can be recorded in a trace from which complex queries about performance
behavior are answered. The tracing operations are simple to implement and the
instrumentation efficiency issues are localized to the management of the trace
buffers. Indeed, the functional partitioning allowed by tracing can be seen in the
highly modular and parallel approaches to its implementation.

1.6.2 CTRACE - A Tracing Facility for Cedar

CTRACE is a tracing utility developed for the performance evaluation of the
parallel programs written for Cedar [19,20]. CTRACE has three components
as shown in Figure 1.4. The event specification component defines the events
that will be traced during program execution. The measurement component is
responsible for enabling program and operating system instrumentation that will
monitor the events of interest and generate the program trace. The CTRACE
analysis component processes the trace data to produce various performance re-
sults. Together, the three components of the CTRACE utility form an integrated
performance evaluation environment.
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The CTRACE environment.

Event Specification. Software event specification in CTRACE serves two func-
tions. First, it informs the measurement phase about the nature of the event: what
the event is, when it occurs, and what data are needed to describe the event in the
trace. Second, the specification serves as the basis for event trace interpretation
in the analysis phase by providing information about how the various events are
associated.

Two general types of events can be specified: standard and user-defined
events. Standard events are defined with respect to common actions in the ex-
ecution environment and are always available to the user. The set of standard
events in the current version of CTRACE is shown below:

Program
routine entry, exit
basic block entry, exit

Cedar Fortran: Cluster Loop Parallelism
CDOACROSS entry, exit
CDOALL entry, exit

Cedar Fortran: Spread Loop Parallelism
SDOACROSS entry, exit
SDOALL entry, exit
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Cedar Fortran: CDOACROSS Synchronization
advance synchronization
wait synchronization entry, exit

Cedar Fortran: Simple Synchronization
fetch and op

Cedar Fortran: Cray-XMP Synchronization
lock on, off
event post, clear
event wait entry, exit

Xylem: Multitasking
create task, delete task
gueue task, resume task’
start task, stop task
suspend task
wait task entry, exit

Xylem: Synchronization
set lock
clear lock
wait lock entry, exit
dawdle entry, exit

Xylem: Task States
running
ready
block
idle

If the programmer desires an event not included in the standard set, the
event must be described by the user. CTRACE currently provides for three gen-
eral types of user-defined software events: MARK, ENTRY, and EXIT. MARK
events simply indicate the occurrence of an event during execution. ENTRY and
EXIT events indicate the entry into a block of computation and the associated
exit, respectively. An ENTRY event must always be paired with an EXIT event.

In general, software event tracing allows any data that the user wants to
associate with an event to be recorded in the trace. These data must be defined
in the specification phase. The standard event data are predefined. A minimal
amount of data will be automatically recorded by CTRACE. These data include
an event identifier and a high-resolution global timestamp.

Event Trace Measurement. Currently, CTRACE performs all tracing in soft-
ware. The approach taken is to provide a separate trace buffer per processor per
task. This supports efficient concurrent tracing operations because there is no
trace buffer contention.
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The approach of separate trace buffers requires that event timestamps be
generated from a global clock. The high-resolution timestamps for CTRACE
are obtained from a 10-usec real-time clock maintained by each Alliant FX/8
cluster and directly readable by each CE. The time value is stored as a 64-bit
quantity. Because Cedar has one central hardware clock source, all individual
FX/8 real-time clocks are synchronized. Thus, global time is distributed across
the Cedar machine.

One artifact of using a real-time clock for timestamps is that periods when
a task is not running must be identified in order to make execution time mea-
surements. The beauty of tracing is that context switch events can be traced as
well as other program events [21]. This makes it possible to have low-overhead
timestamp generations as well as accurate execution time measurements. The
context switch events are also useful for showing task scheduling behavior.

