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PERFORMANCE OBSERVABILITY

Allen Davis Malony, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1990
D. Reed, Advisor

Performance observability is the ability to accurately capture, analyze, and present (collectively
observe) information about the performance of a computer system. Advances in computer sys-
tems design, particularly with respect to parallel processing and supercomputers, have brought
a crisis in performance observation — computer systems technology is outpacing the tools to
understand the performance behavior of and to operate the machines near the high-end of
their performance range. In this thesis, we study the performance observability problem with
emphasis on the practical design, development, and use of tools for performance measurement,
analysis, and visualization.

Tools for performance observability must balance the need for performance data against the
cost of obtaining it (environment complexity and performance intrusion) — too little performance
data makes performance analysis difficult; too much data perturbs the measured system. We
discuss several methods for performance measurement concentrating specifically on mechanisms
for timing and tracing. We show how minor hardware and software modifications can enable
better measurement tools to be built and describe results from a prototype hardware-based
software monitor developed for the Intel iPSC/2 multiprocessor.

Any software performance measurement perturbs the measured system. We develop two
models of performance perturbation to understand the effects of instrumentation intrusion:
time-based and event-based. The time-based models use only measured time overheads of in-
strumentation to approximate actual execution time performance. We show that this model
can give accurate approximations for sequential execution and for parallel execution with inde-
pendent execution ordering. We use the event-based model to quantify the perturbation effects
of instrumentations of parallel executions with ordering dependencies. Our results show that
this model can be applied in practice to achieve accurate approximations. We also discuss the
limitations of the time-based and event-based models.

The potentially large volume of detailed performance data requires new approaches to pre-
sentation that can show both gross performance characteristics while allowing users to focus on
local performance behavior. We give several examples where performance visualization tech-
niques have been effectively applied, plus discuss the architecture and a prototype of a general
performance visualization environment.

Finally, we apply several of the performance measurement, analysis, and visualization tech-
niques to a practical study of performance cbservability on the Cray X-MP and Cray 2 super-
computers. Our results show that even modest improvements in the existing set of performance
tools for a particular machine can have significant benefits in performance evaluation capabili-
ties.
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Chapter 1

Introduction

Wisdom is the principal thing; therefore get wisdom, and with all thy getting, get
understanding.

— Proverbs, Chapter IV, Verse 7, “Old Testament®

The technology to design and build high-performance computer systems, combining advances
in architecture, hardware, systems software, and applications algorithms, is rapidly outpacing
the tools and technology to both understand the performance behavior of these systems and to
operate the machines near the high-end of their performance range. No known, general purpose
methods can predict the performance of a computer system. Moreover, for high-performance
systems, seemingly minor perturbations of the architecture, system software, or application
algorithms can induce large changes in performance behavior. In numerical analysis, such
problems are called ill-conditioned — small changes in the input z of a function f(z) yield
large changes in f(z) (i.e., f(z + €) # f(z)). Clearly, approximating f(z) by f(Z), by f(),
or by max, f(z), is dangerous, if not wrong. Yet, peak performance ratings in MIPS (millions
of instructions per second) or MFLOPS (millions of floating point operations per second) are
precisely such an approximation. Furthermore, these peak performance ratings obscure the
importance of interacting performance levels. Simply put, computer system performance is
the complex product of its component interactions — their frequency and their type. These
interactions often cannot be predicted, but they can be observed given the proper tools.

What combination of performance tools is appropriate for high-speed computer systems?

How do the architecture, hardware, and system software affect how performance data is col-



lected? What performance events can and cannot be observeii? How do the performance
evaluation tools affect the performance being measured? How should performante information
be conveyed to the performance analyst? At present, there exists no model of performance
observability for high-performance computer systems that can answer these questions. That
is, no formal approach exists to determine, given a performance evaluation problem, how to
accurately “observe” (capture, analyze, and visualize) system operation to produce the required

performance results.

1.1 A Performance Evaluation Crisis

In any field, experimental progress is inextricably coupled with technological advances; the lat-
ter provide the requisite tools to more accurately measure and analyze known phenomena and
to test hypotheses that predict the existence of heretofore undetected phenomena. Although
the scientific method’s systematic measurement and hypothesis testing is both appropriate
and desirable for computer system performance evaluation [51], during the last ten years, the
tremendous growth in computing power has been due to advances in component technology
(density and speed) and new computer architectures (RISC and multiprocessors), and not the
discovery of new insights into computing through advanced performance tools. Regrettably,
during this period, a complacency arose concerning the development of performance measure-
ment and analysis systems. The major reason for this was, of course, economic — there was
little or no commercial incentive for manufacturers to include such tools. As a result, with
the existence of extremely powerful computer systems there also is a dearth of experimental
performance tools for users interested in determining the most effective way of exploiting the
high-performance processing capabilities of these machines.

Many of the performance evaluation activities in this decade of computing power growth
were centered on choosing fair and appropriate metrics for computer comparison (i.e., bench-
marking). Although this work was important to the manufacturers for system marketing and
to the users for system procurement (and still is), it contained little technical contribution with
respect to systems design and application code tuning. For these latter purposes it is not as im-
portant to ask, "Who won?”; but "How did they win?” (the architecture, system software and
application code techniques used); and *Why did they win?” (an in-depth analysis of the inter-



action of the algorithm, architecture and system software that demonstrates why the techniques
used were successful). The pursuit of answers to the last two questions is greatly facilitated by
the inclusion of an integrated performance analysis and evaluation system as early as possible
in the design stage of a high-performance computer system. Moreover, as computers grow more
complex, it will be increasingly difficult to retrofit any system capable of yielding significant

performance information.

