
2.Sampling over the
Ranks in each time
Step.

Sampling also reduces
Amt of data (but over
Diff. dimension).

9

 Scalable Online Parallel Performance Measurement Over a Cluster Monitor
TAU__________

Supermon
Advanced Computing Laboratory, Los Alamos National Laboratory

Performance Research Lab, University of Oregon

Introduction
Online or Real-time application performance monitoring allows tracking performance characteristics during execution as opposed to doing so post-mortem.
This opens up several possibilities otherwise unavailable such as real-time visualization and application performance steering. These enable adaptation and
control of long-running applications.
Two fundamental components that constitute an online application performance monitor are the measurement and transport systems. The former captures
performance metrics of individual contexts (processes, threads). The latter enables querying the parallel/distributed state from the different contexts. The
transport may also be used to control the measurement system. As HPC systems grow in size and complexity, the scalability and overhead of the online
performance monitor become increasingly important considerations.

Approach and Rationale
We adapt two existing, mature systems - Tuning and Analysis Utility (TAU) and Supermon - to solve the problem of scalable, low-overhead online
performance monitoring of parallel applications. TAU performs the role of the measurement system and is adapted to use Supermon as the transport from
which sinks query the distributed performance state. Alternate approaches could have been to use the traditional method of performance data transport,
namely using a network filesystem or to invent a new transport completely within TAU.
The rationale behind our current approach is as follows: i) Using a traditional transport incurs high overhead (as the graphs demonstrate), ii) Keeping the
transport outside TAU makes available a light-weight online transport to systems other than TAU (or even performance monitors) that want to use it, iii) No
new components are added to the system as a cluster-monitor is typically present already, iv) This allows close correlation between system-level information
(such as from the OS and hardware sensors) with application performance as the cluster-monitor already reports the former and v) Lastly, Supermon is light-
weight and scalable due to its hierarchical structure.

TAU over Supermon: Architecture

Supermon Cluster Monitor
Supermon is a scalable monitoring system for high performance computing systems. Its current implementation includes a set of socket-based servers that
gather and organize monitoring data based on symbolic expressions (s-exprs). Its architecture is hierarchical, that is, each node is treated as a leaf node in a
tree, while a series of data concentrators gather data from the nodes and transport it to a root. The root then provides data to clients.
The Supermon system consists of several components. A. Within the compute-node OS is a kernel-module that exports system-level parameters, locally, as
a file in the /proc psuedo-filesystem. B. On each compute node is the mon daemon. It reads the file under /proc and makes available the system-level
metrics as s-exprs over the network via TCP/IP. C. Mon also listens on a Unix Domain Socket locally accepting data from any other sources. This interface to
mon is called the monhole. D. On the service node(s), there is the supermon daemon. This talks to all the 'mon' daemons on the compute nodes and
queries and collects the data from them. This data includes the system-level parameters as well as data submitted through the monhole interface. Supermon
then makes this data available as another s-expression to any interested clients.

Adapting Supermon and TAU
Supermon: The Mon daemon provides the Unix Domain Socket based monhole interface for external sources to inject data. Due the monhole not having
been exercised much it had to be tested and bug-fixed before TAU could use it. Next its buffering characteristics needed to be made more flexible. Only a
simple and efficient 'replace-read' policy was available. This had several advantages - i) slow sinks will not cause infinitely large buffers to be maintained at
the mon daemon and ii) multiple sinks can query the data simultaneously without race conditions. But its cons include the problem of data-loss for even
transient slowdowns of sinks and bandwidth wastage when sink query rate becomes greater than data generation rate. Even a small configurable buffer can
alleviate the former, whereas a 'replace-drain' strategy when using a single client can remedy the latter. A runtime-configurable buffer strategy was put in
place. The repair mechanism for hierarchical topologies was also fixed.

TAU: TAU assumed the presence of an underlying transport (such as a network filesystem) as its data storage used the standard library's buffered file I/O
routines. We made the notion of 'transport' a first-class entity by creating a generic transport class. Then two concrete implementations of this transport class,
one for the default standard library-based file I/O and the other that used the monhole-interface underneath were created. The type and nature of the
transport being used is kept hidden from the rest of the TAU code-base. The type of transport can be fixed statically at compile-time or can be communicated
to the application via an environment variable at application startup. This framework also allows adding new custom transports to TAU in future.

