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Abstract 
Petiormance diagnosis, the process of finding and ex- 

plaining performance problems, is an important part of 
parallel programming. Effective pelformunce diagnosis 
requires that the programmer plan an appropriate method, 
and manage the experiments required by that method. This 
paper presents Poirot, an architecture to support per&or- 
mrtnce diagnosis. It explains how the architecture helps au- 
tomatically, adaptably plan and manage the diagnosis pro- 
ce.rs. The paper evaluates the generality and practicality of 
Poirot, by reconstructing diagnosis methods.found in sev- 
eral published performance tools. 
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1: Introduction 

Our general goal is to make advances in parallel perfor- 
mance evaluation more useful for pegormance debugging. 
In performance debugging, the programmer writes an ini- 
tial parallel version of a program, runs the program, analyz- 
es performance data to find performance problems, and 
then transforms the program in response to those problems. 
We are particularly interested in the process of finding and 
explaining performance problems -- a process we call per- 
.formance diagnosis. Performance diagnosis requires that 
one plan and carry out an effective method - a policy for 
setting up experimental program runs, collecting data, and 
analyzing and interpreting results. Programmers experi- 
enced with an application and its target environment can 
quickly isolate many performance bugs by careful choice 
of method -- of measurement tools, experimental condi- 
tions, and analysis techniques. Conversely, less experi- 
enced programmers can waste time and machine resources 
gathering data of low utility [ 151. We thus believe that par- 
allel performance research must identify appropriate diag- 
nosis methods, and develop automated, adaptable support 

for applying those methods across classes of applications, 
architectures, and measurement environments. 

This paper presents an architecture for planning and man- 
aging performance diagnosis. From the literature on perfor- 
mance diagnosis tools, we have identified common diagno- 
sis methods, applicable across a wide range of languages, 
machines, and measurement environments. From the fields 
of expert systems, software process modeling, and semantic 
databases, we have developed techniques to automatically 
select and apply performance diagnosis methods. From this 
work we have derived Poirot, an architecture for perfor- 
mance diagnosis. This paper describes Poirot, and explains 
the support it provides to performance diagnosis. To suggest 
how Poirot can practically support both automation and 
adaptability, we show how it can rationally reconstnrct 
(functionally reproduce) several automated performance di- 
agnosis tools. 

2: Approach 

Performance diagnosis is a process of finding the main 
performance problems in a program, and explaining them 
sufficiently well to suggest program improvements. This 
task makes two kinds of demands on the programmer. First, 
performance diagnosis requires the programmer to plan -‘- 
pick performance experiments to do and analyses to per- 
form. Second, the programmer must effectively manage per- 
formance diagnosis, setting up and running experiments, an,- 
alyzing results, and organizing the numerous script, pro- 
gram, and data files generated along the way. Much of this 
management work is tedious, but must be done carefully to 
avoid incorrect or implausible results (“performance anom- 
alies”) due to mistakes in experiment setup or analysis [8]. 

Research has produced many performance tools that plan 
and manage significant parts of the performance diagnosis 
process. Tools like Quartz [l] and MTOOL [13], for in- 
stance prescribe particular kinds of experiments, automati- 
cally instrument programs to support those experiments, and 
manage most of the mechanics of data analysis. Prescription 
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is not limited to lower-level decisions such as measurement 
technology, but also higher level decisions such as what to 
analyze and where. MTOOL, for instance, automatically 
selects “interesting” blocks in programs from an initial 
time profile. ChaosMon [6] automatically selects applica- 
tion-specific program visualizations to illustrate particular 
performance problems. ATExpert [ 181 automatically inter- 
prets performance data and offers the programmer “obser- 
vations” on the likely causes of poor performance. 

