

US QCD Computational Performance Studies with PERI

Y. Zhang1 , R. Fowler1, K. Huck2, A. Malony2, A. Porterfield1, D. Reed1, S. Shende2, V.
Taylor3, and X. Wu3.

1Renaissance Computing Institute, Chapel Hill NC USA
2University of Oregon, Eugene OR USA
3Texas A&M University, College Station TX USA
Corresponding author e-mail: rjf@renci.org, yingz@renci.org

Abstract. We report on some of the interactions between two SciDAC projects: The National
Computational Infrastructure for Lattice Gauge Theory (USQCD), and the Performance Engineering
Research Institute (PERI). Many modern scientific programs consistently report the need for faster
computational resources to maintain global competitiveness. However, as the size and complexity of
emerging high end computing (HEC) systems continue to rise, achieving good performance on such
systems is becoming ever more challenging. In order to take full advantage of the resources, it is crucial
to understand the characteristics of relevant scientific applications and the systems these applications
are running on. Using tools developed under PERI and by other performance measurement researchers,
we studied the performance of two applications, MILC and Chroma, on several high performance
computing systems at DOE laboratories. In the case of Chroma, we discuss how the use of C++ and
modern software engineering and programming methods are driving the evolution of performance tools.

1. Introduction
Performance and productivity are issues of ever increasing performance in computational science. In
order to generate scientific results efficiently, it is important that codes run well on our high
performance systems. Even more important, it is vital that the scientists and programmers use their
time effectively. Software, both application and systems, that delivers correct results, are easy to
program, and that can be efficiently run across a wide variety systems, both current and future, is key
to success in achieving these objectives.

The National Computational Infrastructure for Lattice Gauge Theory (USQCD, for short) is a

SciDAC project that focuses on computational infrastructure for Lattice Quantum Chromodynamics
(LQCD) computations. LQCD is computationally intensive, with some planned computations
expected to consume hundreds of teraflop years. While part of the USQCD efforts have been the
construction of special purpose systems, much of the current effort addresses the development of a
stable software infrastructure to improve the long term productivity of computational physicists. For
this software to be broadly accepted, it needs to achieve high performance across a wide spectrum of
high end computer systems.

The Performance Engineering Research Institute (PERI) is a SciDAC project that focuses on

improving the productivity of software performance engineering activities by improving performance
analysis and modeling methods and especially by increasing the level of automation in measuring,
analyzing, and tuning computational science applications. A key component of PERI is a strategy of
active engagement with computational science groups, with other SciDAC projects, and especially
with projects (SciDAC or not) that are the pioneering users of DOE’s Leadership class systems. In

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012083 doi:10.1088/1742-6596/78/1/012083

c© 2007 IOP Publishing Ltd 1

mailto:rjf@renci.org
mailto:yingz@renci.org

addition to short term benefits to the application groups, these engagement activities are vital for
ensuring that PERI activities stay on track towards meeting the long term needs of the high end
computational science community.

In this paper we report some of the interactive engagement activities between USQCD and PERI.

We begin by reporting on studies to analyze the performance characteristics of a recent version of the
MILC (MIMD Lattice Computation) code. We then move on to discuss how Chroma, an LQCD
infrastructure written using advanced techniques in C++, is serving as a driver for the development of
new performance measurement and analysis tool methods.

2. Performance Evaluation of LQCD Codes and Libraries.

In this paper, we focus on performance studies for two US QCD applications on several HPC
platforms using four performance analysis tools. Both applications use the software modules
developed under SciDAC program.

The USQCD codes are based on a layered software

architecture as illustrated in the figure to the right. The design
and implementation of the libraries is a central part of the
SciDAC project.

The MIMD Lattice Computation (MILC) infrastructure [1] is

a package written in C. Developed by the MIMD Lattice
Computation collaboration, it is used for simulations of four
dimensional SU(3) lattice gauge theory on MIMD parallel
machines. The latest version (7.4.0) of MILC, which is used in
most of our experiments, utilizes five of the SciDAC software libraries [2]: QMP, QLA, QIO, QDP/C,
and QOPQDP. The MILC version 7.1.11 for our computation efficiency studies uses QMP, QLA, QIO
and QDP/C. QMP (QCD Message Passing) provides a standard communications layer for Lattice
QCD based on MPI. QLA (QCD Linear Algebra) provides a standard interface for linear algebra
routines. QIO (QCD Input/Output) provides as suite of input/output routines for lattice data. QDP/C is
the C implementation of the QDP (QCD Data Parallel) interface. QOPQDP is an implementation of
the QOP (QCD Operations) level three interface using QDP.

