
Capturing and Automating Performance Diagnosis: the Poirot Approach

B. Robert Helm, Allen D. Malony, Stephen F. Fickas

Department of Computer and Information Science,
University of Oregon

Abstract
Petiormance diagnosis, the process of finding and ex-

plaining performance problems, is an important part of
parallel programming. Effective pelformunce diagnosis
requires that the programmer plan an appropriate method,
and manage the experiments required by that method. This
paper presents Poirot, an architecture to support per&or-
mrtnce diagnosis. It explains how the architecture helps au-
tomatically, adaptably plan and manage the diagnosis pro-
ce.rs. The paper evaluates the generality and practicality of
Poirot, by reconstructing diagnosis methods.found in sev-
eral published performance tools.

Keywords: Performance tools, perjxmance debugging,
knowledge-based diagnosis, software engineering, paral-
lel programming, scient@ computing

1: Introduction

Our general goal is to make advances in parallel perfor-
mance evaluation more useful for pegormance debugging.
In performance debugging, the programmer writes an ini-
tial parallel version of a program, runs the program, analyz-
es performance data to find performance problems, and
then transforms the program in response to those problems.
We are particularly interested in the process of finding and
explaining performance problems -- a process we call per-
.formance diagnosis. Performance diagnosis requires that
one plan and carry out an effective method - a policy for
setting up experimental program runs, collecting data, and
analyzing and interpreting results. Programmers experi-
enced with an application and its target environment can
quickly isolate many performance bugs by careful choice
of method -- of measurement tools, experimental condi-
tions, and analysis techniques. Conversely, less experi-
enced programmers can waste time and machine resources
gathering data of low utility [151. We thus believe that par-
allel performance research must identify appropriate diag-
nosis methods, and develop automated, adaptable support

for applying those methods across classes of applications,
architectures, and measurement environments.

This paper presents an architecture for planning and man-
aging performance diagnosis. From the literature on perfor-
mance diagnosis tools, we have identified common diagno-
sis methods, applicable across a wide range of languages,
machines, and measurement environments. From the fields
of expert systems, software process modeling, and semantic
databases, we have developed techniques to automatically
select and apply performance diagnosis methods. From this
work we have derived Poirot, an architecture for perfor-
mance diagnosis. This paper describes Poirot, and explains
the support it provides to performance diagnosis. To suggest
how Poirot can practically support both automation and
adaptability, we show how it can rationally reconstnrct
(functionally reproduce) several automated performance di-
agnosis tools.

2: Approach

Performance diagnosis is a process of finding the main
performance problems in a program, and explaining them
sufficiently well to suggest program improvements. This
task makes two kinds of demands on the programmer. First,
performance diagnosis requires the programmer to plan -‘-
pick performance experiments to do and analyses to per-
form. Second, the programmer must effectively manage per-
formance diagnosis, setting up and running experiments, an,-
alyzing results, and organizing the numerous script, pro-
gram, and data files generated along the way. Much of this
management work is tedious, but must be done carefully to
avoid incorrect or implausible results (“performance anom-
alies”) due to mistakes in experiment setup or analysis [8].

Research has produced many performance tools that plan
and manage significant parts of the performance diagnosis
process. Tools like Quartz [l] and MTOOL [13], for in-
stance prescribe particular kinds of experiments, automati-
cally instrument programs to support those experiments, and
manage most of the mechanics of data analysis. Prescription

606
1o6:<-7133/95 $4.00 0 1995 IEEE

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

is not limited to lower-level decisions such as measurement
technology, but also higher level decisions such as what to
analyze and where. MTOOL, for instance, automatically
selects “interesting” blocks in programs from an initial
time profile. ChaosMon [6] automatically selects applica-
tion-specific program visualizations to illustrate particular
performance problems. ATExpert [181 automatically inter-
prets performance data and offers the programmer “obser-
vations” on the likely causes of poor performance.

All of the tools listed above support performance diag-
nosis by prescribing and carrying out a particular perfor-
mance diagnosis method -- a set of policies for experimen-
tation and analysis. Performance tools gain several advan-
tages by committing to a particular diagnosis method, and
integrating that method tightly with particular performance
analysis tools. First, they are highly automated. They can
plan, making difficult decisions such as what to instrument
in a program. They can also manage, relieving the pro-
grammer of many details of setting up, running, and ana-
lyzing performance experiments. However, by “‘hard-cod-
ing” a diagnosis method, and “hard-wiring” that method to
p‘articular analysis and measurement subsystems, perfor-
mance tools sacrifice adaptability. No single diagnosis
method is appropriate for all users, architectures, and appli-
cations. Certainly the choice of metrics to measure [9], and
of’ techniques for data collection [6], [131 depends strongly
on the target machine. Higher level choices, such as the
type of behavior to investigate in an application [6], are
equally dependent on the application and its target. Above
all, the programmer’s requirements for cost, accuracy, and
precision in performance evaluation strongly influence the
best choice of methods, and these requirements can vary
considerably from project to project and moment to mo-
ment [23].

