Performance Tools for Parallel Java Environments

Sameer Shende and Allen D. Malony?!
Department of Computer and Information Science, University of Oregon

{sameer,malony}@cs.uoregon.edu
http://www.cs.uoregon.edu

Abstract

Parallel Jaa ervironments present challenging problems for performance tools becausen’sf rdzh
language system and its multi4g execution platform combined with the igi@tion of natre-code
application libraries and parallel runtime sadte. In addition to the desire to pite rolust performance
measurement and analysis capabilities for the Janguage itself, the coupling of feifent softvare
execution contets under a uniform performance model needs careful considerationvobdents of
interest are obseed and hw cross-conte parallel &ecution information is lingd. This paper relates our
experience in gtending the AU performance system to a paralleldamwironment based on mpia We
describe the instrumentation model usedy lperformance measurements are made, and hdnead
incurred. A parallel da application simulating theagne of life is used to stothe performance systesn’
capabilities.

1. Introduction

With the nascent use of \da for high-performance parallel and disttidd computing comes the
requirements from application widopers and system managers for performance measurement and
analysis tools. These are notwneequirements, gen performance as a dominant concern and the
fundamental need for tools. Ratheéhe Jasa language efironment and he it is used for high-
performance computing pushes the state of performance technology iespects. First, theviaVirtual
Machine (JVM) presents a sophisticated shared memxegugon platform that is multi-threaded,
supports the mapping of udewvel threads to system threads, atojust-in-time (JIT) compilation and
dynamic loading of code modules, and irdeds with distribted systems middheare. Seeral of these
execution features are wefor performance tool research to considggcond, the ¥a Natve Interfice
(INI) opens up the va ewvironment, making intelanguage xecution possible. This is important taig
access to high-performance application and communication libratie# doing so it complicates the
ability to track consistently multidel interlanguage performancevents across dirent eecution
contts and to seamlessly iggate thosewents in local and global performancewse Lastly because
the Jaa language system is portable, tlagilities, tools, and inteates that support performance
measurement and analysis fovalahould be portable as well.

In this paper we share ouxperiences desloping a prototype performance measurement and analysis
system for J&a. The system isuilt upon our robst TAU (Tuning and Analysis Utilities) performance
framework for scalable parallel and distiifed computing. AU has been designed to support performance
analysis for a general model of parallel computation. Iviges portable measurement ingexs and
services, fleible instrumentation, the ability to obsermultiple softvare layers and \els of eecution,

and certain pnasions for mixed-language programming. Wever, in all of these areasAU had to be
extended in n& ways to accommodatewdasoftware features and thglirid execution model it imposes.
This experience has beeralable in that we bele such characteristics will be more the norm in the

1 This work was supported by the U.S. Department of Energy, DOE 2000 grant #DEFC0398ER259986.

future and the techniques wevalped will, hopefully contritute to the repertoire of methods applied to
these n& performance technology challenges.

In the folloving section, we briefly describe th& U framevork and the general computation model it
supports. W decided to focus our attention on a (clustéznted) style of high-performance computing
that uses Ja multi-threading for shared memory parallel computing on a symmetric multiprocessing
(SMP) node and MPI message passing for communications betweenutistnitndes. Although not a
comprehensie coerage of HPC Ja ewironments, we feel this style of multivel parallel Jea
programming is representati of current trends. In Sections 3, 4, and 5, we describethe TAU
framewvork has been adapted for this modellidwing these sections, we sih@xamples of performance
analysis for a parallel ya application, highlighting the ability to capture performance information across
execution leels and at dferent levels of parallelism. Section 7 addresses the issue of instrumentation
overhead and quantifies the costs AtJTmeasurements. In Section 8, weegtonclusions and thoughts

for future directions.

2. The TAU Performance Framework

The TAU performance franweork [9] provides rolust technology for performance instrumentation,
measurement, and analysis for compfmrallel systems [5]. It tgets a general computation model
initially proposed by the HPC++ consortium [3]. This model consists of shared-memdegwhere
conttsreside, each puiding a virtual address space shared by multimleadsof execution. The model

is general enough to apply to nyahigh-performance scalable parallel systems and programming
paradigms. BecauseAU enables performance information to be captured at the nodedtthmesad
levels, this information can be Ribly mapped to the particular parallel sofive and systemxecution
platform under consideration.

