
A Performance Interface for Component-Based Applications
�

Sameer Shende, Allen D. Malony
Department of Computer and Information Science,

University of Oregon�
sameer,malony � @cs.uoregon.edu

Craig Rasmussen, and Matthew Sottile
Advanced Computing Laboratory,
Los Alamos National Laboratory†�

crasmussen,matt � @lanl.gov

Abstract

This work targets the emerging use of software com-
ponent technology for high-performance scientific parallel
and distributed computing. While component software en-
gineering will benefit the construction of complex science
applications, its use presents several challenges to perfor-
mance optimization. A component application is composed
of a set of components, thus, application performance de-
pends on the interaction (possibly non-linear) of the com-
ponent set. Furthermore, a component is a “binary unit of
composition” and the only information users have is the in-
terface the component provides to the outside world. An in-
terface for component performance measurement and query
is presented to address optimization issues. We describe
the performance component design and an example demon-
strating its use for runtime performance tuning.

1. Introduction

Throughout the history of scientific computing, appli-
cation development has sought to leverage the power of
abstraction in new software technology while continuing
to harness the computing potential of high-end machines.
However, the desire to manage the growing complexity in
scientific problem solving with more flexible programming
languages and framework-based development environments
is naturally in tension with the need to deliver high per-
formance on parallel and distributed systems, themselves
undergoing equally complex architectural and technologi-
cal evolution. The commonly accepted dogma is that the
further software is away from the raw machine, the harder
performance is to achieve. An important strategy to deal

�
This research is funded by the United States Department of Energy’s

Office of Science under contract DE FG03-01ER25501.
†Los Alamos National Laboratory is operated by the University of Cal-

ifornia for the National Nuclear Security Administration of the United
States Department of Energy under contract W-7405-ENG-36, LA-UR No.
03-0097.

with this tension has been the creation of layered software
infrastructures that can, at once, provide a rich middleware
of capabilities upon which to create new scientific program-
ming paradigms, while being implemented to run efficiently
on different high-end execution platforms. The unfortunate
compromise of this strategy is to further distance the scien-
tific application developer from the now broader range of
sources of performance behavior and possible performance
problems. Indeed, as a result, performance itself becomes
more complex to observe and to understand. Thus, as both
the power and the complexity of scientific software envi-
ronments and computing systems mutually advance, it is
imperative that technology for performance evaluation and
engineering keep pace.

While there has been excellent progress in software tech-
nology to meet the increasing demands of scientific applica-
tion development, the effective integration of performance
evaluation support is rare. Integration implies some under-
standing of the performance problems that will need to be
addressed. Unfortunately, potential problems are not gen-
erally known entirely at the beginning of a new software
technology project, or change as the software evolves. Inte-
gration also implies the existence of standard performance
methods, techniques, and tools that can be readily applied
to the types of performance problems expected. How then
should we address the apparent dilemma where the use of
advanced software development technology for creating so-
phisticated scientific computing environments, may result
in software systems whose performance behavior we can-
not adequately measure, understand, or improve? We be-
lieve the key is to implement a performance engineering
strategy consistent with modern software architectures and
engineering methodologies to both provide relevant perfor-
mance support and utilize the power of the software abstrac-
tions and infrastructure.

The software challenges of building large-scale, com-
plex scientific applications are beginning to be addressed
by the use of component software technologies. The soft-
ware engineering of scientific applications from compo-
nents that can be “plugged” together will greatly facili-



tate construction of coupled simulations and improve their
cross-platform portability. Groups such as the Common
Component Architecture (CCA) Forum [4] are extending
component engineering methods and infrastructure to ad-
dress problems of parallel component interfaces, scientific
data exchange, and cross-language interoperability.

