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Abstract. Nested OpenMP parallelism allows an application to spawn
teams of nested threads. This hierarchical nature of thread creation and
usage poses problems for performance measurement tools that must de-
termine thread context to properly maintain per-thread performance
data. In this paper we describe the problem and a novel solution for
identifying threads uniquely. Our approach has been implemented in the
TAU performance system and has been successfully used in profiling
and tracing OpenMP applications with nested parallelism. We also de-
scribe how extensions to the OpenMP standard can help tool developers
uniquely identify threads.
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1 Introduction

OpenMP research systems have supported nested parallelism since its introduc-
tion in the OpenMP standard (e.g., [12,13]), and most commercial compilers
now support nested parallelism in their products. Although some commercial
packages provide tools for debugging and performance analysis in the presence
of nested parallelism (e.g., Sun Studio [18] and Intel [20]), the recent OpenMP
2.5 specification [21] does not provide sufficient support for developing portable
performance measurement and analysis tools with nested parallelism awareness.
This deficiency is being discussed in the OpenMP tools community [16] and
hopefully will be addressed in future OpenMP specifications.

In the meantime, there is interest in studying how performance measurement
systems can determine nesting context during execution in order to capture
performance data for threads and interpret the data vis & vis nesting level. In
this paper we present the current problem in Section §2 and discuss two possible
solutions in Section §3. Based on this approach, we developed an improved,
novel method for the TAU performance system [1]. This is described in Section
84. The TFS application [14,15] from RWTH Aachen is used as a case study
for the TAU solution. Section §5 provides a detailed performance analysis of a
nested parallel execution of TFS. The TAU parallel profile displays clearly show
the thread nesting relationships.



The present issues for portable performance measurement of OpenMP nested
parallel execution is, as remarked above, hopefully temporary. In Section §6
we outline discussions underway in the OpenMP tools community and what
might be expected in the future to address the problem. Conclusions are given
in Section §7.

2 Issues with Nested Parallelism in OpenMP

OpenMP allows for nested parallel regions during execution. Nested parallelism
can be enabled and disabled through the use of the OMP_NESTED environment
variable or by calling the omp_set_nested() routine. A simple example is given
below:!

#include <omp.h>
#include <stdio.h>

void report_num_threads(int level) { % OMP_NESTED=0 ./a.out

printf("Level %d: omp_get num_threads()=%d",
level, omp_get num_threads());
printf(", omp_get_thread_num()=%d\n",

Level 1: omp_get num_threads()=2, omp_get_thread_num()=0
Level 2: omp_get_num_threads()=1, omp_get_thread_num()=0
Level 1: omp_get_num_threads()=2, omp_get_thread_num()=1

omp_get_thread_num()); Level 2: omp_get num_threads()=1, omp_get_thread num()=0

}
% OMP_NESTED=1 ./a.out

int main(int argc, char **argv) { Level 1: omp_get num_threads()=2, omp_get_thread num()=0
#pragma omp parallel num_threads(2) Level 1: omp_get num_threads()=2, omp_get_thread_num()=1
{ Level 2: omp_get_num_threads()=2, omp_get_thread_num()=0
report_num_threads(1); Level 2: omp_get_num_threads()=2, omp_get_thread_num()=1
#pragma omp parallel num_threads(2) Level 2: omp_get_num_threads()=2, omp_get_thread_num()=0

{ Level 2: omp_get_num_threads()=2, omp_get_thread_num()=1

report_num_threads(2);

}

return(0);
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Fig. 1. An example illustrating nested OpenMP parallelism, the output (right) is ob-
tained by executing the program on the left

Figure 1 illustrates the effects of nested OpenMP parallelism. When nested
parallelism is enabled, both the inner and outer regions will have 2 threads in
each team, whereas without nested parallelism, only the outer region have 2
threads. Here, we also see that the omp_get_thread_num/() runtime call cannot be
used for unique thread identification.

Nested OpenMP parallelism poses a challenge to traditional performance
analysis tools. The above example is useful in pointing out the issues. Typically,
a performance tool will attempt to measure the performance for each thread
individually. To do so, there must be an agreement between the application and
performance tool for proper thread identification to occur and measured events

1 Adapted from http://docs.sun. com/source/819-0501/2 nested.html.



appropriately assigned. Tools often require that the user configure them with
the application’s thread package, be it pthreads, sproc, or OpenMP. When the
tool and the application use the same underlying thread package, proper thread
identification can be done.

However, when nested parallelism is used in OpenMP, the nesting context is
not available to the performance interface. It may appear that nested parallelism
can be statically analyzed and a tool such as Opari [4, 8] could insert additional
instrumentation providing nesting information. However, static analysis is insuf-
ficient to track threads as the varied interactions of execution paths at runtime
can create arbitrary nesting depths. A runtime solution for thread identification
is necessary.