Performance and Scalability
Experiment Configurations
We compare the performance of the NAS Parallel LU (Class B) application benchmark under different configurations, including: 1. vanilla un-
instrumented LU, 2. LU instrumented with TAU to generate post-mortem measurement data, 3. LU instrumented with TAU for online measurement
using NFS as the transport and 4. Online TAU instrumented-LU measurement over Supermon transport. Online measurement is performed at a
frequency of 1 Hertz. We repeat each of the runs over 16, 32 and 64 nodes to examine scalability. The Chiba City cluster from Argonne National
Lab, with Pentium III dual-CPU SMP Linux nodes running Ethernet, serves as our test environment.

Increasing Scalability Further
We outline three methods that are works-in-progress to further
improve the scalability of this system. The methods either try to reduce
the number of nodes touched per-query or try to reduce the data
generated per node per query.

1. Optimal Schedule
The entire suite of data provided by the cluster includes values that
vary over time at different scales. For example, values such as
temperature, fan behavior, and various system power voltages vary at
a much coarser grain than cpu utilization. If a user wishes to look at
both values, it is wasteful to repeatedly sample the coarse grain values
that change slowly over time while gathering other data. Therefore, by
applying a-priori knowledge of the variables to sample and the rates at
which they are relevantly changing, one can derive a sampling
schedule to gather exactly what data is changing at any given time.
For TAU data, only the measurements of those routines (/events) that
have changed since the last query will be returned.

2. Sampling Contexts
Instead of querying every node at every interval, we can sample the cluster-address space and the application namespace the MPI Ranks). When
such a 'sampled' query goes out to the mon-daemons, they can each first ask a 'sampler' if this query should be satisfied before replying. A default
sampler may reply TRUE with probability 'k*(1/N)' , where 'N' is the number of contexts (e.g. MPI Ranks) and 'k<=N' is a configurable constant.
Irrespective of the number of nodes in the system, this will bound, on average, the number of nodes touched per query. More sophisticated sampling
techniques can be applied.

Experimental Results
At left we plot the runtime of the LU benchmark under the different
configurations as processor count increases. In addition, plotted below is
the percentage of dilation observed over the un-instrumented LU.

The graphs clearly highlight the following:
1. Overhead of obtaining post-mortem Tau measurements is < 6%.
2. TAU overhead grows logarithmically over number of CPUS.
3. Overhead of online performance measurement/data-retrieval using NFS
grows super-linearly and is as high as 70%.
4. Overhead of online performance measurement/data-retrieval using
Supermon also shows logarithmic growth. It is also very close to the TAU
overhead, hence provides online measurement almost for free.
5. As CPU count grows, the savings obtained from Supermon transport
over NFS grows super-linearly.

3. Data Aggregation with Hierarchical Topology
Constructing the transport hierarchically (i.e. a tree) can improve
scalability. The leaves would be the actual mon daemons (and the
application contexts). But sending data loss-less over the tree will
simply lead to the total amount of data being magnified (every
internal node retransmits data again) - something we want to avoid.
Therefore some type of 'aggregation' is required to go along with
the hierarchical structure. The aggregation strategy may depend on
the level (or depth) of the internal node in the tree. A deep internal
node may find the average (or max, sum) of the data from its
children, but higher level internal-nodes may resort to loss-less
aggregation.

Future Work
We would like to pursue the below efforts in future:
1. Implement and evaluate strategies listed to improve scalability further.

2. Experiment on very large scale platforms such as BGL (already ported).

3. Implement measurement control using Supermon as a reverse channel from
sink to application.

4. Add new custom transports to TAU such as MRNet from University of
Wisconsin.

5. Correlate application performance with system-level metrics (e.g. sensors).

Conclusion
We have detailed recent work in creating a large-scale online application performance
monitor by using Supermon as the the underlying transport for the TAU system. The
rational behind our approach and the architecture of the system are both explained. Our
experimental results suggest that this strategy is far better than using a traditional NFS
as the transport both in terms of performance and scalability. We have also listed several
strategies we are experimenting with to improve scalability further.

Aroon Nataraj,

Allen Malony,

Alan Morris,

Sameer Shende,
Kevin Huck

{anataraj, malony, amorris, sameer,
khuck}@cs.uoregon.edu

Matt Sottile,

Ron Minnich

{matt, rminnich}@lanl.gov

TAU Parallel Performance System
TAU is an integrated toolkit for parallel performance instrumentation, measurement, analysis, and
visualization of large-scale parallel applications. TAU provides robust support for multi-threaded,
message passing, or mixed-mode programs. Multiple instrumentation options are available,
including automatic source instrumentation. The TAU measurement system supports parallel
profiling and tracing. It has been widely ported to many platforms and is used extensively by
parallel applications. TAU supports a online performance data retrieval API that allows the
application to store its performance state anytime during execution.