However, the success of scientific component soft-
ware will depend greatly on the ability to deliver high-
performance solutions, in comparison with the performance
that can be achieved using standard application implemen-
tations. Scientific components are more complex and di-
verse than typical software components or libraries, in their
scale, execution modes, programming styles and languages,
and system targets. Performance technology that lacks ro-
bustness, portability, and flexibility will inevitably prove
incapable of addressing the software and platform integra-
tion requirements required for performance observation and
analysis. In addition, the construction of applications by
component composition requires robust performance engi-
neering technology that can support different scientific code
coupling scenarios. Many performance tools lack mecha-
nisms for performance abstraction that can capture the dif-
ferent composition modes envisioned. Most importantly,
performance engineering technology should be compatible
with the component engineering methodologies and frame-
works used to develop applications, or it will be neither rou-
tinely nor effectively applied by component and application
developers.

In this paper, we consider the design and development
of a component interface for performance measurements
within the CCA framework. The component developer
can access a performance monitor (also a component) to
create timers that gather data on component performance
as it runs. The performance interface also allows users
and other components to query a component, or the per-
formance monitor, to gather statistics regarding component
performance. This allows users to select the best perform-
ing component from a set of components supporting the
same interface.

The benefit of the performance interface is demonstrated,
in an example below, to automate the selection of an opti-
mal set of working components. An optimizing component
is used to evaluate components of the same functionality,
but possibly different performance behavior. As the appli-
cation runs, the optimizing component utilizes the perfor-
mance API to gather statistics about the running applica-
tion and decides which of the set of similar components to
choose for optimal performance.

2. The Common Component Architecture

Component-based software architectures have grown
popular in the general computing world in the past decade,

but have yet to be seriously adopted in practice by scien-
tific computing users. The primary reason for this is that
scientific, or high-performance, computing users want just
that – high performance. Systems such as CORBA[5],
JavaBeans[8], COM[7], and others have either not run on
the systems scientists use, or simply run far too slow for
their applications. The Common Component Architecure
(CCA) was started in 1997 as an effort to bring the com-
ponent programming model to scientific users. Fundamen-
tally, the CCA is a specification of the component program-
ming pattern and the interface the components see to the
underlying support substrate, or framework.

Component programming, much like object-oriented
programming, provides a model for constructing software
such that units of code (components and objects) expose
a “public” interface to the outside while hiding their inter-
nal implementation features. Components extend the object
model by allowing components to dynamically discover and
expose interface information, something that is statically
determined at compilation time in most object-oriented lan-
guages. The CCA requires components to describe their in-
terfaces in the Scientific Interface Definition Language, or
SIDL[9]. Like the IDL used by CORBA and Xerox ILU[6],
the interfaces are defined in a language independent manner
and are not bound to the source code or compiled binary of
a component. The IDL simply describes the public inter-
face so that external parties can discover what services are
available and how they must be called.

In the CCA, a component is defined as a collection of
ports, where each port represents a set of functions that
are publicly available. A port is described using SIDL, and
some form of wrapper exists in the implementation to map
the SIDL interface to that of the implementation language.
From the point of view of a component, there are two types
of ports. Those that are implemented by a component are
known as provides ports, and other components may con-
nect to and use them. Other ports that a component will
expect to be connected to and call are known as uses ports.
Uses and provides ports are connected together as shown in
Figure 1. The act of connecting components is referred to
as component composition.

When a component is instantiated and allowed to exe-
cute, it registers the provides and uses ports with the under-
lying framework. This information allows external compo-
nents to discover what ports or interfaces are available, and
ensures that expected relationships between components are
fulfilled, before allowing execution.

Port discovery is a service provided by the framework
and is actually just another port that a component can con-
nect to. For instance, a component can obtain a list from the
framework of all components providing a specific interface
or port. The component could then connect to each of the
ports in the list in an iterative fashion and make calls on the



Component B

Provides P

Component A

Uses P

Figure 1. Two CCA components: One uses a
“P” port provided by the other.

methods within the connected port. We exploit the concept
of port discovery, in just this fashion, in the implementation
of a basic optimization component in Section 5.

