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Abstract

Parallel Java environments present challenging problems for performance tools because of Java’s rich
language system and its multi-level execution platform combined with the integration of native-code
application libraries and parallel runtime software. In addition to the desire to provide robust performance
measurement and analysis capabilities for the Java language itself, the coupling of different software
execution contexts under a uniform performance model needs careful consideration of how events of
interest are observed and how cross-context parallel execution information is linked. This paper relates our
experience in extending the TAU performance system to a parallel Java environment based on mpiJava. We
describe the instrumentation model used, how performance measurements are made, and the overhead
incurred. A parallel Java application simulating the game of life is used to show the performance system’s
capabilities.

1.  Introduction

With the nascent use of Java for high-performance parallel and distributed computing comes the
requirements from application developers and system managers for performance measurement and
analysis tools. These are not new requirements, given performance as a dominant concern and the
fundamental need for tools. Rather, the Java language environment and how it is used for high-
performance computing pushes the state of performance technology in new respects. First, the Java Virtual
Machine (JVM) presents a sophisticated shared memory execution platform that is multi-threaded,
supports the mapping of user-level threads to system threads, allows just-in-time (JIT) compilation and
dynamic loading of code modules, and interfaces with distributed systems middleware. Several of these
execution features are new for performance tool research to consider. Second, the Java Native Interface
(JNI) opens up the Java environment, making inter-language execution possible. This is important to gain
access to high-performance application and communication libraries, but in doing so it complicates the
ability to track consistently multi-level inter-language performance events across different execution
contexts and to seamlessly integrate those events in local and global performance views. Lastly, because
the Java language system is portable, the facilities, tools, and interfaces that support performance
measurement and analysis for Java should be portable as well.

In this paper we share our experiences developing a prototype performance measurement and analysis
system for Java. The system is built upon our robust TAU (Tuning and Analysis Utilities) performance
framework for scalable parallel and distributed computing. TAU has been designed to support performance
analysis for a general model of parallel computation. It provides portable measurement interfaces and
services, flexible instrumentation, the ability to observe multiple software layers and levels of execution,
and certain provisions for mixed-language programming. However, in all of these areas, TAU had to be
extended in new ways to accommodate Java software features and the hybrid execution model it imposes.
This experience has been valuable in that we believe such characteristics will be more the norm in the
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future and the techniques we developed will, hopefully, contribute to the repertoire of methods applied to
these new performance technology challenges.

In the following section, we briefly describe the TAU framework and the general computation model it
supports. We decided to focus our attention on a (cluster-oriented) style of high-performance computing
that uses Java multi-threading for shared memory parallel computing on a symmetric multiprocessing
(SMP) node and MPI message passing for communications between distributed nodes. Although not a
comprehensive coverage of HPC Java environments, we feel this style of multi-level parallel Java
programming is representative of current trends. In Sections 3, 4, and 5, we describe how the TAU
framework has been adapted for this model. Following these sections, we show examples of performance
analysis for a parallel Java application, highlighting the ability to capture performance information across
execution levels and at different levels of parallelism. Section 7 addresses the issue of instrumentation
overhead and quantifies the costs of TAU measurements. In Section 8, we give conclusions and thoughts
for future directions.

2.  The TAU Performance Framework

The TAU performance framework [9] provides robust technology for performance instrumentation,
measurement, and analysis for complex parallel systems [5]. It targets a general computation model
initially proposed by the HPC++ consortium [3]. This model consists of shared-memorynodes where
contexts reside, each providing a virtual address space shared by multiplethreads of execution. The model
is general enough to apply to many high-performance scalable parallel systems and programming
paradigms. Because TAU enables performance information to be captured at the node/context/thread
levels, this information can be flexibly mapped to the particular parallel software and system execution
platform under consideration.

TAU supports a flexible instrumentation model that allows access to a measurement API at several stages
of program compilation and execution. The instrumentation identifies code segments, provides for
mapping of low-level execution events to high-level computation entities, and works with multi-threaded
and message passing parallel execution models. It interfaces with the TAU measurement model that can
capture data for function, method, basic block, and statement execution. Profiling and tracing form the two
measurement choices that TAU provides. Performance experiments can be composed from different
measurement modules, including ones that access hardware performance monitors. The TAU data analysis
and presentation utilities are open, offering text-based and graphical tools to visualize the performance
data as well as bridges to third-party software, such as Vampir [8] for sophisticated trace analysis and
visualization.