All of the tools listed above support performance diag- 
nosis by prescribing and carrying out a particular perfor- 
mance diagnosis method -- a set of policies for experimen- 
tation and analysis. Performance tools gain several advan- 
tages by committing to a particular diagnosis method, and 
integrating that method tightly with particular performance 
analysis tools. First, they are highly automated. They can 
plan, making difficult decisions such as what to instrument 
in a program. They can also manage, relieving the pro- 
grammer of many details of setting up, running, and ana- 
lyzing performance experiments. However, by “‘hard-cod- 
ing” a diagnosis method, and “hard-wiring” that method to 
p‘articular analysis and measurement subsystems, perfor- 
mance tools sacrifice adaptability. No single diagnosis 
method is appropriate for all users, architectures, and appli- 
cations. Certainly the choice of metrics to measure [9], and 
of’ techniques for data collection [6], [ 131 depends strongly 
on the target machine. Higher level choices, such as the 
type of behavior to investigate in an application [6], are 
equally dependent on the application and its target. Above 
all, the programmer’s requirements for cost, accuracy, and 
precision in performance evaluation strongly influence the 
best choice of methods, and these requirements can vary 
considerably from project to project and moment to mo- 
ment [23]. 

Unfortunately, many existing performance tools make it 
difficult to change or extend their diagnosis methods, or to 
combine their built-in analysis and measurement facilities 
wltb those of other tools. As a result, end users must do 
considerable work (re)coding tools, or converting data be- 
tween tools, if existing tools do not tit the requirements of 
a particular performance diagnosis project. In reaction, 
some researchers have developed general, highly adaptable 
toolkits for performance measurement and analysis [25], 
[28]. However, these tools sacrifice automation; the user 
must plan the entire performance diagnosis process, and 
write lengthy scripts to manage the process. 

We conjecture that both adaptability and automation are 
required to gain acceptance of performance diagnosis tools 
by users. We propose two novel design principles to make 
automated, adaptable performance diagnosis possible: 

. Design Principle 1 :Plun methods to suit. Give 
the programmer a general, extensible catalog of 
automated diagnosis methods, and a simple 
way to assemble good methods for a problem 
them into a coherent plan. 

. Design Principle 2: Separate methods from 
tools. Link diagnosis methods to diagnosis tools 
through a high-level functional interface, one 
that hides details of tools and data irrelevant to 
managing the diagnosis process. 

Poirot is an architecture for performance diagnosis that 
implements these two principles, by synthesizing research 
from artificial intelligence, software engineering, and per- 
formance evaluation. In particular, to build custom diagnosis 
methods, it relies on research in knowledge-based systems, 
which has produced a library of formal, general methods for 
diagnosis [5], [7], [19], [27] and has created implementation 
frameworks that can assemble methods to suit a particular 
purpose [lo], (113, [22]. To create a high-level, flexible in- 
terface to performance tools, we draw on research in soft- 
ware development environments [17], [20]. 124241 and soft- 
ware databases [2]. [26], [29], which provide techniques to 
access tools, programs, and data, independent of tool com- 
mand syntax and data format. 

3: Architecture 

In this section, we sketch the architecture of Poirot, and 
show how it can support automated, adaptable performance 
diagnosis by our two design principles, construction of cus- 
tom methods, and separation of methods from tools. Figure 
1 gives an overview of Poirot and its role in the program- 
ming process. Poirot consists of a problem solver, which 
constructs and executes custom performance diagnosis 
methods, and an environment intelface, which links the 
problem solver to tool, programs, and data in the program- 
mer’s development environment. The architecture of Poirot 
is based on the Glitter program optimization system [ 111. 
Like Glitter, Poirot acts as an assistant to the programmer. 
The programmer uses it to find useful diagnosis methods, to 
set up and carry out experiments for those methods, and to 
interpret and track the results of those experiments. While 
Poirot could conceivably operate autonomously, we expect 
that in most cases the programmer will perform the intellec- 
tually difficult tasks (such as interpreting performance anal- 
ysis results) while Poirot performs the mundane ones. 