Iterative access to a common set of interfaces presup-
poses that such a set exists. One of the primary benefits of
component-based programming is the adoption of common
interfaces for domain-specific purposes. This allows differ-
ent teams of individuals to develop components based on
this “standard” component API. This in turn allows users of
these components to pick and choose the particular compo-
nent that best fits their needs.

In addition to providing a model for component creation
and composition, the CCA Forum encourages communities
to form and adopt standard component interfaces. Several
different scientific computing communities have already be-
gun this effort, including the attempt to adopt standard in-
terfaces for partial differential equation (PDE) simulations,
an equation solver interface, an “M-by-N” parallel coupling
component, and interfaces for access to sophisticated data
structures such as distributed and sparse matrices, and both
regular and irregular meshes. One of the purposes of this
paper is to continue this effort by proposing a component
API for performance measurements.

3. TAU Performance System

The software engineering of CCA components and ap-
plication development demands robust tools for perfor-
mance measurement and analysis. Our approach to per-
formance integration in CCA component software begins
with the TAU performance system [11]. TAU provides tech-
nology for performance instrumentation, measurement, and
analysis for complex parallel systems. It targets a gen-
eral computation model consisting of shared-memory com-
puting nodes where contexts reside, each providing a vir-
tual address space shared by multiple threads of execu-
tion. The model is general enough to apply to many high-
performance scalable parallel systems and programming
paradigms. Because TAU enables performance information
to be captured at the node/context/thread levels, this infor-
mation can be mapped to the particular parallel software and
system execution platform under consideration.

Figure 2. TAU Performance System Architec-
ture

As shown in Figure 2, TAU supports a flexible instru-
mentation model that applies at different stages of pro-
gram compilation and execution. The instrumentation tar-
gets multiple code points, provides for mapping of low-level
execution events to higher-level performance abstractions,
and works with multi-threaded and message passing paral-
lel computation models. Instrumentation code makes calls
to the TAU measurement API. The TAU measurement li-
brary implements performance profiling and tracing support
for performance events occurring at function, method, basic
block, and statement levels during execution. Performance
experiments can be composed from different measurement
modules (e.g., hardware performance monitors) and mea-
surements can be collected with respect to user-defined per-
formance groups. The TAU data analysis and presentation
utilities offer text-based and graphical tools to visualize the
performance data as well as bridges to third-party software,
such as Vampir [12] for sophisticated trace analysis and vi-
sualization.

4. Performance Interface for Components

4.1. Component Measurement

Given the TAU performance measurement technology,
the important question becomes what is the approach best
suited for component performance measurement. There
are two measurement types we envision based on how a
component is instrumented: 1) with direct calls to a mea-
surement library or 2) using an abstract measurement in-
terface. The difference is depicted in Figure 3. TAU spe-
cializes in multi-level performance instrumentation target-



application
component

runtime TAU
performance data

performance
component

TAU APITAU API other API

Figure 3. Measurement Component Interface.

ing a common performance measurement API. We can in-
strument the component code to call TAU measurement rou-
tines directly using the API, as shown in the left part of Fig-
ure 3. To facilitate the instrumentation, TAU provides auto-
mated source instrumentation tools (based on the Program
Database Toolkit (PDT)[10]) and dynamic instrumentation
support using DyninstAPI[2]. As shown, the TAU measure-
ment system maintains runtime performance data that can
be accessed via the API directly or stored in files at the end
of component execution.

In contrast, the component could also be instrumented
to call an abstract measurement component interface, as
shown in the right part of Figure 3. This interface would
be implemented by a performance component that targets
a backend measurement system (in this case TAU ). There
are several benefits to this approach. First, a component
could be developed with “virtual instrumentation” in the
sense that the abstract measurement interface is virtual (i.e.,
consists of virtual functions). The overhead of instrumen-
tation is nullified until a performance component is instan-
tiated. Second, it is possible to use any measurement sys-
tem in the performance component that conforms to the in-
terface. Lastly, the performance component can provide
ports for other components to use, including ports to ac-
cess performance data without touching the instrumented
application component. This raises the possibility that the
application component is instrumented directly, but the per-
formance data is accessed via the performance component.
The downside of this approach is that the measurement in-
terface is possibly less efficient or that it does not allow
certain types of detailed performance measurements to be
made.

