
Research Initiatives for Plug-and-Play Scientific

Computing

Lois Curfman McInnes,1 Tamara Dahlgren,2 Jarek Nieplocha,3

David Bernholdt,4 Ben Allan,5 Rob Armstrong,5 Daniel Chavarria,3

Wael Elwasif,4 Ian Gorton,3 Joe Kenny,5 Manoj Krishan,3 Allen
Malony,6 Boyana Norris,1 Jaideep Ray,7 and Sameer Shende6

1 Mathematics and Computer Science, Argonne National Laboratory, Argonne, IL
2 Lawrence Livermore National Laboratory, Livermore, CA
3 Computational Sciences and Mathematics, Pacific Northwest Nat. Laboratory, Richland, WA
4 Computer Science and Mathematics, Oak Ridge National Laboratory, Oak Ridge, TN
5 Scalable Computing R & D, Sandia National Laboratories, Livermore, CA
6 Computer and Information Science, University of Oregon, Eugene, OR
7 Advanced Software R & D, Sandia National Laboratories, Livermore, CA

E-mail: mcinnes@mcs.anl.gov

Abstract. This paper introduces three component technology initiatives within the SciDAC
Center for Technology for Advanced Scientific Component Software (TASCS) that address ever-
increasing productivity challenges in creating, managing, and applying simulation software
to scientific discovery. By leveraging the Common Component Architecture (CCA), a
new component standard for high-performance scientific computing, these initiatives tackle
difficulties at different but related levels in the development of component-based scientific
software: (1) deploying applications on massively parallel and heterogeneous architectures,
(2) investigating new approaches to the runtime enforcement of behavioral semantics, and
(3) developing tools to facilitate dynamic composition, substitution, and reconfiguration of
component implementations and parameters, so that application scientists can explore tradeoffs
among factors such as accuracy, reliability, and performance.

1. Introduction
This paper introduces three component technology initiatives that focus on reducing the
software development challenges faced by today’s computational scientists. Rapid advances
and increasing diversity in high-performance hardware platforms continue to spur the growing
complexity of scientific simulations. The resulting environment presents ever-increasing
productivity challenges associated with creating, managing, and applying simulation software
to scientific discovery. As key facets within the SciDAC Center for Technology for Advanced
Scientific Component Software (TASCS) [1], these initiatives leverage the component standard
for scientific computing under development by the Common Component Architecture (CCA)
Forum [2]. Component technology (see, e.g., [3]), which is now widely used in mainstream
computing but has only recently begun to make inroads in high-performance computing (HPC),
extends the benefits of object-oriented design by providing coding methodologies and supporting
infrastructure to improve software’s extensibility, maintainability, and reliability. All three

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012046 doi:10.1088/1742-6596/78/1/012046

c© 2007 IOP Publishing Ltd 1



initiatives are based on the premise that, in addition to aiding software development, the
component environment can facilitate the deployment of new computational capabilities to
benefit the entire lifecycle of scientific simulation software.

The CCA Forum is addressing the aforementioned productivity challenges by developing
tools for plug-and-play composition of applications in both high-performance parallel and
distributed computing contexts. The core of this work is a component model and reference
implementation [4] tailored to the needs of high-end scientific computing. Key features are
capabilities for language-neutral specification of common component interfaces, interoperability
for software written in programming languages important to scientific computing, and
dynamic composability, all with minimal runtime overhead. The three component technology
initiatives, which extend this preliminary work, are motivated by and will be validated through
collaborations with a variety of computational science groups, including SciDAC application
teams working in combustion [5], quantum chemistry [6], core-edge fusion modeling [7],
accelerator modeling [8], subsurface modeling [9], and proteomics [10], as well as with
mathematicians in the ITAPS [11] and TOPS [12] centers. Further information about the CCA
approach and additional collaborating application teams is provided in [13].

The three TASCS initiatives introduced in this paper address challenges at different
but related levels in the development of component-based scientific software. The first
initiative, introduced in Section 2, focuses on helping users deploy component technology-
based applications on massively parallel and heterogeneous architectures. The second initiative,
introduced in Section 3, investigates new approaches to the runtime enforcement of behavioral
semantics, with an emphasis on techniques for reducing their performance impact during
deployment. The third initiative, introduced in Section 4, focuses on developing tools
to help application scientists dynamically compose, substitute, and reconfigure component
implementations and parameters, taking into account trade-offs among computational quality
of service factors such as performance, accuracy, mathematical consistency, and reliability.