Unfortunately, many existing performance tools make it
difficult to change or extend their diagnosis methods, or to
combine their built-in analysis and measurement facilities
wltb those of other tools. As a result, end users must do
considerable work (re)coding tools, or converting data be-
tween tools, if existing tools do not tit the requirements of
a particular performance diagnosis project. In reaction,
some researchers have developed general, highly adaptable
toolkits for performance measurement and analysis [25],
[28]. However, these tools sacrifice automation; the user
must plan the entire performance diagnosis process, and
write lengthy scripts to manage the process.

We conjecture that both adaptability and automation are
required to gain acceptance of performance diagnosis tools
by users. We propose two novel design principles to make
automated, adaptable performance diagnosis possible:

. Design Principle 1 :Plun methods to suit. Give
the programmer a general, extensible catalog of
automated diagnosis methods, and a simple
way to assemble good methods for a problem
them into a coherent plan.

. Design Principle 2: Separate methods from
tools. Link diagnosis methods to diagnosis tools
through a high-level functional interface, one
that hides details of tools and data irrelevant to
managing the diagnosis process.

Poirot is an architecture for performance diagnosis that
implements these two principles, by synthesizing research
from artificial intelligence, software engineering, and per-
formance evaluation. In particular, to build custom diagnosis
methods, it relies on research in knowledge-based systems,
which has produced a library of formal, general methods for
diagnosis [5], [7], [19], [27] and has created implementation
frameworks that can assemble methods to suit a particular
purpose [lo], (113, [22]. To create a high-level, flexible in-
terface to performance tools, we draw on research in soft-
ware development environments [17], [20]. 124241 and soft-
ware databases [2]. [26], [29], which provide techniques to
access tools, programs, and data, independent of tool com-
mand syntax and data format.

3: Architecture

In this section, we sketch the architecture of Poirot, and
show how it can support automated, adaptable performance
diagnosis by our two design principles, construction of cus-
tom methods, and separation of methods from tools. Figure
1 gives an overview of Poirot and its role in the program-
ming process. Poirot consists of a problem solver, which
constructs and executes custom performance diagnosis
methods, and an environment intelface, which links the
problem solver to tool, programs, and data in the program-
mer’s development environment. The architecture of Poirot
is based on the Glitter program optimization system [111.
Like Glitter, Poirot acts as an assistant to the programmer.
The programmer uses it to find useful diagnosis methods, to
set up and carry out experiments for those methods, and to
interpret and track the results of those experiments. While
Poirot could conceivably operate autonomously, we expect
that in most cases the programmer will perform the intellec-
tually difficult tasks (such as interpreting performance anal-
ysis results) while Poirot performs the mundane ones.

3.1: Problem solver

Poirot’s problem solver plans and manages diagnosis in
conjunction with the programmer. It effectively implements
Design Principle 1, planning diagnosis actions based on the
current state of the diagnosis project and the user’s prefer-

607

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

ences. The problem solver is a knowledge-based system;
this simply means that it is structured around an interpreter
(called the engine) which interprets a “program” called the
knowledge base (Figure 2). The knowledge base is divided
into two parts, the method catalog and the control knowl-
ed<qe.

Figure 1: The role of Poirot.

L- J

LlzrI Ill
Programming &
Analysis Tools

rhe method catalog is an indexed library of perfor-
mance diagnosis techniques. Each method in the catalog is
etfectively a small program that accomplishes a particular
performance diagnosis task.The task is ‘called the method’s
goal. Each method has a body that gives a list of diagnosis
actions for accomplishing its goal. The actions in a method
body fall into two types:

I. An action can start some subtask required to accom-
plish the method’s goal (post a subgoal). This ulti-
mately causes a method that can solve the subgoal to
be called as a subroutine.

2. An action can send :I command via Poirot’s envirtrn-
ment interface (apply a transformution). This is how
Poirot can carry out low-level actions such as pro--
gram instrumentation on behalf of the user. In some
cases, applying a transformation ‘will simply ask the
user to supply some information or lo take some
action.