4.2. Performance Interface and Performance Com-
ponent

Our approach offers both types of measurements dis-
cussed above. In particular, we have designed a perfor-
mance instrumentation interface for component software
and a performance component that implements this inter-
face through a measurement port. This interface allows a
user to create objects for timing, track application events,
control the instrumentation at runtime, and query the per-
formance data. TAU provides an implementation for each
of these entities. Appendix 1 shows the SIDL definition for
the performance interface we have developed.

Timer Interface. A timer interface allows the user to
bracket parts of his/her code to specify a region of interest.
The Timer class interface supports the start and stop
methods. A timer object has a unique name and a signature
associated with it. There are several ways to identify timers
and performance tools have used different techniques. To
identify a timer, one approach advocates the use of numeric
identifiers and an associated table mapping the identifiers
to names. While it is easy to specify and pass the timer
identifier among routines, it has its drawbacks. Maintain-
ing a table statically might work for languages such as For-
tran90 and C, but it extends poorly to C++, where a template
may be instantiated with different parameters. This aspect
of compile time polymorphism makes it difficult to disam-
biguate between different instantiations of the same code.
Also, it can introduce instrumentation errors in maintaining
the table that maps the identifiers to names. This is true for
large projects that involve several application modules and
developers.

Our interface uses a dynamic naming scheme where
timer names are associated with the timer object at runtime.
A timer can have a unique name and a signature that can be
obtained using runtime type information of objects in C++.
Several logically related timers can be grouped together us-
ing an optional profile group. A profile group is specified
using a name when a timer is created. TAU implements
the generic Timer interface shown in the Appendix and in-
troduces an optimization that allows it to keep track of only
those timers that are invoked at least once. It maintains both
exclusive and inclusive measurement values for each timer.
Timers can be nested, but may not overlap (i.e., start and
stop calls from one timer should not overlap those from an-
other). When timers overlap, TAU detects this overlap at
runtime and warns the user about this error in instrumenta-
tion.

It is important to note that this interface is independent
of the nature of measurements that can be performed by the
performance tool. For instance, TAU may be configured to
record exclusive and inclusive wallclock time for each timer



for each thread of execution. Other measurement options
that are currently supported include profiling with process
virtual time or counts obtained from hardware performance
counters. TAU also provides the option of making multi-
ple measurements using a combination of wallclock time
and/or hardware performance metrics in the same perfor-
mance evaluation experiment. Thus, the timer interface is
independent of the underlying measurements and is a vehi-
cle for the user to specify interesting code regions that merit
observation.

Control Interface. The control interface provided by
the performance component allows us to enable and disable
a group of timers at a coarse level. The user can disable all
the groups and selectively enable a set of groups for refining
the focus of instrumentation. Similarly, the user can start
with all groups in an enabled state and selectively disable a
set of groups.

Query Interface. The query interface allows the pro-
gram to interact with the measurement substrate by query-
ing for a variety of performance metrics. This interface
allows the program to query the set of measurements that
are being performed. These are represented in the inter-
face as a list of counters. The counter names specify what
is being measured. These are tool specific names such as
PAPI FP INS or PAPI L1 DCM that stand for the number of
floating point instructions and level 1 data cache misses ex-
ecuted (as reported by PAPI[1]), respectively. The query in-
terface reports the list of timers that are active at any given
point in time. For each timer, it provides a set of exclusive
and inclusive values for each counter. It provides the num-
ber of start/stop pairs (referred here as the number of calls)
for each timer and also the number of timers that each timer
called in turn. Instead of examining this data at runtime,
an application may choose to store this information in files.
This data may be read by an online monitor external to the
application and analyzed as the application executes.

