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Abstract. Nested OpenMP parallelism allows an application to spawn

teams of nested threads. This hierarchical nature of thread creation and

usage poses problems for performance measurement tools that must de-

termine thread context to properly maintain per-thread performance

data. In this paper we describe the problem and a novel solution for

identifying threads uniquely. Our approach has been implemented in the

TAU performance system and has been successfully used in profiling

and tracing OpenMP applications with nested parallelism. We also de-

scribe how extensions to the OpenMP standard can help tool developers

uniquely identify threads.
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1 Introduction

OpenMP [1] research systems have supported nested parallelism since its intro-

duction in the OpenMP standard (e.g., [2, 3]), and most commercial compilers

now support nested parallelism in their products. Although some commercial

packages provide tools for debugging and performance analysis in the presence of



nested parallelism (e.g., Sun Studio [4] and Intel’s tools [5]), the recent OpenMP

2.5 specification [6] does not provide sufficient support for developing portable

performance measurement and analysis tools with nested parallelism awareness.

This deficiency is being discussed in the OpenMP tools community [7] and hope-

fully will be addressed in future OpenMP specifications.

In the meantime, there is interest in studying how performance measurement

systems can determine nesting context during execution in order to capture

performance data for threads and interpret the data vis à vis nesting level. In

this paper, we present extensions to the TAU performance system [8] to support

nested parallelism. In section 2, we describe our parallel performance system,

TAU. We describe the current problems facing tool developers in supporting

nested parallelism in Section 3 and discuss two possible solutions in Section 4.

Based on this approach, we developed an improved, novel method for the TAU

performance system. This is described in Section 5. The TFS application [9, 10]

from RWTH Aachen is used as a case study for the TAU solution. Section 6

provides a detailed performance analysis of a nested parallel execution of TFS.

The present issues for portable performance measurement of OpenMP nested

parallel execution are, as remarked above, hopefully temporary. In Section 7,

we outline discussions underway in the OpenMP tools community and what

might be expected in the future to address the problem. Conclusions are given

in Section 8.

2 TAU Performance System

The TAU performance system, is composed of three main components: instru-

mentation, measurement, and analysis. The process of instrumentation consists

of inserting measurement probes into an application. The measurement library,

invoked by these probes, performs measurements during execution to collect per-
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formance data. Analysis tools are used to process and study the collected data

and to visualize it.

2.1 Instrumentation

In order to observe performance, additional instructions or probes are typically

inserted into a program. This process is called instrumentation. From this per-

spective, the execution of a program is regarded as a sequence of significant

events. As the events execute, they activate the probes which perform measure-

ments. Thus, instrumentation exposes key characteristics of an execution.

TAU implements a flexible instrumentation model that permits a user to

insert performance instrumentation hooks into the application at several levels

of program compilation and execution. The C, C++, and Fortran languages are

supported, as well as standard message passing (e.g., MPI) and multi-threading

(e.g., POSIX threads, OpenMP) libraries, as well as hybrid executions.

2.2 Measurement

TAU provides a variety of measurement options that are chosen when TAU is

installed. Each configuration of TAU is represented in a set of measurement li-

braries and a stub makefile representing the TAU configuration. Profiling and

tracing are the two performance evaluation techniques that TAU supports. Pro-

filing presents aggregate statistics of performance metrics for different events and

tracing captures performance information in timestamped event logs for analy-

sis. In tracing, we can observe, along a global timeline, when events take place in

different processes and threads. Events tracked by both profiling and tracing in-

clude entry and exit from routines, interprocess message communication events,

and other user-defined atomic events. Tracing has the advantage of capturing

temporal relationships between event records, but at the expense of generating
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large trace files. The choice to profile trades the loss of temporal information

with gains in profile data efficiency.

Within the space of profiling, there is a wide range of data that can be

collected. First, with standard flat profiling, we can track both wallclock time as

well as hardware performance counters. Several data elements are recorded for

each measured event, including the inclusive and exclusive time, the number of

event invocations, and the number of instrumented child event invocations.