Native thread libraries provide thread local storage (TLS) that performance
tools use to track thread identities. The OpenMP runtime library provides the
omp_get_thread_num() API call that returns the thread number or identifier
within the active team of threads. Unfortunately, the value returned from this
call lies between 0 and omp_get_num_threads()-1, which is not the total num-
ber of threads in the program, but the number of threads in the current active
team. TAU and other tools have traditionally used this call for thread identi-
fication. When an instrumented section of code is entered, the profiling library
identifies the calling thread and performs measurements associated with that
thread. We say unfortunately because this approach does not allow the perfor-
mance measurement system to uniquely identify threads when nested parallelism
is active. When using nested OpenMP parallelism, multiple teams may be ac-
tive at any one time and more than one thread will return the same index from
omp_get_thread_num().

Nested parallelism in OpenMP offers the additional challenge of mapping
the per-thread performance data back to the nested parallelism abstractions
in the source code. To do so, it is necessary to distinguished the performance
measurements for each thread with the nesting context.

3 Solutions

The problem of thread identification in nested OpenMP programs is widespread
in the community, for purposes other than performance evaluation. As such,
several solutions have been proposed.

3.1 Extending the OpenMP API

A promising solution to this problem is to extend the OpenMP specification it-
self to allow for more in depth query and knowledge of nested parallelism. Dieter
an Mey, RWTH [9] proposed an extension to the OpenMP specification in the
form of a runtime library calls that return the current nesting level, the num-
ber of threads within that level, and the current thread identifier at that level.
This provides enough information to uniquely identify threads for performance
measurement purposes as well as information necessary for the proper mapping



of the runtime execution to the application developer’s abstractions for nested
parallelism in the application.

Ultimately, we hope that the OpenMP specification will be extended in this
manner, and we will update TAU to use the new runtime calls when these become
widely available.

3.2 Native Thread Library Hooks

Another method of tracking threads in the face of nested OpenMP parallelism
involves bypassing the OpenMP runtime system entirely and instead tracking
the threads based on the underlying thread implementation. For example, if the
OpenMP thread package is implemented using the native pthread library, the
tool could use the pthreads API for thread identification, invoking functions such
as pthread_self(). Regular thread local storage would be available as well.

A major drawback to this approach is the lack of portability. The underly-
ing thread library must be known and accessible to the performance tool. On
some systems, the underlying thread substrate may be inaccessible and such an
approach cannot be guaranteed to work universally. We favor approaches that
follow the higher-level abstract OpenMP API.

3.3 Additional OpenMP Instrumentation

Alexander Spiegel, RWTH [10] proposed another solution to this problem, in
which the master and worker threads of each parallel team exchange information
through a global shared space which is locked by the master. At the start of
parallel regions, code needs to be inserted such that the master stores the data,
locks the shared space, then after a barrier, the entire team of threads reads the
shared data, and after another barrier, the master unlocks it. In this way, each
new parallel region inherits data from the parent region, and a proper mapping
can take place.

A tool such as Opari can be extended to support the additional instrumen-
tation required for this type of thread synchronization at the application-level.
This approach has the advantage that it tracks the full nesting information, so at
any given time, the performance tool can know which thread identifier from each
team and each level of nesting is executing. This allows for a better mapping of
thread level performance information back to the source code.

The drawback of this approach is of course the additional synchronization
and locking at parallel region boundaries. We have not performed studies to
measure the overhead involved, but we estimate that it might be significant in
some programs.

4 TAU’s Solution

The TAU performance system supports performance evaluation of OpenMP pro-
grams at the region, construct, and routine level. The Opari tool is used to insert-
ing instrumentation based on the POMP [4] interface at OpenMP regions and



for OpenMP constructs. PDT [3] is used to instrument OpenMP source at the
routine level. During measurement, TAU uses the OpenMP thread synchroniza-
tion calls for updating the shared performance data structures. Construct-based
measurement uses globally accessible timers to aggregate construct-specific per-
formance costs over all OpenMP regions. For region-based measurement, the
region descriptor is used to select specific performance data for that context.

In our earlier work [4, 5], TAU relied upon the omp_get_thread_num() OpenMP
APIT call to distinguish threads for indexing into the runtime performance data
structures. Unfortunately, this method is inadequate for nested parallelism due
to the issues discussed above. Instead, we need a mechanism to uniquely identify
the current thread.

Our approach is to use #pragma threadprivate(). Though the values of a
threadprivate variable are not guaranteed to persist between parallel regions, we
are at least guaranteed that no two currently active threads will point to the
same address space for a given threadprivate variable. Using this scheme, TAU
can then uniquely identify threads even in the presence of nested parallelism.

The approach requires a single threadprivate variable that is initialized inside
the TAU library (when TAU is built using OpenMP threading). This variable
and/or its address can be used to distinguish it from other threads executing
concurrently. When the TAU runtime system encounters a thread that it has not
seen before, it registers the thread and assigns it an identifier on a first come,
first serve basis.

In contrast to the other proposed approaches, this method has the advantage
of faster speed, as no runtime API calls are made in identifying a thread. The
thread registration in the TAU runtime system is done only when a given thread
is seen for the first time, so there is no additional overhead at parallel region
boundaries. The main drawback with this method is that we are unable to iden-
tify the nesting depth or specify a team identifier for a given thread. A thread
is assigned a unique identifier, but not necessarily the same identifier between
subsequence invocations, and this typically does not map back to any explicit
parallelism in the source code. Nevertheless, as we see below, the method pro-
duces performance data that can be mapped back to the source code itself and
does expose nested parallelism where it occurs.