Event Interface. The event interface provided by the
performance component allows a user to track applica-
tion level events that take place at a specific location in
the source code (as opposed to bracketing the code with
start/stop calls). The generic event interface provides a sin-
gle trigger method with a data parameter. This permits the
user to associate the application data with the event. For
example, to track the memory utilization in an application,
a user may create a named event called “Memory used by
arrays” and each time an array is allocated, this event might
be triggered with the size of the chunk of memory allocated
as its parameter. TAU implements the event class by keep-
ing track of maxima, minima, mean, standard deviation, and
number of samples as statistics. Another tool might for in-

NonlinearFunction

PiFunction

LinearFunction

MidPointIntegrator

Optimizer

MonteCarlo

I

F

F

F

I

Figure 4. Example showing optimizer compo-
nent and dynamic component connections.

stance maintain quantiles for the same data.
The performance component interface gives each tool

the flexibility of performing tool-specific optimizations,
measurement and analysis unique to the tool, and provides a
balance between tool specificity and genericity. For exam-
ple, a tool may implement the Timer and Event interfaces
in different ways. The benefits of such an interface are man-
ifold for a user. Using this generic interface to annotate the
source code, the user can benefit from using multiple per-
formance measurement and analysis tools without the need
for recompiling the source code. At runtime, the user can
choose which tool (and more specifically, which dynamic
shared object) implements the interface and instantiates a
component for performing the instrumentation. This ap-
proach permits the user to mix and match the capabilities of
multiple performance tools to accomplish the task of per-
formance observation of components.

5. Example

In this section we give an simple example of how the
CCA framework can be used in conjuction with the pro-
posed component performance API to optimize the working
set of a component-based application.

5.1. Selection of optimal component-based solvers

A situation that arises frequently in scientific comput-
ing is that of selecting a solver that both meets some con-
vergence requirement and also performs optimally (i.e.,
reaches a solution in the shortest amount of time). In gen-
eral, a solver may be optimal for a particular class of prob-
lems, yet behave poorly on others. Even for a given class
of problems, the convergence behavior of a solver can be
highly dependent on the data itself. Thus, the choice of an
“optimal” solver is not as easy as it might at first seem.



Figure 5. Visualization of performance data
using TAU’s JRacy profile browser (units are
in microseconds).

Using the component performance API described in the
previous section, the CCA framework easily allows one to
test a set of solvers on a representative subset of a broader
spectrum of data. The best performing of the solvers can
then be used to operate on the full dataset.

While this is relatively easy to do using components with
standard interfaces, it is a much more onerous task without.
One must maintain separate bodies of code (one for each
solver interface) and compile and link these codes against
separate solver libraries. Then scripts must be generated to
run the tests, select the best performer and finally to make
the final run. In practice this is not done. However, because
the dynamic substitution of components is so easy to do
with component-based programming, we suggest that this
practice may become more common place in the future.

In the example shown here, the solver is a simple inte-
grator component that returns the integral of a function f
over the range � a � b � ,

i �
� b

a
f � x � dx

The integrator solver set contains a trivial Monte Carlo
integrator that samples from a uniform distribution and a

midpoint integrator that uses simple trapezoidal quadrature.
Because the Monte Carlo integrator uses a sampling based
approach, it may work on functions that are not appropri-
ate for the midpoint integrator, such as with functions con-
taining point discontinuities. Although in this example, we
assume that the functions are simple, smooth, and have no
discontinuities – so both solvers are candidates. It is ex-
pected that the Monte Carlo integrator will require a larger
number of integration points, and will thus take more time
than the midpoint integrator.