TAU also provides the capability to track callpath profiles. Here, the objective

is to determine the distribution of measured metrics along the dynamic routine

(event) calling paths of an application. We speak of the depth of a callpath as

the number of parent routines included in each path. A callpath of depth 1 is a

flat profile. A callpath of depth k represents a sequence of the last k - 1 routines

called by a routine at the head of the callpath. The key concept to understand

for callpath profiling is that a callpath represents a performance event. Just as

a callpath of depth 1 will represent a particular routine and TAU will profile

exclusive and inclusive values for that routine, every unique callpath of depth k

in a program’s execution will represent a unique performance event to be profiled.

2.3 Analysis

The TAU performance system includes several analysis and visualization tools

for performance data. It provides simple command line reporting tools as well

as advanced GUI analysis tools and a performance data management system.

ParaProf[11] is the primary performance data viewer in TAU. It is capable of

calculating simple statistics (e.g. mean, standard deviation) and displaying bar

charts and histograms for flat profile data. With callpath data, ParaProf can

display expandable tree-tables as shown in Figure 7, and call-graphs as shown

in Figure 6. Additionally, large scale data can be displayed in three-dimensional

interactive charts such as Figure 4.
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Empirical performance evaluation of parallel applications can generate sig-

nificant amounts of performance data and analysis results from multiple exper-

iments as performance is investigated and problems diagnosed. To better man-

age performance information, we developed the Performance Data Management

Framework (PerfDMF) [12]. PerfDMF utilizes a relational database to store per-

formance profiles. It provides an abstract profile query and analysis programming

interface, and a toolkit of commonly used utilities for building and extending

performance analysis tools.

Large scale performance studies may involve extremely large performance

datasets from repeated executions across multiple platforms with varying pa-

rameters. The potential size of datasets and the need to assimilate results from

multiple experiments makes it a daunting challenge to not only process the infor-

mation, but discover and understand performance insights. In order to perform

analysis on these large collections of performance experiment data, we devel-

oped PerfExplorer[13], a framework for parallel performance data mining and

knowledge discovery. The framework architecture enables the development and

integration of data mining operations that will be applied to large- scale paral-

lel performance profiles. PerfExplorer operates as a client- server system and is

built on PerfDMF to access the parallel profiles and save its analysis results. The

analysis is integrated with existing analysis toolkits (R, Weka), and provides for

analysis extensions in those toolkits.

3 Issues with Nested Parallelism in OpenMP

OpenMP allows for nested parallel regions during execution. Nested parallelism

can be enabled and disabled through the use of the OMP NESTED environment
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variable or by calling the omp set nested() routine. A simple example is given

below:1

#include <omp.h>

#include <stdio.h>

void report_num_threads(int level) {

  printf("Level %d: omp_get_num_threads()=%d",

         level, omp_get_num_threads());

  printf(", omp_get_thread_num()=%d\n",

         omp_get_thread_num());

}

int main(int argc, char **argv) {                                                                                       

  #pragma omp parallel num_threads(2)

  {

    report_num_threads(1);

    #pragma omp parallel num_threads(2)

    {

      report_num_threads(2);

    }

  }

  return(0);

}

% OMP_NESTED=0 ./a.out

Level 1: omp_get_num_threads()=2, omp_get_thread_num()=0

Level 2: omp_get_num_threads()=1, omp_get_thread_num()=0

Level 1: omp_get_num_threads()=2, omp_get_thread_num()=1

Level 2: omp_get_num_threads()=1, omp_get_thread_num()=0

% OMP_NESTED=1 ./a.out

Level 1: omp_get_num_threads()=2, omp_get_thread_num()=0

Level 1: omp_get_num_threads()=2, omp_get_thread_num()=1

Level 2: omp_get_num_threads()=2, omp_get_thread_num()=0

Level 2: omp_get_num_threads()=2, omp_get_thread_num()=1

Level 2: omp_get_num_threads()=2, omp_get_thread_num()=0

Level 2: omp_get_num_threads()=2, omp_get_thread_num()=1

Fig. 1. An example illustrating nested OpenMP parallelism, the output (right) is ob-

tained by executing the program on the left

Figure 1 illustrates the effects of nested OpenMP parallelism. Without nested

parallelism enabled, the inner region pragma has no effect. Each thread from the

outer region will process the inner region in serial for a total of two executions of

the inner region. When nested parallelism is enabled, both the inner and outer

regions will be parallelized independently and will have two threads in each team,

resulting in four executions of the inner region.