Table 1: Specification of four large-scale clusters
System Name Jacquard RENCI BlueGene/L DataStar Seaborg

Number of Nodes 356 1024 272 380

CPUs per Node 2 2 8 16

CPU type 2.2GHz
AMD Opteron

700 MHz
IBM PowerPC 440

1.5-1.7GHz
POWER4

375MHz
POWER3

Memory per Node 6GB 1GB 16-32GB 16-64GB

Network InfiniBand Torus Federation Colony

OS Linux Linux AIX AIX

We conducted our MILC performance studies on four HPC systems: the Jacquard [3] Linux cluster
at NERSC (National Energy Research Scientific Computing Center), an IBM BlueGene/L (BGL)
system [4] at RENCI, the Seaborg [5] IBM POWER3 SMP cluster at NERSC, and the DataStar [6]
IBM POWER4 SMP cluster at SDSC (San Diego Supercomputing Center). Table 1 shows the
configuration of the four systems. For these performance studies we used several performance tool
sets that are well-suited for the kinds of scalability experiments we performed.

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012083 doi:10.1088/1742-6596/78/1/012083

2

Prophesy[7] is a web-based infrastructure for the performance analysis and modeling of parallel

and distributed applications. Prophesy includes a database for archiving performance data, system
features and application details, to aid in online analysis and modeling of application performance.
Prophesy allows for the development of linear as well as nonlinear models that can be used to predict
the performance on different compute platforms or different numbers of processors.

TAU[8] is a portable, scalable and integrated performance system supporting all DOE HPC

platforms and all dominant programming languages, compilers, thread libraries, and communications
libraries for HPC software development. TAU components include: multi-level performance
instrumentation, multi-language automatic source instrumentation, flexible and configurable
performance measurement, and a widely-ported parallel profiling and tracing system.

SvPablo[9] is graphical toolkit for instrumenting source code and browsing runtime performance

data. SvPablo correlates application source code with dynamic performance data from both software
and hardware measurement. It allows users to identify constructs that affects the performance at loop
and function call level. It generates not only the performance statistical summary for the instrumented
constructs, but also the process/thread based performance data via which, users can diagnose load
imbalance problems.

3. Performance analysis results

For MILC 7.4, we conducted both weak scaling and strong scaling experiments on the four platforms
listed in Table 1 using Prophesy, and cache utilization studies on Jacquard using TAU. We also did
computation efficiency studies for MILC 7.1.11 on IBM BGL using SvPablo.

Overall, MILC demonstrates good strong and weak scaling on all four systems. Figure 1(a) shows
the weak scaling of MILC 7.4 with local lattice size of 8x8x8x8 (three space dimensions and one time
dimension), presented with the relative slowdown of the code when the number of processors grows.
We define that the relative slowdown is the execution time on p processors divided by the execution
time on 8 processors. Given the fixed workload per processors, the relative slowdown quantifies how
much the application performance degrades with increasing the number of processors. The best weak
scaling is achieved on DataStar, the IBM Power4 system. On the Opteron cluster – Jacquard, MILC
slows down significantly when the number of processors exceeds 128. For strong scaling, our result
shows that the code has the best strong scaling on IBM BGL, taking advantage of its global tree
network structure and nearest neighborhood communications.

Relative Slowdown vs Processors for MILC7.4 (Input-8)

0

0.5

1

1.5

2

2.5

8 16 32 64 128 256 512 1024 2048

Processors

Sl
ow

do
w

n

BlueGene/L
Jacquard
DataStar
Seaborg

 (a) (b)

Figure 1: Scaling and cache utilization analysis for MILC 7.4 with local lattice size of 8x8x8x8
The cache utilization analysis is conducted on the NERSC Opteron cluster. Figure 1(b) shows the

correlation of level two (L2) cache misses of the whole program to the individual routines for local
lattice size 8x8x8x8. The left Y-axis represents the L2 cache misses for individual routines. The right

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012083 doi:10.1088/1742-6596/78/1/012083

3

Y-axis is the total number of L2 cache misses for the whole program – the dotted black line. The
figure shows that the overall L2 cache misses increase as the number of processors grows. The L2
cache misses of MPI_Waitall() have very high correlation to the whole program, about 0.98. The
cache misses for QLA routines remains steady as the number of processors increases.

4. Using USQCD code to drive new performance measurement and analysis.

The Chroma package is a new generation of LQCD code intended to improve simultaneously both
performance and productivity in LQCD. It implements a new LQCD API developed under the
SciDAC program to supports data-parallel programming constructs for lattice field theory and in
particular lattice QCD. It does this by using advanced programming methods supported by C++.
Chroma uses the SciDAC QDP++ data-parallel programming (in C++) to present a single high-level
code image to the user. This approach can facilitate the generation of generate highly optimized code
for many architectural systems including single node workstations, clusters of workstations via QMP,
and classic vector computers. Chroma is also a leading candidate for use on emerging multi-core,
multi-threaded processors.

Chroma embraces the use of generics in the form of templates, especially expression templates, to
support modular programming practices while also facilitating compiler generation of very efficient
executable code through the use of extensive inlining to enable aggressive post-inlining code
op

ing an issue as

 of the code in the original source, or on calling context information. PERI
rsity and the University of North Carolina are addressing the problem

na

cost attribution:

timization.