For example, the method catalog might contain the
(high-level) method “Measure synchronization rate”. The
goal of this method is “establish that there is a synchroni-
zation bottleneck in routine R”. Among its actions is one
that posts the subgoill “instrument R for total time and
synchronization operation count”; this subgoal could lead
to the invocation of a method that actually instrumented R,
or one that retrieved an existing copy of R with the correct
instrumentation. The method also includes actions that (I)
run the instrumented program, (2) compute the synchroni-
zation rate of R, and (3) ask the programmer to judge

whether the rate is excessive given the user’s knowledge of
R.

Note that more than one method may be defined for any
given goal. Thus, when a subgoal is posted, there may be
many candidate methods to invoke to address that goal.
Poirot’s problem solver has no fixed strategy for choosing
methods to invoke; instead, it chooses methods based on its
control knowledge. The control knowledge portion of the
knowledge base defines policies for choosing methods, and
ordering execution of goals, based on the current state of the
diagnosis process. That state can include the user’s current
preferences, the target application and architecture, or the
prior results of diagnosis. Control knowledge thus provides
a mechanism for dynamically adapting general diagnosis;
methods from the catalog to the needs of a particular project..
This is discussed in more detail in Section 4.

Figure 2: Problem solver components.

3.2: Environment Interface

The environment interface (Figure 3) provides high-level
access to tools and data in the programming environment, in
accord with Design Principle 2. The environment interface
consists of a transformation library, which represents the
tools, and a database, which represents the program and data
tiles.

The transformation library is a set of primitives to be ap-.
plied by performance diagnosis methods. Each transforma-
tion has an interface that characterizes its requirements and
effects in terms of the database. Most transformations also
have a script, that exchanges information with the user, or
that sends commands to tools in the programmmg environ-
ment [121. The script of a transformation encapsulates most
environment-dependent details of a diagnosis action, such as
the command syntax of the tools it invokes.

Figure 3: Environment interface components.

The database represents the state of the diagnosis project..
It uses a uniform information model which represents such
diverse items as data sets, programs, configurations tiles,

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

and assertions about the target environment as objects with
attributes. Transformations test and update the database as
they are applied, allowing Poirot to track the state of the de-
velopment environment as it changes. ‘rhe user can also up-
date the database, to document actions taken outside of
Poirot.

To illustrate the functions of the environment interface,
we return briefly to the method “Measure synchronization
rate” discussed in section 3. I. That method leads to the ap-
plication of’ several transformations, among them one that
instruments a routine R for synchronization operation
count and total time. The interface of this transformation
requires that the database include an object representing
routine R, and indicates that the transformation adds a new,
instrumented version of R to the database. The transfor-
mation’s script depends on the program environment and
it!, supported tools; if, for example, the measurement tools
uxe source instrumentation, the script might include ver-
sia)n control and editing commands to add such instrumen-
tation. However. if instrumentation were controlled by
runtime argument flags, the script rnigbt do nothing, rely-
ing on a later transformation that runs the program to gen-
erate the necessary Flags.

The example illustrates how the environment interface
supports automated diagnosis while separating methods
from tools (Design Principle 2). Thme environment inter-
tace defines a set ot performance diagnosis primitives,
specified in terms of their effects on a high-level database.
Tie actual implementation of these primitives, and the for-
mat of data and programs in the database, is hidden from
the diagnosis methods and so existing methods can be
adapted unchanged to new programming envtronments and
diagnosis tools. The result is that we can adapt knowledge
about ~hur steps to take in performance diagnosis mto con-
texts where TOM’ those steps are taken differs significantly.

4: Example

Poirot is an architecture for automated, adaptable diag-
nosis using general diagnosis methods and a high-level in-
terface to the programming environment. We next present
a G;hort hypothetical processing example using the architec-
ture. The example serves two purposes. First, the example
shows in detail how the features of the architecture enable
it to automate performance diagnosis while remaining
adaptable. In addition. in section 5 we use the example to
assess the practicality of adaptable performance diagnosis.
In particular, we estimate the level of effort needed to func-
tionally reproduce several existing performance diagnosis
ttr’ols. starting from the knowledge base used in the exam-
ple.

The programmer in our example i!; looking for perfor-
rnmce problems in a neural lret simul,.uion program called

r-met. Initially, the programmer decides to study the pro-
gram’s speedup on a typical data set. The programmer wants
to examine the subroutines init, pats, and train, which
correspond to the major phases of the program, and two sub-
routines of train -- acts and wts -- which contain the bulk
of the program’s computation. The first step in performance
diagnosis with Poirot is to encode these decisions in Poirot’s
control knowledge. This entails translating the program-
mer’s preferences into rules for selecting methods and order-
ing goals, illustrated by English paraphrases in Figure 4.