This example also illustrates that the omp get thread num() runtime call

cannot be used for unique thread identification within the process. While four

threads are active at one time, the values from omp get thread num() are only

zero and one since the maximum size of a given team is two.

1 Adapted from http://docs.sun.com/source/819-0501/2 nested.html.
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Nested OpenMP parallelism poses a challenge to traditional performance

analysis tools. The above example is useful in pointing out the issues. Typically,

a performance tool will attempt to measure the performance for each thread

individually. To do so, there must be an agreement between the application and

performance tool for proper thread identification to occur and measured events

appropriately assigned. Tools often require that the user configure them with

the same thread package that the application is using, be it Pthreads, OpenMP,

or another thread package. When the tool and the application use the same

underlying thread package, proper thread identification can be done. Moreover,

to provide proper thread safety, the measurement system must be aware of the

thread environment to perform proper synchronization when necessary.

However, when nested parallelism is used in OpenMP, the nesting context

is not available to the performance interface. It may appear that nested paral-

lelism can be statically analyzed and a tool such as Opari [14, 15] could insert

additional instrumentation providing nesting information. However, static anal-

ysis is insufficient to track threads as the varied interactions of execution paths

at runtime can create arbitrary nesting depths. A runtime solution for thread

identification is necessary.

Native thread libraries typically provide thread local storage (TLS) that per-

formance tools use to track thread identities and other thread specific state

information. The OpenMP runtime library provides the omp get thread num()

API call that returns the thread number or identifier within the active team

of threads. Unfortunately, the value returned from this call lies between 0 and

omp get num threads()-1, which is not the total number of threads in the pro-

gram, but the size of the team from which the call is made. TAU and other tools

have traditionally used this call for thread identification. When an instrumented

section of code is entered, the measurement library identifies the calling thread
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and performs measurements associated with that thread. Thread identification is

critical because the measurement system must internally maintain the callstack

for each running thread. Each of these data structures are keyed by the thread

identifier.

However, when using nested OpenMP parallelism, multiple teams may be

active at any one time and more than one active thread will return the same

index from omp get thread num(). This will cause errors in the measurement

system as it will observe what appears to are overlapping timers where a thread

enters one routine, but exits from a different one.

Nested parallelism in OpenMP offers the additional challenge of mapping

the per-thread performance data back to the nested parallelism abstractions

in the source code. To do so, it is necessary to distinguish the performance

measurements for each thread based on the nesting context. When done properly,

the execution profile should resemble a tree-like hierarchy of threads.

4 Solutions

The problem of thread identification in nested OpenMP programs is widespread

in the community, for purposes other than performance evaluation. As such,

several solutions have been proposed.

4.1 Extending the OpenMP API

A promising solution to this problem is to extend the OpenMP specification

itself to allow for more in depth query and knowledge of nested parallelism. Di-

eter an Mey, RWTH proposed an extension to the OpenMP specification in the

form of runtime library calls that return the current nesting level, the number

of threads within that level, and the current thread identifier at that level. This
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provides enough information to uniquely identify threads for performance mea-

surement purposes as well as information necessary for the proper mapping of

the runtime execution to the application developer’s model of nested parallelism

in the application.

Ultimately, we hope that the OpenMP specification will be extended in this

manner, and we will update TAU to use the new runtime calls when these become

widely available.