Support for event measurement takes several forms. A library of tracing
routines is provided for initializing the tracing facility, recording events in trace
buffers, and writing events to a trace output file. Trace-instrumented standard
libraries are also available and can be compiled with a program. These include
trace-instrumented run-time libraries for Cedar Fortran. Compiler preprocessor
support is provided to insert instrumentation for events defined with respect to
Cedar Fortran language statements. Event instrumentation can be enabled either
through compile-line arguments or compiler directives. Finally, events external
to the program, such as context switch events, require instrumentation in the
operating system for their measurement.

Event Trace Analysis. The idea of event trace analysis is simple. Using the
event specification and measurement information, the program traces are scanned
to determine certain performance results. Two general event trace analysis tools
are provided in CTRACE. The execution profile analysis tool produces statistical
summary results of the program’s execution. The statistics are similar to, but
more extended than, the common sequential profiling results produced by prof
and gprof. The execution flow analysis tool allows the programmer to observe
the time-sequenced flow of events as they occurred during program execution.
This tool is able to isolate certain periods of execution to identify particular
characteristics of program behavior.

In general, the program traces should be viewed as a database of time-
related information from which queries can be made regarding parallel program
execution. A highly interactive analysis environment can be imagined that in-
terfaces with the user through some query language and displays responses in
various statistical and graphical representations.

Execution Profile Analysis. The execution profile analysis tools generate sta-
tistical information regarding program execution from the program traces. For
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instance, given only standard routine and task event data, all of the following
common profiling measurements can be produced:

O routine call counts

o descendant routine call counts

o direct execution time

D cumulative execution time

O average cumulative time per call

o descendant cumulative execution time

In addition to the above measurements, the following concurrency statistics
can be generated without the need for defining additional events:

0 sequential and concurrent routine call counts

o sequential and concurrent routine execution time
o number of tasks created

O average task execution time

O execution time histogram of task concurrency

O average task concurrency

Data from the other events only increase the database from which execution
profile statistics can be drawn. Of particular interest is the execution time of
parallel loops and synchronization operations. The following represents the types
of statistics provided:

o CDOACROSS and CDOALL execution time
o SDOACROSS and SDOALL execution time
0 task wait synchronization counts and times

o event wait synchronization counts and times

o lock wait synchronization counts and times

1.7 Execution Flow Analysis

The ability to observe the program events in a time-ordered sequence of oc-
currence differentiates tracing from profiling tools. Statistical summaries give a
global picture of program execution but lack historical perspective. Execution
flow analysis provides the programmer with a window into the program traces at
various levels of detail. The concept of replaying the program’s execution with
respect to the traced events forms the basis of execution flow analysis tools.
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In general, execution flow analysis is used as a means to explore the pro-
gram’s execution for evidence of good, bad, or strange behavior. Sometimes the
programmer just wants to see general characteristics, such as the sequence of
routine execution. At other times, the programmer will use execution flow anal-
ysis in combination with highly specialized event traces for “search and destroy”
missions to pinpoint some anomalous behavior or dissect a poorly performing
section of code. The execution flow analysis toolset provides an environment for
the programmer to intelligently search and analyze the program trace database.

A basic set of execution flow analysis functions is currently provided in
CTRACE. The function of moving around in the program trace and display-
ing events is called event trace browsing. In addition to enabling forward and
backward movement in program event history, event trace browsing provides
different ways of searching through the event trace. Textual and graphical pre-
sentation capabilities also exist for showing the events that occur in certain
regions of the trace.

One such graphical representation is the dynamic call graph display. The
display shows the active calling arcs of the static subroutine interconnection
graph with the nodes being drawn dynamically as the routines are encountered in
the program trace. Figure 1.5 gives an example of the state of a task’s execution
on an FX/8 Cedar cluster in the form of a dynamic call graph. The path through
the static call graph is shown for each execution thread with the leaf node
representing the currently executing routine. The global dynamic call graph of
the task shows a merge of the individual calling branches with all currently
active routines drawn as square nodes.

The key feature of the event trace browser is that it is interactive. It takes
the event specification and the program trace and provides a front-end for general
inquiries about program execution. Basic searching and event presentation are
be handled by the browser. More sophisticated analysis is the responsibility of
execution flow generalization.