3.1: Problem solver 

Poirot’s problem solver plans and manages diagnosis in 
conjunction with the programmer. It effectively implements 
Design Principle 1, planning diagnosis actions based on the 
current state of the diagnosis project and the user’s prefer- 
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ences. The problem solver is a knowledge-based system; 
this simply means that it is structured around an interpreter 
(called the engine) which interprets a “program” called the 
knowledge base (Figure 2). The knowledge base is divided 
into two parts, the method catalog and the control knowl- 
ed<qe. 

Figure 1: The role of Poirot. 

L- J 

LlzrI Ill 
Programming & 
Analysis Tools 

rhe method catalog is an indexed library of perfor- 
mance diagnosis techniques. Each method in the catalog is 
etfectively a small program that accomplishes a particular 
performance diagnosis task.The task is ‘called the method’s 
goal. Each method has a body that gives a list of diagnosis 
actions for accomplishing its goal. The actions in a method 
body fall into two types: 

I. An action can start some subtask required to accom- 
plish the method’s goal (post a subgoal). This ulti- 
mately causes a method that can solve the subgoal to 
be called as a subroutine. 

2. An action can send :I command via Poirot’s envirtrn- 
ment interface (apply a transformution). This is how 
Poirot can carry out low-level actions such as pro-- 
gram instrumentation on behalf of the user. In some 
cases, applying a transformation ‘will simply ask the 
user to supply some information or lo take some 
action. 

For example, the method catalog might contain the 
(high-level) method “Measure synchronization rate”. The 
goal of this method is “establish that there is a synchroni- 
zation bottleneck in routine R”. Among its actions is one 
that posts the subgoill “instrument R for total time and 
synchronization operation count”; this subgoal could lead 
to the invocation of a method that actually instrumented R, 
or one that retrieved an existing copy of R with the correct 
instrumentation. The method also includes actions that (I) 
run the instrumented program, (2) compute the synchroni- 
zation rate of R, and (3) ask the programmer to judge 

whether the rate is excessive given the user’s knowledge of 
R. 

Note that more than one method may be defined for any 
given goal. Thus, when a subgoal is posted, there may be 
many candidate methods to invoke to address that goal. 
Poirot’s problem solver has no fixed strategy for choosing 
methods to invoke; instead, it chooses methods based on its 
control knowledge. The control knowledge portion of the 
knowledge base defines policies for choosing methods, and 
ordering execution of goals, based on the current state of the 
diagnosis process. That state can include the user’s current 
preferences, the target application and architecture, or the 
prior results of diagnosis. Control knowledge thus provides 
a mechanism for dynamically adapting general diagnosis; 
methods from the catalog to the needs of a particular project.. 
This is discussed in more detail in Section 4. 

Figure 2: Problem solver components. 

3.2: Environment Interface 

The environment interface (Figure 3) provides high-level 
access to tools and data in the programming environment, in 
accord with Design Principle 2. The environment interface 
consists of a transformation library, which represents the 
tools, and a database, which represents the program and data 
tiles. 

The transformation library is a set of primitives to be ap-. 
plied by performance diagnosis methods. Each transforma- 
tion has an interface that characterizes its requirements and 
effects in terms of the database. Most transformations also 
have a script, that exchanges information with the user, or 
that sends commands to tools in the programmmg environ- 
ment [ 121. The script of a transformation encapsulates most 
environment-dependent details of a diagnosis action, such as 
the command syntax of the tools it invokes. 

Figure 3: Environment interface components. 

The database represents the state of the diagnosis project.. 
It uses a uniform information model which represents such 
diverse items as data sets, programs, configurations tiles, 
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and assertions about the target environment as objects with 
attributes. Transformations test and update the database as 
they are applied, allowing Poirot to track the state of the de- 
velopment environment as it changes. ‘rhe user can also up- 
date the database, to document actions taken outside of 
Poirot. 