4.2 Native Thread Library Hooks

Another method of tracking threads in the face of nested OpenMP parallelism

involves bypassing the OpenMP runtime system entirely and instead tracking

the threads based on the underlying thread implementation. For example, if

the OpenMP thread package is implemented using the native POSIX thread

library, the tool could use the Pthreads API for thread identification, invoking

functions such as pthread self() which provides a capability similar to the getpid()

function for processes. Given that the measurement library is now hooked to the

underlying thread library, it could then use the available thread local storage

using the native thread API.

A major drawback to this approach is the lack of portability. The underly-

ing thread library must be known and accessible to the performance tool. On

some systems, the underlying thread substrate may be inaccessible and such an

approach cannot be guaranteed to work universally. We favor approaches that

follow the higher-level abstract OpenMP API. Additionally, this approach makes

it difficult to determine parent child relationships arising from nested parallelism.

4.3 Additional OpenMP Instrumentation

Alexander Spiegel, RWTH proposed another solution to this problem, in which

the master and worker threads of each parallel team exchange information through
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a global shared space which is locked by the master. At the start of parallel re-

gions, additional code must be inserted to perform this task.

The additional code does roughly the following. At the beginning of the

parallel region, the master thread, that is, the thread that was executing the

code prior to the parallel section, obtains a lock on a shared storage space. Next,

all of the threads synchronize (e.g. #pragma omp barrier) and read the buffer.

After the data has been read by all threads and another sychronization occurs

(to ensure that all threads have consumed the data), the master can then unlock

the shared storage space.

The data that the master disseminates to the children will include the current

nesting context including that execution callstack’s thread identifier within each

parent’s parallel region. In this way, each new parallel region inherits the relevant

context information from the parent, and a proper mapping can take place.

A tool such as Opari could be extended to support the additional instru-

mentation required for this type of thread synchronization at the source level.

This approach has the advantage that it tracks the full nesting information, so

at any given time, the performance tool can identify which team member from

each team and each level of nesting is invoking a measurement point. This allows

for a better mapping of thread level performance information back to the source

code and application developer’s understanding of nested parallelism.

The drawback of this approach is of course the additional synchronization

and locking at parallel region boundaries. We have not performed studies to

measure the overhead involved, but we estimate that it might be significant for

some programs.

10



5 OpenMP support in TAU

The TAU performance system supports performance evaluation of OpenMP pro-

grams at the region, construct, and routine level. Additionally, the user may

manually instrument regions of code using the TAU API. For OpenMP-based ap-

plications, the Opari tool is used to insert instrumentation based on the POMP

[14] interface at OpenMP regions and for OpenMP constructs. The Program

Database Toolkit (PDT)[16] is used to instrument OpenMP source at the rou-

tine level.

Construct level measurement refers to the tracking of OpenMP constructs by

themselves. The resulting profile will show time spent in each type of OpenMP

construct. For example, the time spent in “for enter/exit [OpenMP]” and

“barrier enter/exit [OpenMP]” represents the aggregate time spent in all

OpenMP for and barrier constructs.

Region level measurement goes beyond construct measurement to provide

specific information about each separate parallel region. For example, a timer

called “for [OpenMP location: file:mandel.cpp <96, 109>]” represents the

time spent in the particular OpenMP for region from lines 96 to 109 in the file

mandel.cpp. Thus, the construct measurements are partitioned based on the

region to which they apply.

During measurement, TAU uses the OpenMP thread synchronization calls

for updating shared performance data structures when necessary. Construct-

based measurement uses globally accessible timers to aggregate construct-specific

performance costs over all OpenMP regions. For region-based measurement, the

region descriptor is used to partition the construct information for each region.

In our earlier work [14, 17], TAU relied upon the OpenMP runtime API

call, omp get thread num(), to distinguish threads for indexing into the runtime

performance data structures. Unfortunately, this method is inadequate for nested
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parallelism due to the issues discussed above. Instead, we need a mechanism to

uniquely identify the current thread.

