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ABSTRACT

Parallel Java environments present challenging problems for
performance tools because of Java’s rich language system
and its multi-level execution platform combined with the
integration of native-code application libraries and paral-
lel runtime software. In addition to the desire to provide
robust performance measurement and analysis capabilities
for the Java language itself, the coupling of different soft-
ware execution contexts under a uniform performance model
needs careful consideration of how events of interest are ob-
served and how cross-context parallel execution information
is linked. This paper relates our experience in extending
the TAU performance system to a parallel Java environment
based on mpiJava. We describe the complexities of the in-
strumentation model used, how performance measurements
are made, and the overhead incurred. A parallel Java ap-
plication simulating the game of Life is used to show the
performance system’s capabilities.

1. INTRODUCTION

With the nascent use of Java for high-performance paral-
lel and distributed computing comes the requirements that
application developers and system managers have perfor-
mance measurement and analysis tools. These requirements
are not new: performance is a dominant concern and the
need for tools is fundamental. The Java language environ-
ment and how it is used for high-performance computing,
however, pushes the state of performance technology in new
respects. First, the Java Virtual Machine (JVM) presents
a sophisticated shared memory execution platform that is
multi-threaded, supports the mapping of user-level threads
to system threads, allows just-in-time (JIT) compilation and
dynamic loading of code modules, and interfaces with dis-
tributed systems middleware. The combination of these
features is new. Second, the Java Native Interface (JNI)
opens up the Java environment, making inter-language ex-
ecution possible. This allows access to high-performance

application and communication libraries, but it complicates
the ability to track multi-level inter-language performance
events across different execution contexts and to integrate
those events in local and global performance views. Lastly,
because the Java language system is portable, the facilities,
tools, and interfaces that support performance measurement
and analysis for Java need to be portable as well.

In this paper, we share our experiences developing a pro-
totype performance measurement and analysis system for
Java. The system is built upon our robust TAU (Tuning and
Analysis Utilities) performance framework for scalable par-
allel and distributed computing. TAU has been designed to
support performance analysis for a general model of parallel
computation. It provides portable measurement interfaces
and services, flexible instrumentation, the ability to observe
multiple software layers and levels of execution, and certain
provisions for mixed-language programming. However, in all
of these areas, TAU had to be extended in new ways to ac-
commodate Java software features and the hybrid execution
model it imposes. This experience has been valuable in that
we believe such characteristics will be more the norm in the
future, and the techniques we developed will contribute to
the repertoire of methods applied to these new performance
technology challenges.

In Section 2, we briefly describe the TAU framework and
the general computation model it supports. We decided
to focus our attention on a (cluster-oriented) style of high-
performance computing that uses Java multi-threading for
shared memory parallel computing on a symmetric multipro-
cessing (SMP) node and MPI message passing for communi-
cations between distributed nodes. Although not a compre-
hensive coverage of HPC Java environments [3], we feel this
style of multi-level parallel Java programming is represen-
tative of current trends. In Section 3, we describe how the
TAU framework has been adapted for this model. Following
these sections, we show examples of performance analysis for
a parallel Java application, highlighting the ability to cap-
ture performance information across execution levels and
at different levels of parallelism. Sections 5 and 6 discuss
recent features that enable more refined performance mea-
surements. Section 7 addresses the issue of instrumentation
overhead and quantifies the costs of TAU measurements.
Conclusions and thoughts for future directions are given in
Section 8.



2. THE TAU PERFORMANCE SYSTEM

The TAU performance system [13] provides robust tech-
nology for performance instrumentation, measurement, and
analysis for complex parallel systems [8]. It targets a gen-
eral computation model initially proposed by the HPC++
consortium [5]. This model consists of shared-memory nodes
where contezts reside, each providing a virtual address space
shared by multiple threads of execution. The model is gen-
eral enough to apply to many high-performance scalable par-
allel systems and programming paradigms. Because TAU
enables performance information to be captured at the node/
context/thread levels, this information can be flexibly map-
ped to the particular parallel software and system execution
platform under consideration.