An optimizing component is used to iteratively test two
components that both provide the same Integrator interface.
For this example, each integrator component is tested on a
set of components that provide the Function interface. For
any one particular integrator-function combination, the in-
tegrator component repeatedly calls the function component
at points within the range � a � b ��� until the integration is com-
plete. The primary components in this test and the port con-
nections are shown in Figure 4.

The optimizing component was constructed using the
BuilderServices API of the Ccaffeine CCA framework [3].
This API allows components to be loaded, connected to
each other, run, and then disconnected, all under runtime
control. The optimizing component iteratively loads and
runs each integrator over the complete set of function com-
ponents, while keeping track of the run time for each inte-
grator and function combination using the performance API
described above. The set of function components, the num-
ber of sampling points, and the range of each integration
were chosen for simple illustrative purposes. In general, for
best results the choice of parameters such as this requires an
expert with knowledge of the system being optimized.

As expected, the best performing integrator was the mid-
point integrator, as can be seen in Figure 5. The Monte
Carlo integrator took nearly 12 times longer to complete
than the midpoint integrator. Much of this extra time was
spent in the RandomGenerator component, as can be seen
in the lower portion of the figure.

6. Conclusions

To leverage the power of software abstraction while
maintaining high-performing applications demands a tight
integration of performance measurement and analysis tech-
nology in the software engineering process. The success of
component software for scientific applications running on
large-scale parallel computers will be determined by how
close performance comes to standard implementation ap-
proaches. We have designed a performance interface for
component software, and implemented a performance com-
ponent using the TAU performance system, to help under-
stand performance problems in scientific component appli-
cations.



But this is only one part of the story. Component soft-
ware has an inherent abstractional power over standard ap-
proaches to modify what and how components are used
in a computation. If it is possible to inform these com-
ponent choices with performance information in a manner
compatible with component software design, there is great
potential for adapting component applications to optimize
performance behavior. Indeed, our demonstration shows
how the TAU performance component can be used within
CCA applications in ways that allow high-performing, self-
optimizing component solutions to be achieved.

Furthermore, we propose that the performance interfaces
described here be added to all CCA components as provides
ports. The code to do this could optionally be generated
automatically by the language-interoperability mechanism
of each CCA framework. This would allow CCA compo-
nent writers to automatically provide performance data at
the granularity of function calls (with no extra work on their
part) and would allow CCA component users, to always
have access to this data (as a runtime option). It would also
allow agents, such as the Optimizer component described
above, to monitor and fine tune a component-based applica-
tion.

References

[1] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A
Portable Programming Interface for Performance Evaluation
on Modern Processors” The International Journal of High
Performance Computing Applications 14:3, Fall 2000, pp.
189-204

[2] B. Buck and J. Hollingsworth: An API for Runtime Code
Patching, Journal of High Performance Computing Applica-
tions, 14(4):317-329, Winter 2000.

[3] Ccaffeine: A CCA Component Framework for Parallel Com-
puting. http://www.cca-forum.org/ccafe.

[4] Common Component Architecture Forum. http://www.cca-
forum.org.

[5] CORBA Components, Object Management Group, OMG
TC Document orbos/99-02-95. http://www.omg.org. (1999)

[6] Cutting, D., Janssen, W., Spreitzer, M., Wymore, F.: ILU
Reference Manual. Xerox Palo Alto Research Center. (1993)

[7] G. Eddon and H. Eddon: Inside Distributed COM. Microsoft
Press (1998)

[8] D. Kara.: The Enterprise JavaBeans Component Model.
Component Strategies 1(7) (1999)

[9] Kohn, S., Dahlgren, T., Epperly, T., Kumfert, G.: The State
of SIDL: Quarterly Status Report. Common Component Ar-
chitecture Forum Meeting, Bloomington, IN. October 2-3,
2001

[10] Lindlan, K.A., Cuny, J., Malony, A.D., Shende, S., Mohr,
B., Rivenburgh, R., Rasmussen, C.: Tool Framework for
Static and Dynamic Analysis of Object-Oriented Software
with Templates. Proceedings SC’2000, (2000)