5.1 Nested Parallelism Support

We propose a new scheme for thread identification. Our approach involves the

use of the OpenMP directive, #pragma threadprivate(). The basic idea is to

identify and use some piece of data that is unique for each thread and persists

within a thread’s execution such that the same identifier can be found at the

start of a thread’s execution of a region until the end of the region. Though the

values of a threadprivate variable are not guaranteed to persist between parallel

regions, we are at least guaranteed that no two currently active threads will

point to the same memory location for a given threadprivate variable. Using this

scheme, TAU can then uniquely identify threads even in the presence of nested

parallelism.

The approach requires a single threadprivate variable that is initialized inside

the TAU library (when TAU is built using OpenMP threading). This variable

and/or its address can be used to distinguish it from other threads executing

concurrently. When the TAU runtime system encounters a thread that it has not

seen before, it registers the thread and assigns it an identifier on a first come,

first serve basis.

In contrast to the other proposed approaches, this method has the advantage

of faster speed, as no runtime API calls are made in identifying a thread. The

thread registration in the TAU runtime system is performed only when a given

thread is seen for the first time, so there is no additional overhead at parallel

region boundaries. Additionally, this method requires no knowledge of the un-

derlying native thread library, it is based solely on the OpenMP system. The

main drawback with this method is that we are unable to identify the nesting

depth or specify a team identifier for a given thread. A thread is assigned a
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unique identifier, but not necessarily the same identifier between regions, and

this typically does not map back to the nested teams within the application

source code. Nevertheless, as we see below, this new method produces perfor-

mance data that can be mapped back to the source code and does expose nested

parallelism where it occurs.

6 A Case Study

To demonstrate TAU’s support for nested parallelism, we conducted a case study

of TFS [9, 10], a computational fluid dynamics code developed at the Aerody-

namics Institute at RWTH Aachen. TFS was initially parallelized using Para-

Wise [18] to generate an intra-block parallelization where the parallel loops op-

erated over a single dimension within a block. Then, a second version was devel-

oped that used parallel loops to iterate over blocks. Finally, a hybrid, multi-level

version was developed which combined both the intra- and inter- block paral-

lelizations using nested OpenMP parallelism. In recent performance testing, the

developers reported a speedup of 21 for TFS using nested OpenMP parallelism

on a SunFire 25K system [19].

Metric: Time

Value: Exclusive

std. dev.

mean

n,c,t 0,0,0

n,c,t 0,0,1

n,c,t 0,0,2

n,c,t 0,0,3

n,c,t 0,0,4

n,c,t 0,0,5

n,c,t 0,0,6

n,c,t 0,0,7

Fig. 2. Flat Profile for TFS

We analyzed the TFS code by first integrating TAU into the TFS build

system and instrumented its source code using the TAU’s compilation scripts.

