
Performance Tools for Parallel

Java Environments

Sameer Shende and Allen D. Malony

Department of Computer and Information Science,
University of Oregon

{sameer,malony}@cs.uoregon.edu

http://www.cs.uoregon.edu/research/paracomp/tau

Overview

❑ Parallel Java Environments

❑ TAU Performance Framework

❑ Performance Instrumentation

❍ Java Virtual Machine Profiler Interface

❍ MPI Profiling Interface

❍ Integration of multiple interfaces

❑ An Example

❑ Performance Measurement Overhead

❑ Conclusions

❑ Demonstration

Parallel Java Environments

❑ Java applications use MPI interface for IPC

❑ Implementation of mpiJava
[http://www.npac.syr.edu/projects/pcrc/HPJava/mpiJava.html]

❍ JNI

❍ C-Wrapper for MPI

❍ One-to-One mapping Java<->C MPI Interface

❑ Execution of Java bytecode

❍ Classic bytecode interpreter

❍ JIT Compiler

❍ HotSpot JVM

❑ Performance Analysis of Multi-Language Applications

TAU Performance Framework

❑ Tuning and Analysis Utilities (TAU)

❑ Execution Model: HPC++ Model of Computation

❍ Node

❍ Context

❍ Thread

❑ Multi-level instrumentation facility

❑ Modular measurement framework

❑ Multiple thread models

❑ Access to CPU Performance Counters (PAPI, PCL)

❑ Configurable performance profiling and tracing toolkit

Architecture of TAU

Performance Instrumentation

❑ Multi-language applications (Java, C++, C, Fortran)

❑ Hybrid execution models (Java threads, MPI)

❑ JNI/native Java implementations of MPI Java Interface

❍ Java Virtual Machine Profiler Interface (JVMPI)

❍ Java Native Interface (JNI)

❍ MPI Profiling Interlace

Java Vir tual Mac hine Pr ofiler Interface
(JVMPI)

❑ Profiling Hooks into the Virtual Machine

❑ In-process profiling agent instruments Java application

❑ No changes to the Java source code, bytecode, or the
executable code of the JVM

❑ Two-way call interface

❑ Profiler agent is a shared object (libTAU.so) loaded at
runtime

❑ Agent registers events to the JVMPI

❑ JVMPI notifies events to the agent at runtime

❑ Agent uses JNI to invoke JVMPI control routines
(mutual exclusion, etc.)

JVMPI Events

❑ Method transition events triggered at method entry and
exits

❑ Memory events triggered when an object is allocated,
moved, or deleted

❑ Heap arena events triggered when an arena is created
or destroyed

❑ Garbage collection start and finish events

❑ Loading and unloading in memory events for classes
and compiled methods

❑ JNI global and weak global reference allocation and
deallocation events

❑ Monitor events for contended Java and raw monitors
triggered when a thread attempts to enter, actually
enters, or exits a monitor that is accessed by more than
one thread

❑ Monitor wait events triggered when a thread is about to
wait or finishes waiting on an object

❑ Thread start and end events when a thread starts or
stops executing in the virtual machine

❑ Events that request a dump or resetting of the profiling
data gathered by the in-process profiling agent

❑ Virtual machine initialization and shutdown events

Agent JVMPI interaction

❑ create a daemon thread in the virtual machine

❑ enable or disable the notification of an event

❑ enable, disable or force a garbage collection in the
virtual machine

❑ obtain information regarding the current method call
stack trace for a given thread

❑ obtain the accumulated CPU time consumed by the
current thread

❑ obtain information about the object where a method
took place

❑ get or set a pointer-sized thread-local storage data
structure that can be used to record per-thread profiling
data

❑ create or destroy a raw monitor. Raw monitors are not
associated with Java objects and can be used by the
profiler agent to maintain consistency of multi-threaded
profiling data

❑ enter, exit or wait on a raw monitor for mutual exclusion.
It can also notify all threads that are waiting on a raw
monitor or specify a time-out period while waiting

❑ resume or suspend a thread

❑ exit the virtual machine

Integration of Multi-Level
Instrumentation APIs

❑ Common TAU database for multiple sources

Java ProgramJVM

JVMPI

mpiJava package

JNI

TAU wrapper

Native MPI library

 thread API

profile DB

TAU package

TAU

event
notification

MPI Profiling
Interface

Example: Game of Life

❑ Profiling

% prunjava 4 Life

% racy

Example

❑ Tracing: Visualization in Vampir [http://www.pallas.de]

% prunjava 4 Life

% tau_merge tautrace*.trc Life.trc

% tau_convert -vampir Life.trc tau.edf
Life.pv

% vampir Life.pv

Dynamic Call-tree Visualization

❑ Vampir displays TAU traces

Performance Measurement Overhead

❑ TAU instrumentation overhead in microseconds

Operation
Mean

Overhead
 (µsec)

Standard
Deviation

Samples Range (µsec)

Method
Loading

profiling 30.28 7.12 123 20.14 - 70.14

profiling & tracing 33.76 9.01 123 21.81 - 93.14

Method
Entry

profiling 2.67 2.01 12860 1.14 - 50.14

profiling & tracing 4.71 2.82 12860 3.14 - 190.14

Method
Exit

profiling 1.16 0.31 12860 0.14 - 15.14

profiling & tracing 2.85 1.29 12860 2.14 - 25.14

Conclusions

❑ Complex parallel and distributed computing
environment

❑ Need for observing performance events

❑ Requirements for an integrated portable performance
analysis environment

❑ Constraints imposed by the system

❑ Unified JVM vs. native execution performance
measurement

❑ TAU manages a multi-level, multi-threaded
performance instrumentation framework

❑ Integrates performance instrumentation

❑ TAU is available from:

❍ http://www.cs.uoregon.edu/research/paracomp/tau

❍ http://www.acl.lanl.gov/tau