TAU supports a flable instrumentation model that alls access to a measurement API stk stages

of program compilation andxecution. The instrumentation identifies codersents, preides for
mapping of lav-level execution &ents to high-leel computation entities, andonks with multi-threaded
and message passing parallet@ition models. It inteates with the AU measurement model that can
capture data for function, method, basic block, and statemectition. Profiling and tracing form thedw
measurement choices thaAU provides. Performancexperiments can be composed fromfatiént
measurement modules, including ones that access &arg@rformance monitors. ThAT data analysis
and presentation utilities are openfeahg text-based and graphical tools to visualize the performance
data as well as bridges to third-party seafite; such as ampir [8] for sophisticated trace analysis and
visualization.

3. Performance Instrumentation for Java

Scientific applications written in Ja are often implemented using a combination of languages such as
Java, C++, C and értran. While this defies the purevdsparadigm, it is often necessaag numerical,
system, and communication libraries may not eElable in Jaa and compiled nate version can dér
significant performance impvements. Analyzing suchyhrid multi-language programs requires an
instrumentation strafly that leerages instrumentation alterna$ and APIs at seral levels of
compilation, linking, and »ecution. D illustrate this point, we consider instrumentation mechanisms
employed for profiling and tracing ¥a programs that communicate with each other using the Message
Passing Inteidice [6].

While there are seral projects that address a message communicatioraoeefdr Jea, we considered
mpiJava [1]. mpiJasa is an object-oriented intade to MPI that all@s a Jga program to access MPI
entities such as objects, routines, and constants. While its APl is implemented in agfwendampiJea

relies on thexdstence of natie MPI libraries; the API is implemented as valarrapper package that uses
C bindings for MPI routine$When a Jea application creates an object of the MPI class, mpiltads a
native dynamic shared object (libmpigso) in the address space of theadrtual Machine (JVM). This
Java package is layered atop the vatMPI library using the Ja Natve Interfice (INI) [10]. There is a
one-to-one mapping between thgalaethods and the C routines. Applications areki&d using a script
file prunjavathat calls thenpirunapplication for distribting the program to one or more nodes.

The J&a eecution emironment with mpiJea poses seral challenges to a performance toolaleper

The performance model implemented by the tool must embedytmiglfexecution model of the system
where multiple Jea threads within a virtual machine and multiple MPI (mgtiprocessesxecute
concurrently Performance data should be collected to highlight tHerdift eecution modes and the
inter-relationship of the softare layers. Haever, we want the instrumentation inserted in the application,
virtual machine, and libraries toather performance data in a uniform and consistent manner across
different lavels and language intades. This molves maintaining a common performance database for
multiple sources of performance data within a cxinté execution. Eents such as routine transitions,
inter-task message communication and user definedte that occur at dédrent locations can then be
treated uniformly by the performance instrumentation when a core common API for performance
instrumentation is used.

Below, we present our multidel instrumentation approach for this parallelalaystem using theAU
performance frameork. TAU applies instrumentation at both thedairtual machine kel and the MPI
library level to capture performance data and associate performess.e

4. Performance Instrumentation with JVMPI

Java 2 (JDK1.2+) incorporates thevaavirtual Machine Profiler Intesice (JVMPI) [11]. JVMPI praides
profiling hooks into the virtual machine and allba profiler agent to instrument thevdapplication
without ary changes to the source code, bytecode, orxéeugable code of the JVM. JVMPI pides a
wide range of eents that it can notify to the agent, including method entry gitdneemory allocation,
garbage collection, and thread start and stop; see #ae2Jeeference for more information. When the
profiler agent is loaded in memoiyregisters the wents of interest and the address of a callback routine to
the virtual machine using JVMPI. When arent tales place, the virtual machine thread generating the
event calls the profiler agent callback routine with a data structure that conamsgecific information.
The profiling agent can then use JVMPI to get more detailed informagardneg the state of the system
and where thewvent occurred.