TAU supports a flexible instrumentation model that allows
access to a measurement API at several stages of program
compilation and execution. The instrumentation identifies
code segments, provides for mapping of low-level execution
events to high-level computation entities, and works with
multi-threaded and message passing parallel execution mod-
els. It interfaces with the TAU measurement model that can
capture data for function, method, basic block, and state-
ment execution. Profiling and tracing form the two measure-
ment choices that TAU provides. Performance experiments
can be composed from different measurement modules, in-
cluding ones that access hardware performance monitors.
The TAU data analysis and presentation utilities are open;
they offer text-based and graphical tools to visualize the
performance data as well as bridges to third-party software,
such as Vampir [9, 12] for sophisticated trace analysis and
visualization.

3. PERFORMANCE INSTRUMENTATION
FOR PARALLEL JAVA

Scientific applications written in Java are often implemented
using a combination of languages such as Java, C++, C and
Fortran. While this defies the pure-Java paradigm, it is of-
ten necessary since needed numerical, system, and commu-
nication libraries may not be available in Java, or compiled
native versions can offer significant performance improve-
ments [3]. Analyzing such hybrid multi-language programs
requires an instrumentation strategy that leverages instru-
mentation alternatives and APIs at several levels of compi-
lation, linking, and execution. To illustrate this point, we
consider instrumentation mechanisms employed for profil-
ing and tracing Java programs that communicate with each
other using the Message Passing Interface (MPI) [4].

3.1 mpiJava

While there are several design issues that determine how a
message communication interface for Java is implemented[6],
we considered mpiJava [2] for our work. mpiJava is an
object-oriented interface to MPI that allows a Java program
to access MPI entities such as objects, routines, and con-
stants. While mpiJava relies on the existence of native MPI
libraries, its API is implemented as a Java wrapper package
that uses C bindings for MPI routines. In contrast, the refer-
ence implementation for MPJ [1], the Java Grande Forum’s
MPI-like message-passing API, will rely heavily on RMI and
Jini for finding computational resources, creating slave pro-
cesses, and handling failures; user-level communication will

be implemented efficiently, directly on top of Java sockets,
not a native MPI library. For mpiJava, when a Java applica-
tion creates an object of the MPI class, mpiJava loads a na-
tive dynamic shared object (libmpijava.so) in the address
space of the Java Virtual Machine (JVM). This Java package
is layered atop the native MPI library using the Java Native
Interface (JNI) [14]. There is a one-to-one mapping between
Java methods and C routines. Applications are invoked us-
ing a script file prunjava that calls the mpirun application
for distributing the program to one or more nodes.

3.2 Instrumentation Problems

The Java execution environment with mpiJava poses sev-
eral challenges to a performance tool developer. The per-
formance model implemented by the tool must embed the
hybrid-execution model of the system where multiple Java
threads within a virtual machine and multiple MPI (native)
processes execute concurrently. One faces two major prob-
lems instrumenting a hybrid system consisting of MPI con-
texts, and Java threads within each of those contexts. The
first involves how to expose the thread information to the
MPI interface. The second involves how to provide MPI
context information to the Java interface. It is necessary
to address these problems so events can be tracked in the
correct context and thread.

However, different events occur in the different software com-
ponents (e.g., routine transitions, inter-task message com-
munication, thread scheduling, and user defined events) and
performance data should be collected to highlight the differ-
ent execution modes and the inter-relationship of the soft-
ware layers. For instance, the event representing a Java
thread invoking a message send operation occurs in the JVM,
while the actual communication send and receive events take
place in compiled native C modules. Ideally, we want the in-
strumentation inserted in the application, virtual machine,
and native language libraries to gather performance data
for these events in a uniform and consistent manner. This
involves maintaining a common API for performance mea-
surement as well as a common database for multiple sources
of performance data within a context of execution.

Below, we present our multi-level instrumentation approach
for this parallel Java system using the TAU performance
framework. TAU applies instrumentation at both the Java
virtual machine level and the MPI library level to capture
performance data and associate performance events.

3.3 JVMPI

Instrumenting Java and the JVM poses several difficulties.
Conveniently, Java 2 (JDK1.2+) incorporates the Java Vir-
tual Machine Profiler Interface (JVMPI) [16, 15] which we
have used for our work. JVMPI provides profiling hooks
into the virtual machine and allows a profiler agent to in-
strument the Java application without any changes to the
source code, bytecode, or the executable code of the JVM.
JVMPI provides a wide range of events that it can notify
to the agent, including method entry and exit, memory al-
location, garbage collection, and thread start and stop; see
the Java 2 reference for more information. When the pro-
filer agent is loaded in memory, it registers the events of
interest and the address of a callback routine to the virtual
machine using JVMPI. When an event takes place, the vir-



JVM

TAU package

thread API 1~ NI

event notification TAU

mpiJava package

MPI Profiling Interface

TAU wrapper library

Native MPI library

JVMPI

profile database

Figure 1: TAU instrumentation for Java source, vir-
tual machine and mpiJava packages

tual machine thread generating the event calls the profiler
agent callback routine with a data structure that contains
event specific information. The profiling agent can then use
JVMPI to get more detailed information regarding the state
of the system and where the event occurred.

