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Abstract
Testing the performance scalabilityof parallelprograms

can be a time consuming task, involving many performance
runs for different computer configurations, processor num-
bers, and problem sizes. Ideally, scalability issues would
be addressed during parallel program design, but tools are
not presently available that allow program developers to
study the impact of algorithmicchoices under different pro-
blem and system scenarios. Hence, scalability analysis is
often reserved to existing (and available) parallelmachines
as well as implemented algorithms.

In this paper, we propose techniques for analyzing sca-
led parallel programs using stochastic modeling approa-
ches. Although allowing more generality and flexibility in
analysis, stochastic modeling of large parallel programs is
difficult due to solution tractability problems. We observe,
however, that the complexity of parallel program models
depends significantly on the type of parallel computation,
and we present several computation classes where tracta-
ble, approximate graph models can be generated.

Our approach is based on a parallelization description
of programs to be scaled. From this description, “scaled”
stochastic graph models are automatically generated. Dif-
ferent approximate models are used to compute lower and
upper bounds of the mean runtime. We present evaluation
results of several of these scaled (approximate) models and
compare their accuracy and modeling expense (i.e., time
to solution) with other solution methods implemented in
our modeling tool PEPP. Our results indicate that accurate
and efficient scalability analysis is possible using stochastic
modeling together with model approximation techniques.

1 Introduction
In order to implement portable and efficient parallel pro-

grams which will also have good performance scalability,
parallelization choices must be tested for many systems
and problem testcases. Since a program’s behavior could
vary for different problem sizes and different numbers of
processors, a systematic test method is desired. Presently,
scalability testing is often deferred until after a program
has been implemented, restricting its application to existing
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system environments. Ideally, scalability issues would be
addressed during parallel program design, allowing the de-
veloper to explore the performance scaling characteristics
of different algorithm alternatives before implementation
commitment. To do so, however, requires a scalability
analysis approach that allows quantitative statements to be
made relating the parallelization properties of programs and
the critical execution factors of target machines to scaled
performance behavior. Even if the program properties and
machine factors can be accurately represented, the available
solution techniques are limited in their ability to analyze the
performance effects from program/machine interactions.

Modeling parallel programs with stochastic models like
graph models [14] or Petri net models [2] is a well–known,
proven method to analyze a program’s dynamic behavior.
It can be used to predict the program’s runtime [17], and,
by changing model parameters, help to understand the pro-
gram’s general performance behavior, to investigate rea-
sons for performance bottlenecks, or to identify program
errors. In considering the use of stochastic modeling for
the analysis of performance scalability, we show that spee-
dup values can be computed from the predicted runtimes
of model instances for different numbers of processors and
problem sizes. Hence, a model–based analysis need not
be restricted to existing systems, and a stochastic mode-
ling tool can be expected to provide an environment for
systematic study of tradeoffs in parallelization strategies
and execution time functions (representing the computa-
tion, synchronization, and communication properties of
different target execution environments) that govern sca-
led performance characteristics.

However, a systematic method for analyzing scaled pro-
grams based on modeling presents several challenging pro-
blems. First, in general, it must be possible to create models
for different configurations and topologies of a parallel sy-
stem as well as for different problem sizes. One approach
might be to develop a model generator which automati-
cally creates multiple “scaled” models by extending a basic
“generic” model of the program to be analyzed1. Adop-
ting this strategy, a second problem must be addressed –
how is the generic model represented. Our solution is
the Parallelization Description Language (PDL) [12], de-
veloped for describing the structure of parallel programs,
the parallelization scheme for each parallel program part,
and various aspects of a program’s runtime behavior. A
third problem lies in producing scaled models from generic

1Note, this “generator” approach could be undertaken with different
modeling techniques, includingPetri net models [19] andQueuingModels
[10].
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representations, since model complexity, tractability, and
solution accuracy must be considered. The key is to find
model generation methods which produce approximately
accurate models of scaled performance behavior, but that
do not exceed the solution capabilities of stochastic mode-
ling tools. With respect to runtime distributions, we agree
with Adve and Vernon [1] that the use of exponentially
distributed task execution times to permit tractability is not
representative of actual parallel program behavior. Instead,
we promote the use of efficient techniques for analyzing
parametrical distributions (especially Erlang distributions
which can have arbitrary low variance) or numerical dis-
tributions (obtained from monitoring existing systems) for
tractable solution to scaled models, in contrast to solu-
tion simplifications afforded by a deterministic model [1].
Lastly, systematic methods for scalability study must ad-
dress the question of automatic testcase analysis. The most
appropriate approach would be to integrate performance
scalability into stochastic modeling tools.