In Figure 1, we consider a single coditef a distrituted parallel MPI Ja program. At start-up, thewda
program loads the mpMa package as a shared object and the JVM loads Akk performance
measurement library as a shared object, which acts as a JVMPI profiling agentwayvunction call
interface between the JVM and th&U profiler agent is established. The JVM notifiédJTof events and
TAU can, in turn, obtain information about and control the Wehaf the virtual machine threads using
the JVMPI thread primities (e.g., for mutualxelusion).

When the AU agent is loaded in the JVM as a shared objecAld ifitialization routine is imoked. It
stores the identity of the virtual machine and requests the JVM to notify it when a thread starts or ends, a
class is loaded in memorg method entry orxd takes place, or the JVM shutswio. When a class is

LIn contrast, the reference implementation for MPJ [2], the Java Grande Forum’s MPI-like message-pass-
ing API, will rely heavily on RMI and Jini for finding computational resources, creating slave processes,
and handling failures, with user-level communication implemented efficiently directly on top of Java
sockets, not a native MPI library.

JVM

TAU package

piJava package

INI' || MPI Profiling
event Interface
notificatio TAU TAU wrapper
JVMPI Native MPI library

profile DB
Figure 1. TAU instrumentation for Java and the mpiJava package

loaded, RU examines the list of methods in the class and creates an association of the name of the method
and its signature, as embedded in tidJTobject, with the method identifier obtained, using th&JT
Mapping API (see the AU Users Guide [12]). When a method entry ¢akplace, AU performs
measurements and correlates these toAédbject corresponding to the method identifier that it vesei

from JVMPI. When a thread is created, it creates a togl-teutine that corresponds to the name of the
thread, so the lifetime of each user and syste®rl tAread can be traeH.

While performing measurements in a multi-threadedrenment, AU uses a common thread layer for
operations such as getting the thread identifieking and unlocking the performance database, getting
the number of concurrent threads, etc. This thread layer is used by the multiple instrumentation layers.
When a thread is createdjU registers it with its thread module and assigns amgert@entifier to it. It
stores this in a thread-local data structure using the JVMPI thread API describedlaimeokes routines

from this API to implement mutuakelusion to maintain consistenof performance data. It is important

for the profiling agent to use the same thread iaterfas the virtual machine thateeutes the multi-
threaded Ja applications. This ales TAU to lock and unlock performance data in the samg as
application leel Java threads do with shared global application da#&lU Tmaintains a pethread
performance data structure that is updated when a method entitytakes place. Since this is maintained
on a per thread basis, it does not require mutkelusion with other threads and is awvloverhead
scalable data structure. When a thredatseTAU stores the performance data associated with the thread to
stable storage. When it reces a JVM shutden event, it flushes the performance data for all running
threads to the disk.

5. Rerformance Instrumentation with the MPI Profiling Interface

Given a means to capturevddevel execution @ents, we ne consider MPI eents. MPI preides an
interface [6] that allws a tool deeloper to intercept MPI calls in a portable manner without requiring a
vendor to supply proprietary source code of the library and without requiring the application source code
to be modified by the userhis is achieed by preiding hooks into the nate library with a name-shifted
interface and emplong weak bindings. Henceyvery MPI call can be accessed with its name shifted
interface as well. Library-keel instrumentation can be implemented by defining a wrapper interposition
library layer that inserts instrumentation calls before and after calls to the raitines.

We developed a AU MPI wrapper library that intercepts calls to the vatibrary by defining routines
with the same name, suchM®|_Send These routines then call the ratlibrary routines with the name
shifted routines, such @&MPI_Send Wrapped around the call, before and afterTAU performance

instrumentation. An added aaivage of praiding such a wrapper intex€e is that the profiling wrapper

library has access to not only the routine transitionsalso to the guments passed to the watilibrary
This allovs TAU to track the size of messages, identify message tagsyakeitther natie library
routines. This scheme helps a performance tool trackpnbeess communicatiovents. r example, it
is possible to track the sender and the size of avetenessage in completion of a wild-card reeeiall.
Whereas JVMPI-based instrumentation can notify the profiling agent ofeart such as a mpia
method entryit does not prade the agent with guments that are passed to the methodsexer, this
information can be obtained using th&UrMPI wrapper library