13



����� � � �	��
�� 
��
����� ���������	��� �	��� �	�
����� � ���������� ��	!��

!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�465�0�5�0�735�8�8�93:&;5�9�2 1�5	<
2 
�=��>��%�%�� � ����� �  ��5�832 ?�9�1
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�4&?�<�1�0�7�?�<�1	@�:&;?�2 A�A
%	��� ��� � ��� !� #" $�%������('��  	����� �  �����* � � ��� �� 	����+� �
B%�+	-�.�/�� � !�+�0�0�1�+�
� 	!�2 *�4C8�5�8�7�8�1�<�:�;@�2 8�?�D
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�4�A	0�1�0�7�A	0	@�13:&;1�2 9�8�?
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�465�@35�0�D�7�5�@�1�?�1�:&;832 D�?
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�4&?�<�0�5�7�?�<�A	<3:&;8�2 0�1�9
%	��� ��� � ���)" $�%������(')�  	����� �  �����* � � ��� �� 	����+� �
B%�+�-�.�/�� � !�+�0�0�1�+�
� 	!32 *�4C@�1�5�?�7	@�1	@�?�:&;5�2 A	?�1
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�4&<�A	<�7�<�<�0�:&;5�2 @�<�9
%	��� ��� � ��� !� #" $�%������('��  	����� �  �����* � � ��� �� 	����+� �
B%�+	-�.�/�� � !�+�0�0�1�+�
� 	!�2 *�4�5�1�A�8�9�7�5�1�A	1�0�:�;5�2 1�D�1
'���
�E3F�G5�2 8�<�D
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�465�8�1�8�735�8�1�A�:&;5�2 8�D�A
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�4&<�<�9�7�5	0�0�1�:�;5�2 8�D	@
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�4&<�0�D�A	7�<�0�<�5�:&;5�2 8�A
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�4�A�5�@�1�7�A�5�9�93:&;5�2 8�@�<
H ��
�E�F�G5�2 8�1	@
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�4�A�5�?�1�7�A�5	A	93:&;5�2 5�8�?
%	��� ��� � ���)" $�%������(')�  	����� �  �����* � � ��� �� 	����+� �
B%�+�-�.�/�� � !�+�0�0�1�+�
� 	!32 *�4&8�?	@�D�7�1�1�0�@3:&;5�2 0	@�D
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�4�A	9�9�D�7�A	9�?�<3:&;0�2 <�<�<
%	��� ��� � ��� !� #" $�%������('��  	����� �  �����* � � ��� �� 	����+� �
B%�+	-�.�/�� � !�+�0�0�1�+�
� 	!�2 *�4C?�5�D�0�7�?�8�0�1�:&;0�2 <�<�8
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�4C@�9�?�0�7�@�9�A�5�:&;0�2 D	@�@
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�4&?�D	@�D�7�?�D�9�83:&;0�2 D�1�D
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�4C@�?�0�1�7�@�?�5�13:&;0�2 A�@3A
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�4�A	9�D�1�7�A	9�<�93:&;0�2 A�0�1
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�4&1�1�9�9�7�1�<�5�<3:&;0�2 ?�D�1
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�4&8�D�1�9�7�8�D	@35�:&;0�2 ?	@�9
/	��� � � ���I" $�%������6'��  	����� �  �����* � � ��� �� 	����+� �
B%�+�-�.�/�� � !�+�0�0�1�+�
J 	!32 *�4K@�1�1�A	7�03:&;032 ?�5
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�465�@�@�0�9�7�5�@�@�5�1�:&;032 9�<�9
!� #" $&%	�����(')�  	����� �  �����* � � ��� �	 	����+� �
,%�+�-�.�/�� � !�+�0�0�1�+	
� 	!32 *�465�@�0�?�8�7�5�@�0�A	8�:&;032 9�?�A
%	��� ��� � ��� !� #" $�%������('��  	����� �  �����* � � ��� �� 	����+� �
B%�+	-�.�/�� � !�+�0�0�1�+�
� 	!�2 *�4�5�1�A�1�D�7�5�1�A�@�1�:�;032 9�?�5

Fig. 3. Statistical Mean Profile for TFS

This process required only a single modification to the TFS build system where

the name of the compiler used in the makefile was changed from FC=f90 to

FC=tau f90.sh. This script acts as a compiler wrapper, allowing for automatic

instrumentation of Fortran programs (similarly, tau cc.sh and tau cxx.sh are

used for C and C++ compilation respectively) . In the case of OpenMP code,

it automatically invokes the Opari tool to instrument OpenMP constructs and

regions by rewriting OpenMP directives using the POMP interface. The code is

then parsed by PDT to create PDB files that contain source-level information

about the routine names, and their respective entry and exit locations. The script

then instruments the entry and exit points using the tau instrumentor utility.

Finally, the instrumented code is linked with the TAU library.

We ran TFS on the SunFire machines at RWTH Aachen using 8 threads.

With TAU’s support for nested OpenMP parallelism, we can run the instru-

mented version of TFS without the thread identifier clash that occurred previ-
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Fig. 4. 3D display of TFS performance data (inclusive time)

ously. The flat profile for TFS is shown in Figure 2. Each thread is represented

by a row in the graph, and each timer/region is a column. The event in the sec-

ond column (colored red) is .TAU application, a special timer created at the

start of thread execution which is then stopped at the end of program execution.