5 A Case Study

To demonstrate TAU’s support for nested parallelism, we conducted a case study
with TFS [14,15], a computational fluid dynamics code developed at Aerody-
namics Institute at RWTH Aachen. TFS was initially parallelized using Para-
Wise [19] to generate an intra-block parallel version where the parallel loops
operated over a single dimension within a block. Then, a second version was de-
veloped that used parallel loops to iterate over blocks. Finally, a hybrid, multi-
level version was developed which combined the intra and inter block version
using nested OpenMP parallelism. In recent performance testing, the developers



reported a speedup of 21 for TFS using nested OpenMP parallelism on a SunFire
25K system [17].
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Fig. 2. Flat Profile for TFS
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Fig. 3. Mean Profile for TFS

We integrated TAU in TFS and instrumented its source code using the
TAU’s compilation scripts [1]. This process required only a single modification
to the TFS build system where the name of the compiler used in the make-
file was changed from FC=f90 to FC=tau_f90.sh. This script act as compiler
wrapper, allowing for automatic instrumentation of Fortran programs. In the
case of OpenMP code, it will automatically invoke the Opari tool to instru-
ment OpenMP constructs and regions by rewriting OpenMP directives using
the POMP interface. The code is then parsed by PDT to create files that con-
tain source-level information about the routine names, and their respective entry
and exit locations. The script then instruments the entry and exit points using
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TAU’s tau_instrumentor utility. Finally, the instrumented code is linked with the
TAU library.

We ran TFS on the Sun Fire machines at RWTH Aachen using 8 threads.
With TAU’s support for nested OpenMP parallelism, we can run the instru-
mented version of TFS without the thread identifier clash that occurred previ-
ously. The flat profile for TFS is shown in Figure 2. Each thread is represented
by a row in the graph, and each timer/region is a column. The second column
timer (red) is .TAU application, which in this case represents the global time
that a thread spent idle (not doing useful work).

Figure 3 shows the mean data for all threads. Note that the timer names
for parallel regions and constructs contain the source filename and line number.
This data is provided by the Opari tool through the POMP interface.

There is a clear pattern in the data wherein threads 0, 1, 3, and 4 do similar
processing, and threads 2, 5, 6 and 7 are also very similar. This pattern is also
visible in the three dimensional display of ParaProf shown in Figure 4. The three
axes are the threads, the timers (functions), and the exclusive time spent in the
given timer.

TAU’s PerfExplorer [6] tool is able to automatically discover patterns such
as this. PerfExplorer is a performance data mining package that operates on
a relational database using statistical packages such as Weka and R. Shown in
Figure 5, PerfExplorer performs a correlation analysis and splits the threads
into clusters. These are the same clusters that we observed from the flat profile
bar graphs.
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For a total runtime of 90 seconds, the second cluster which includes threads
2,5, 6, and 7 are idle for about 22 seconds each, whereas the other slave threads,
numbers 1, 3, and 4 spend only about 3 seconds idle. Each cluster executes dif-
ferent functions that may be seen in ParaProf’s callgraph displays (not shown).
With this knowledge, the application developer can note the regions that each
thread executes and map the execution back to the source code.

Using TAU’s callpath profiling capability, the nested parallelism present in
TFS is easily decomposed. Figure 6 shows where time was spent at each level of
nesting. The function ALGO started a parallel region, and deeper in the callpath,
the function AUSM also started a parallel region.

6 Future Work

As noted earlier, there is active discussion underway in the OpenMP tools forum
as to what the appropriate interface should be for execution time tools such as
for performance measurement. We hope that runtime system functions will be
made available for thread identification and nesting context to be queried.

For TAU’s application, we would like to support a higher level mapping of
thread identifiers back to the application developer’s model of nested parallelism.
In the case of non-nested parallelism, TAU provides a clear picture of the per-
formance of each thread in each team. This picture is currently not as clear in
the nested case because we have only a single number to identify a thread. We
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Fig. 6. Nested Parallelism in TFS

anticipate adding support for thread naming in TAU wherein a thread is iden-
tified in the nested OpenMP case by its nesting depth and identifier, or by the
identifier in each team where it originated (such as “thread 0 — 3 — 2”). The
runtime, hopefully provided in a future OpenMP specification, will provide the
necessary information.

7 Conclusion

Performance tools that measure per-thread performance data must be able to
uniquely identify threads of execution at runtime. This is complicated in the
presence of nested parallelism when thread identities queried from the runtime
system are not unique and do not provide information about nesting context.
In this paper, we describe the nested parallelism problem currently faced by
tools for portable OpenMP performance analysis. Several possible solutions are
discussed. The approach we implemented in the TAU performance system uses
thread private storage to create a unique thread identifier. The approach is
portable and has been validated with both Sun and Intel’s OpenMP compilers.
We demonstrated its capabilities with the TFS application.
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