Our goal in this paper is to demonstrate the application
of stochastic modeling to the scalability analysis of parallel
programs. We do so by presenting techniques for paral-
lel program representation, generic model transformation,
and scaled model analysis that allow bounding performance
results to be derived. To evaluate the efficacy of our techni-
ques, we have integrated model generation and scalability
analysis into our tool PEPP (Performance Evaluation of
Parallel Programs) [7]. In addition to gaining access to the
efficient solution techniques supported by PEPP, this inte-
gration has also allowed us to evaluate tool requirements
for automatic scalability study.

The remainder of the paper is organized as follows. In�
2, the concept of model–based analysis of scaled parallel

programs is introduced. Here, we also discuss the evalua-
tion of stochastic graph models using different bounding
techniques. The automatic creation of scalability models is
addressed in

�
3. Different parallel computation classes are

described, and it is shown how scaled approximate models
of those classes are derived. In

�
4, we discuss the use of

PEPP for scalability analysis. A detailed example of scala-
bility analysis for a neighbor synchronization computation
is presented where different solution techniques are compa-
red. Our results indicate that accurate solutions for scaled
approximate models can be obtained. Finally, in

�
5, we re-

mark on several open issues concerning the general validity
of stochastic modeling methods for studying performance
scalability.

2 The methodology
2.1 Concept for automatic scalability analysis

To avoid the complexity of developing parallel program
models for target parallel systems from scratch, Herzog
proposed a “three step methodology” [8]. Instead of crea-
ting a single, monolithic model for each combination of
workload, machine configuration, and load distribution, a
workload model is developed independent of its imple-
mentation concerns; the machine model is also developed
separately. The system model is then obtained by mapping
the workload model onto the machine model. The combi-
ned model reflects the dynamic, mapped program behavior
and shows how system resources are used (Figure 1).

Our approach for scalability analysis extends this base
methodology to generate multiple system models that re-
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Figure 1: Concept for automatic scalability analysis

flect varying degrees of parallelism and problem sizes. In
contrast to Herzog’s approach, the choice of number of
processors is separated from the machine model; the map-
ping of the workload model onto the machine model must
be realized for each number of processors separately, crea-
ting several scaled models. In our approach, the machine
model onlydescribes synchronizationmechanisms and per-
formance distributions for each machine component.

The challenge of scalabilitymodeling following thisme-
thodology is to define systematic techniques for generating
scaled models, from generic workload and machine mo-
dels, that can accurately capture scaled performance beha-
vior. Two issues must be addressed. First, parallelization
schemes must be well understood in order for the automatic
mapping of tasks to processors to occur. This requires some
representational form to be defined that identifies paralleli-
zation characteristics for different classes of computations.
Our solution, PDL, is discussed in [12]. The second issue
– scaled model generation – is, perhaps, more problema-
tic. Some parallelization schemes can easily lead to scaled
models whose exact solutions are prohibitive in computa-
tional requirements. Although modeling techniques have
been developed that are “largeness tolerant” [18] (i.e., can
deal to some extent with model complexity), the process of
creating a correct and solvable exact model is non–trivial.
To overcome these exact model generation and evaluation
problems, we must develop approximation techniques that
simplify model creation and reduce the complexity of mo-
del analysis. Clearly, the scaled models should not be so
simple that analysis accuracy is sacrificed. Our approach
is to create approximate models that bound scaled perfor-
mance, and to use more accurate modeling, where efficient
solutions are possible, to tighten, where needed, the perfor-
mance range.

In general, approximate model generation is not easy
due to problems such as task dependencies, scheduling,
and synchronization. In addition to the generation of sca-
led models, task density functions must be derived that
capture the performance effects of interactions between
scaled parallel tasks. It is our aim to implement not only
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scalable, but also portable parallel programs. Further eva-
luation complexity is introduced since we must consider
the desire for different machine models to be applied in
scalability study. By mapping the workload model onto� different machine models we obtain at least � different
system models, each generating a scaled model set. Our
approximation and solution techniques must be accurate as
well as efficient to make model–based scalability analysis
an acceptable practice.