1.2 Performance Observability

Performance observability is the ability to accurately capture, analyze, and present (collectively
observe) information about the performance of a computer system. Tools for performance ob-
servability must balance the need for performance data against the cost of obtaining it (environ-
ment complexity and performance intrusion) — too little performance data makes performance
analysis difficult; too much data perturbs the measured system. The major goal of this thesis
is to understand the constraints on the design, development, and use of tools for performance
observation in each of these areas.

The complexity of computer systems, particularly parallel computer systems, makes a pri-
ori performance prediction difficult and experimental performance measurement crucial. A
complete characterization of software and hardware dynamics, needed to understand the per-
formance of high-speed viuachines, requires execution time performance instrumentation and
data collection. However, the efficient implementation of performance measurement systems
is non-trivial. In Chapter 2, we describe several approaches to performance measurement and
discuss requirements for future measurement systems. We present results from a prototype
hardware-based software monitor developed for the Intel iPSC/2 multiprocessor to emphasize
the problems of performance measurement.

Computer system performance evaluation is subject to the same instrumentation pitfalls
facing any experimental science, notably uncertainty and instrumentation perturbation. Instru-
-mentation, no matter how unobtrusive, introduces performance perturbations, and the degree
of perturbation is proportional to the fraction of the system state that is captured — volume
and accuracy are antithetical. Formal models of performance perturbation are needed that

permit quantitative evaluation of perturbations given instrumentation costs, measured event



frequency, and desired instrumentation detail. We develop two models of performance per-
turbation to understand the effects of instrumentation intrusion: time-based and event-based.
In Chapter 3, time-based models are used to approximate actual execution time performance
by removing measured time overheads of instrumentation. We show that this model can give
accurate approximations for sequential execution and for parallel execution with independent
execution ordering,

In Chapters 4 and 5, we use event-based models to quantify the perturbation effects of
instrumentations of parallel executions with ordering dependencies. Chapter 4 focuses on per-
formance perturbation of synchronization constructs. During perturbation analysis, the partial
ordering relationships of the original computation must be preserved. By applying the seman-
tics of the synchronization operators, these relationships can be maintained in the approximated
execution. However, the question still remains whether thie approximated execution, although
a “feasible” execution, is a “likely” execution of the original program. Chapter 5 examines
the question of approximation accuracy in the context of parallel loops. In particular, we con-
sider DOALL and DOACROSS loops. Although it is difficult to prove that the approximations
are likely, we present empirical evidence that shows accurate approximations car be achieved
in practice. The main conclusion drawn from Chapters 3, 4, and 5 is that a systematic ap-
plication of performance perturbation analysis techniques will allow more detailed, accurate
instrumentation than traditionally believed possible.

Even when the perturbations of a performance instrumentation environment are reduced to
acceptable levels, a computer system can quickly generate vast quantities of performance data.
This data must be presented in ways that emphasize important events while eliding irrelevant
details. The acceptance of scientific data visualization is testimony to the remarkable ability of
the human visual system to interpret and identify graphical data. Just as visual presentation of
scient*fi~ data can provide new insights, a performance visualization environment would permit
the performance analyst to explore and compare interesting data components by dynamically
interconnecting new performance displays and data analysis tools. In Chapter 6, we describe
several approaches to performance visualization, and discuss the architecture and a prototype
of a general performance visualization environment.

Finally, Chapter 8 concludes with a synopsis of what we have learned and directions for

future research.



Chapter 2

Performance Measurement

A person with one watch knows what time it is.
A person with two watches is never sure.

— Chinese proverb

Performance measurement is the foundation of performance observability. If an experiment
cannot be constructed, even in principle, to measure a phenomenon, it cannot operationally be
said to exist. If a phenomenon cannot be measured in practice, it cannot be observed. The
complexity of computer systems, particularly parallel computer systems, makes a priori per-
formance prediction difficult and experimental performance measurement crucial. A complete
characterization of software and hardware dynamics, needed to understand the performance of
high-speed machines, requires execution time performance instrumentation and data collection.

Despite the manifest need for dynamic performance instrumentation and data capture, their
efficient implementation is non-trivial. Instrumentation, no matter how unobtrusive, introduces
performance perturbations, and the degree of perturbation is proportional to the fraction of the
system state that is captured. Also, some systems are more conducive to instrumentation than
others. In addition to the measurement uncertainty resulting from instrumentation intrusion,
the hardware and software accessibility of performance events of interest will determine the
scope of realistic performance observation.

Ideally, computer systems would be designed to facilitate performance measurement. In ad-
dition to the hardware and software components needed for standard operation of a computer

system, a performance instrumentated computer would include additional resources for perfor-
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mance instrumentation and data collection [101, 102}; see Figure 2.1. Although these resources
could be added to a system after it has been designed and developed, such modifications will
become increasingly difficult as systems become more integrated and complex. Rather, a per-
formance instrumented computer promotes the goal of including performance instrumentation
and data collection as early as possible in the computer system hardware and software design.