3.  Performance Instrumentation for Java

Scientific applications written in Java are often implemented using a combination of languages such as
Java, C++, C and Fortran. While this defies the pure-Java paradigm, it is often necessary, as numerical,
system, and communication libraries may not be available in Java and compiled native version can offer
significant performance improvements. Analyzing such hybrid multi-language programs requires an
instrumentation strategy that leverages instrumentation alternatives and APIs at several levels of
compilation, linking, and execution. To illustrate this point, we consider instrumentation mechanisms
employed for profiling and tracing Java programs that communicate with each other using the Message
Passing Interface [6].

While there are several projects that address a message communication interface for Java, we considered
mpiJava [1]. mpiJava is an object-oriented interface to MPI that allows a Java program to access MPI
entities such as objects, routines, and constants. While its API is implemented in a pure Java form, mpiJava



relies on the existence of native MPI libraries; the API is implemented as a Java wrapper package that uses
C bindings for MPI routines.1 When a Java application creates an object of the MPI class, mpiJava loads a
native dynamic shared object (libmpijava.so) in the address space of the Java Virtual Machine (JVM). This
Java package is layered atop the native MPI library using the Java Native Interface (JNI) [10]. There is a
one-to-one mapping between the Java methods and the C routines. Applications are invoked using a script
file prunjava that calls thempirun application for distributing the program to one or more nodes.

The Java execution environment with mpiJava poses several challenges to a performance tool developer.
The performance model implemented by the tool must embed the hybrid-execution model of the system
where multiple Java threads within a virtual machine and multiple MPI (native) processes execute
concurrently. Performance data should be collected to highlight the different execution modes and the
inter-relationship of the software layers. However, we want the instrumentation inserted in the application,
virtual machine, and libraries to gather performance data in a uniform and consistent manner across
different levels and language interfaces. This involves maintaining a common performance database for
multiple sources of performance data within a context of execution. Events such as routine transitions,
inter-task message communication and user defined events that occur at different locations can then be
treated uniformly by the performance instrumentation when a core common API for performance
instrumentation is used.

Below, we present our multi-level instrumentation approach for this parallel Java system using the TAU
performance framework. TAU applies instrumentation at both the Java virtual machine level and the MPI
library level to capture performance data and associate performance events.

4.  Performance Instrumentation with JVMPI

Java 2 (JDK1.2+) incorporates the Java Virtual Machine Profiler Interface (JVMPI) [11]. JVMPI provides
profiling hooks into the virtual machine and allows a profiler agent to instrument the Java application
without any changes to the source code, bytecode, or the executable code of the JVM. JVMPI provides a
wide range of events that it can notify to the agent, including method entry and exit, memory allocation,
garbage collection, and thread start and stop; see the Java 2 reference for more information. When the
profiler agent is loaded in memory, it registers the events of interest and the address of a callback routine to
the virtual machine using JVMPI. When an event takes place, the virtual machine thread generating the
event calls the profiler agent callback routine with a data structure that contains event specific information.
The profiling agent can then use JVMPI to get more detailed information regarding the state of the system
and where the event occurred.

In Figure 1, we consider a single context of a distributed parallel MPI Java program. At start-up, the Java
program loads the mpiJava package as a shared object and the JVM loads the TAU performance
measurement library as a shared object, which acts as a JVMPI profiling agent. A two-way function call
interface between the JVM and the TAU profiler agent is established. The JVM notifies TAU of events and
TAU can, in turn, obtain information about and control the behavior of the virtual machine threads using
the JVMPI thread primitives (e.g., for mutual exclusion).

When the TAU agent is loaded in the JVM as a shared object, a TAU initialization routine is invoked. It
stores the identity of the virtual machine and requests the JVM to notify it when a thread starts or ends, a
class is loaded in memory, a method entry or exit takes place, or the JVM shuts down. When a class is

1 In contrast, the reference implementation for MPJ [2], the Java Grande Forum’s MPI-like message-pass-
ing API, will rely heavily on RMI and Jini for finding computational resources, creating slave processes,
and handling failures, with user-level communication implemented efficiently directly on top of Java
sockets, not a native MPI library.



loaded, TAU examines the list of methods in the class and creates an association of the name of the method
and its signature, as embedded in the TAU object, with the method identifier obtained, using the TAU
Mapping API (see the TAU User’s Guide [12]). When a method entry takes place, TAU performs
measurements and correlates these to the TAU object corresponding to the method identifier that it receives
from JVMPI. When a thread is created, it creates a top-level routine that corresponds to the name of the
thread, so the lifetime of each user and system level thread can be tracked.