Scalability analysis can be carried out with any method
using discrete event models. In the remainder of this paper
we examine scalability analysis for stochastic graph mo-
dels. Our approach using the description language PDL
could easily be undertaken with Petri net models as in [19].

2.2 Evaluation of stochastic graph models
Stochastic graph models have been used extensively to

model and to analyze the behavior of parallel programs
[15]. The execution order of program activities, their run-
time distribution, and branching probabilities can be repre-
sented using stochastic graph models. Besides modeling
algorithmic properties, graph models can also be used to
model the mapping onto a parallel machine, which is a
prerequisite for scalability analysis. A parallel program
is modeled by a graph,

�������	��
���
��
, which consists of

a set of nodes,
�

, representing program tasks and a set
of directed edges (arcs),


��������
, modeling the de-

pendencies between the tasks. To each program task ��� a
random variable


 ��� 

is assigned which describes the

runtime behavior of ��� (

 � �����

1
� �!� ��� � , are assumed to

be independent random variables). To evaluate stochastic
graph models, various methods can be applied.

State space analysis
If the tasks’ runtime distributions are given by general Er-
lang functions, we can use well–known transient state space
analysis. However, as the number of states grows expo-
nentially with the number of Erlang phases, the number of
nodes, and the number of task dependencies, this method
is not applicable in general, especially for scaled models of
parallel programs which often consist of hundreds of nodes.
If these large models are not structured in a series–parallel
manner, exact evaluation methods fail because of excessive
computation times and memory requirements (state space
explosion). Therefore, we propose to reduce the number of
states by approximating the runtime distribution with one
deterministically and one exponentially distributed phase
(de-approximation). The parameters of the deterministi-
cally distributed phase " and of the exponentially distribu-
ted phase # are obtained from the expected runtime and the
runtime variance (see [17] for details).

Using the approximate state space analysis, another di-
sadvantage of the classical state space analysis can be eli-
minated: approximate state space analysis can deal with
numerical distributions obtained from monitoring. But this
method still fails for scalability analysis when modeling a
high degree of parallelism where non–trivial interprocessor
dependencies are present.

Series–parallel reduction
Graph models which have a series–parallel structure can ea-
sily be evaluated using the operators series reduction (i.e.,
convolution of two density functions) and parallel reduc-
tion (i.e., product of two distribution functions) to reduce
the graph to one single node. The runtime distribution of

the remaining node gives the runtime distribution of the
whole graph model. Series–parallel reduction tolerates lar-
geness because model solution does not require creating a
state space [18].

However, some models of parallel programs do not have
a series–parallel structure. In these cases, techniques must
be developed to transform arbitrary models into models
which are series–parallel reducible. If, after applying this
transformation, the computed runtime of the transformed
models are still considered to be accurate, viable methods
for bounding the mean runtime can be formulated.

Bounding methods
There are several bounding methods [5, 11, 16, 21] that can
be used to create series–parallel reducible graphs for which
bounds on the mean runtime of the program’s execution
time can be computed. The methods add or delete nodes
or arcs to the original graph. If nodes or arcs are added,
the mean runtime of the new graph is an upper bound.
Removing nodes or arcs from the original graph leads to a
lower bound on the mean execution time. In the following,
we explain two different methods:

$ The method of Kleinöder
Modifying a graph by adding/deleting arcs leads to
a graph representing a higher/lower mean execution
time [11]. The insertion of arcs increases the inter-
processor synchronization causing higher execution
times. The deletion of arcs removes synchronization
dependencies implying lower execution times. Gene-
rally there are many possibilities to reach the series–
parallel reducible form of a graph by adding or dele-
ting arcs. Consequently, there is more than one upper
or lower bound. The main question now is, how can
we obtain the tightest bounds (i.e., the smallest upper
bound and the largest lower bound). In our modeling
tool PEPP (see

�
4) a heuristic approach is implemen-

ted.
$ The method of Dodin

This method can be used to obtain an upper bound
only [5]. The idea behind this method is to modify the
graph model by duplicating nodes. Like the method
of Kleinöder, there are many ways to bring a non–
series–parallel graph into a reducible form.