Figure 1 describes how JVMPI is use by TAU for perfor-
mance measurement. Consider a single context of a dis-
tributed parallel MPI Java program. At start-up, the Java
program loads the mpiJava package as a shared object and
the JVM loads the TAU performance measurement library
as a shared object, which acts as a JVMPI profiling agent.
A two-way function call interface between the JVM and the
TAU profiler agent is established. The JVM notifies TAU of
events and TAU can, in turn, obtain information about and
control the behavior of the virtual machine threads using
the JVMPI thread primitives (e.g., for mutual exclusion).

When the TAU agent is loaded in the JVM as a shared ob-
ject, a TAU initialization routine is invoked. It stores the
identity of the virtual machine and requests the JVM to no-
tify it when a thread starts or terminates, a class is loaded
in memory, a method entry or exit takes place, or the JVM
shuts down. When a class is loaded, TAU examines the list
of methods in the class and creates an association of the
name of the method and its signature, as embedded in the
TAU object, with the method identifier obtained, using the
TAU Mapping API (see the TAU User’s Guide [11]). When
a method entry takes place, TAU performs measurements
and correlates these to the TAU object corresponding to
the method identifier that it receives from JVMPI. When
a thread is created, it creates a top-level routine that cor-
responds to the name of the thread, so the lifetime of each
user and system level thread can be tracked.

To deal with Java’s multi-threaded environment, TAU uses
a common thread layer for operations such as getting the
thread identifier, locking and unlocking the performance
database, getting the number of concurrent threads, etc.
This thread layer is then used by the multiple instrumenta-
tion layers. When a thread is created, TAU registers it with

its thread module and assigns an integer identifier to it. It
stores this in a thread-local data structure using the JVMPI
thread API described above. It invokes routines from this
API to implement mutual exclusion to maintain consistency
of performance data. It is important for the profiling agent
to use the same thread interface as the virtual machine that
executes the multi-threaded Java applications. This allows
TAU to lock and unlock performance data in the same way
as application level Java threads do with shared global ap-
plication data. TAU maintains a per-thread performance
data structure that is updated when a method entry or exit
takes place. Since this is maintained on a per thread basis,
it does not require mutual exclusion with other threads and
is a low-overhead scalable data structure. When a thread
exits, TAU stores the performance data associated with the
thread to stable storage. When it receives a JVM shutdown
event, it flushes the performance data for all running threads
to the disk.

3.4 MPI Profiling Interface

Given a means to capture Java-level execution events, we
now consider MPI events. MPI provides an interface [4] that
allows a tool developer to intercept MPI calls in a portable
manner without requiring a vendor to supply proprietary
source code of the library and without requiring the ap-
plication source code to be modified by the user. This is
achieved by providing hooks into the native library with a
name-shifted interface and employing weak bindings. Hence,
every MPI call can be accessed with its name shifted in-
terface as well. Library-level instrumentation can be im-
plemented by defining a wrapper interposition library layer
that inserts instrumentation calls before and after calls to
the native routines.

We developed a TAU MPI wrapper library that intercepts
calls to the native library by defining routines with the same
name, such as MPI_Send. These routines then call the na-
tive library routines with the name shifted routines, such as
PMPI_Send. Wrapped around the call, before and after, is
TAU performance instrumentation. An added advantage of
providing such a wrapper interface is that the profiling wrap-
per library has access to not only the routine transitions, but
also to the arguments passed to the native library. This al-
lows TAU to track the size of messages, identify message
tags, or invoke other native library routines. This scheme
helps a performance tool track inter-process communication
events. For example, it is possible to track the sender and
the size of a received message in completion of a wild-card
receive call. Whereas JVMPI-based instrumentation can
notify the profiling agent of an event such as an mpiJava
method entry, it does not provide the agent with arguments
that are passed to the methods. However, this information
can be obtained using the TAU MPI wrapper library.