Whereas we argue that performance instrumentation and data collection support should be
a main component of any high-performance computer system, the degree and type of support
depends on its intended purpose — the nature of the performance experiments to be conducted
defines the needed capabilities of the performance measurement system. Also, the economic
considerations cannot be overlooked. Although many measurement systems have been designed
and studied in a variety of contexts [49, 59, 60, 79, 94, 135, 167, 170, 171, 180)]), few exist
" on high-performance systems — the principal exception being the Cray X-MP and Y-MP
systems [107). In the past, there has been little commercial incentive for manufacturers to
include such facilities. However, with the advent of complex computing systems, which combine
advances in architecture, hardware, system software, and applications software to achieve high
performance, there is renewed interest in the development of performance measurement and
analysis capabilities to aid in improving the dismal ratio of the performance achieved by ordinary
users to the potential performance of the machine [129, 144).



Our goal in this chapter is to present some insights into the simple, though difficult, problem
of performance instrumentation and data collection, and to propose measurement techniques
that might have practical application. In §2.1, we begin with a discussion of the generl perfor-
mance measurement problem in the context of different performance observability requirements.
We describe a simple event-based model of performance measurement in §2.2 that will serve
as a reference for the remainder of the chapter. The timing of events is a fundamental form
of instrumentation that often is not well supported on high-performance systems. In §2.3, we
focus on the timing issue. Although performance data can take many forms, including samples,
counts, and running sums, event traces provide the greatest flexibility; given a trace, one can
compute counting and timing statistics, in addition to showing dynamic execution profiles. In
§2.4, we discuss issues that concern tracing as a general technique for software performance
measurement.

Although software recording of performance data suffices for low frequency events, capture
of detailed, high-frequency performance data ultimately requires hardware support if the per-
formance instrumentation is to remain efficient and unobtrusive. However, designing a machine
independent data capture system is exceedingly difficult — the variety of system interfaces
limits generality. Because message-based parallel systems typically lack both a global clock
for event timestamps and a common memory for event data buffering, they pose particularly
vexing, and interesting, instrumentation problems. Without hardware support, event trace
extraction either must compete with system and application programs for access to network
communication bandwidth, or the traces must be buffered locally in individual node memories,
limiting both trace size and application program memory. Given these problems, hardware
support for event data capture and recording is crucial to minimizing instrumentation pertur-
bations. But hardware data collection is not a panacea, since practical issues such as hardware
development and system accessibility must be considered. In §2.5, we present results from a
case study of performance instrumentation and data collection on the Intel iPSC/2 message

passing system.
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2.1 Performance Measurement and Observability

The appearance of any new computer system raises many questions about its performance, both
in absolute terms and in comparison to other machines of its class. Unfortunately, computer
systems are among the most complex of man’s creations, making satisfactory performance
characterization difficult. Despite this complexity, there are strong, indeed, almost irresistible,
incentives to quantify computer system performance using a single metric. The fallacy lies in
succumbing to such temptations — complete characterization of computer system performance
encompasses more than operations executed per second. Peak performance ratings in MIPS
(millions of instructions per second) or MFLOPS (millions of floating point operations per
second) obscure the importance of interacting performance levels and dynamic equilibrium.

As Figure 2.2 illustrates, there are four levels in the hierarchy of performance measurements.
The answer to the oft-asked question, “How fast is it?” depends on the intended use of the
performance data. At the lowest level lies the performance of the hardware design. Determining
this performance provides both a validation of and directives for the system software design.
Only by understanding the strengths and weaknesses of the hardware can system software de-

) signers develop an implementation and user interface that maximizes the fraction of the raw
hardware performance available to the end user. Given some characterization of the available
processing resources and the services provided by the system software, users can develop algo-
rithms that are best suited to the computer system’s capabilities. Finally, the best mix of key
algorithms will maximize the performance of user applications.



A complete performance characterization requires not only an analysis of the system’s con-
stituent levels, it also requires both static and dynamic characterizations. Static or average
behavior analysis may mask transients that dramatically alter system performance.! The his-
tory of virtual memory research offers a classic example of transient behavior and its impor-
tance. The slow drift model [41] predicted that program reference locality changed slowly.
Later, more detailed measurements showed that reference localities change swiftly and catas-
trophically. Most page faults and associated overhead occur in small time intervals, and a
phase-transition model more accurately reflects observed behavior.

A combination of static and dynamic characterizations is also needed to understand the in-
teraction between performance levels. Repeated studies have shown that a system’s performance
is maximized when the components are balanced (i.e., there is no single system bottleneck) [42)].
As an example, optimizing the performance of message passing systems [158] requires a judicious
combination of node computation speed, message transmission latency, and operating system
software, However, thege must be considered in the context of the applications running on the
machine — high speed processors connected by high latency communication links restrict the
classes of algorithms that can be efficiently supported.