2. Emerging HPC Environments
Scientists who are developing petascale computational science capabilities continue to face major
challenges in adapting or developing software to effectively use emerging hardware environments.
Upcoming petascale computer systems will be characterized by large processor counts (systems
with O(104−105) processors are already being deployed [14]) and increasing use of heterogeneous
and specialized environments, in which FPGA, graphics processors, and other hardware will be
harnessed to accelerate general scientific computing. An example of such an architecture is the
IBM Roadrunner system to be delivered to Los Alamos National Laboratory. Roadrunner, which
will deploy hybrid processing nodes based on the AMD Opteron and the IBM-Sony-Toshiba
Cell processor, is designed to achieve sustained performance of 1 petaflop/s, or 1 quadrillion
calculations per second. The Cell processor internally is composed of a general-purpose PowerPC
processor and eight synergistic processing engines.

Heterogeneous computing environments will require adaptation of programs to work in the
presence (or absence) of various specialty interfaces, which are currently unique to each vendor.
The CCA is expected to deliver significant benefits to applications running on heterogeneous
hardware by helping to manage and interface software components internally using hardware
accelerators. We are developing the CCA event service as a mechanism to “glue together”
components that run on heterogeneous hardware.

High processor counts will require applications to expose more parallelism. For situations in
which it does not make scientific sense to scale the problem size or resolution, approaches in
which different groups of processes carry out different parallel tasks simultaneously can be used
to increase parallelism. Such approaches, however, are not easy to manage or code with current
tools.

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012046 doi:10.1088/1742-6596/78/1/012046

2



We will provide CCA users with more flexible and dynamic means to express application
parallelism through the development of support for the management of process groups and
Multiple Component Multiple Data (MCMD) applications. This work will develop standard
CCA tools and interfaces, guided in particular by our experience with such applications in
chemistry [15] and the threaded parallel “task graph” execution model provided by the Uintah
Computational Framework [16].

The sheer number of parts in petascale systems will pose significant issues with respect to
hardware (and software) faults, some of which may be most effectively handled by fault awareness
at the application level. With respect to fault tolerance, our approach is to ensure that CCA-
based applications can take full advantage of the capabilities being developed by other DOE
project focusing on this area, including [17].

This initiative will provide CCA users with new tools that will simplify and accelerate the
development of true petascale applications on diverse hardware platforms. Users will be able
to flexibly and dynamically express higher levels of parallelism, transparently take advantage
of specialized coprocessing resources, and support intelligent application-level responses to the
hardware failures that are inevitable on systems of this scale.

3. Software Quality and Verification
To help make the vision of interchangeable components a reality for scientific software, the
Software Quality and Verification initiative focuses on the composition- and execution-time
verification of interface semantics. Component interfaces, expressed separately from the
implementation, can be extended with semantic information to provide concise, human-readable,
machine-processable specifications. Unlike traditional verification techniques based either on
postexecution comparisons with prior or analytical results or on algorithm-based fault tolerance
techniques, this approach enables error detection closer to the point of failure. The result is
improved testing, debugging, and runtime monitoring of software quality, thereby providing
scientific software developers with a powerful tool for catching errors early and ensuring correct
software usage.

Preliminary work has already enhanced the basic syntactic descriptions of component
interfaces, or application programming interfaces (APIs), through the addition of nonnegotiable
behavioral contracts [18]. Current contract annotations support general constraints on the input
and output of method calls and object properties. Research efforts thus far have concentrated on
exploring the impact on performance, coverage, and failure detection of a variety of traditional
and experimental enforcement heuristics [18, 19].

Future work will focus on expanding supported annotations for domain-specific behavioral
and quality-of-service features, with an emphasis on facilitating automated behavioral
adaptation across disciplines within computational science. Annotations of interest include
constraints relating to algorithm characteristics, precision, result quality, and method invocation
sequencing. Examples of properties include whether an algorithm is implicit or explicit, whether
the storage order of arrays is exchanged through its interfaces, and whether a two-dimensional
or three-dimensional space is represented. Stable characteristics such as these are expected
to be expressible in an implementation language-neutral form, such as the Scientific Interface
Definition Language (SIDL) [20], while dynamic characteristics will require representation in a
more flexible format, such as that presented in Section 4.