To expose thread information to the MPI interface, we de-
cided to have the TAU instrumentation access its runtime
thread API layer within the MPI wrapper. As shown in
Figure 1, the MPI and Java modules within the TAU sys-
tem use JNI 1.2 routines to gain access to the Java virtual
machine environment associated with the currently execut-
ing thread within the JVM. It does so by using the virtual
machine information stored by TAU when the in-process
profiling agent is loaded by the virtual machine during ini-



tialization, as described in the previous section. Using the
thread environment, the thread layer can invoke routines to
access thread-local storage to access the current thread iden-
tifier, and invoke mutual exclusion routines from the JVMPI
interface to maintain consistency of the performance data.
This scheme allows events generated at the MPI or the Java
layer to uniformly access the thread API.

To allow the Java instrumentation to access the correct node
and context information, we instrument the MPI_Init rou-
tine to store the rank of the MPI process in a globally ac-
cessible data structure. The TAU instrumentation triggered
by JVMPI event notification (see Figure 1) then accesses
this MPI information in the same manner as instrumenta-
tion requests from any layer from any language. By giving
access to the execution model information to all measure-
ment and instrumentation modules in a well-defined, uni-
form manner, the performance framework can be extended
with a minimal effort to additional libraries and new evolv-
ing execution models. A combination of instrumentation at
multiple levels in TAU helps us solve the hybrid execution
model instrumentation problem.

3.5 Tracing Hybrid Execution

Instrumentation of multi-threaded MPI programs poses some
challenges for tracking inter-thread message communication
events. MPI is unaware of threads (Java threads or other-
wise) and communicates solely on the basis of rank infor-
mation. Each process that participates in synchronization
operations has a rank. However, all threads within the pro-
cess share the same rank. For a message send operation,
we can track the sender’s thread by querying the underlying
thread system (in this case, through JVMPI) and we can
track the receiver’s thread likewise.

Unfortunately, there still exists a problem with MPI com-
munication between threads in that the sender doesn’t know
the receiver’s thread id and vice versa. To accurately repre-
sent a message on a global timeline, we need to determine
the precise node and thread on both sides of the commu-
nication, either from information in the trace file or from
semantic analysis of the trace file. To avoid additional mes-
sages to exchange this information at runtime or to supple-
ment messages with thread ids, we decide to delay match-
ing sends and receives to the post-mortem trace conversion
phase. Trace conversion takes place after individual traces
from each thread are merged. The merged trace is a time
ordered sequence of events (such as sends, receives, routine
transitions, etc.). Each event record has a timestamp, loca-
tion information (node, thread) as well as event specific data
(such as message size, and tags). During trace conversion,
each record is examined and converted to the target trace
format (such as Vampir, ALOG, SDDF or Dump). When a
send is encountered, we search for a corresponding receive
operation by traversing towards the end of the trace file
and matching the receiver’s rank, message tag and message
length. When a match is found, the receiver’s thread id is
obtained and a trace record containing the sender and re-
ceiver’s node, thread ids, message length, and a message tag
can be generated. The matching works in a similar fashion
when we encounter a receive record, except that we traverse
the trace file in the opposite direction, looking for the corre-
sponding send event. This technique is used later on in our

example to produce Figure 3.

4. PERFORMANCE ANALYSIS FOR A

PARALLEL JAVA APPLICATION

TAU supports both profiling and tracing performance analy-
sis methodologies. Profiling presents the user with summary
statistics of performance metrics while tracing highlights the
temporal aspect of performance behavior, showing when and
where events took place. To provide a sense of how TAU’s
capabilities can be applied to parallel Java applications, we
present performance analysis of an mpiJava benchmark ap-
plication that simulates the game of Life. We use a simple
application and run it on four processors mainly for purposes
of brevity and clarity in our discussion. However, it should
be understood that TAU’s capabilities can extend and scale
in respect to the complexity and requirements of applica-
tions and system environments, including larger numbers of
Java contexts and processors.