There are tw major problems that wade in instrumenting aybrid system composed of MPI coxte

and Jsa threads within each comte The first ivolves hav to expose the thread information to the MPI
interface. The second valves hev to provide MPI contet information to the Ja interfce. It is
necessary to address these problemseiate can be traekl in the correct comteand thread. @ sole the

first problem we decided to ¥®athe AU instrumentation access its runtime thread API layer within the
MPI1 wrapper During configuration of AU, both MPI and Ja measurement modules are selected to be
configured in the AU system. As shen in Figure 1, this lets theAU library use JNI 1.2 routines to get
access to the va virtual machine aronment associated with the currentkeeuting thread within the
JVM. It does so by using the virtual machine information storedAly When the in-process profiling
agent is loaded by the virtual machine during initialization, as described in theugreection. Using the
thread ewironment, the thread layer cawvake routines to access thread-local storage to access the current
thread identifierand ivoke mutual &clusion routines from the JVMPI intade to maintain consistgnc

of the performance data. This schemevedl@/ents generated at the MPI or thealéayer to uniformly

#subrs

usec/call name

38534 MPT Sandrecv()

) VInputstrean;) v

lass (Ljava/lang/String;)Lijava/lar

sued pEnCormection (Ljawa/net/URL;)Ljave

MPI_InitQ) &1 ey e

1725 mean
nct000|l Hle vaue Onter Mode Help |
File Configure Help ne.t001 ;\!
- n,c,t 00,2 nct204 -
(T T nct003]1 4606% [|MPI_Sendrecv()
e e i 2361.0 R n.c,1 0,0,4|| 38.27% [MPI_Init()

n,c,t 00,5 1.55% [] java/lang/ClassLoader$NativeLibra
nct000 n,c,t 0,086 1.00% || mpi/MPI Init ([Ljava/lang/String;)[L
netoot[] n,c,t 1,00 0.85% | java/lang/ClassLoader defineClas:
n,c,t0,0,2 nec,t 10,1 0.33% | MPI_Finalize()
nct0,03 n,c,t 1,02 0.30% | Life main ([Ljava/lang/String;)V
nect 0,04 [ne,t 1,03 0.27% | THREAD=main; THREAD GROUP=
netops[1] 15880 n.c,t 104 0.23% | java/util/Properties load (Ljavafio/
netoosl] n,c,t 1,05 0.21% | java/lang/ClassLoader findBootstt
nct100FE 1 nct1086 0.20% |MPI_Recv()

n,c,t 1,01 n,c,t2,0,0 0.19% | sun/net'www/protocol/file’Handler
net102 n,c,t20,1 0.19% | java/io/UnixFileSystem normalize
nct103 n,c,t 202 0.18% | sun/misc/URLClassPath getLoade
not10/4 [N B nct203 0.16% | sun/misc/URL ClassPathSFilsLoads
net105] 8325 nct204 0.16% | sun’net/www/protocol/file/Handler
net106 1] n,c,t205 0.16% | java/lang/String charAt ()C

net200 TR n,c,t2086 0.16% | java/lang/String getBytes (Lsun/ic
net201] n,c,t 3,00 0 15% | iavasio/LInixFilaSvstem aetRanlea’ £
n,e1202 net301 5 i
nct203 nc,t 3,02 Www
net20/ W nct303

net205 0] 484nct304 7

nec,t208] liz i\z 1 ~

Figure 2. TAU's profile browser RACY shows per thread performance data.

access the thread API.

To allov the J&a instrumentation to access the correct node andxtanfermation, we instrument the
MPI_Init routine to store the rank of the MPI process in a globally accessible data structurdUrhe T
instrumentation triggered by JVMP¥ent notification (see Figure 1) then accesses this MPI information in
the same manner as instrumentation requests frgnagar from agy language. By ging access to the
execution model information to all measurement and instrumentation modules in a well-defined, uniform
manney the performance fram®rk can be etended with a minimal &rt to additional libraries and ne
evolving execution models. A combination of instrumentation at multiptelfein TAU helps us sok the

hybrid execution model instrumentation problem.