Regardless of the performance level, performance characterization requires the specification
of the desired measurements and the implementation of instrumentation and data collection
mechanisms to carry out those measurements. Although computer system performance is in-
extricably tied to the performance of its constituent hardware and software levels, it is less
clear that performance instrumentation and data collection techniques for one level, or even
one system, are rarely applicable to other systems or other levels. As an exanple, Table 2.1
shows a subset of the important performance measurements for three levels (hardware, system
software, and algorithm) and three systems (the Cray X/MP, the University of Illinois Cedar
system [99], and the Intel iPSC/2 hypercube [10]). The diversity of underlying technology and
system architecture makes it difficult to develop a single set of performance instrumentation
techniques. Memory bank conflicts on the Cray X/MP have no analog on the distributed mem-
ory Intel iPSC/2. Moreover, the event time scales differ by six orders of magnitude. Similarly,

!By analogy, biological researchers have long recognised the importance of both in vitro and in vivo measure-
ments. Laboratory measurements of isolated cells or biological molecules often differ from similar measurements
in natural environments.



l Level l Cray X/MP | Tilinois Cedar [ Intel iP5C/2 ]

Hardware vector startup network contention processor speed
memory conflicts | vector/cache interaction | communication latency
u . and bandwidth
Software compiler compiler OS support
Algorithm vectorization shared memory access communication pattern

Table 2.1: Performance Level Comparison

the shared memory access patterns of Cedar application algorithms may cause interconnection
network conflicts, but these patterns are not predictors of performance degradation due to
network contention.

At all performance levels there exists a minimal set of required events that must be cap-
tured. Measurement of events should be enabled by signals to a hardware monitor, operating
system calls, or flags to a compiler preprocessor, for example. In addition to standard events,
certain others must be enabled selectively, either to minimize the performance perturbations of
instrumentation or to reduce the data volume to tractable levels. The next section describes a

simple model of performance measurement based on events.

2.2 Event-Based Performance Measurement Model

In order to measure the performance of a computer system, certain aspects of its behavior
must be made observable. A computer system’s operation can be regarded as a sequence of
aciions representing some significant physical or logical activity performed. In the context of
a program’s execution, an action might be an instruction in the program code or a routine. In
general, actions represent the computational aspects of a computation one wishes to observe.
The execution of an action generates an event — an encoded instance of an action. Events
are dynamic and each instance of an action defines a separate event. A performance mea-
surement can be viewed as the collection of a (possibly infinite) set of events. Each event in
the measurement indicates the action type (or identity), the time when the action occurred,
information about where the action occurred, and any additional data that further defines the

action state.
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Event-based models have been widely used to describe program behavior and to define
techniques for performance measurement [13, 14, 86, 141, 180]. For instance, the behavioral
abstraction approach by Bates [14] characterizes a system in terms of the observable effects
and interactions of system components as represented by a stream of characteristic atomic
behaviors (i.e., events). Using an event definition language [13], an event recognition tool can
interpret the stream of measured events that occur during execution and present the user with an
abstract view of the program’s behavior in terms of a sequence of hierarchically-defined events.
Snodgrass [181] also uses an event model as the basis of a relational approach to monitoring in
which an historical database formalizes the information processed by the monitor. The benefits
include a simple, consistent structure for the information, the use of powerful declarative query
languages, and the availability of a catalogue of optimizations. In this approach, the user
is presented with the conceptual view that the dynamic behavior of the monitored system is
available as a collection of historical relations, each associated with one or more actions in the
subject system.

However, before events can be analyzed, they must be detected and captured by some
monitoring system. If the event is physically-based (e.g., 8 memory access), a measurement
device consisting of software and/or hardware probes must be used to observe the correspond-
ing action. Higher-level, logical events would be defined from a combination of physical (or
“primitive” [119]) events. Any performance characterization can be accomplished by defining
a sufficiently sophisticated set of logical or physical events, E = {X,Y,...,Z}, and performing
two primitive measurements: i) how many times e occurs, n(e), and ii) how long e lasts, t(e),
where e € E.2 In practice, the specification of complex system states and the problems asso-
ciated with their detection necessitates measurement solutions that capture a large volume of
time-based event data (e.g., tracing) for later analysis.

The following sections discuss issues concerning event measurgment. In particular, we focus

on the problems of effective timing and tracing.

3The proof is based on modeling the entire system as a huge finite state machine where all possible system
states are represented as events. We assume proof by intimidation.
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2.3 Timing

The ability to record timing information, both instantaneous (when an event occurred) and
elapsed (the time between two events), is a fundamental performance measurement require-
ment of any computer system. Unfortunately, the technology commonly used to maintain and
access timing information has not evolved with advancements in computer system complexity,
particularly with respect to parallel systems. The standard UNIX timing approaches used for
the scheduling of system resources and multiprogramming are often considered good enough for
process-level time accounting. As the performance of computer systems increases due to faster
clock speeds and the ability to support multiple execution streams, the need for accurate timing
measurements can no longer be met by standard techniques. New approaches that emphasize
high-resolution, globally consistent timing measurements with low-overhead access at both the

user and operation system level must be developed.