[11] Malony, A., Shende, S.: Performance Technology for Com-
plex Parallel and Distributed Systems. In: Kotsis, G., Kac-
suk, P. (eds.): Distributed and Parallel Systems From Instruc-
tion Parallelism to Cluster Computing. Proc. 3rd Workshop
on Distributed and Parallel Systems, DAPSYS 2000, Kluwer
(2000) 37–46

[12] Pallas GmbH: VAMPIR: Visualization and Analysis of MPI
Resources. http://www.pallas.de/pages/vampir.htm.

7. Appendix: SIDL Description of Perfor-
mance Interface

version performance 1.0;
package performance
{
interface Timer
{ /* Start/stop the Timer */
void start();
void stop();

/* Set/get the Timer name */
void setName(in string name);
string getName();

/* Set/get Timer type information
(e.g., signature of the routine) */

void setType(in string name);
string getType();

/* Set/get the group name associated
with the Timer */

void setGroupName(in string name);
string getGroupName();

/* Set/get the group id associated
with the Timer */

void setGroupId(in long group);
long getGroupId();

}

/* Query interface to obtain timing
* information */
interface Query
{ /* Get the list of Timer and Counter names */
array<string> getTimerNames();
array<string> getCounterNames();

/* Returns inclusive/exclusive time, numcalls,
childcalls and counter names for given
timers */

void getTimerData(in array<string> timerList,
out array<double, 2> counterExclusive,
out array<double, 2> counterInclusive,
out array<int> numCalls,
out array<int> numChildCalls,
out array<string> counterNames,
out int numCounters);



/* Writes instantaneous profile to disk
* in a dump file. */
void dumpProfileData();

/* Writes the instantaneous profile to disk
* in a dump file whose name
* contains the current timestamp. */
void dumpProfileDataIncremental();

/* Writes the list of timer names to a
* dump file on the disk */
void dumpTimerNames();

/* Writes the profile of the given set of
* timers to the disk. */
void dumpTimerData(in array<string> timerList);

/* Writes the profile of the given set of
* timers to the disk. The dump file name
* contains the current timestamp when
* the data was dumped. */
void dumpTimerDataIncremental(
in array<string> timerList);

}

/* User defined event profiles for application
* specific events */
interface Event
{ /* Set the name of the event */
void setName(in string name);

/* Trigger the event */
void trigger(in double data);

}

/* Interface for runtime instrumentation control
* based on groups */
interface Control
{ /* Enable/disable group id */
void enableGroupId(in long id);
void disableGroupId(in long id);

/* Enable/disable group name */
void enableGroupName(in string name);
void disableGroupName(in string name);

/* Enable/disable all groups */
void enableAllGroups();
void disableAllGroups();

}

/* Interface to create performance component
* instances */
interface Measurement extends gov.cca.Port
{ /* Create a Timer */
Timer createTimer();
Timer createTimerWithName(in string name);

Timer createTimerWithNameType(in string name,
in string type);

Timer createTimerWithNameTypeGroup(in string
name, in string type, in string group);

/* Create a Query interface */
Query createQuery();

/* Create a User Defined Event interface */
Event createEvent();
Event createEventWithName(in string name);

/* Create a Control interface for selectively
* enabling and disabling
* the instrumentation based on groups */
Control createControl();

}

/* TAU */
/* Implementation of performance component
* Timer interface*/
class TauTimer implements-all Timer
{
}

/* Implementation of performance component
* Event interface*/
class TauEvent implements-all Event
{
}

/* Implementation of performance component
* Query interface*/
class TauQuery implements-all Query
{
}

/* Implementation of performance component
* Control interface*/
class TauControl implements-all Control
{
}

/* Implementation of performance component
* Measurement interface*/
class TauMeasurement implements-all Measurement,
gov.cca.Component

{
}

}