While this strategy has a lot of promise, the resulting code can be difficult to understand.

Debugging codes with extensive templates has been recognized as a difficult problem because
interactions of separately defined and developed templates can be very tricky. Apparently simple
constructs in a source line can cause the instantiation, and inlining, of code from several “towers” of
templates with source code coming from many different files. These same phenomena raise similar
problems in performance measurement and analysis. Simple constructs can hide complexity because
implicit and non-intuitive operations, such as hidden data copying, can be inserted in the generated
object code.

These issues arise across a wide spectrum of “modern” codes, and are becom

compilers get more aggressive about inlining in older codes written in Fortran. Measurement
approaches based on the insertion of instrumentation are impractical because many of the template
methods that need to be measured are only a few machine instructions, i.e., they cost less per operation
than the instrumentation surrounding them. Hence, instrumentation at this granularity, even if done to
optimized executable code, introduces unacceptable perturbations. Furthermore, inserting
instrumentation prior to optimization, e.g., in source code, would perturb or inhibit subsequent
optimizations. While tools based on event based sampling, such as HPCToolkit [9, 10, 11] or
Oprofile[12], can collect measurements efficiently, the attribution of costs in such tools has been
based either on the location

searchers at Rice Univere
a lyzing the performance of such codes through extensions to HPCToolkit.

Using Chroma as the driving example, we present a preview of emerging extensions to HPCToolkit

to collect, attribute, and display multiple performance metrics, including computed quantities, using
three distinct strategies for

• The legacy method is a source-oriented view. It attributes the performance metrics within a
flat representation of the source code file to the line (or statement) where the relevant program
construct originally appeared in the input to the compiler.

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012083 doi:10.1088/1742-6596/78/1/012083

4

• The second method is an optimized object-oriented view. Costs are attributed according to
where they are incurred in the object code. The presentation of the costs is based on a
hierarchical representation of the optimized object code that includes the trees of inclusions of
template methods, macros, and other inlined code. The source code corresponding to the
included code is presented at each location at which it is instantiated.

ges that are driving the
development of new performance measurement and analysis methods and tools.

omputation (MILC) Collaboration code,

[2] US
[3] NE ard/
[4]
[5] NE
[6] SDS

• The third method is a calling context view. Data is collected using a full call stack profiler and
the data iis presented using the hierarchy of calling contexts. This view also captures inlining.

Each of these methods of cost attribution and display has its place in the analysis of performance.

The emerging calling context and object code views have special value for the diagnosis of
performance problems in highly-optimized codes using modern software engineering methods.

5. Conclusions
The work we present in this paper represents the symbiotic collaboration between two SciDAC
projects. PERI, the computer science project, is providing performance measurements and analyses,
including the tracking of performance and scalability across multiple systems and over time, to the
LQCD community. In turn, the LQCD community is providing challen

References
[1] The MIMD Lattice C

http://www.physics.utah.edu/~detar/milc
Lattice Quantum Chromodynamics, http://usqcd.jlab.org/usqcd-software/
RSC Jacquard, http://www.nersc.gov/nusers/resources/jacqu

UNC RENCI BlueGene/L, http://www.renci.org/about/computing.php
RSC Seaborg, http://www.nersc.gov/nusers/ resources/SP/

C DataStar, http://www.sdsc.edu/user_services/datastar/
gfu Wu, Valerie Taylor, and Joseph Paris, A Web-based Prophesy
ated Performance Modeling System, the IASTED International C

[7] Xin
Autom onference
on b
2006, C
[8] . Shende and A. D. Malony, "The TAU Parallel Performance System," International Journal of

essing

We Technologies, Applications and Services (WTAS2006), July 17-19,
algary, Canada

High Performance Computing Applications, SAGE Publications, 20(2):287-331, Summer 2006

[9] Luiz DeRose and Daniel A. Reed, SvPablo: A Multi-Language Architecture-Independent
Performance Analysis System,

S

Proceedings of the International Conference on Parallel Proc
(ICPP'99), Fukushim

[10] J. Mello
a, Japan, September 1999

filing for unmodified,
 GCC and Gnu Toolchain Developers’ Summit, Ottawa,

r-Crummey, R. Fowler, and G. Marin, HPCBiew: A tool for top-down analysis of
node performance, Journal of Supercomputing, v. 23, 2002, pp. 81-104.

[11] N. Froyd, J.Mellor-Crummey, and R. Fowler, Efficient Call-stack Profiling of Unmodified,
Optimized Code, Proc. Of the International Conference on Supercomputing (ICS2005),
Cambridgs, MA, June, 2005, pp. 81-90.

[12] N. Froyd, N. Tallent, J. Mellor-Crummey, and R. Fowler, Call path pro
optimized binaries, Proceedings of the
June, 2006.

[13] J Levon et al.. OProfile. http://oprofile.sf.net/

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012083 doi:10.1088/1742-6596/78/1/012083

5