2.3.1 Clocks and Timers

The support for timing measurements begins with the existence of a real-time clock (RTC).
Clearly, every computer system generates clock signals to drive the hardware components of the
machine. The real-time clock is commonly implemented as a binary counter that increments at
a specific rate defined by the frequency of some hardware clock signal. The clock signal driving
the RTC can be separate from or a derivative of another hardware clock signal. The main
purpose of the RTC is to establish a reference for timing measurements. The RTC may er may
not be accessible from software and may or may not be used directly for timing calculations.®
The RTC defines the resolution of timing measurements. That is, the elapsed time of any
performance phenomenon lasting shorter than one tick of the RTC cannot be measured and
the minimum measured time difference between any two events cannot be less than one RTC
period (excluding zero).

However, the RTC does not define timing accuracy. We define a timer to be different from
a clock (i.e., the real-time clock) in that a timer is used directly to make timing measurements.

The distinction is subtle but important [162]. Conceptually, a timer can measure the elapsed

3If the RTC is accessible from software, it will normally be implemented as a memory-mapped location in the
user or system address space.
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time between two successive events. The timer must detect the first event, then measure the
time until the second event occurs. It is the implementation of the timer that determines how
precisely the occurrence of the events is detected and, thus, how accurately the elapsed time
can be measured. Any timer will have the RTC as its fundamental time reference. However,
timing accuracy depends on the variability and magnitude of the costs of timer implementation.

2.3.2 Timer Implementation

All performance timing measurements are made by timers and not by clocks, but timers are
derived from clocks. Thus, the RTC defines timing resolution and, hence, the limits of timing
accuracy. We define software timers and hardware timers as timers used to measure software
and hardware events, respectively. In the discussion of timing implementation that follows, we
mainly focus on software timers. »

Software timers are typically implemented in the operating system for the purpose of mea-
suring process execution time. Two approaches have been developed: sampled process timing
and measured process timing. The UNIX operating system was originally designed to use sam-
pled process timing [163]). In this case, a hardware interval timer generates periodic “timer”
interrupts; normally, every 10 to 20 milliseconds. These interrupts cause various scheduling
decisions to occur as well as system and process resource utilization statistics to be computed.
Process timing statistics are commonly separated into user time (the time spent executing in
user mode) and system time (the time spent executing in system mode). With sampled process
timing, whatever mode the running process was in at the time of the interrupt, the correspond-
ing time is increased by the timer interrupt period. The process timing measurements are based
on sampling because the timer interrupt results in a sample being taken of the current process
state, and this state determines how the timing statistics are updated.

Because the timer interrupt signal serves as the clock base for process time calculations,
the resolution of sampled-based process timing is the timer interrupt period (e.g., 10 to 20
milliseconds). The accuracy is harder to determine because a process can change states several
times between timer interrupts, and can even be context switched off the machine before the
timer interrupt occurs. In the first case, adding the entire period to the time of the interrupted
execution mode (e.g., user mode) over-estimates this time while under-estimating the execution

time of the other mode (e.g., system mode); the error can be as much as an entire timer period.
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In the second case, the process is not accounted any of the time it was executing during the
timer interrupt period and the times are under-estimated; again, the exrror can be as great as a
single timer period.

The acceptability of sampled process t

e o

depends on the requirements of the performance
experiment. In general, however, as the clock speeds of the machines increase, finer resolution
and accuracy will be required in process timing measurements; thus, the timer interrupt period'
must correspondingly decrease. However, interrupt processing speeds might not scale the same
as processor speeds — context changes in operating systems can influence pipelining, cache
misses, and page faults [113]. Therefore, there will be resistance to increasing the timer interrupt
rate. Indeed, as processor execution speeds have increased 10 to 100 times in the last 10 years,
the timer interrupt periods for systems using sampled process timing have stayed roughly the
same — correspondingly, the relative accuracy of sampled timing measurements has decreased.

Measured process timing directly measures the time spent in different states of process
execution. A separate timer is logically maintained for each state of each process. A particular
process state timer is active only when the process is executing in that state. No timer interrupts
are generated for process timing* and, hence, no “artificial” state changes occur. Rather, process
state changes are identified by the operating system. At a process state transition, the elapsed
time that the current process state was active is added to that state time. Usually, timestamps
are taken from the RTC to establish when a process state begins and when it ends. The elapsed
time is easily computed as the difference between these two timestamps. Thus, the resolution
of the timing measurements is that of the RTC. The accuracy depends only on the overhead of
accessing the RTC and updating the timing statistics at process state transitions.

Measured process timing has clear advantages over the sampled approach. The natural
process state transitions are used to make timing measurements, thus avoiding the artificial
timer interrupts. The resolution and accuracy of measured process times are significantly
improved, and scale more cleanly with faster clock speeds. Although measured process timing
does require operating system instrumentation to capture process state transitions, it also allows
more distinction in process timing measurements; for instance, system execution time can be
refined and process idle time can be kept [118]. One drawback to measured process timing

is that the overhead for timing measurement increases as the frequency of state transitions

4 Timer interrupts can still occur for scheduling purposes, for instance.
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increase. However, efficient implementation of the simple timing calculations can help minimize
the overhead incurred.

Given the advantages of measured process timing, it is surprising that only recently has
it begun to gain acceptance. We conjecture that the need for operating system modification
is the principal reason measured process timing is not more prevalent than it is. However, as
the performance complexity of computer systems increase, especially as it relates to parallel
processing, we maintain that sampled process timing will be unacceptable for many performance

timing measurements.