Note, these bounding methods operate on an exact model
of the parallel program. The problem of creating an exact
model remains. We develop “scaled approximate models”
using the method of Kleinöder to derive tractable series–
parallel reducible models without requiring a large scaled
exact model to be created. In

�
4, we show how the method

of Dodin can be used to come to a better upper bound for
neighbor synchronization computation classes, but at the
cost of a slightly more complex derivation.

3 Scalability models for parallel programs
Our goal with automatic scalability analysis is to make it

possible for modeling tools to be applied to scaled versions
of parallel programs where it is the number of processors or
size of problem or both that are changing. In [12], we ap-
proached this problem by considering approximate scaled
models for different computation classes. In addition to the
trivial case of scaling � independent, identically distribu-
ted tasks, the parallel computation classes with dependent
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tasks shown in Figure 2 were considered. The resulting
scaled models for dependent task computation have a more
complex structure than the independent task models due to
the synchronization arcs in the task graph. In general, task
dependencies can be arbitrary. In practice, computations
with regular (and often static) task dependencies are quite
common in real–world applications.
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Figure 2: Parallel computation classes (dependent tasks)

Before looking at a specific case, it is instructive to con-
sider what problems we might encounter. Computation
classes are best defined by the pattern of task interaction;
that is, dependency constraints. The problem size often
translates into the number of tasks represented in the com-
putation graph and the number of iterations of the basic
graph structure (i.e., phases of the computation). The task
density functions are rarely random: either they are related
by the type of algorithm, or the same set of functions is
used several times because the computation repeats. When
generating a scaled model, we must try to determine some
property of the computation class that allows us to trans-
form the generic model, representing the detailed (exact)
computation, to a tractable graph model.

Structurally, the scaled model should be of a form that is
series–parallel reducible in order to allow model evaluation
techniques that avoid state space analysis. Thus, not only
the size of the generic model, but also the dependency struc-
ture must be transformed. For instance, we would prefer
that the task graph of the scaled model be a function of the
number of processors, rather than the number of “scaled”
generic tasks. The trick will be to perform model scaling
in a way that does not sacrifice modeling accuracy. Sca-
led models are created using the knowledge obtained from
evaluating graph models with bounding methods. That is,
scaled models can be created which allow efficient techni-
ques to be applied. However, because performance scalabi-
lity is intimately tied to parallel task interactions, reducing
the detail at which these interactions are modeled in order
to allow tractable solutions risks the loss of performance
predictability.

3.1 Neighbor synchronization
To illustrate our general graph scaling approach, con-

sider a neighbor computation structure that can be used
to model many iterative solution methods for linear equa-
tion systems (Figure 2(a)). The main characteristic of this
computation class is that a processor starts the

�
-th itera-

tion only after the
� �

� 1
�
-th iteration has finished on its

neighbor processors [9]. (Although Figure 2(a) shows only

two neighbor processes, in general, the number of neighbor
tasks can be greater than two.)

The generic graph model for the parallel computation
class with neighbor synchronization is shown in Figure 3.
If we were to represent each task and dependency in the
generic model in the scaled model, the graph size and com-
plexity would be unmanageable. However, a simple graph
transformation that results in an upper bound model col-
lapses the neighbor synchronization between iterations to
a single barrier, as shown in Figure 3. Once this is done, it
is easy to identify that the tasks at each iteration are inde-
pendent and can be modeled by the techniques for scaling
independent tasks [12].

. . .. . . . . .. . . . . . . . .. . .. . .

barrier

. . .

Scaled Model
for lower bound

Generic Model Scaled Model
for upper bound

task

Figure 3: Scaling neighbor synchronization models

This conservative synchronization approximation is a
quick way to reduce scaled graph complexity. However,
depending on the properties of per iteration task execution
time distribution, scaled graph models with tighter upper
bound approximations can be generated. For instance, if
task density functions are identical per iteration, we might
choose to model several successive iterations exactly, se-
parating iteration “clusters” with barrier synchronizations
when the analysis complexity becomes too great. Alter-
native techniques can also be used when considering the
inclusion of communication times for data transfer bet-
ween neighbors per iteration. The main point is that the
regular computational structure of the neighbor synchroni-
zation classes affords us a certain degree of flexibility in
generating approximate graph structures.