6. Rerformance Analysis 6r an Example Rarallel Java Application

TAU supports both profiling and tracing performance analysis methodologies. Profiling presents the user
with summary statistics of performance metrics while tracing highlights the temporal aspect of
performance belvior, shaving when and wherevents took place. d pravide a sense of ko TAU'S
capabilities can be applied to paralleVaapplications, we present performance analysis of a wapiJa
benchmark application that simulates tlang of Life. V@ use a simple application and run it on four
processors mainly for purposes of\btg and clarity in our discussion. Maver, it should be understood

34155 342s . :
LYY MTHREAD=JYM - MainThread; THREAD GROUP=3ystem ![HREAD
P WTHREAD=S1GQUIT handler; THREAD GROUP=system fl‘:f
e Process 2 mlife
Process 3 i
Process 4
Process 5
Process 6
H Process 0
3 Process 1
e Process 2
Process 3
Process 4
Process 5
Process 6

Process 3
Process 4
Process 5
Process 6

3 Process 1
e Process 2
Process 3
[Z (Y- WMP|_Sendrecy()
Process 5
Process 6

Figure 3. Vampir global timeline display shows activities and inter-thread message communication

that TAU’s capabilities canx¢éend and scale in respect to the comipyeand requirements of applications
and system afironments, including lger numbers of Ja contats and processors.

In Figure 2, we see the profile of the mpalaLife application obtained fromAU measurement,
implemented as described in the jioeis sections. It slhws seen Jaa threads running on each node.
Notice that gents across dérent levels and components okexution are being obsed. Thread 4 in

each contet is executing MPI calls for communication between the four processes. Of particular interest is
the well-knavn cascading bekir of the mpichMPI_Init routine seen in thMPI_Init profile window.

The performance of indidual MPI routines is shvan across each comteand thread, as in tHdPI_Init

profile window. A detailed performance profile for each thread can be displayed graphicallyxiaadyte

as shwn in the two n,c,t 2,0,4 pofile windows for ¢)hread 4 in §)ontext 0 on g)ode 2. Some of the other
threads are performing background JVM and nyaiJaodule tasks that the applicatiorveleper vould

not directly see.

To obsere dynamic performance behar, TAU can also generatevent traces that are visualized here
using a third-party commercial trace visualization program caléedp¥ [8]. Figure 3 illustrates howe
can group threads within a node andvshaterthread, intemode message communicatioreets as line
sgments that connect the send and rece@ents within a global timeline. The user can zoom into
interesting portions of the timeline and can click on a message ognaeseto get more detailed
information (e.g., the node where thesits took place, the message tag, length, and bandwiditn)pik/
provides a rich set of vies for exploring different aspects of performance baba In Figure 4, we see a
communication matrix display with nodes and threads along the aad columns marking the senders
and receiers, and the colecoded walues in the matrix that shwthe etent of interthread message
communication. Figure 5 stws a dynamic calltree on a selected thread. ltvshihe calling order of
routines annotated with performance metrics (ineysixclusive times, and number of calls). A user can
fold or unfold a sgment of the tree toain better insight. Figure 6 shie levels of nesting along a timeline
in each thread. Figure 4 sh® a summary of performance data grouped in higlvel Bemantic groups
(mpi, java, sun, and so forth) in the form of pie charts on a set of threads within each node. Each thread
could be an application or a virtual machineslghread.

{=| VAMPIB - Global Activity Chart ==

life22x6.pv: Global Activity Chart (0.0 s-5.117 5)
Node 0 B |DLE

(/T\\ = java

YYYry

mpi
Process 0 Process 1 Process 2 Process 3 Process 4 Process § Process B B Ta’l‘?EAD
100% 100% 100% 100% 100% 100% 100%

& O

—
Process 0 Process 1 Process 2 Process 3 Process 4 Process § Process 6
100% 100% 100% 100% 100% 100% 100%

{Fode 2

P N

& &

4 4
Process 0 Process 1 Process 2 Process 3 Process 4 Process § Process B

100% 100% 100% 100% 100% 100% 100%
{Node 3 /]\ /r

¢ O

— 7

|i ProcessD Process 1 Process 2 Process 3 Process 4 Process § Process B
100% 100% 100% 100% 100% 100% 100%

o) iss| i] 100

SHESRUERRESRES

Figure 4. Vampir global activity chart and communication matrix displays illustrate node and thread grouping.