To illustrate the functions of the environment interface, 
we return briefly to the method “Measure synchronization 
rate” discussed in section 3. I. That method leads to the ap- 
plication of’ several transformations, among them one that 
instruments a routine R for synchronization operation 
count and total time. The interface of this transformation 
requires that the database include an object representing 
routine R, and indicates that the transformation adds a new, 
instrumented version of R to the database. The transfor- 
mation’s script depends on the program environment and 
it!, supported tools; if, for example, the measurement tools 
uxe source instrumentation, the script might include ver- 
sia)n control and editing commands to add such instrumen- 
tation. However. if instrumentation were controlled by 
runtime argument flags, the script rnigbt do nothing, rely- 
ing on a later transformation that runs the program to gen- 
erate the necessary Flags. 

The example illustrates how the environment interface 
supports automated diagnosis while separating methods 
from tools (Design Principle 2). Thme environment inter- 
tace defines a set ot performance diagnosis primitives, 
specified in terms of their effects on a high-level database. 
Tie actual implementation of these primitives, and the for- 
mat of data and programs in the database, is hidden from 
the diagnosis methods and so existing methods can be 
adapted unchanged to new programming envtronments and 
diagnosis tools. The result is that we can adapt knowledge 
about ~hur steps to take in performance diagnosis mto con- 
texts where TOM’ those steps are taken differs significantly. 

4: Example 

Poirot is an architecture for automated, adaptable diag- 
nosis using general diagnosis methods and a high-level in- 
terface to the programming environment. We next present 
a G;hort hypothetical processing example using the architec- 
ture. The example serves two purposes. First, the example 
shows in detail how the features of the architecture enable 
it to automate performance diagnosis while remaining 
adaptable. In addition. in section 5 we use the example to 
assess the practicality of adaptable performance diagnosis. 
In particular, we estimate the level of effort needed to func- 
tionally reproduce several existing performance diagnosis 
ttr’ols. starting from the knowledge base used in the exam- 
ple. 

The programmer in our example i!; looking for perfor- 
rnmce problems in a neural lret simul,.uion program called 

r-met. Initially, the programmer decides to study the pro- 
gram’s speedup on a typical data set. The programmer wants 
to examine the subroutines init, pats, and train, which 
correspond to the major phases of the program, and two sub- 
routines of train -- acts and wts -- which contain the bulk 
of the program’s computation. The first step in performance 
diagnosis with Poirot is to encode these decisions in Poirot’s 
control knowledge. This entails translating the program- 
mer’s preferences into rules for selecting methods and order- 
ing goals, illustrated by English paraphrases in Figure 4. 

In Figure 4, the programmer first specifies the general 
method of performance diagnosis, by specifying the method 
to select for the diagnose goal. The method chosen, “Estab- 
lish-Refine”, is a generic diagnosis framework originally ap- 
plied in a medical setting [4]. The Establish-Refine method 
treats performance diagnosis as search in a space of possible 
performance problems. Each point in the search space is 
called a hypothesis, and represents a performance problem 
as a fault (a type of performance problem that is occurring), 
and one or more relevant components (the program locations 
or phases where the problem is occurring). The Establish- 
Refine method consists of establishing and rejining hypoth- 
eses. Establishing a hypothesis means finding evidence for 
the hypothesis; that is, finding evidence that a particular per- 
formance problem is having a significant impact on the pro- 
gram. Refining a hypothesis means generating the possible 
explanations for that hypothesis -- the possible causes (or 
more precise descriptions) of the performance problem. 
Each explanation generated is itself a hypothesis, which is 
then diagnosed recursively by the Establish-Refine method. 
Poirot’s Establish-Refine method posts two types of sub- 
goals, establish and refine, which initiate evidence-gather- 
ing and explanation generation, respectively. 

Figure 4: Control knowledge for nnet example. 