In Figure 4, the programmer first specifies the general
method of performance diagnosis, by specifying the method
to select for the diagnose goal. The method chosen, “Estab-
lish-Refine”, is a generic diagnosis framework originally ap-
plied in a medical setting [4]. The Establish-Refine method
treats performance diagnosis as search in a space of possible
performance problems. Each point in the search space is
called a hypothesis, and represents a performance problem
as a fault (a type of performance problem that is occurring),
and one or more relevant components (the program locations
or phases where the problem is occurring). The Establish-
Refine method consists of establishing and rejining hypoth-
eses. Establishing a hypothesis means finding evidence for
the hypothesis; that is, finding evidence that a particular per-
formance problem is having a significant impact on the pro-
gram. Refining a hypothesis means generating the possible
explanations for that hypothesis -- the possible causes (or
more precise descriptions) of the performance problem.
Each explanation generated is itself a hypothesis, which is
then diagnosed recursively by the Establish-Refine method.
Poirot’s Establish-Refine method posts two types of sub-
goals, establish and refine, which initiate evidence-gather-
ing and explanation generation, respectively.

Figure 4: Control knowledge for nnet example.

I. Use “Establish-Refine” method for diagnose goals
2. Key hypotheses have the form “Unknown fault in subrou-

tine C”, where C is one of (nnet, init. pats, train, acts, WIS).
3. Use “Speedup” method to establish key hypotheses
4. Use “RefineComponent” to refine key hypotheses.
5. Prefer methods that add measurements to previously

planned experiments over methods that create new experi-
ments.

6. Plan all experiments concerning key hypotheses before
running any such experiments.

With this explanation, we can explain the effect of the re-
maining control rules in Figure 4. Rule 2 lists a set of key
hypotheses; Rule 3 states that speedup analysis should be
used to gather evidence for the key hypotheses. Rule 4
states that Poirot should try to refine the location of key per-
formance problems before refining the type of fault occur-
ring. Rules 5 and 6 implement a general policy for planning
experiments: pack as many measurements into an experi-

609

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

ment as possible. The effect of all these rules is to order a
speedup profile of the program, with speedup analyses for
the whole program and each of the key subroutines.

We briefly illustrate the operation of Poirot on the ex-
ample problem. Poirot follows a process of goal refine-
ment, guided by control knowledge. The user supplies an
initial goal. The problem-solving engine then retrieves
methods that are indexed to the goal. If more than one
method is retrieved, the engine chooses one of the compet-
ing methods. The chosen method then executes its body,
which (typically) applies some transformations and posts
subgoals. The engine chooses one of the subgoals, and the
cycle repeats. Each goal includes a test, which examines
the diagnosis state to see whether the goal has been solved;
the process terminates successfully when all goal tests
evaluate to true. The choices in this process -- the choice of
a goal to work on, and the choice of a method for a goal --
are made by consulting the control knowledge.

Figure 5 shows a trace of the goals and methods pro-
cessed during the initial portion of scenario. In Figure 5,
goals are boldface, the methods proposed for a goal are in-
dented below the goal, and the subgoals posted by a method
are indented below the method. An asterix marks methods
chosen and goals solved during the scenario. The program-
mer initiates diagnosis by manually posting a goal diag-
nose(hO), where h0 is a hypothesis stating ‘There is an un-
specified performance problem in the main program
(nnet)“. The engine retrieves methods for diagnose from
the method catalog; Rule 1 causes it to choose “Establish-
Refine”. “Establish-Refine” posts its subgoals. We as-
sume by default the establish goal is processed first; the
engine retrieves two methods, “Speedup” and “Total-
Time”. Each method represents a way to gather evidence
for performance problems in nnet; use speedup analysis, or
simply measure the totid time of nnet and compare it to the
programmer’s expectations. Rule 3 causes the engine to se-
lect the “Speedup” method.

The “Speedup” method has four subgoals. The
plan-speedup goal plans an experiment that measures the
speedup of nnet. This could mean adding nnet to an al-
ready-planned speedup experiment; Rule 5 says to do this
whenever possible. However, no speedup experiment has
yet been planned, so the CreateSpeedup method is called to
set up the experiment. This method posts an apply goal,
which invokes a transformation createspeedup. This trans-
formation asks the progammer for parameters of the
speedup experiment (such as numbers of processors, the
version of the program), and adds a new object represent-
ing the experiment to the database. The second subgoal of
“Speedup” is an apply goal that instruments the program
used in the new experiment to measure nnet's total run
time. The remaining subgoals of “Speedup”, ~~~n-~peedup
and assess-speedup, would run and present results of the

speedup experiment to the user. However, Rule 6 defers
these goals until the goal reflne(h0) has been processed.
This goal leads to the posting of dignose goals for the sub-
routines init, pats, and train, initiating three recursive
calls to Establish-Refine.