3.2 Fork-join, broadcast-reduction
Fork-join models are characteristic of computations

where a source periodically generates jobs that spawn tasks
to be completed with a drain node collecting results (Fi-
gure 2(c)). The graphs that result also have many simila-
rities to graphs generated from computations that involve
a sequence of broadcast and reduction operations. Such
graphs are typical of linear algebra computations.

As an example, consider the generic LU-decomposition
graph in Figure 4; the graph shown here is for a 6 x 6
matrix. Given a large matrix, the graph would consist
of several thousands of nodes, making certain solution
techniques computationally intractable [19]. However, we
can transform the generic model to simpler scaled models.
Again, our standard technique can be applied in this case
by identifying independent tasks at different iteration le-
vels. However, because of the implicit fork-join nature of
the computation, its explicit representation in the scaled
models is less likely to lead to modeling inaccuracies.
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Figure 4: Scaling fork-join, broadcast-reduction models

4 Automatic scalability analysis with the tool
PEPP

PEPP (Performance Evaluation of Parallel Programs)
[7] is a modeling tool for analyzing stochastic graph mo-
dels. It provides various methods for model evaluation in
order to compute the mean runtime and the runtime distribu-
tion of a program represented in the model. PEPP supports
efficient solution methods including a series–parallel struc-
ture solver, an approximate state space analysis [17], and
bounding methods to obtain upper and lower bounds of the
mean runtime [7]. In order to model measured runtimes,
numerical runtime distributions, which may be obtained
from monitoring, are allowed in all three cases. PEPP also
incorporates the M2–cycle methodology [13] for genera-
ting a performance model from a functional model. Here,
a functional model of a program to be transformed into a
performance model is used for event selection, automatic
program instrumentation, and event trace evaluation.

PEPP can be used for automatic scalability analysis by
creating multiple stochastic graph models based on the PDL
program description (Figure 5). After the maximal degree
of parallelism

�
and the problem size are specified, PEPP

creates
�

different graph models. These models are then
evaluated and speedup values are calculated from the pre-
dicted execution times. Results are presented in a speedup
chart.
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Parameters
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Figure 5: Scalability analysis using PDL

As done with performance monitoring, modeling can
classify different parts of the program in order to obtain

a detailed scalability profile (loss analysis [3, 4]). The
relative influence of the different program phases on the
program’s execution time can be determined. For the latter,
the execution time of all program phases not considered
should be set to deterministic runtimes with mean value 0.
Using this technique, speedup values can be computed for
only the selected program parts.

4.1 Example: scalability analysis of a iterative
algorithm

In this section, we give an example for a model-based
scalability analysis of a iterative algorithm which might be
a part of a larger numerical computation. The analyzed
algorithm belongs to the neighbor computation class (see
Figure 3). In order to model real program behavior, the exe-
cution of each task in our example is assumed as a Erlang–
40 distribution. The domain to be calculated is a matrix
with 40 rows and � columns,where � ��� 10

�
50

�
100

�
200 � .

This example shows the usefulness of model–based scala-
bility analysis as well as the problems encountered when
modeling parallel systems. Using PEPP, scalability analy-
sis can be carried out in three different ways.

1. Accurate modeling with state space analysis
Even when applying approximate state space analysis
using the de-approximation method, only small mo-
dels can be evaluated. Increasing parallelism leads
to a state space explosion and to unsolvable models.
The largest model which can be evaluated using this
method is one for a 10

�
40 matrix modeling only two

iterations for 4 processors. For this model, the state
space is about 160,000 states, and model solution takes
about 9 hours on a HP 715 workstation. Since eva-
luating large models (especially models with a high
degree of parallelism and complex task dependencies)
is not possible, this method cannot be applied in prac-
tice.