2.3.3 User-Level Timing and Profiling

User-level timing measurements differ from process-level measurements because the events of
interest are defined with respect to user, not process, states. The most common user timing
measurement is the profiling of routine execution in programs. Basically, profiling measurements
produce statistics for each routine indicating the number of times a routine is called and the
amount of time spent executing code in a routine, including time spent in calls to other routines.
Counting measurements are trivially made by instrumentation inserted at the beginning of each
routine. Timing measurements, however, are more complicated.

The UNIX prof [17] and gprof [72] tools have become accepted standards for profiling mea-
surement. In keeping with standard UNIX process timing, the time accounting in these profiling
tools follows a sampled approach. Periodically (during the same timer interrupt used for sam-
pled process timing), the program counter (PC) is sampled by profiling code in the operating
system. A PC histogram for the program is kept that, at the end of the program’s execu-
tion, represents the frequency distribution of PC samples. Using the program’s load image and
knowledge of the PC sampling period, the profiling analysis tools calculate the time spent in
each routine as the number of PC samples in a routine’s code range times the sampling period.
Thus, the profile time measurement assumes the routine associated with a sampled PC value
was executing for the entire sample period.

Sampled profile measurements generate statistical approximations to actual execution time
profiles. The resolution and accuracy of the time profiles suffer from the same problems as
sampled process timing. Because many routine transitions can occur during a sample period,

the potential for timing errors is significant [165]. This will become even more serious as
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the machine speeds increase. However, profiling is often used to show relative execution time
distribution. As such, errors of a few percent might not be important. Furthermore, from
results of statistical sampling, as the program execution time increases, so will the accuracy of
the sampled profiling measurements.®

As with measured process timing, profile times can also be measured. In this case, times-
tamps of entry and exit from routines are dynamically kept during execution, and routine times
are updated at routine transitions. Timing resolution and accuracy are greatly improved over
sampled profiling, but time measurement overheads (particularly to access the user execution
timer normally kept by the operating system) can result in observable program slowdown when
the routine calling frequency is high. Although sample profiling is more common, there have
been profilers developed using a time measured approach [28].

Any advantages of measured profiling are arguably minor given the way profiling statistics
are commonly used. Instead, we described the measured time approach to highlight a more
problematic user-level timing measurement. Quite often, a performance analyst will want to
time a section of code, which may or may not be a routine. Although some version of PC
mapping might be applied to compute a sampled-based time measurement of the code section,
if the actual elapsed time is on the order of the sample period, large timing errors could result.
In part, this is a sampling error problem, but it is also a timing resolution problem. A measured
time approach can solve the first problem, but the second must rely on measured process timing
with support for low-overhead user-level timer access.

User-level timing in UNIX is mainly done through system calls that return the current
value of process user time. Because the process user timer advances only when the process is
executing in user mode, we can think of the timer as defining a virtual time reference as opposed
to the real time reference of the RTC. Timestamps from this virtual time domain are used to
make user-lt;vel timing measurements. However, if the process time is updated by sampling,
user-level timing resolution is limited by the sampling period (e.g., 10 to 20 milliseconds). For

many usger-level timing needs, a resolution of 10 to 20 milliseconds is insufficient. Often code

SRemarkably, users of Cray X-MP systems have found that even with a sample rate of one sample every four
milliseconds, progzam execution profiles are still adequate for directing performance optimisation efforts. During
one sample period, approximately two hundred thousand instructions are issued.
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sections of smaller duration need to be timed, forcing the performance analyst to use timing
loops in order to achieve the needed statistical accuracy.

Of course, if the RTC is accessible from user code, RTC timestamps could be used in the
time calculations. The resolution would improve and the accuracy would be limited only by the
overhead for RTC access. However, the RTC is not a virtual timer. It is possible that between
two successive RTC timestamps, a process can be context switched off the processor. In this
case, the time difference between the two RTC timestamps would over-estimate, sometimes
by a large factor, the time spent in the code section. Why? Because the time difference
includes the time the process is not executing. To get around the virtual timer problem,
performance analysts often resort to trial-and-error, hoping context switches do not occur during
the measurement, or to running the code in dedicated mode. Neither of these approaches is a
satisfactory general solution.

User-level time measurement based on measured process timing is a compromise approach.
The time calculations are made with virtual timestamps and have better resolution than with
sampled process timing (i.e., RT'C resolution). The accuracy is limited by the system call
overhead to access the process user time.® This timer access overhead relative to the code
section time will determine the granularity of practical timing measurements.

Ideally, a virtual timer for each process state based on a high-resolution RTC and accessible
to user code with low-overhead would be available for user-level timing measurements. The
ELXSI 6400 multiprocessor is interesting in this respect because it allocates a 64-bit hardware
virtual timer for every process, accessible by a single user-level instruction, that is incremented
once every 25 nanoseconds when the process is executing [28, 149]. However, to our knowledge,

no other current commercially available machines have this level of timing support.

2.3.4 Context Switch Tracing and Timing

One method has proven effective on the Cedar multiprocessor for providing low-overhead, high-
resolution user-level timestamping support [118]. The problem solved is one of removing the
real-time when a process is not executing from time measurements made with RTC timestamps.
In Cedar, the RT'C can be accessed through a single instruction with an overhead less than the

$Because the process times are measured, the user time will be updated by the system call as the process
transitions between user and system state.
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RTC resolution of 10 microseconds. In contrast, accessing the virtual times from the operating
system cost approximately 200 microseconds, significantly reducing the accuracy of timing
 measurements. The problem, as discussed above, is that the real-time values do not reflect
virtual process times.