Grouping performance data according to virtual machine and applicatiglrelgtities is not ne. It has
been successfully demonstrated iardlyn-J [7], a tool for detecting performance bottlenecks in
interpreted, just-in-time compiled\daprograms, where data is separately grouped ondigtinct trees

==§ VAMPIR — Calf Tree Node | 4 in §E£§
life22x6.py: Call Tree Hode 14 = 1

—>mpi/MPI <clinit> {1 : 39.954 ms) ... A
—>mpi/MPI Init (1 : 1.803 s)
> java/lang/Classloader findNative (2 : 0,587 ms) ...
>mpi/MPI InitNative (1 : 1.718 s)
>MPI_Init{) (1 : 1.707 s)

>MPI_Keyval_create{) (1 : 0.29 ms)
>MPI_Type_contiguous{(} (6 : 26,0 ps)
PMPI_Type_commit(} (11 : 37,0 ps)
>MPI_Type_struct() (5 : 46,0 ps)
>MPI_Errhandler_set{} (4 : 18,0 us)
SMPI_Attr_put() (8 : 34.0 ps)
—> java/lang/ClassLoader loadClass (10 : 48,846 ms)
—>sun/misc/Launcher$AppClassLoader loadClass (22 : 0,358 ms)
L—){fva/lang/String lastIndexOf (11 : 0,145 ms)
> java/lang/String lastIndexOf (11 : 39.0 ps)
—> java/lang/Classloader findLoadedClass (11 : 0.123 ms)
—> java/lang/Classloader loadClass {11 : 7.731 ms)
> javaslang/ClasslLoader findLoadedClass (11 : 85.0 us)
){fua/lannglassLoader findBootstrapClass (11 : 3,003 ms)
){fvaflang/String dinit> (6 : 0,163 ms)
> java/lang/System arraycopy (6 : 51.0 ps)
> java/net/URLClassloader findClass (6 : 4,097 ms)
> java/net/URLClassloader$l <init> {6 : 17.0 ps)
—> java/security/AccessController doPrivileged (6 : 3.774 ms)
—> java/net/URLClassLoader$l run (6 : 3.0 ms)
—){fva/langfﬁtring replace (6 : 0,211 ms)
> java/lang/String <init> (6 : 19,0 ps)
> java/lang/String concat (6 : 0,332 ms)
—){fvallang/String getChars (12 : 0,169 ms)
> javas/lang/System arraycopy (12 : 45.0 ups)
> java/lang/String <init> {6 : 15.0 ps)
—> java/net/URLClasslLoader access$%0 (6 : 14,0 us)
—>sun/misc/URLClassPath getResource (6 : 1.785 ms)
—>sun/misc/URLClassPath getloader (12 : 1.223 ms)
E)java/util/ﬁrragList size (12 1 27,0 ps)

>javasutil/Arraylist pet (6 : 85.0 ps)
»javasutil/Arraylist RangeCheck (6 : 18,0 us)
> javasutil/Stack pop (6 : 0,798 ms)
%:)java/util/Vector size (6 : 16,0 ps)
> javasutil/Stack peek (6 : 0,868 ms)
> javasutil/Vector size (6 : 40,0 ps) /

| Close| «| Search| »| Print| Fold/Unfold| _{ ASCII ® inclusive _i single win [smaller] larger| line 1983 (3864)|

Figure 5. Vampir dynamic calltree display on each thread shows the calling order annotated with performance metr

(one for the application, and another for the virtual machine). This approauws d&tih application
developers as well as virtual machineved®pers to gin valuable information igarding the interaction
between the tev groups. In contrast, as illustrated in the performance displaysgathers performance
data from MPI and Ja layers in a seamlessly igtated &shion, shwing the precise thread where MPI
calls xecute and allwing data to be grouped in dwhierarchies according to nodes and threads and
semantic groups. While primling a set of displays for profiling and tracing data, we can see the need for
other customized, useéefined multi-dimensional displays that maywstdata in more éctive ways. ©
accomplish this, AU provides an open, documented intexé for accessing performance data that it
generates and illustrates withxaenples hw a user could transform the data to commonly used
performance data formats.