In Figure 2, we see the profile of the mpiJava Life application
obtained from TAU measurement, as described in the pre-
vious sections. It shows seven Java threads running on each
node. Notice that events across different levels and com-
ponents of execution are being observed. Thread 4 in each
context is executing MPI calls for communication between
the four processes. Of particular interest is the well-known
cascading behavior of the mpich MPI Init routine seen in
the MPI_Init profile window. This illustrates how tasks are
spawned off successively by MPICH. The performance of
individual MPI routines is shown across each context and
thread, as in the MPI_Init profile window. A detailed per-
formance profile for each thread can be displayed graphi-
cally and textually, as shown in the two n,c,t 2,0,4 profile
windows for (f)hread 4 in (c)ontext 0 on (n)ode 2. Some
of the other threads are performing background JVM and
mpiJava module tasks that the application developer would
not directly see.

To observe dynamic performance behavior, TAU can also
generate event traces that are visualized here using a third-
party commercial trace visualization program called Vampir
[9, 12]. Figure 3 illustrates how we can group threads within
a node and show inter-thread, inter-node message commu-
nication events as line segments that connect the send and
receive events within a global timeline. The user can zoom
into interesting portions of the timeline and can click on
a message or a segment to get more detailed information
(e.g., the node where the events took place, the message
tag, length, and bandwidth). Vampir provides a rich set
of views for exploring different aspects of performance be-
havior. Figure 4 shows levels of nesting along a timeline
in each thread. Figure 5 shows a summary of performance
data grouped in higher level semantic groups (mpi, java, sun,
and so forth) in the form of pie charts on a set of threads
within each node. Each thread could be an application or
a virtual machine level thread. Figure 6 shows a dynamic
calltree on a selected thread. It shows the calling order of
routines annotated with performance metrics (inclusive, ex-
clusive times, and number of calls). A user can fold or unfold
a segment of the tree to gain better insight. In Figure 7, we
see a communication matrix display with nodes and threads
along the rows and columns marking the senders and re-
ceivers, and the color-coded values in the matrix that show
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Figure 2: TAU’s profile browser RACY shows per thread performance data

the extent of inter-thread message communication.

Grouping performance data according to virtual machine
and application level entities is not new. It has been success-
fully demonstrated in Paradyn-J [10], a tool for detecting
performance bottlenecks in interpreted, just-in-time com-
piled Java programs, where data is separately grouped in
two distinct trees (one for the application, and another for
the virtual machine). This approach allows both applica-
tion developers as well as virtual machine developers to gain
valuable information regarding the interaction between the
two groups. In contrast, as illustrated in the performance
displays, TAU gathers performance data from MPI and Java
layers in a seamlessly integrated fashion, showing the pre-
cise thread where MPI calls execute and allowing data to be
grouped in two hierarchies according to nodes and threads
and semantic groups. While providing a set of displays for
profiling and tracing data, we can see the need for other cus-
tomized, user-defined multi-dimensional displays that may
show data in more effective ways. To accomplish this, TAU
provides an open, documented interface for accessing perfor-
mance data that it generates and illustrates with examples
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how a user could transform the data to commonly used per-
formance data formats.

5. SELECTIVE INSTRUMENTATION

In examining the data output of a performance instrumented
Java application, we notice that there is a significant amount
of data about the internal workings of the JVM (e.g., see

Figure 6).

While this may provide a wealth of useful in-

formation for the JVM developer, it could inundate the ap-
plication developer with superfluous details when a more
selective focus is desired. To avoid making performance
measurements for all system classes, the TAU Java instru-
mentation system must be extended to selectively disable
certain events from measurement. How is TAU informed of
which events to disable? Since Java classes are packaged in
a hierarchical manner, our approach is to allow the user to
specify a list of classes to be excluded, on the TAU instru-
mentation command line. For instance, if the user specified
java/lang, sun in the exclude list, TAU should then elimi-
nate all java/lang/* classes and sun/* classes from consid-
eration.
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Figure 3: Vampir global time display shows activities and inter-thread message communication

Shown below are the command line statements to run a java
application, run a java application with TAU instrumenta-
tion fully enabled, and run a java application with TAU
instrumentation selectively enabled:

% java <app> <args>
% java -XrunTAU <app> <args>
% java -XrunTAU:exclude=java/lang,sun <app> <args>