¥ information could be saved, in addition to the RTC timestamps, that reflected when
a process was not running, we might be able to adjust the user-level time measurement to
remove the non-execution time. We instrumented the Xylem operating system [47] to record
context switches in a user-supplied buffer. Each context switch, whether on or off the processor,
is stored in the buffer with an identifier and a RTC timestamp. With this information, any
context switches occurring between two user timestamps can easily be detected by comparing
RTC timestamp values with those of the time measurement — any non-execution time can then
be removed from the time measurement.

Context switch tracing allows the RTC to be used for user timestamps, thereby giving a
low-overhead timestamping access, while maintaining virtual timing measurements with high-
accuracy. Similar techniques could be easily applied to machines other than Cedar. Context
switch tracing is also useful in the more general case of user event tracing for establishing a
virtual time domain of execution. Finally, context switch tracing can be applied to understand-
ing the scheduling relationships between multiple tasks of execution. This application has been
studied by Lehr in the PIE system [113].

2.3.5 Timing and Parallel Execution

The timing of parallel programs is fundamentally different from that of sequential programs,
We distinguish between two timing values: elapsed time and CPU time. Elapsed time is the
total execution time between any two program events along a virtual timeline, It measures, in
a real sense, how long after the first event the second event occurred, adjusting for the time a
program is not executing. In contrast, CPU time is a measure of the total amount of processing
resources consumed between two program events. CPU time is a measure of total work and is
computed by summing the amount of time a processor is used by the program between the two
events for all processors.

The elapsed time value will always be less than or equal to the CPU time value. For

sequential execution, elapsed time equals CPU time. However, this is not the case for parallel
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execution. The basic question is what time measurements are important for parallel execution.
To determine speedup, elapsed time should be measured. However, to determine execution
efficiency, we also need to be able to determine the amount of work performed.

If we consider a parallel program to be composed of multiple tasks, the process timing
approaches discussed above can be used to determine task execution times. The sum of the
task execution times represents the total CPU time of the program. Within a task, elapsed
timing measurements can be made in a similar manner.

The problems occur when making inter-task timing measurements. The time reference used
for local task measurements (i.e., the task virtual time maintained by the operating system)
will not suffice, because a separate virtual timeline will be defined for each task. The first event
may occur on task A at task virtual time t4 and the second event at task virtual time tp < ¢4
on task B. Instead of virtual timing, the real-time clocks of each processor could be used for
timing measurements, but they would have to be synchronized, and there would be the risk
of including time when none of the program tasks are executing. This latter problem could
be resolved by running the program in dedicated mode, but this severely restricts the general
applications of a parallel timing facility.

Under the assumption of globally synchronized RTCs, the approach adopted for the Cedar
system is an attempt to solve the inter-task timing problem [118]. Effectively, the ability to
make inter-task timing measurements depends on the existence of a program-global virtual time
reference. We extended the measured process timing capabilities in the Xylem operating system
to apply to each task of a multitask program (referred to as a Xylem process). In addition,
we defined a virtual timer for the Xylem process. This process virtual timer differs from the
individual task virtual timers in that it “ticks” whenever at least one task of the program is
executing. By accessing the current process virtual time, globally consistent virtual timestamps
can be used for inter-task timing measurements.

Because of the additional overhead incurred in the operating system, the process virtual
time approach used for Cedar could only be practically applied in a shared memory system.
Even then, as the number of tasks increase, the corresponding increase in total task transitions

will make maintaining the process virtual timer unmanageable.

19



2.3.6 Global Clock Synchronization

Approaches that generalize RTC timestamping with context switch tracing to multiple tasks
hold promise for supporting inter-task timing measurements, but depend on globally synchro-
nized real-time clocks for correct timestamp analysis. Rather ingenious solutions have been
developed in the case of parallel and locally distributed machines to solve the global clock syn-
chronization problem [54, 104, 165). The foundation for many of these software solutions is due
to Lamport {104]. The techniques address the problem of establishing temporal relationships
between events on different processors. Essentially, they all use some form of local clocks and
timestamps to create a partial ordering of events. Unfortunately, the timing accuracy of many
of these approaches is poor.

Other mechanisms attempt to improve timing accuracy by measuring the time difference
and drift between individual processor clocks [165]. Generally, some method is used to establish
an initial time reference for all processors.” Unfortunately, after this initial synchronization,
the individual processor clocks can drift apart at different rates. Similar synchronization mech-
anisms can be used to measure the amount of clock drift over a period of time. This drift factor
could be made available to each processor to bg used during timing measurements. Again,
depending on the variability of the synchronization mechanisms, the accuracy of the drift ap-
proximations, and the sensitivity of the hardware clocks, these techniques can result in poor
timing accuracy.