I. Use “Establish-Refine” method for diagnose goals 
2. Key hypotheses have the form “Unknown fault in subrou- 

tine C”, where C is one of (nnet, init. pats, train, acts, WIS). 
3. Use “Speedup” method to establish key hypotheses 
4. Use “RefineComponent” to refine key hypotheses. 
5. Prefer methods that add measurements to previously 

planned experiments over methods that create new experi- 
ments. 

6. Plan all experiments concerning key hypotheses before 
running any such experiments. 

With this explanation, we can explain the effect of the re- 
maining control rules in Figure 4. Rule 2 lists a set of key 
hypotheses; Rule 3 states that speedup analysis should be 
used to gather evidence for the key hypotheses. Rule 4 
states that Poirot should try to refine the location of key per- 
formance problems before refining the type of fault occur- 
ring. Rules 5 and 6 implement a general policy for planning 
experiments: pack as many measurements into an experi- 
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ment as possible. The effect of all these rules is to order a 
speedup profile of the program, with speedup analyses for 
the whole program and each of the key subroutines. 

We briefly illustrate the operation of Poirot on the ex- 
ample problem. Poirot follows a process of goal refine- 
ment, guided by control knowledge. The user supplies an 
initial goal. The problem-solving engine then retrieves 
methods that are indexed to the goal. If more than one 
method is retrieved, the engine chooses one of the compet- 
ing methods. The chosen method then executes its body, 
which (typically) applies some transformations and posts 
subgoals. The engine chooses one of the subgoals, and the 
cycle repeats. Each goal includes a test, which examines 
the diagnosis state to see whether the goal has been solved; 
the process terminates successfully when all goal tests 
evaluate to true. The choices in this process -- the choice of 
a goal to work on, and the choice of a method for a goal -- 
are made by consulting the control knowledge. 

Figure 5 shows a trace of the goals and methods pro- 
cessed during the initial portion of scenario. In Figure 5, 
goals are boldface, the methods proposed for a goal are in- 
dented below the goal, and the subgoals posted by a method 
are indented below the method. An asterix marks methods 
chosen and goals solved during the scenario. The program- 
mer initiates diagnosis by manually posting a goal diag- 
nose(hO), where h0 is a hypothesis stating ‘There is an un- 
specified performance problem in the main program 
(nnet)“. The engine retrieves methods for diagnose from 
the method catalog; Rule 1 causes it to choose “Establish- 
Refine”. “Establish-Refine” posts its subgoals. We as- 
sume by default the establish goal is processed first; the 
engine retrieves two methods, “Speedup” and “Total- 
Time”. Each method represents a way to gather evidence 
for performance problems in nnet; use speedup analysis, or 
simply measure the totid time of nnet and compare it to the 
programmer’s expectations. Rule 3 causes the engine to se- 
lect the “Speedup” method. 

The “Speedup” method has four subgoals. The 
plan-speedup goal plans an experiment that measures the 
speedup of nnet. This could mean adding nnet to an al- 
ready-planned speedup experiment; Rule 5 says to do this 
whenever possible. However, no speedup experiment has 
yet been planned, so the CreateSpeedup method is called to 
set up the experiment. This method posts an apply goal, 
which invokes a transformation createspeedup. This trans- 
formation asks the progammer for parameters of the 
speedup experiment (such as numbers of processors, the 
version of the program), and adds a new object represent- 
ing the experiment to the database. The second subgoal of 
“Speedup” is an apply goal that instruments the program 
used in the new experiment to measure nnet's total run 
time. The remaining subgoals of “Speedup”, ~~~n-~peedup 
and assess-speedup, would run and present results of the 

speedup experiment to the user. However, Rule 6 defers 
these goals until the goal reflne(h0) has been processed. 
This goal leads to the posting of dignose goals for the sub- 
routines init, pats, and train, initiating three recursive 
calls to Establish-Refine. 