7. Rerformance Measuement Owerhead
Software-based instrumentation schemegeha runtime werhead that intrudes on applicatioreeution,

possibly perturbing its performance [4]. It is impossible to completely eliminatevittibead, bt it can
be quantified and itsfefcts &aluated to somexéent. Here we characterizeerhead that AU generates in

the ecution of the Ja application. SinceAU instrumentation is typically triggered at enteyit, and
initialization of methods, we break up the&echead in these three ogteies. V¢ also consider the
overhead when profiling is only enabled, and when profiling and tracing is selected.

~life22x6.pv: Timeline Node14

Figure 6. Vampir timeline display can show the depth of routine nesting of the callstack on a particular thread.

As described earlielfAU requires the use of JVMPI for performance measurement frogmsons. First,

it gives a cowenient mechanism for observing method enkiy/events and other JVM actions. Second,
even if an alternatie instrumentation approachas used, such as directly in they@@ource or in JNI-
linked libraries, JVMPI is the only current mechanism to obtain thread information and JVM state data. In
evaluating AU overhead, we are concerned with both the absolutehead as well as the relati
overhead in contrast to the JVMPVeshead. Although a full characterization of JVMREerheads is
beyond the scope of this papesur perience is that a JVMPI-enabled application (withoug an
performance measurement) can see significant performance delays. Bédduesedutes natie code in
the JVM address space, itigency should be high s& for JVMPI interactions. If, in the future, the
JVMPI capabilities that AU utilizes are dered by some othemore eficient means, the substantial
overhead of hang JVMPI enabled may bevaided.

The e«perimental apparatus to quantiffAD measurement verhead is based on Wwoclasses are
instrumented. Ja supports dynamic loading of class bytecode in the virtual machine during program
execution. This allavs TAU to instrument only those classes that are loaded in the virtual machine, as
opposed to all the classes. When a class is loadddl,efamines the names of methods and creates
timers for each methodoTdetermine this cost of instrumenting a class, we cadeadihe time for loading

a class by the number methods it contains\te gh estimate of the &xl cost of method initialization. &V
measure all costs in terms of elapselwlock time obtained by the system ogdit t i neof day. In a
similar fashion, we measurederheads for method entry and methai. éAll measurements takplace

after JVMPI calls the AU profiler agent. Here we consider the standard time measurement where profile
information is updated and trace data is optionally generated.

Table 1 shws the profiling gerhead measurements in association with treeh@ad when tracing is also

enabled. Thewerhead seen in this table does not include disk I/O for storing the profile information at the
end of the application or forwag perthread trace uffers. We compute the cost of tlgeet t | neof day

call on the system and compensate for it while measuringviitbend associated with method loading,
entry, and it. The TAU overhead for each method isfdifent and is influenced by the time spent looking

up the mapping table, string operations that depend upon the length of a method name, load on the system,
and other platform specific parametersweeer, we can computevarage costs andwg an estimate for a
specific platform. From the table, we see that method loading costs 30.28 microsecondsveragjee a
and it costs 2.67 microseconds for method entry and 1.16 for metthaldieng profiling. The costs are a

little higher when we generate both profiles amdné-traces. The measurements were made on a quad
Pentium 11l Xeon/550 MHz, 3GB RAM symmetric multiprocessor machine with thewfiltp software
ervironment:

» RedHat Linux 6.1 operating system with 2.3.40 Linexniel,

* GNU gcc 2.95.2 C++ compiler that used the -O2 optimization flag, and

* Blackdovn JDK 1.2.2 Jea runtime ewronment (version Linux JDK RC3) that used the mati
threads package and the Sunw JIT compiler

Table 1: TAU overhead for the parallel Java application Life

. Mean Standard Range

Operation Ozfsrggf d Deviation Samples (usec)
Method | profiling 30.28 7.12 123 | 20.14 - 70.14
Loading | profiling & tracing 33.76 9.01 123| 21.81-93.14
Method | Profiling 2.67 2.01 12860| 1.14-50.14
Entry profiling & tracing 4.71 2.82 12860| 3.14 - 190.14
Method | Profiling 1.16 0.31 12860| 0.14 - 15.14
Exit profiling & tracing 2.85 1.29 12860| 2.14-25.14

TAU currently does not emploary means for compensating for the perturbation caused by the
instrumentation. General techniques for compensating for instrumentation perturbation are addressed in

[4].
8. Conclusions

As more applications for parallel and distribd systems are wddoped using portable hierarchical
software framwvorks, layered runtime modules, and multi-language swéwcomponents, the
requirements for ingrated portable performance analysis will gronore comple. In particulay it
becomes a challenge to obsemerformancevents that occur throughout the sadte hierarch and
across language components and then relate them®seto high-leel execution abstractions and
associated performance wig.