Work on interface semantics addresses the need to more explicitly define behavior and quality-
of-services constraints in a concise, human-readable, machine-processable form. Integrating the
specification of constraints on stable characteristics into SIDL and dynamic characteristics into
the control infrastructure discussed in Section 4 will enable runtime adaptation according to a
variety of behavioral and service quality criteria.

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012046 doi:10.1088/1742-6596/78/1/012046

3



4. Computational Quality of Service
As computational science progresses toward ever more realistic multiphysics and multiscale
applications, the complexity is becoming such that no single research group can effectively
select or tune all of the components in a given application, and no single tool, solver, or solution
strategy can seamlessly span the entire spectrum efficiently. Common component interfaces
enable easy access to suites of independently developed algorithms and implementations. The
challenge then becomes how, during runtime, to make the best choices for reliability, accuracy,
and performance.

We are addressing this challenge by developing tools for computational quality of service
(CQoS) [21] or the automatic selection and configuration of components to suit a particular
computational purpose. As further explained in [22], CQoS embodies the familiar concept of
quality of service in networking as well as the ability to specify and manage characteristics of
the application in a way that adapts to the changing (computational) environment. Specific
scientific applications that motivate this research are parallel mesh partitioning in combustion
simulations within the CFRFS project [5], resource management in quantum chemistry [6], and
efficient solution of linear systems arising in accelerator and fusion simulations (collaborations
with the FACETS [7] and COMPASS [8] projects).

We expect that the logic involved in characterizing these problems and choosing appropriate
solution strategies will be vastly different. Nevertheless, we believe that the software
infrastructure to analyze and characterize each problem and its potential solutions, as well
as the software infrastructure to implement a decision (once made by domain-specific logic), is
similar and may be generalized.

We are thus developing CQoS infrastructure to help analyze, select, and parameterize
components for these motivating applications. The two main facets of our CQoS tools
are (1) measurement and analysis infrastructure, which combines performance information
and models from historical and runtime databases along with interactive analysis, including
statistical analysis and machine learning technology using the TAU performance system [23];
and (2) control infrastructure, which encompasses decision-making components that evaluate
progress based on domain-specific heuristics and metrics, along with services for dynamic
component replacement. These two groups of CQoS tools, which may be employed for initially
composing, for configuring, and for runtime control of an application, are largely decoupled and
interact primarily through a substitution assertion database.

This initiative exploits work on interface semantics discussed in Section 3 and is a
collaboration with the PERI [24] project on performance optimization. Further details about
motivation, related work, and plans for future CQoS research are discussed in [22].

5. Conclusion
This paper introduced three TASCS technology initiatives that leverage the CCA component
environment to address new challenges being faced by SciDAC applications teams. A particularly
interesting new development is that these projects are transitioning to employ Bocca [25], a
comprehensive suite of CCA build tools that is under development in support of these initiatives
as well as the needs of general SciDAC applications teams. Bocca provides project management
and a comprehensive build environment for creating and managing applications composed of
components written in all of the common HPC workstation languages: C, C++, Fortran,
Fortran77, Python, and Java. Its design embraces the philosophy pioneered by Ruby Rails
for web applications: start with something that works, and evolve it to the user’s purpose.
Bocca automates the tasks related to the component glue code, freeing the user to focus on the
scientific aspects of the application.

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012046 doi:10.1088/1742-6596/78/1/012046

4



Acknowledgments
This work was funded by the U. S. Department of Energy Office of Science through the
SciDAC program. Argonne National Laboratory operates under contract DE-AC02-06CH11357.
Lawrence Livermore National Laboratory is managed by the University of California under
contract W-7405-Eng-48. Pacific Northwest National Laboratory is operated by Battelle under
contract DE-AC06-76RLO 1830. Oak Ridge National Laboratory is managed by UT-Battelle,
LLC under contract DE-AC-05-00OR22725. Research at the University of Oregon is sponsored
under contracts DEFG03-01ER25501 and DE-FG02-03ER25561. Sandia National Laboratories
is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
under contract DE-AC04-94-AL85000.