The basic idea behind execution flow generalization is to provide the pro-
grammer with a way of observing higher-level execution behavior not rep-
resented directly by some traced event. Execution flow generalization builds
high-level events from combinations of traced events. As an example, task con-
currency events reflect the number of active tasks during a program’s execution.
Each level of task concurrency represents a separate event. Although the occur-
rence of events of this type is difficult to detect at run time, it is easy to derive
from analysis of the individual task traces. From the task state event data, the
beginning and ending times for the high-level task concurrency events can be
determined. A task concurrency event “trace” can be generated from this anal-
ysis and a graph of task concurrency produced. An example task activity graph
and the accompanying task concurrency graph are shown in Figure 1.6.
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FIGURE 1.5
Dynamic call graph.

Notice the period of time during which none of the program tasks are
active. In multiprogrammed multiprocessing systems such as Cedar, this can
occur because all tasks within the system are sharing processing resources.
Although this is a simple example of execution flow generalization, it illustrates
the basic idea upon which more complicated generalizers can be designed.

As the range and details of events increase, so does the complexity of trace
analysis. Additional tools will be developed that allow the user to more easily
browse through the trace at various levels of detail and query the analysis system
about program behavior. These tools will require new techniques for interpreting
the trace data as well as reducing the data into meaningful representations for
presentation to the user.

1.8 Hardware Instrumentation

In addition to software instrumentation, several hardware instrumentation ap-
proaches are being pursued for Cedar. Hardware measurements focus on the
physical events taking place within various Cedar machine components. These
measurements include Alliant FX/8 cluster, global interface, global network, and
global memory measurements (see Table 1.4) [22]. A flexible hardware perfor-
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TABLE 14

Hardware Measurements

Alliant FX/8 Global Global Global

Cluster Interface Network Memory

instructions reference type input port utilization  reference type
vector operation prefetch operation  network contention reference distribution
concurrent operation  data buffer usage  bandwidth utilization  utilization

cache operations interface delay network delay reference delay
memory references data transfer rate  output contention memory contention

mance monitoring system is being developed that will make these measurements
for the Cedar machine [9].

Hardware instrumentation can also be used to make certain software instru-
mentation more efficient. A hardware trace buffering facility is being developed
that will provide support for CTRACE in the form of automatic event time-
stamping, trace buffer management, and a fast path for generating events.

1.8.1 Hardware Performance Monitor

The integral hardware support for performance monitoring in the Cedar system
is represented in Figure 1.7. The key elements are buffered on-board test points,
a data acquisition system, and multibus-based control.

The Cedar system is observable by way of a series of performance-mea-
surement test points provided on each circuit board. These test points provide
information such as microcode instruction and address on the CE boards, control
states and important counters on the network interface boards, and other signals
specific to the global network and global memory boards. The signals provide
important information on the activities of each board.

The signals are monitored by a general purpose high-resolution data acqui-
sition system, called the black box. A black box card cage can hold up to 32
modules. Several different types of modules have been developed including sig-
nal conditioning, counting, timing, and data-logging. The hardware monitoring
system is generally configurable to the type of measurement experiment desired.
For example, one module can be configured as an interval timer and another as
a counter to count the number of floating-point operations. Using this config-
uration, MFLOPS (million floating-point operations per second) can be easily
obtained.

The black boxes are connected to a controller card resident in one of the
multibus backplanes used by the IPs in a Cedar cluster. Each controller can
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Cedar hardware monitoring system.
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handle as many as 16 black box systems. Multiple controllers can be installed
in one multibus, for centralized control by one IP, or in multiple multibuses, for
distributed control by several IPs within one cluster or across multiple clusters.

The IP directly controls each black box and can read the contents of the
black box registers and memory to obtain the collected data. Since an IP is
also responsible for providing disk /O to the cluster, it is possible for run-time
performance data to be logged to disk as they are collected. Real-time analysis
by the IP critically depends on the volume of data received and the amount of
processing to be performed.