2. Accurate modeling using bounding methods for
model evaluation
Bounding methods tolerate largeness because models
are solved using series–parallel reduction instead of
creating a state space [18]. Therefore, these methods
appear well–suited for scalability analysis. In PEPP,
three different bounding methods are implemented in
order to select the best bound [5, 16, 11]. Depen-
ding on the structure of the graph model, one or the
other method will yield the best result. In [6] we have
shown for various graph structures that the bounding
methods implemented in PEPP are very accurate.

The applicability of the bounding methods is, theore-
tically, not limited by the model size, since the time to
solution increases only linearly (with the exception of
the method of Kleinöder). Typically, the computation
of the bounds takes a few seconds to a few minutes
for graph models with up to 1000 nodes. But, creating
exact models for scalability analysis requires signifi-
cant memory resources, and these large and complex
models are hard to produce and to comprehend.

3. Approximate modeling
For the scalability analysis of a highly parallel pro-
gram, a large number of graph models must be created
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and evaluated. Here, even bounding methods are too
time consuming. Therefore, the use of approximate
modeling seems to be the best solution. As shown in�
3, series–parallel reducible models can be created to

compute bounds of the mean runtime. The creation of
these models is influenced by the bounding methods
presented in

�
2.2.

Considering these three different methods, we see that
approximate modeling is the only viable approach for ana-
lyzing the performance scalability of parallel programs
using stochastic models. We have shown in [12] that
results obtained by evaluating approximate models differ
only slightly from the results obtained from evaluating ex-
act models with bounding methods implemented in PEPP.
In the following, all results are obtained by evaluating ap-
proximate models. In the presented example, we scale the
problem size � (i.e. the number of columns) as well as
the underlying parallel system. The maximal number of
processors,

�
, working on the problem is limited by the

problem size � (
� � � ).

The mean runtimes for 2, 4, and 8 iterations on a 50
�

40–
grid ( � �

50) are shown in Table 1. It can be seen that
the mean runtime is bounded tightly. Only for 8 iterations
and increasing degrees of parallelism does the difference
between lower and upper bound increase in relative size.
In the worst case, the upper bound is 20% higher than the
lower bound.

P 2 iterations 4 iterations 8 iterations
lower upper lower upper lower upper

5 83.28 84.67 164.6 169.3 326.4 338.7
10 43.11 44.45 84.37 88.9 166.1 177.8
15 34.09 34.98 66.94 69.96 132.1 139.9
20 26.43 27.45 51.41 54.94 100.7 109.9
25 18.58 19.71 35.6 39.43 69.05 78.86
30 18.44 19.51 35.42 39.03 68.79 78.06
35 18.26 19.25 35.17 38.5 68.44 77
40 17.99 18.85 34.79 37.71 67.92 75.43
45 17.49 18.12 34.09 36.25 66.94 72.5
50 10.15 11.12 19.13 22.24 36.36 44.49

Table 1: Scalability analysis results for a 50
�

40–grid

Based on upper and lower bounds, speedup values can be
calculated. An upper bound of the mean runtime is a lower
bound of the speedup (i.e., this is a value which is reached
in any case). The lower bound of the mean execution time
defines the value of the speedup which cannot be exceeded.
Hence, the upper bound of the mean execution time is more
important than the lower bound, since this bound is used
to show the reached speedup. In Figure 6 upper and lower
bounds for the mean runtime (left) and for the speedup
values (right) are shown.

It can be observed that the speedup values increase for
parallel systems up to 25 processors. From 30 to 45 proces-
sors the speedup values remain nearly constant. The reason
is poor load balancing — the 50 columns of the matrix do
not spread evenly across these numbers of processors. To
analyze the influence of load balancing on the speedup the
distribution of the workload among the processors must
be considered. Table 2 shows for each configuration of the
parallel system how the columns of the grids are distributed
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Figure 6: Scalability analysis results for a 50
�

40–grid

among the processors. Obviously, if all processors have to
work on the same number of columns, the speedup is very
good. For � �

50, the configurations with 5, 10, 25, and
50 processors lead to the best execution efficiencies.