Figure 5: Goal-Method-Subgoal trace of example. 
diagnoee(h0=“fault=unspecified, COmponenkMet”) * 

Establish-Refine * 
establish(h0) * 

Speedup * 
plan-speedup(h0) * 

CreateSpeedup * 
apply(createSpeedup(h0)) * 

apply(instrumentTime(component(h0))) 
run-speedup(h0) 
assess-speedup 

TotalTime 
refine(h0) 

RefineFault 
RefineComponent * 

apply(findParts(component(h0))) * 
diawose(fault=unsnecified. comnonent=init) 
dia&ase(fault=unspitied~ combnent=pats) 
diagnose(fault=unspecitied,component=train) 

The preceding scenario illustrates two features of the 
Poirot architecture. First, it can potentially make the diagno- 
sis process highly automated. We observe that even if the 
programmer carried out all the steps corresponding to trans- 
formations, Poirot still provides some value organizing the 
diagnosis process. The goal/subgoal structure serves a form 
of “to-do” list, while the database keeps track of files and 
their functions in the process. This can help avoid slips such 
as omitting an instrumentation point, or comparing the per- 
formance of the wrong program versions. If most transfor- 
mations have automated implementations, then Poirot can 
perform considerable amounts of work autonomously, guid- 
ed only by the policies stated in the control knowledge. 

Second, Poirot achieves automation adaptably, due to the 
two design principles it incorporates. In the scenario, Poirot 
followed a strategy (speedup analysis) with particular cost/ 
accuracy/precision trade-offs. Poirot’s method representa- 
tion, and in particular its separation of methods from control 
knowledge, make it relatively easy to add methods or change 
control rules to set up other strategies achieving different 
trade-offs (Design Principle 1). For example, changing Rule 
3 in Figure 4 to prefer “TotalTime” would produce an ordi- 
nary time profile, rather than a speedup profile, reducing the 
number of program nms while losing some useful informa- 
tion. Poirot also separates methods from the programming 
environment via the environment interface (Design Princi- 
ple 2). As a result, most of the methods and transformations 
invoked in the example scenario could be adapted to other 
programming environments (or updated to take advantage of 
new facilities in an existing environment) by changing only 
the transformation scripts. 
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5: Rational reconstructions 

The previous section showed that Poirot can diagnose 
performance automatically and adaptably. However, there 
are some practical obstacles. To support diagnosis in di- 
verse contexts, numerous methods and control strategies 
must be encoded in the knowledge base, and numerous 
tools and file formats must be linked to the environment in- 
terface. We claim that Poirot can, in fact, be made practical, 
by reusing knowledge across multiple contexts. To demon- 
strate this, we informally assess how Poirot could rutionul- 
1~ reconstruct several published performance diagnosis 
systems. In rational reconstruction, we show how Poirot 
can formally encode a system, mimic the problem-solving 
of that system on a well-defined external interface, and pro- 
duce comparable results. If we can rationally reconstruct 
diverse systems without wholesale changes to the knowl- 
edge base and environment interface’, this suggests that our 
approach may be made practical. One could develop a sin- 
gle, core version of Poirot, that a developer could incre- 
mentally modify for a particular set of requirements. 

5.1: Performance Consultant 

The first system we reconstruct is the Paradyne Perfor- 
mance Consultant [ 151. Our goal is to show how Poirot’s 
knowledge base could be extended to functionally repro- 
duce the Performance Consultant’s behavior. We note first 
tlrat the Performance Consultant implements exactly the 
Establish-Refine method of diagnosis. As in our example, 
each hypothesis describes a performance problem in terms 
elf a fault type (called the “why” of the hypothesis in [ 15]), 
and a component where the fault is occurring. The Perfor- 
nuance Consultant supports several types of hypothesis re- 
finement, allowing components to be procedures, process- 
es, or synchronization objects. The user can also specify a 
“‘when” coordinate for a hypothesis. corresponding to a 
time interval during program execution. Hypotheses are es- 
tablished by analyzing time histograms of key performance 
metrics, computed &r&g the run of the program. Each hy- 
pothesis is associated with test code that enables relevant 
instrumentation points, collects and analyzes the histo- 
grams from those points, and judges the significance of the 
results. Hypotheses are ordered using stored “hints”, and 
the hypothesis space is searched depth-first (a hypothesis is 
r&ined as soon as it is established). 