The implementation of this selective instrumentation in TAU
is complicated by JVMPI processing. JVMPI allows the
in-process profiling agent to enable and disable the notifi-
cation of events using its event API. However, if the agent
tries to disable the notification of the method entry or exit
event, it affects all methods of a class, and not just methods
that belong to a certain class. That is, the disabling has
to do with events of type “method,” not particular method
events. This makes selective instrumentation difficult. In-
stead, TAU leaves method events enabled, but implements
selection by comparing the name of a class with the “exclude
list” specified by the user. This comparison is done when a
class is loaded at runtime. If the class name is excluded, a

flag is then maintained in each class method timer, indicat-
ing that instrumentation is disabled. At runtime, when the
method executes, JVMPI informs TAU about method entry
and exit events, and TAU in turn checks to see if its instru-
mentation is disabled by examining this flag and processes
the event accordingly. Currently, the level of instrumenta-
tion granularity is the class, but we are looking into ways to
refine the granularity of selection to class methods.

6. SOURCE-LEVEL INSTRUMENTATION

For other programming languages that the TAU performance
system supports (C, C++, Fortran), standard routine en-
try/exit instrumentation is supplemented by the ability to
specify “user-defined” performance events. These events
can be associated with any code points the user desires.
TAU provides an API to define the events, and to start
and stop event profiling around code sections, including in-
dividual statements. However, in the first version of our
Java JVMPI-based instrumentation, we were only able to
see Java method invocation events. The definition and pro-
filing of user events at the Java source level was not possible.

To accomplish this in TAU’s current implementation for
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»javaslang/String <{init> (6 : 19.0 ps)
> java/lang/String concat (68 : 0.332 ms)
> java/lang/String getChars (12 : 0,169 ms)
» java/lang/System arraycopy (12 1 45.0 ps)
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PMPI_Tnit() (1 :
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Figure 6: Vampir dynamic calltree display on each thread shows the calling order annotated with performance

metrics

Java, we developed a source-level API in the form of a
TAU Java package for creating user-level event timers. This
API is consistent with similar capabilities TAU provides for
other languages. The user can define events timers of a
TAU.Profile class and then annotate the source code at de-
sired places to start and stop the timers. Below is a example
code segment demonstrating the API’s use:

import TAU.*;

// Create timer
static TAU.Profile t= new TAU.Profile("Tau Timer",
"test", "TAU_DEFAULT", TAU.Profile.TAU_DEFAULT);

t.Start();
// Code segment here
t.Stop();

The TAU Java package provides the API, but utilizes JNI to
interface with the TAU profiling library. This library is im-

plemented as a dynamic shared object that is loaded by the
JVM or the TAU Java package. It is within the TAU pro-
filing library that the performance measurements are made.
However, TAU captures performance data with respect to
nodes and threads of execution. What makes Java source-
level instrumentation interesting is that node identification
and JVM thread information is not accessible at the Java
language level. Where does TAU get this information?

To maintain a common performance data repository in which
performance data from multiple “streams” comes together
and presents a consistent picture, we need instrumentation
at various levels to co-operate. As shown in Figure 1, the
TAU profiling library uses JNI to interface with the JVMPI
layer to determine which JVM thread of execution is associ-
ated with Java method events and with MPI events. In the
same manner, TAU uses this mechanism to determine thread
information for user-defined events at the source level. To
determine node information, TAU queries the MPI library
to find out its process rank.
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Figure 7: Vampir communication matrix shows the
extent of inter thread communication

Thus, TAU instrumentation occurs at the Java source level,
at the MPI wrapper library level, and at the virtual machine
level. These different layers together form a consistent view
of the execution model and thus must synchronize effectively
to maintain the multi-threaded performance data in a con-
sistent state.

7. MEASUREMENT OVERHEAD

Software-based instrumentation schemes have a runtime over-
head that intrudes on application execution, possibly per-
turbing its performance [7]. It is impossible to completely
eliminate this overhead, but it can be quantified and its ef-
fects evaluated to some extent. We have attempted to char-
acterize the overhead that TAU generates in the execution
of the Java application. Since TAU instrumentation is typ-
ically triggered at entry, exit, and initialization of methods,
we break up the overhead in these three categories. We also
consider the overhead when only profiling is enabled, and
when profiling and tracing is selected.