The effect is to show roughly how much time each thread spends idle since its

exclusive time is roughly the wall clock time of the application minus parallel

regions.

Figure 3 shows the statistical mean exclusive value across all threads. Note

that the timer names for parallel regions and constructs contain the source file-

name and line number. This data is provided by the Opari tool through the

POMP interface.

By looking at the flat profile we find that there is a clear pattern in the data

wherein threads 0, 1, 3, and 4 have a similar execution profile, and threads 2, 5,

6 and 7 are also very similar. This pattern is also visible in the three dimensional
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Fig. 5. Clustering of threads in TFS

display of ParaProf shown in Figure 4. The three axes are the threads, the timers

(functions), and the exclusive time spent in the given timer.

TAU’s PerfExplorer data mining tool is able to automatically discover pat-

terns such as these. Shown in Figure 5, PerfExplorer displays the result of a

correlation analysis which clearly shows two clusters of threads. These are the

same clusters that we observed from the flat profile bar graphs.

Figure 6 shows the callgraphs from each observed thread of execution. Again,

we see two groups of four very similar threads. The main thread is slightly

different in that it executes all of the non-parallelized code.

For a total runtime of 90 seconds, the second cluster which includes threads

2, 5, 6, and 7 are idle for about 22 seconds each, whereas the other slave threads,

numbers 1, 3, and 4 spend only about 3 seconds idle. Each cluster executes

different functions that may be seen in ParaProf’s callgraph displays. With this
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Fig. 6. The callgraph of each thread from an 8 thread run of TFS

knowledge, the application developer can identify the regions that each thread

executes and map the execution back to the source code.

Using TAU’s callpath profiling capability, the nested parallelism present in

TFS is easily decomposed. Figure 7 shows where time was spent at each level of

nesting. The function ALGO started a parallel region, and deeper in the callpath,

the function AUSM also started a parallel region.

7 Future Work

As noted earlier, there is active discussion underway in the OpenMP tools fo-

rum as to what the appropriate interface should be for runtime tools such as

performance measurement libraries. We hope that runtime system functions will

be made available for thread identification and nesting context to be queried.
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Fig. 7. Nested Parallelism in TFS

For the purposes of enhancing the TAU performance system, we would like to

support a higher level mapping of thread identifiers back to the application de-

veloper’s model of nested parallelism. In the case of non-nested parallelism, TAU

already provides a clear picture of the execution performance of each thread in

each team. This picture is currently not as clear in the nested case because we

have only a single number to identify a thread. We anticipate adding support for

thread naming in TAU wherein a thread is labeled in the nested OpenMP case

by its nesting depth and identifier, or by the identifier in each team where it orig-

inated (such as “thread 0 → 3 → 2”). This will allow us to display performance

instrumentation based on the hierarchical structure of each thread team. The

runtime, hopefully provided in a future OpenMP specification, will provide the

necessary information to maintain these structures in the measurement system.
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8 Conclusion

Performance evaluation of OpenMP codes is critical in making the greatest use

of SMP-capable machines, both in the the small and large scale. Application

developers rely on performance tools such as TAU to study the performance of

their programs under varying conditions.

Performance tools that measure per-thread performance data must be able

to uniquely identify threads of execution at runtime in order to assign resulting

measurements. Additionally, they must support concurrent multi-threaded exe-

cution with simultaneous event invocations across all the threads in the process.

This process is complicated in the presence of nested parallelism in OpenMP

when thread identities queried from the runtime system only represent identities

within a subset of the currently active threads (the local team). Additionally,

there is no support in the specification for accessing information about nesting

context. In this paper, we describe the nested parallelism problem currently faced

by tools for portable OpenMP performance analysis. Several possible solutions

are discussed. The approach we implemented in the TAU performance system

uses thread private storage to create a unique thread identifier. The approach is

portable and has been validated with both Sun and Intel’s OpenMP compilers.

We demonstrated TAU’s new capability to track nested OpenMP parallelism in

the TFS application and analyzed a sample execution.
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