We briefly outline the steps required for a developer to 
reconstruct the Performance Consultant in Poirot: 
. Add a method for establish goals that evalu- 

ates hypotheses using time his’tograms. This 
method invokes the Paradyne instrumentation 
interface via transformations to collect and 
interpret on-line performance data. 

. Add methods for refine goals that refine 
hypotheses ta particular processes and synchro- 
nization objects. Also add a method for refine 
that interacts with the user (via a transforma- 
tion) to specify “when” coordinates for hypoth- 
eses. 

. Add rules to the control knowledge for depth- 
first search, on-line establishment of hypothe- 
ses, and any useful “hints”. 

We note first that none of the methods we discussed in 
section 4 need to be modified, although some (such as the 
“Speedup” method) are cut out of processing by the new 
control knowledge. The reconstruction reuses the “‘Estab- 
lish-Refine” and “RefineComponent” methods, although the 
transformations applied by the latter method may need new 
scripts. Thus, by providing a catalog of general methods 
(Design Principle 1). and separating those methods from 
particular tool implementations, Poirot enables a developer 
to port the methods of the Performance Consultant to a dif- 
ferent set of supporting &r&. 

5.2: ChaosMon 

We also consider retargeting Poirot to integrate the dis- 
tinctive features of the ChaosMon system [6]. In ChaosMon 
the user develops a monitoring model, essentially a set of ap- 
plication-specific hypotheses together with criteria for es- 
tablishing those hypotheses. The criteria for testing a hy- 
pothesis are encoded in a corresponding abstract view that 
interprets performance data and becomes active when its hy- 
pothesis is established. When a view is active, ChaosMon 
displays one or more user-defined visualizations of the data 
that activated the view. Abstract views obtain their input 
data from monitoring views, high-level data collection pro- 
grams that describe how to update abstract views from pro- 
gram variables during execution. Like Paradyne, ChaosMon 
diagnoses performance “on-line”, during the program run. It 
provides a compiler that automatically generates optimized 
instrumentation code from view specifications. 

We can sketch a process by which a developer could 
adapt Poirot to ChaosMon: 

Add a method for refine that queries the user 
for application-specific hypotheses and adds 
them to the database. 
Add a method for establish that checks the 
view for a hypothesis while the program is run- 
ning. A subgoal of this method looks for a 
view definition for the hypothesis, invoking the 
editing tools and compiler via transformations 
if no definition yet exists. 
Add rules to the control knowledge that (1) 
refine all hypotheses to the greatest extent pos- 
sible before the program is run, and (2) continu- 
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ally check the establish goal for each 
hypothesis during the program run, marking 
the goal solved if the view for the hypothesis 
becomes active during the run. 

ChaosMon, like the Performance Consultant, reuses the 
“Establish-Refine” method. It also shares with the Perfor- 
mance Consultant some transformation interfaces con- 
cerned with on-line data sampling. 

5.3: PTOPP. 

Finally, we examine the system supported by the 
PTOPP (practical Tpols for Parallel Programming) tool 
suite [8], [9]. The system was designed to support tuning of 
parallelized Fortran programs for the Cedar multiproces- 
SOI. It has several interesting features. First, it has a well- 
defined set of faults and metrics, described in [9]. It uses 
perturbation analysis, a generalization of speedup analysis, 
to detect performance problems. Finally, PTOPP provides 
extensive facilities for managing diagnosis, such as an au- 
tornated mechanism for relating progr;nns to the perfor- 
mance data they produced, and a database for storing that 
d;l,i a. 