Figure 5: Goal-Method-Subgoal trace of example.
diagnoee(h0=“fault=unspecified, COmponenkMet”) *

Establish-Refine *
establish(h0) *

Speedup *
plan-speedup(h0) *

CreateSpeedup *
apply(createSpeedup(h0)) *

apply(instrumentTime(component(h0)))
run-speedup(h0)
assess-speedup

TotalTime
refine(h0)

RefineFault
RefineComponent *

apply(findParts(component(h0))) *
diawose(fault=unsnecified. comnonent=init)
dia&ase(fault=unspitied~ combnent=pats)
diagnose(fault=unspecitied,component=train)

The preceding scenario illustrates two features of the
Poirot architecture. First, it can potentially make the diagno-
sis process highly automated. We observe that even if the
programmer carried out all the steps corresponding to trans-
formations, Poirot still provides some value organizing the
diagnosis process. The goal/subgoal structure serves a form
of “to-do” list, while the database keeps track of files and
their functions in the process. This can help avoid slips such
as omitting an instrumentation point, or comparing the per-
formance of the wrong program versions. If most transfor-
mations have automated implementations, then Poirot can
perform considerable amounts of work autonomously, guid-
ed only by the policies stated in the control knowledge.

Second, Poirot achieves automation adaptably, due to the
two design principles it incorporates. In the scenario, Poirot
followed a strategy (speedup analysis) with particular cost/
accuracy/precision trade-offs. Poirot’s method representa-
tion, and in particular its separation of methods from control
knowledge, make it relatively easy to add methods or change
control rules to set up other strategies achieving different
trade-offs (Design Principle 1). For example, changing Rule
3 in Figure 4 to prefer “TotalTime” would produce an ordi-
nary time profile, rather than a speedup profile, reducing the
number of program nms while losing some useful informa-
tion. Poirot also separates methods from the programming
environment via the environment interface (Design Princi-
ple 2). As a result, most of the methods and transformations
invoked in the example scenario could be adapted to other
programming environments (or updated to take advantage of
new facilities in an existing environment) by changing only
the transformation scripts.

610

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

5: Rational reconstructions

The previous section showed that Poirot can diagnose
performance automatically and adaptably. However, there
are some practical obstacles. To support diagnosis in di-
verse contexts, numerous methods and control strategies
must be encoded in the knowledge base, and numerous
tools and file formats must be linked to the environment in-
terface. We claim that Poirot can, in fact, be made practical,
by reusing knowledge across multiple contexts. To demon-
strate this, we informally assess how Poirot could rutionul-
1~ reconstruct several published performance diagnosis
systems. In rational reconstruction, we show how Poirot
can formally encode a system, mimic the problem-solving
of that system on a well-defined external interface, and pro-
duce comparable results. If we can rationally reconstruct
diverse systems without wholesale changes to the knowl-
edge base and environment interface’, this suggests that our
approach may be made practical. One could develop a sin-
gle, core version of Poirot, that a developer could incre-
mentally modify for a particular set of requirements.

5.1: Performance Consultant

The first system we reconstruct is the Paradyne Perfor-
mance Consultant [151. Our goal is to show how Poirot’s
knowledge base could be extended to functionally repro-
duce the Performance Consultant’s behavior. We note first
tlrat the Performance Consultant implements exactly the
Establish-Refine method of diagnosis. As in our example,
each hypothesis describes a performance problem in terms
elf a fault type (called the “why” of the hypothesis in [15]),
and a component where the fault is occurring. The Perfor-
nuance Consultant supports several types of hypothesis re-
finement, allowing components to be procedures, process-
es, or synchronization objects. The user can also specify a
“‘when” coordinate for a hypothesis. corresponding to a
time interval during program execution. Hypotheses are es-
tablished by analyzing time histograms of key performance
metrics, computed &r&g the run of the program. Each hy-
pothesis is associated with test code that enables relevant
instrumentation points, collects and analyzes the histo-
grams from those points, and judges the significance of the
results. Hypotheses are ordered using stored “hints”, and
the hypothesis space is searched depth-first (a hypothesis is
r&ined as soon as it is established).