While performing measurements in a multi-threaded environment, TAU uses a common thread layer for
operations such as getting the thread identifier, locking and unlocking the performance database, getting
the number of concurrent threads, etc. This thread layer is used by the multiple instrumentation layers.
When a thread is created, TAU registers it with its thread module and assigns an integer identifier to it. It
stores this in a thread-local data structure using the JVMPI thread API described above. It invokes routines
from this API to implement mutual exclusion to maintain consistency of performance data. It is important
for the profiling agent to use the same thread interface as the virtual machine that executes the multi-
threaded Java applications. This allows TAU to lock and unlock performance data in the same way as
application level Java threads do with shared global application data. TAU maintains a per-thread
performance data structure that is updated when a method entry or exit takes place. Since this is maintained
on a per thread basis, it does not require mutual exclusion with other threads and is a low-overhead
scalable data structure. When a thread exits, TAU stores the performance data associated with the thread to
stable storage. When it receives a JVM shutdown event, it flushes the performance data for all running
threads to the disk.

5.  Performance Instrumentation with the MPI Profiling Interface

Given a means to capture Java-level execution events, we now consider MPI events. MPI provides an
interface [6] that allows a tool developer to intercept MPI calls in a portable manner without requiring a
vendor to supply proprietary source code of the library and without requiring the application source code
to be modified by the user. This is achieved by providing hooks into the native library with a name-shifted
interface and employing weak bindings. Hence, every MPI call can be accessed with its name shifted
interface as well. Library-level instrumentation can be implemented by defining a wrapper interposition
library layer that inserts instrumentation calls before and after calls to the native routines.

We developed a TAU MPI wrapper library that intercepts calls to the native library by defining routines
with the same name, such asMPI_Send. These routines then call the native library routines with the name
shifted routines, such asPMPI_Send. Wrapped around the call, before and after, is TAU performance
instrumentation. An added advantage of providing such a wrapper interface is that the profiling wrapper
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Figure 1.  TAU instrumentation for Java and the mpiJava package



library has access to not only the routine transitions, but also to the arguments passed to the native library.
This allows TAU to track the size of messages, identify message tags, or invoke other native library
routines. This scheme helps a performance tool track inter-process communication events. For example, it
is possible to track the sender and the size of a received message in completion of a wild-card receive call.
Whereas JVMPI-based instrumentation can notify the profiling agent of an event such as a mpiJava
method entry, it does not provide the agent with arguments that are passed to the methods. However, this
information can be obtained using the TAU MPI wrapper library.

There are two major problems that we face in instrumenting a hybrid system composed of MPI contexts
and Java threads within each context. The first involves how to expose the thread information to the MPI
interface. The second involves how to provide MPI context information to the Java interface. It is
necessary to address these problems so events can be tracked in the correct context and thread. To solve the
first problem we decided to have the TAU instrumentation access its runtime thread API layer within the
MPI wrapper. During configuration of TAU, both MPI and Java measurement modules are selected to be
configured in the TAU system. As shown in Figure 1, this lets the TAU library use JNI 1.2 routines to get
access to the Java virtual machine environment associated with the currently executing thread within the
JVM. It does so by using the virtual machine information stored by TAU when the in-process profiling
agent is loaded by the virtual machine during initialization, as described in the previous section. Using the
thread environment, the thread layer can invoke routines to access thread-local storage to access the current
thread identifier, and invoke mutual exclusion routines from the JVMPI interface to maintain consistency
of the performance data. This scheme allows events generated at the MPI or the Java layer to uniformly

Figure 2.  TAU’s profile browser RACY shows per thread performance data.



access the thread API.

To allow the Java instrumentation to access the correct node and context information, we instrument the
MPI_Init routine to store the rank of the MPI process in a globally accessible data structure. The TAU
instrumentation triggered by JVMPI event notification (see Figure 1) then accesses this MPI information in
the same manner as instrumentation requests from any layer from any language. By giving access to the
execution model information to all measurement and instrumentation modules in a well-defined, uniform
manner, the performance framework can be extended with a minimal effort to additional libraries and new
evolving execution models. A combination of instrumentation at multiple levels in TAU helps us solve the
hybrid execution model instrumentation problem.