A developer can represent the PTOPP system in Poirot 
as follows: 
. Add a method for refine that support loops 

and loop nests as components. 
. Define E perturbation method (a sibling of 

“Speedup” in Figure 5) for processing estab- 
lish goals. 

. Add control rules (similar to those in the Sec- 
tion 4 example) that initially establish which 
hypotheses correspond to the most time-con- 
suming loops in the program. These become 
the key hypotheses. and are diagnosed before 
any other hypotheses. 

Poirot takes over many of the management functions of 
PTOPP. It interprets the goal and hypothesis structure to re- 
late programs to their assocmted performance data. The 
data stored by PTOPP are similar to those stored in the da- 
tabrse in the example in Section 4. 

5.4: Summary of reconstructions 

Overall, the results of these cursory reconstructions are 
enlouraging. We find substantial sharing and reuse of 
knowledge among the method catalogs of the three recon- 
structed systems. There is also some reuse of environment 
interface components among the three systems. Most of the 
effort in reconstructing the three systems is confined to the 
control knowledge, and the transformation implementa- 
tions. A core knowledge base and environment interface 
mrght therefore suffice to make Poirot practically adapt- 
abiic: in diverse contexts. 

6: Status and Future Work 

We are currently implementing an initial version of 
Poirot, to confirm our initial impressions of the architecture 
with practical experience. Our near-term goal is to construct 
a knowledge base consisting of multiple performance diag- 
nosis methods drawn from an extensive literature review 
] 141. We will test these methods in an advisory role (not ini- 
tially requiring them to interact with tools in the program- 
ming environment) on an actual tuning project. This is in- 
tended to test the problem-solver, to provide a core method 
catalog, and to help formulate an appropriate environment 
interface. Our first “applied” implementation of the environ- 
ment interface will be targeted to the PC++ programming en- 
vironment [3]. The goal of this effort is to work with end us- 
ers of PC++ to experimentally evaluate the level of automa- 
tion and adaptability that can practically be achieved. The 
PC++ version of Poirot will tinally be retargeted to another 
environment, to assess whether it can be cost-effectively 
adapted to multiple environments. 

We view Poirot as a first step towards our long-term re- 
search plans of formalizing and automating methodologies 
for parallel performance evaluation and optimization. Our 
first task is to acquire a more complete picture of perfor- 
mance diagnosis as it is practiced. To date, our work has 
been based primarily on case studies supplied by tool devel- 
opers. We are currently pursuing additional case studies 
from application developers [ 151. 

Also, our research focuses not only on automation of per- 
formance diagnosis, but on the general principles that enable 
it -- knowledge-based system organization, generic prob- 
lem-solving techniques, and high-level interaction with en- 
vironment data and tools. We believe these could equally 
benefit other aspects of performance engineering. For in- 
stance, work on the PTOPP methodology [9] encompassed 
performance debugging proper, capturing process informa- 
tion for performance tuning as well as diagnosis through 
transformational directives; this has close relation to Glit- 
ter’s original target application [ 111. 

Finally, we believe that formalizing methodology in a 
framework like Poirot’s may benefit researchers on perfor- 
mance evaluation, independent of its value to programmers. 
In particular, it provides a means of documenting results in 
the field: formally characterize the issues (goals) a perfor- 
mance tool addresses, identify the positions imethods) it 
takes on those issues, and specify the rationale (control 
rules) for the choices it makes and its use. The result is a de- 
tailed encoding of a method that may be used to compare 
competing approaches. In addition, Poirot’s ability to define 
methods independent of tool implementations suggests a 
new, “need-driven” [ 81 approach to performance tool design 
and development: formulate diagnosis methodologies based 
on the diagnostic requirements, and then create new tools, or 
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adapt existing tools, to support the methodology. This ap- 
proach could produce tools that more directly meet the 
needs of programmers by allowing them to create applica- 
tion-specific diagnosis assistants. 
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