We briefly outline the steps required for a developer to
reconstruct the Performance Consultant in Poirot:
. Add a method for establish goals that evalu-

ates hypotheses using time his’tograms. This
method invokes the Paradyne instrumentation
interface via transformations to collect and
interpret on-line performance data.

. Add methods for refine goals that refine
hypotheses ta particular processes and synchro-
nization objects. Also add a method for refine
that interacts with the user (via a transforma-
tion) to specify “when” coordinates for hypoth-
eses.

. Add rules to the control knowledge for depth-
first search, on-line establishment of hypothe-
ses, and any useful “hints”.

We note first that none of the methods we discussed in
section 4 need to be modified, although some (such as the
“Speedup” method) are cut out of processing by the new
control knowledge. The reconstruction reuses the “‘Estab-
lish-Refine” and “RefineComponent” methods, although the
transformations applied by the latter method may need new
scripts. Thus, by providing a catalog of general methods
(Design Principle 1). and separating those methods from
particular tool implementations, Poirot enables a developer
to port the methods of the Performance Consultant to a dif-
ferent set of supporting &r&.

5.2: ChaosMon

We also consider retargeting Poirot to integrate the dis-
tinctive features of the ChaosMon system [6]. In ChaosMon
the user develops a monitoring model, essentially a set of ap-
plication-specific hypotheses together with criteria for es-
tablishing those hypotheses. The criteria for testing a hy-
pothesis are encoded in a corresponding abstract view that
interprets performance data and becomes active when its hy-
pothesis is established. When a view is active, ChaosMon
displays one or more user-defined visualizations of the data
that activated the view. Abstract views obtain their input
data from monitoring views, high-level data collection pro-
grams that describe how to update abstract views from pro-
gram variables during execution. Like Paradyne, ChaosMon
diagnoses performance “on-line”, during the program run. It
provides a compiler that automatically generates optimized
instrumentation code from view specifications.

We can sketch a process by which a developer could
adapt Poirot to ChaosMon:

Add a method for refine that queries the user
for application-specific hypotheses and adds
them to the database.
Add a method for establish that checks the
view for a hypothesis while the program is run-
ning. A subgoal of this method looks for a
view definition for the hypothesis, invoking the
editing tools and compiler via transformations
if no definition yet exists.
Add rules to the control knowledge that (1)
refine all hypotheses to the greatest extent pos-
sible before the program is run, and (2) continu-

611

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

ally check the establish goal for each
hypothesis during the program run, marking
the goal solved if the view for the hypothesis
becomes active during the run.

ChaosMon, like the Performance Consultant, reuses the
“Establish-Refine” method. It also shares with the Perfor-
mance Consultant some transformation interfaces con-
cerned with on-line data sampling.

5.3: PTOPP.

Finally, we examine the system supported by the
PTOPP (practical Tpols for Parallel Programming) tool
suite [8], [9]. The system was designed to support tuning of
parallelized Fortran programs for the Cedar multiproces-
SOI. It has several interesting features. First, it has a well-
defined set of faults and metrics, described in [9]. It uses
perturbation analysis, a generalization of speedup analysis,
to detect performance problems. Finally, PTOPP provides
extensive facilities for managing diagnosis, such as an au-
tornated mechanism for relating progr;nns to the perfor-
mance data they produced, and a database for storing that
d;l,i a.

A developer can represent the PTOPP system in Poirot
as follows:
. Add a method for refine that support loops

and loop nests as components.
. Define E perturbation method (a sibling of

“Speedup” in Figure 5) for processing estab-
lish goals.

. Add control rules (similar to those in the Sec-
tion 4 example) that initially establish which
hypotheses correspond to the most time-con-
suming loops in the program. These become
the key hypotheses. and are diagnosed before
any other hypotheses.

Poirot takes over many of the management functions of
PTOPP. It interprets the goal and hypothesis structure to re-
late programs to their assocmted performance data. The
data stored by PTOPP are similar to those stored in the da-
tabrse in the example in Section 4.

5.4: Summary of reconstructions

Overall, the results of these cursory reconstructions are
enlouraging. We find substantial sharing and reuse of
knowledge among the method catalogs of the three recon-
structed systems. There is also some reuse of environment
interface components among the three systems. Most of the
effort in reconstructing the three systems is confined to the
control knowledge, and the transformation implementa-
tions. A core knowledge base and environment interface
mrght therefore suffice to make Poirot practically adapt-
abiic: in diverse contexts.