6.  Performance Analysis for an Example Parallel Java Application

TAU supports both profiling and tracing performance analysis methodologies. Profiling presents the user
with summary statistics of performance metrics while tracing highlights the temporal aspect of
performance behavior, showing when and where events took place. To provide a sense of how TAU’s
capabilities can be applied to parallel Java applications, we present performance analysis of a mpiJava
benchmark application that simulates the game of Life. We use a simple application and run it on four
processors mainly for purposes of brevity and clarity in our discussion. However, it should be understood

Figure 3.  Vampir global timeline display shows activities and inter-thread message communication



that TAU’s capabilities can extend and scale in respect to the complexity and requirements of applications
and system environments, including larger numbers of Java contexts and processors.

In Figure 2, we see the profile of the mpiJava Life application obtained from TAU measurement,
implemented as described in the previous sections. It shows seven Java threads running on each node.
Notice that events across different levels and components of execution are being observed. Thread 4 in
each context is executing MPI calls for communication between the four processes. Of particular interest is
the well-known cascading behavior of the mpichMPI_Init routine seen in theMPI_Init profile window.
The performance of individual MPI routines is shown across each context and thread, as in theMPI_Init
profile window. A detailed performance profile for each thread can be displayed graphically and textually,
as shown in the two n,c,t 2,0,4 profile windows for (t)hread 4 in (c)ontext 0 on (n)ode 2. Some of the other
threads are performing background JVM and mpiJava module tasks that the application developer would
not directly see.

To observe dynamic performance behavior, TAU can also generate event traces that are visualized here
using a third-party commercial trace visualization program called Vampir [8]. Figure 3 illustrates how we
can group threads within a node and show inter-thread, inter-node message communication events as line
segments that connect the send and receive events within a global timeline. The user can zoom into
interesting portions of the timeline and can click on a message or a segment to get more detailed
information (e.g., the node where the events took place, the message tag, length, and bandwidth). Vampir
provides a rich set of views for exploring different aspects of performance behavior. In Figure 4, we see a
communication matrix display with nodes and threads along the rows and columns marking the senders
and receivers, and the color-coded values in the matrix that show the extent of inter-thread message
communication. Figure 5 shows a dynamic calltree on a selected thread. It shows the calling order of
routines annotated with performance metrics (inclusive, exclusive times, and number of calls). A user can
fold or unfold a segment of the tree to gain better insight. Figure 6 shows levels of nesting along a timeline
in each thread. Figure 4 shows a summary of performance data grouped in higher level semantic groups
(mpi, java, sun, and so forth) in the form of pie charts on a set of threads within each node. Each thread
could be an application or a virtual machine level thread.

Grouping performance data according to virtual machine and application level entities is not new. It has
been successfully demonstrated in Paradyn-J [7], a tool for detecting performance bottlenecks in
interpreted, just-in-time compiled Java programs, where data is separately grouped in two distinct trees

Figure 4.  Vampir global activity chart and communication matrix displays illustrate node and thread grouping.



(one for the application, and another for the virtual machine). This approach allows both application
developers as well as virtual machine developers to gain valuable information regarding the interaction
between the two groups. In contrast, as illustrated in the performance displays, TAU gathers performance
data from MPI and Java layers in a seamlessly integrated fashion, showing the precise thread where MPI
calls execute and allowing data to be grouped in two hierarchies according to nodes and threads and
semantic groups. While providing a set of displays for profiling and tracing data, we can see the need for
other customized, user-defined multi-dimensional displays that may show data in more effective ways. To
accomplish this, TAU provides an open, documented interface for accessing performance data that it
generates and illustrates with examples how a user could transform the data to commonly used
performance data formats.

7.  Performance Measurement Overhead

Software-based instrumentation schemes have a runtime overhead that intrudes on application execution,
possibly perturbing its performance [4]. It is impossible to completely eliminate this overhead, but it can
be quantified and its effects evaluated to some extent. Here we characterize overhead that TAU generates in

Figure 5.  Vampir dynamic calltree display on each thread shows the calling order annotated with performance metrics.



the execution of the Java application. Since TAU instrumentation is typically triggered at entry, exit, and
initialization of methods, we break up the overhead in these three categories. We also consider the
overhead when profiling is only enabled, and when profiling and tracing is selected.