As described earlier, TAU requires the use of JVMPI for
performance measurement for two reasons. First, it gives
a convenient mechanism for observing method entry/exit
events and other JVM actions. Second, even if an alterna-
tive instrumentation approach was used, such as directly in
the Java source or in JNI- linked libraries, JVMPI is the only
current mechanism to obtain thread information and JVM
state data. In evaluating TAU overhead, we are concerned
with both the absolute overhead as well as the relative over-
head in contrast to the JVMPI overhead. Although a full
characterization of JVMPI overheads is beyond the scope
of this paper, our experience is that a JVMPI-enabled ap-
plication (without any performance measurement) can see
performance delays. Because TAU executes native code in
the JVM address space, its efficiency should be high save
for JVMPI interactions. If, in the future, the JVMPI capa-
bilities that TAU utilizes are offered by some other, more

efficient means, the overhead of having JVMPI enabled may
be avoided.

The experimental apparatus to quantify TAU measurement
overhead is based on how classes are instrumented. Java
supports dynamic loading of class bytecode in the virtual
machine during program execution. This allows TAU to in-
strument only those classes that are loaded in the virtual
machine, as opposed to all the classes. When a class is
loaded, TAU examines the names of methods and creates
timers for each method. To determine this cost of instru-
menting a class, we can divide the time for loading a class
by the number methods it contains to give an estimate of
the fixed cost of method initialization. We measure all costs
in terms of elapsed wall-clock time obtained by the system
call gettimeofday. In a similar fashion, we measured over-
heads for method entry and method exit. All measurements
take place after JVMPI calls the TAU profiler agent. Here
we consider the standard time measurement where profile
information is updated and trace data is optionally gener-
ated.

Table 1 shows the profiling overhead measurements in as-
sociation with the overhead when tracing is also enabled.
The overhead seen in this table includes disk I/O for stor-
ing the profile information at the end of the application or
for saving per-thread trace buffers. We compute the cost of
the gettimeofday call on the system and compensate for it
while measuring the overhead associated with method load-
ing, entry, and exit. The TAU overhead for each method
is different and is influenced by the time spent looking up
the mapping table, string operations that depend upon the
length of a method name, load on the system, and other plat-
form specific parameters. However, we can compute average
costs and give an estimate for a specific platform. From the
table, we see that method loading costs 30.28 microseconds
on the average, and it costs 2.67 microseconds for method
entry and 1.16 microseconds for method exit during profil-
ing. The costs are a little higher when we generate both
profiles and event-traces. The measurements were made on
a quad Pentium IIT Xeon/550 MHz, 3GB RAM symmetric
multiprocessor machine with the following software environ-
ment:

e TAU version 2.8.11

e RedHat Linux 6.1 operating system with 2.3.40 Linux
kernel,

e GNU gcc 2.95.2 C++ compiler that used the -O2 op-
timization flag, and

e Blackdown JDK 1.2.2 Java runtime environment (ver-
sion Linux_ JDK_RC3) that used the native threads
package and the Sunw JIT compiler.

TAU currently does not employ any means for compensating
for the perturbation caused by the instrumentation. General
techniques for compensating for instrumentation perturba-
tion are addressed in [7].



Table 1: TAU overhead for the parallel Java application Life

Operation Mean Overhead (usec) | Standard Deviation | Samples | Range (usec)
Method | profiling 30.28 7.12 123 | 20.14 - 70.14
Loading | profiling and tracing 33.76 9.01 123 | 21.81-93.14
Method | profiling 2.67 2.01 12860 1.14 - 50.14
Entry profiling and tracing 4.71 2.82 12860 | 3.14 - 190.14
Method | profiling 1.16 0.31 12860 0.14 - 15.14
Exit profiling and tracing 2.85 1.29 12860 2.14 - 25.14

8. CONCLUSIONS

As more applications for parallel and distributed systems
are developed using portable hierarchical software frame-
works, layered runtime modules, and multi-language soft-
ware components, the requirements for integrated portable
performance analysis will grow more complex. In partic-
ular, it becomes a challenge to observe performance events
that occur throughout the software hierarchy and across lan-
guage components and then relate those events to high-level
execution abstractions and associated performance views.

Some of the challenges performance technologists face be-
came apparent in our work with Java and its use in a MPI-
based parallel execution environment. The extensions we
made to the TAU system for unifying JVM versus native
execution performance measurement, managing multi-level
multi-threading, utilizing different instrumentation mecha-
nisms for Java and MPI, and providing source-level instru-
mentation, all demonstrate TAU’s robust capabilities. How-
ever, in the future, we also expect that new techniques for
Java code parallelization will introduce new requirements
for integrated performance instrumentation.
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