Problem size �� 50 100 200
5 5 � 10 5 � 20 5 � 40

10 10 � 5 10 � 10 10 � 20
15 10 � 3 � 5 � 4 5 � 6 � 10 � 7 5 � 14 � 10 � 13
20 10 � 2 � 10 � 3 20 � 5 20 � 10
25 25 � 2 25 � 4 25 � 8
30 10 � 1 � 20 � 2 10 � 4 � 20 � 3 20 � 7 � 10 � 6
35 20 � 1 � 15 � 2 30 � 3 � 5 � 2 25 � 6 � 10 � 5
40 30 � 1 � 10 � 2 20 � 3 � 20 � 2 40 � 5
45 40 � 1 � 5 � 2 10 � 3 � 35 � 2 20 � 5 � 25 � 4
50 50 � 1 50 � 2 50 � 4
95 — 5 � 2 � 90 � 1 10 � 3 � 85 � 2

100 — 100 � 1 100 � 2
Table 2: Grid partitioning for different problem sizes

To calculate how the workload is distributed among the
processors of the parallel system, the following formula
was used. If � is the number of columns and � the number
of processors, then assign� ���� columns to �

��� ��	� � � processors and

� �� � columns to �
��
 � � � �� � � �
� processors.

When comparing different problem sizes (Figure 7), we
also see that load balancing again has a great influence on
the speedup values. Speedups are higher for larger pro-
blems, since here, the computation time between synchro-
nization times is higher. Obtained efficiencies are also de-
picted in Figure 7 (right). It can be seen that also for a good
load balancing (e.g. � � � 5 � 10

�
20

�
25

�
50 � for � �

100)
the efficiency decreases; for � �

50 the efficiency goes
down to 0.72.

Communication delays have a great impact on perfor-
mance scalability. Our analysis methods can take these
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Figure 7: Comparing speedups and efficiencies for different
problem sizes

delays into account. In Figure 8, it is shown for neigh-
bor synchronization how approximate models representing
communication delays between all processors can be crea-
ted using the bounding method of Kleinöder (inserting arcs
to obtain an upper bound):

1. In the first step, the dependency arcs are shifted to
coincide with iteration boundaries (e.g. the arc 3 � 2
is moved to 4 � 1).

2. Arcs are inserted, so that the communication delays
between two processors can be serially reduced resul-
ting in � � 1 communication nodes with each node
representing 2 communications.

3. All communication nodes are reduced using parallel
reduction. This results in a full barrier representing
communication delay (2

��� 1 communications). The
remaining graph is series–parallel reducible.

Using the method described above, different communi-
cation delays can now be considered. For analyzing dif-
ferent communication overheads, the ratio between com-
munication delay and computation duration is varied from
1
�
10

� �!�
1. In Figure 9, it can be seen that the speedup

is significantly reduced when inserting communication de-
lays. For � �

50 speedup goes down from 36 without
communication to 13 with communication delays equal to
the computation duration (ratio=1).

The diagrams presented in Figures 6–9 verify the neces-
sity of a systematic scalability analysis. To obtain these
results with measurements, more than 300 measurements
must be taken.

Approximate models analyzing the influence of com-
munication can also be created using the method of Dodin.
Here, a model for calculating an upper bound is created
by duplicating nodes. In Figure 10 the creation of such
models for neighbor synchronization is shown. The nodes
of one iteration are duplicated (step 1) in order to allow
series–parallel reduction (step 2).

When solving models for neighbor synchronizationwith
this method, a formula can be given to obtain the upper
bound. Let


 � denote the execution time distribution of
all tasks in column

�
of the model. Further, let � be the

6
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Figure 8: Modeling the influence of communication (me-
thod of Kleinöder)
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Figure 9: Influence of communication on the performance
scalability

communication time distribution and � the number of pro-
cessors. Then, the upper bound


��
for a neighbor structure

with communication times can be computed recursively as
follows (see Figure 10):


 0� � 
 � �	� � � �
1 
 � 
 � �


���
 1� �
���� ���


 0� � max
� 
 �� � � 
 �� 
 1 ��� ��� � � �

1
�


 0� � max
� 
 �� � � 
 �� � 1 ��� � � � � � �
 0� � max
� 
 �� � � 
 �� � 1 ��� � � � 
 �� 
 1 ��� ���

�
1 � � � � �
�� �

max � 
�� � 1� � � �
1
�!� �!��� ���� �

height of the neighbor structure �

 ��
 1� denotes the upper bound for the completion time of
the

�
-th node on iteration level � .