As described earlier, TAU requires the use of JVMPI for performance measurement fro two reasons. First,
it gives a convenient mechanism for observing method entry/exit events and other JVM actions. Second,
even if an alternative instrumentation approach was used, such as directly in the Java source or in JNI-
linked libraries, JVMPI is the only current mechanism to obtain thread information and JVM state data. In
evaluating TAU overhead, we are concerned with both the absolute overhead as well as the relative
overhead in contrast to the JVMPI overhead. Although a full characterization of JVMPI overheads is
beyond the scope of this paper, our experience is that a JVMPI-enabled application (without any
performance measurement) can see significant performance delays. Because TAU executes native code in
the JVM address space, its efficiency should be high save for JVMPI interactions. If, in the future, the
JVMPI capabilities that TAU utilizes are offered by some other, more efficient means, the substantial
overhead of having JVMPI enabled may be avoided.

The experimental apparatus to quantify TAU measurement overhead is based on how classes are
instrumented. Java supports dynamic loading of class bytecode in the virtual machine during program
execution. This allows TAU to instrument only those classes that are loaded in the virtual machine, as
opposed to all the classes.   When a class is loaded, TAU examines the names of methods and creates
timers for each method. To determine this cost of instrumenting a class, we can divide the time for loading
a class by the number methods it contains to give an estimate of the fixed cost of method initialization. We
measure all costs in terms of elapsed wall-clock time obtained by the system callgettimeofday. In a
similar fashion, we measured overheads for method entry and method exit. All measurements take place
after JVMPI calls the TAU profiler agent. Here we consider the standard time measurement where profile
information is updated and trace data is optionally generated.

Table 1 shows the profiling overhead measurements in association with the overhead when tracing is also

Figure 6.  Vampir timeline display can show the depth of routine nesting of the callstack on a particular thread.



enabled. The overhead seen in this table does not include disk I/O for storing the profile information at the
end of the application or for saving per-thread trace buffers. We compute the cost of thegettimeofday
call on the system and compensate for it while measuring the overhead associated with method loading,
entry, and exit. The TAU overhead for each method is different and is influenced by the time spent looking
up the mapping table, string operations that depend upon the length of a method name, load on the system,
and other platform specific parameters. However, we can compute average costs and give an estimate for a
specific platform. From the table, we see that method loading costs 30.28 microseconds on the average,
and it costs 2.67 microseconds for method entry and 1.16 for method exit during profiling. The costs are a
little higher when we generate both profiles and event-traces. The measurements were made on a quad
Pentium III Xeon/550 MHz, 3GB RAM symmetric multiprocessor machine with the following software
environment:

• RedHat Linux 6.1 operating system with 2.3.40 Linux kernel,
• GNU gcc 2.95.2 C++ compiler that used the -O2 optimization flag, and
• Blackdown JDK 1.2.2 Java runtime environment (version Linux_JDK_RC3) that used the native

threads package and the Sunw JIT compiler.

TAU currently does not employ any means for compensating for the perturbation caused by the
instrumentation. General techniques for compensating for instrumentation perturbation are addressed in
[4].

8.  Conclusions

As more applications for parallel and distributed systems are developed using portable hierarchical
software frameworks, layered runtime modules, and multi-language software components, the
requirements for integrated portable performance analysis will grow more complex. In particular, it
becomes a challenge to observe performance events that occur throughout the software hierarchy and
across language components and then relate those events to high-level execution abstractions and
associated performance views.

Some of the challenges performance technologists face became apparent in our work with Java and its use
in a MPI-based parallel execution environment. The extensions we made to the TAU system for unifying
JVM versus native execution performance measurement, managing multi-level multi-threading, and
utilizing different instrumentation mechanisms for Java and MPI demonstrate TAU’s robust capabilities.

Table 1: TAU overhead for the parallel Java application Life

Operation
Mean

Overhead
(µsec)

Standard
Deviation

Samples
Range
(µsec)

Method
Loading

profiling 30.28 7.12 123 20.14 - 70.14

profiling & tracing 33.76  9.01 123 21.81 - 93.14

Method
Entry

profiling 2.67 2.01 12860 1.14 - 50.14

profiling & tracing 4.71 2.82 12860 3.14 - 190.14

Method
Exit

profiling 1.16 0.31 12860 0.14 - 15.14

profiling & tracing 2.85 1.29 12860 2.14 - 25.14



However, there are deficiencies still present that we are intending to address, such as completing our work
on a Java-level TAU API (see Figure 1) that will allow application events other than method calls and
returns to be monitored. In the future, we also expect that new techniques for Java code parallelization will
introduce new requirements for integrated performance instrumentation.
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