One advantage of using such a hardware monitoring system is that it is
highly modular. Each module in a black box system has an identical standard
interface that makes the system easily expandable. Special types of performance
modules can be designed as needed, and as long as their interfaces stay the
same, all of these modules can be controlled by the same mechanism. This
allows different types of modules to work together to collect different kinds of
data simultaneously. It is often necessary to correlate data collected in different
parts of a system within the same time frame. The ability to mix different types
of modules together to collect different types of data simultaneously makes the
post collection analysis much easier and more accurate.

Within a cluster, under the proper conditions, the performance monitoring
can be tightly correlated with events produced by a given task (software), or by a
given computational element (hardware). This software and hardware resolution
degrades as measurements are made farther away from the cluster, e.g., in the
global memory, where it is very difficult to know which CE instruction required
the memory access.

The software resolution (i.e., the extent to which performance parameters
measured throughout the system can be correlated with specific tasks) is highly
dependent on the number and type of explicit and implicit triggers produced
by the task that can be detected by the black boxes. Explicit triggers can be
generated by special instructions in a task specifically for the purpose of start-
ing, stopping, or signaling the black boxes. The global interface for each CE
was designed such that certain instructions issued by the CE would generate
special external trigger signals. The trigger instructions can be embedded in a
user’s program or in the operating sysiem to precisely start and stop hardware
measurements in the software. Implicit triggers are sets of circumstances that
can be identified as characteristic of the task under analysis (such as certain
“unique” sequences of operations that can be correlated with the execution of
the task). Recognition of implicit triggers depends either on an accurate program
flow model or on a detailed understanding of the task under investigation.
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1.8.2 Hardware Trace Buffering System

A hardware trace buffering utility is being developed for Cedar that will support
CTRACE program event tracing by providing the means for low-overhead event
generation and trace buffer storage. The hardware tracer consists of an interface
to the hardware performance monitor, a trace buffer memory, a timestamp clock,
and an interface to disk. Each CE in the Cedar system will have its own tracer
module.

The hardware performance monitor will provide access to the software
trigger signals that will indicate the occurrence of an event. Event data indicated
by the triggers will be captured by the monitor and passed to the tracer. The
tracer will timestamp the event and store it in a trace buffer specific to the CE
producing the event. The tracer is designed to accept events as fast as the CE
can produce them.

In addition to providing fast paths for writing event data, the tracer re-
lieves CTRACE of the need to manage trace buffers in software. The automatic
time-stamping of events also reduces the cost of generating software events.
Hopefully, the tracer will help reduce the impact that trace instrumentation has
on parallel program execution. It should also improve the resolution at which
events can be observed.

1.8.3 Real-Time Performance Analysis

The hardware trace buffering utility together with the hardware performance
monitor will provide the basis in the future for a real-time performance analysis
system. The researcher’s intent is to design a system that processes in real
time the performance data produced by Xylem and parallel programs running
on Cedar and shows system and program performance through various forms
of graphical performance displays. It is hoped that the system will provide
immediate feedback of current performance as well as summary information
of past performance that will be useful for tuning the overall performance of
Cedar.

1.9 Conclusion

Instrumentation for parallel systems must offer the user ways of observing par-
allel operation at various levels of detail. However, the hardware and software
constraints imposed by real systems make it difficult to implement instrumenta-
tion mechanisms that do not somehow perturb the parallel behavior. The chal-
lenge is to design instrumentation techniques that integrate well with parallel
architectures and parallel execution environments. In the future, these techniques
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should be included as part of the overall parallel system design and be provided
as standard components on all parallel machines.

The instrumentation tools developed for the Cedar multiprocessor are pro-

totypes used to explore various tradeoffs in design and implementation. The set
of tools is continually being improved as more instrumentation is being placed
in the hardware and software to gather additional data about the system. Many of
the basic instrumentation approaches, however, are considered general enough in
scope to serve as a performance instrumentation framework for other machines.
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