6: Status and Future Work

We are currently implementing an initial version of
Poirot, to confirm our initial impressions of the architecture
with practical experience. Our near-term goal is to construct
a knowledge base consisting of multiple performance diag-
nosis methods drawn from an extensive literature review
] 141. We will test these methods in an advisory role (not ini-
tially requiring them to interact with tools in the program-
ming environment) on an actual tuning project. This is in-
tended to test the problem-solver, to provide a core method
catalog, and to help formulate an appropriate environment
interface. Our first “applied” implementation of the environ-
ment interface will be targeted to the PC++ programming en-
vironment [3]. The goal of this effort is to work with end us-
ers of PC++ to experimentally evaluate the level of automa-
tion and adaptability that can practically be achieved. The
PC++ version of Poirot will tinally be retargeted to another
environment, to assess whether it can be cost-effectively
adapted to multiple environments.

We view Poirot as a first step towards our long-term re-
search plans of formalizing and automating methodologies
for parallel performance evaluation and optimization. Our
first task is to acquire a more complete picture of perfor-
mance diagnosis as it is practiced. To date, our work has
been based primarily on case studies supplied by tool devel-
opers. We are currently pursuing additional case studies
from application developers [151.

Also, our research focuses not only on automation of per-
formance diagnosis, but on the general principles that enable
it -- knowledge-based system organization, generic prob-
lem-solving techniques, and high-level interaction with en-
vironment data and tools. We believe these could equally
benefit other aspects of performance engineering. For in-
stance, work on the PTOPP methodology [9] encompassed
performance debugging proper, capturing process informa-
tion for performance tuning as well as diagnosis through
transformational directives; this has close relation to Glit-
ter’s original target application [111.

Finally, we believe that formalizing methodology in a
framework like Poirot’s may benefit researchers on perfor-
mance evaluation, independent of its value to programmers.
In particular, it provides a means of documenting results in
the field: formally characterize the issues (goals) a perfor-
mance tool addresses, identify the positions imethods) it
takes on those issues, and specify the rationale (control
rules) for the choices it makes and its use. The result is a de-
tailed encoding of a method that may be used to compare
competing approaches. In addition, Poirot’s ability to define
methods independent of tool implementations suggests a
new, “need-driven” [81 approach to performance tool design
and development: formulate diagnosis methodologies based
on the diagnostic requirements, and then create new tools, or

612

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

adapt existing tools, to support the methodology. This ap-
proach could produce tools that more directly meet the
needs of programmers by allowing them to create applica-
tion-specific diagnosis assistants.

7:

[II

PI

[31

[41

PI

161

[71

[81

[91

1101

PII

[I21

1131

1141

1151

References

T. Anderson and E. Lazowska, “Quartz: a tool for tuning
parallel program performance”, Proceedings 1990 ACM
SIGMETRICS, May 1990, pp. 115-125.
D. G. Allard and D. S. Wile, “Aggregation, persistence
and identity in worlds”, in J. Rosenberg and D. Koch
(eds.), Persistent Object Systems. Berlin: Springer-Verlag,
1990, 161-174.
F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan,A.
Malony, B. Mohr, “Implementing a parallel C++ runtime
system for scalable parallel systems”, Supercomputing ‘93
(Portland, OR, November 1993), 1993, pp. 588-597.
T. Bylander and S. Mittal, “CSRL: A language for classifi-
catory problem-solving and uncertainty handling”, AI
Magazine, August, 1986, pp. 66-77.
B. Chandrasekharan, and T. Johnson, “Generic tasks and
task structures: history, critique, and new directions”. in
Jean-Marc David, Jean-Paul Krivine, Reid Simmons
(eds.) Second Generation Expert Systems. Berlin:
Springer-Verlag, 1992, pp. 232-272.
M. Crovella and T. J. LeBlanc, “Performance debugging
using performance predicates”, Proceedings of the ACM/
ONR Workshop on Parallel and Distributed Debugging,
May 1993, pp. 140- 150.
J. de Kleer, B. Will iams, “Diagnosing multiple faults”,
Artificial Inteliigerrce32, 1987, pp. 97-130.
R. Eigenmann and P McClaughry, “Practical tools for
optimizing parallel programs”, Technical Report 12-76,
Center for Supercomputing Research & Development,
Urbana-Champaign, IL, 1992.
R. Eigenmann, “Toward a methodology of optimizing pro-
grams for high-performance computers”‘,Technical Report
I l-78, Center for Supercomputing Research & Develop-
ment, Urbana-Champaign, IL, 1992.
L. Erman, P London, S. Fickas, “The design and example
use of Hearsay-IIT’, in JJCAJ-7 (Vancouver, BC, 1981),
pp. 409-41s.
S. F. Fickas, “Automating the transformational develop-
ment of software”. IEEE Transactions on Software Engi-
neering, Vol 11, No. 11 (November 1985).
M. A. Gisi and G. E. Kaiser, “Extending a tool integration
language”, in Jst International Conference on the Soft-
ware Process: Manufacturing Compkx Systems (Redondo
Beach, CA, October 1991), pp. 218-2’27.
A. J. Goldberg and J. L. Hennessy, “Mtool: an integrated
system for performance debugging shared memory multi-
processor applications”, IEEE Transactions on Parallel
and Distributed Systems, Vol. 4, No. 1, January 1993, pp.
28-40.
B. Robert Helm, “A best&y of performance diagnosis
methodologies”, Technical Report 93-24. Department of
Computer and Information Science, University of Oregon,
Eugene, OR 97403.
A. D. Malony, B. Robert Helm, “Call for collaboration:
performance diagnosis processes”, Technical Report 95-