Some of the challenges performance technologsts hecame apparent in ouwsnw with Java and its use
in a MPI-based paralleikecution emironment. The xensions we made to théU system for unifying
JVM versus natie eecution performance measurement, managing muki-lenulti-threading, and
utilizing different instrumentation mechanisms fovaland MPI demonstrateAU’s rolust capabilities.

However, there are deficiencies still present that we are intending to address, such as completing our w
on a Jua-level TAU API (see Figure 1) that will aNe application gents other than method calls and
returns to be monitored. In the future, we alspeet that ne techniques for 3@ code parallelization will
introduce ne requirements for ingated performance instrumentation.

9. Refeences

[1] M. Baker, B. CarpenterG. Fox, S. Ko, and S. Lim. “mpiJaa: An Object-Oriented ¥a interface to
MPI,” Proc. International \&rkshop on Ja for Rarallel and Distribted Computing, IPPS/SPDP 1999,
April 1999.

[2] M. Baker, and B. CarpentefThoughts on the structure of an MPJ reference implementatioh,
1999, URL:http://www.npac.syredu/projects/pcrc/HPJa/mpiJaa.html

[3] HPC++ Working Group, “HPC++ White &pers), Technical Report TR 95633, Center for Research on
Parallel Computation, 1995.

[4] A. Malony, “Performance Obseability,” Ph.D. Dissertation, Unersity of Illinois, Urbana. ®ailable
as CSRD €chnical Report No. 1034, September 1990.

[5] A. Malony and S. Shende, “Performancechinology for CompleParallel and Distribted System,
Proc. Third Austrian-Hurarian Wrkshop on Distribted and Brallel Systems, BPSYS 2000, “Dis-
tributed and Brallel Systems: From Concepts to Applicatib(Eds. G. Kotsis and PKacsuk) to be
published by KluwerNorwell, MA, pp. 37-46, 2000. URlhttp://www.cs.uorgon.edu/research/para-
comp/tau/papers.html

[6] Message &ssing Intedice Brum, “MPI: A Message &sing Intedice Standardinternational Jour-
nal of Supercomputer Applications 8, 1994. Special issue on MPI. biRL:A/www.mpi-forum.og/
docs/mpi-11-html/node152.html#Nodel152

[7] T. Newhall, “Performance Measurement of Interpreted, JustirimeTcompiled, and Dynamically
Compiled Excutions, Ph.D. Dissertation, Urersity of Wisconsin, Madison, Aug. 1999. URhttp:/
www.cs.wisc.edu/~paradyn/

[8] Pallas GmbH, “\AMPIR - Visualization and Analysis of MPI Resouréd€98. URLhttp://www.pal-
las.de/pagesampithtml

[9] S. Shende, A. D. MalgnJ. Cusy, K. Lindlan, PBeckman, S. Karmesin, “Portable Profiling amecF
ing for Parallel Scientific Applications using C++", Proceedings of the SIGMETRICS Symposium on
Parallel and Distribted ols, pp. 134-145, @M, Aug 1998. URLhttp://www.cs.uorgon.edu/
research/paracomp/tau/papers.html.

[10]Sun Microsystems, “3a Natve Interfice’; Mar 2000, URL:http://java.sun.com/products/jdk/1.3/
docs/quide/jni/inde.html

[11]Sun Microsystems, “3a Virtual Machine Profiler Inteaice (JVMPI}, Dec. 1999. URLttp://
java.sun.com/products/jdk/1.3/docs/guide/jvmpi/jvmpi.htmi

[12]University of Orgon, “TAU Users Guidé€, Nov. 1999. URLhttp://www.cs.uorgon.edu/research/
paracomp/tau