We have verified for small examples that bounds obtai-
ned with this methods are better than bounds obtained with
the method of Kleinöder. This agrees with cases where
there was a high degree of parallelism [6]. For evaluating
large models, a tool is needed to compute the bounds. With
the recursive formula presented above, this tool only has
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Figure 10: Modeling the influence of communication (me-
thod of Dodin)

to work with numerical distributions; the graph model is
actually not needed.

5 Conclusion and Prospect
Scalability analysis is an important issue when imple-

menting parallel programs for scaled parallel systems. A
systematic approach must be established wherein scaled
performance can be estimated subject to the constraints of
the analysis tool used. In this paper, we have presented
an approach for scalability analysis based on stochastic
graph modeling. There are several compelling reasons for
a model–based approach from a performance evaluation
standpoint, but the solution techniques must be efficient in
order to return results in a timely manner.

We have verified that scaled models can be created from
a generic computation description in PDL and analyzed by
our stochastic graph analysis tool, PEPP. Our results indi-
cate that scalability analysis is possible with this approach
and delivers performance predictions that are consistent
with other solution techniques.

However, there are still many open issues to address.
We have only briefly touched how the machine model in-
teracts with the analysis. We are currently exploring this
issue more thoroughly through the analysis of additional
testcases. However, one benefit of stochastic graph mo-
deling in this regard is its support of model composition.
That is, a library of analyzed submodels can be develo-
ped and these components can be used as building blocks
for more complex models; solutions for submodel com-
ponents can be plugged in during the analysis of the larger
model. Finally, we are investigating the integration of sca-
lability model generation into PEPP. We believe that the
model-based instrumentation support in PEPP may allow
us to extrapolate a template of a generic model of programs
from measurements of a few of its scaled versions. This
appears particularly important when task density functions
are unknown.

References
[1] V. S. Adve and M. K. Vernon. The Influence of Random

Delays on Parallel Execution Times. Perf. Eval. Review,
21(1):61–73, 1993.

[2] M. Ajmone Marsan, G. Balbo, and G. Conte. A Class of
Generalized Stochastic Petri Nets for the Performance Eva-
luation of Multiprocessor Systems. ACM Trans. on Comp.
Sys., 2(2):93–122, May 1984.

[3] F. Bodin, P. Beckman, D. Gannon, S. Yang, A. Malony, and
B. Mohr. Implementing a Parallel C++ Runtime System for
Scalable Parallel Systems. In Proc. SC ’93, 1993.

[4] H. Burkhart and R. Millen. Performance Measurement Tools
in a Multiprocessor Environment. IEEE Trans. on Comp.,
38(5):725–737, May 1989.

[5] B. Dodin. Bounding the Project Completion Time Distribu-
tions in PERT Networks. Oper. Res., 33(4):862–881, 1985.

[6] F. Hartleb and V. Mertsiotakis. Bounds for the Mean Run-
time of Parallel Programs. In R. Pooley and J. Hillston, Eds.,
Sixth Int’l. Conf. on Model. Tech. and Tools for Comp. Perf.
Eval, pp. 197–210, Edinburgh, 1992.

[7] F. Hartleb. Stochastic Graph Models for Performance Eva-
luation of Parallel Programs and the Evaluation Tool PEPP.
TR 3/93, Universität Erlangen-Nürnberg, IMMD VII, 1993.

[8] U. Herzog. Formal Description, Time and Performance
Analysis. In T. Härder, H. Wedekind, and G. Zimmermann,
Eds., Entwurf und Betrieb Verteilter Systeme, Berlin, 1990.
Springer Verlag, Berlin, IFB 264.

[9] U. Herzog and W. Hofmann. Synchronization Problems
in Hierarchically Organized Multiprozessor Computer Sy-
stems. In M. Arato, A. Butrimenko, and E. Gelenbe, Eds.,
Performance of Computer Systems – Proceedings of the 4th
Int’l. Symp. on Model. and Perf. Eval. of Comp. Sys., Vienna,
Austria, Feb., 6–8 1979.

[10] H. Jonkers. Queueing Models of Parallel Applications: The
Glamis Methodology. Proc. of the 7th Int. Conf. on Model.
Techn. and Tools for Comp. Perf. Eval., 1994.
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