[I61

[171

1181

1191

WI

[211

WI

1231

1241

~251

WA

~271

P81

[291

01, Department of Computer and Information Science, Uni-
versity of Oregon, Eugene, OR 97403.
J. K. Holllngsworth and B. P. Miller, “Dynamic control of
performance monitoring on large scale parallel systems”,
1993 Proceedings of the International Conference on
Supercomputing, July 19-23, 1993.
K. Huff and V. R. Lesser, “A plan-based intelligent assistant
that supports the software development process”, in Peter
Henderson (ed.), SIGPLAN Notices, Vol. 24, No. 2, Febru-
ary 1988.
I. Kohn and W. Will iams, “ATExpert”, Jounral of Parallel
and Distributed Computing, Vol. 18, 1993, pp. 205-222.
J. R. Josephson, B. Chandrasekharan, J. Smith, M. Tanner,
“A mechanism for forming complex explanatory hypothe-
ses”, IEEE Transactions on Systems, Man, and Cybernetics,
Vol. SMC-17, No. 3, May/June 1987, pp. 445-454.
G. E. Kaiser, I? H. Feiler, and S. S. Popovich, ‘Intelligent
assistance for software development and maintenance”,
IEEE Software, Vol. 5, No. 3, May 1988, pp. 40-49.
C. Kilpatrick and K. Schwan, “ChaosMon -- application-
specific monitoring and display of performance information
for parallel and distributed systems”, Proceedings ofthe
ACM/ONR Workshop on Parallel and Distributed Debug-
ging, May 1991, pp. 48-59.
J. Laird, A. Newell, J? Rosenbloom, “SOAR: an architec-
ture for general intelligence”, Artificial Intelligence33(I):
1987, pp, l-64.
P Messina, T. Sterling (eds.). System Sofhvare and Tools
for High Petiormance Computiung Environments. Phila-
delphia, PA: SIAM, 1993.
N. H. Minsky and D. Rozenshtein, “A software develop-
ment environment for law-governed systems”, ACM SIG-
SOFTSoftware Engineering Notes, Vol. 15, No. 6, 1990.
pp. 65-75.
B. Mohr, “Performance evaluation of parallel programs in
parallel and distributed systems” In: Proc. COMPAR Jomt
Int’l Conf. on Vector and Parallel Processing (Zurich, Swit-
zerland, 1990). Lecture Notes in Computer Science 457.
Berlin: Springer-Verlag, 1990, pp. 176- 187.
D. Ogle, K. Schwan, and R. Snodgrass, “Application-
dependent dynamic monitoring of distributed and parallel
systems”, IEEE Transactions on Parallel and Distributed
Systems, Vol. 4, No. 7, April 1993, pp. 762-778.
Y. Peng and J. A. Reggia, “A probabilistic causal model for
diagnostic problem solving part II: diagnostic strategy”,
EEE Transactions on Systems, Man, and Cybernetics, Vol.
SMC-17, No. 3, May/June 1987, pp. 395406.
D. A. Reed, “Performance instrumentation techniques for
Parallel Systems”, in L. Donatiello and R. Nelson (eds.),
Models and Techniques for Performance Evaluation of
Computer and Communication Systems. Berlin: Springer-
Verlag, Lecture Notes in Computer Science, 1993.
R. T. Snodgrass, “A relational approach to monitoring com-
plex systems”, ACM Transactions on Computer Systems.
Vol. 6, No. 2, May 1988, pp. 157-196.

613

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