The CCA has been under development since 1998 by the CCA Forum and represents the
contributions of many people, all of whom we gratefully acknowledge. We also thank our
collaborators outside the CCA Forum, especially the scientific applications teams who help
motivate and validate this work.

References
[1] Bernholdt D (PI) TASCS Center http://www.scidac.gov/compsci/TASCS.html

[2] Common Component Architecture (CCA) Forum http://www.cca-forum.org/

[3] Szyperski C 1999 Component Software: Beyond Object-Oriented Programming (New York: ACM Press)
[4] Bernholdt D et al 2006 Int. J. High-Perf. Computing Appl., ACTS Collection special issue 20 163–202
[5] Najm H (PI) Computational Facility for Reacting Flow Science (CFRFS) http://cfrfs.ca.sandia.gov

[6] Gordon M (PI) Chemistry Framework using the CCA http://www.scidac.gov/matchem/better.html

[7] Cary J (PI) Framework Application for Core-Edge Transport Simulations http://www.facetsproject.org

[8] Spentzouris P (PI) Community Petascale Project for Accelerator Science and Simulation (COMPASS) DOE
SciDAC project, 2007

[9] Sheibe T Computational hybrid integration of physical processes across scales (CHIPPS) http:www.emsl.

pnl.gov/capabs/hpmsf.shtml

[10] High-Performance Mass Spectrometry Facility http://www.emsl.pnl.gov/capabs/hpmsf.shtml

[11] Diachin L (PI) Center for Interoperable Technologies for Advanced Petascale Simulations (ITAPS) http:

//www.scidac.gov/math/ITAPS.html

[12] Keyes D (PI) Towards Optimal Petascale Simulations (TOPS) Center http://tops-scidac.org/

[13] Kumfert G, Bernholdt D, Epperly T, Kohl J, McInnes L, Parker S and Ray J 2006 Journal of Physics:
Conference Series 46 479–493

[14] Mauer H et al 2007 TOP500 Supercomputer Sites http://www.top500.org

[15] Krishnan M, Alexeev Y, Windus T L and Nieplocha J 2005 Proceedings of SuperComputing (ACM and IEEE)
[16] de St Germain J D, McCorquodale J, Parker S G and Johnson C R 2000 Proc. 9th IEEE Int. Symp. on High

Performance and Distributed Computing
[17] Beckman P (PI) Coordinated Fault Tolerance for High-Performance Computing (CiFTS) http://www.mcs.

anl.gov/research/cifts

[18] Dahlgren T L and Devanbu P T 2005 Proc. 2nd Int. Workshop on Software Engineering for High Performance
Computing System Applications ed Johnson P M (St. Louis, MO) pp 73–77

[19] Dahlgren T L 2007 Proc. 10th Int. Symp. on Component-Based Software Engineering (Boston, MA) vol
LNCS 4608 ed Schmidt H W et al (Berlin Heidelberg: Springer-Verlag) pp 157–172

[20] Dahlgren T, Epperly T, Kumfert G and Leek J 2006 Babel User’s Guide, v 1.0.0 CASC, Lawrence Livermore
National Laboratory, UCRL-SM-205559 Livermore, CA

[21] Norris B, Ray J, Armstrong R, McInnes L C, Bernholdt D E, Elwasif W R, Malony A D and Shende S 2004
Proc. Int. Symp. on Component-Based Software Engineering (Edinburgh, Scotland)

[22] McInnes L C, Ray J, Armstrong R, Dahlgren T L, Malony A, Norris B, Shende S, Kenny J P and Steensland
J 2006 Computational quality of service for scientific CCA applications: Composition, substitution, and
reconfiguration Tech. Rep. ANL/MCS-P1326-0206 Argonne National Laboratory

[23] Shende S and Malony A 2006 Int. J. High-Perf. Computing Appl., ACTS Collection special issue 20 287–331
[24] Lucas R (PI) Performance Engineering Research Institute (PERI) http://www.peri-scidac.org

[25] Elwasif W, Norris B, Allan B and Armstrong R 2007 Bocca: A development environment for HPC components
submitted to Compframe 2007, Montreal, Canada

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012046 doi:10.1088/1742-6596/78/1/012046

5