Our main interests are in multiprocessing systems used to support parallel processing. Thus,
we view processors in systems of this type to be in close proximity (e.g., within the Qame room).
In this respect, we regard the issue of providing a high-resolution, globally synchronized clock
as an engineering problem. Well-known techniques, such as phase-locked loops, can be applied
to hardware clock distribution and synchronization. In fact, separate processor clocks can be
synchronized to an arbitrary degree of resolution using these methods.®

We advocate the inclusion of a globally synchronized, real-time clock sub-system in all
multiprocessor machines that potentially require inter-processor timing measurements. This
view is shared by many researchers [176]. Although the implementation considerations of such

"For example, Rudolph [165] uses the global RS-422 connection to all Intel iPSC/2 nodes for simultaneously
requesting every node to reset its clock to sero.

*The uTRAMS performance measurement chip of Mink and Carpentet has been designed to provide global
zeal-time clock synchronisation at resolutions up to 100 nanoseconds [138].
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a sub-system are not complex, it must be thought out in the context of the whole system design.
The difficulty, of course, is in convincing multiprocessor manufacturers to build these capabilities
into their systems.® Some arguments cite the need to support processors of different speeds, with
each processor running off its own clock. However, the real-time clock sub-system should not
be viewed as the main processor clocking mechanism but as a separate component, supporting
performance timing measurements. Unfortunately, only when the performance measurement
support is considered a main component of the overall system design, will globally synchronized,

real-time clocks become commonplace.

2.3.7 Remarks

The-ability to make high-resolution, accurate timing measurements is critical for good perfor-
mance observability. Although it was said at the beginning of the chapter that the performance
experiment dictates the needed capabilities of the performance measurement system, timing is so
fundamental a performance measurement that it should be given more than just casual consid-
eration during computer system hardware and software design. Many of the high-performance
systems today have poor timing capabilities. Ironically, timing solutions, some of which are
discussed above, are often significantly less complex to implement than most of the components
used to achieve increases in raw performance. Yet, the faster these systems become, the more
problematic will be timing measurement. In particular, high-resolution, globally synchronized

clocks is an idea whose pervasive implementation is long overdue.

2.4 Tracing

The ability to observe time-dependent performance behavior requires some form of tracing
measurement. Although execution summary profiles (mainly of program routines) show where
performance occurs (i.e., the performance of individual execution modules), they do not reflect
performance behavior over time. However, the advantage of profiles is that they can be calcu-
lated at run-time and require only a small amount of storage. On the other hand, the periodic

sampling of performance information to determine run-time means or historical distributions of

9Some commercial multiprocessor manufacturers, such as Alliant and Cray, already provide support for glob-
ally synchronised real-time clocks.
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performance (as in the case of Unix timing measurements of processes) lack the measured data
to correlate these values with the logical operations of a program’s or the operating system’s
execution. These approaches show when the performance is being achieved (because they are
time-based) but provide no information as to where. Time-based event traces capture both
what performance is being achieved when and where in the program’s or operating system’s
execution the performance occurs.

The tracing of events has a long history in performance measurement and debugging. Al-
though many of the early computer performance measurement devices were designed to capture
resource utilization statistics [148], their use in collecting traces was also considered [49, 60,
167, 175]. With the growth of distributed processing, the tracing of software events became the
dominant technique for performance monitoring [1, 14, 79, 92, 104, 135, 180]. For multipro-
‘cessor computer systems, software event tracing is the foundation for many parallel debugging
techniques (13, 61, 48, 81, 90, 110, 112, 130, 136]. Also, several activities have demonstrated the
utility of tracing in multiprocessor performance measurement (27, 57, 59, 66, 88, 115, 133, 137).

While the literature is rich with papers discussing the application of trace-based measure-
meats for debugging and performance analysis, little has been written on the more fundamental
problem of designing an efficient event collection facility. Below we consider several issues in
this regard. We focus our discussion on the tracing of software events using software-based
and hardware-based approaches. In particular, we will consider the problem of tracing parallel
program execution. First, we described the general tracing approach.

2.4.1 The General Tracing Approach

Conceptually, tracing is a simple operation that saves data associated with an event X in a
buffer whenever X occurs during program execution. To be able to interpret the data, it must
be coded with an event identifier. If a parallel program is being traced, the events should
be further typed by the thread of execution producing the event and by the physical processor
identifier where the event occurred. The processor identifier is often required to perform parallel
performance analysis (e.g., processor utilization). Each event must additionally be timestamped
to properly order its time of occurrence with other events. A trace, 7, therefore, is defined to
be the time-ordered sequence of events occurring during program execution where each event

is a tuple of the form
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event id | timestamp | thread id | processor id | optional data

The optional data field is for event-specific data; for instance, if the event is an entry into a
routine, the optional data could be used to store the name of the entered routine.
An efficient implementation of the general tracing approach must solve four problems:

1. event logging
2. timestamping
3. trace buffer allocation

4. trace I/0

Event logging involves mechanisms used to produce an event in the trace. This includes software
instrumentation to generate the event (a sensor in [113]) and any run-time system support
to store the event in a trace buffer (a notifier in [113]). The problem of timestamping is
to provide a high-resolution, globally synchronized time value that will allow detailed event
timing measurements and provide a basis for time-ordering multiple event streams. We have
covered the issues related to timing and timestamping in §2.3 — in this section we assume
the existence of a high-resolution, globally synchronized time source that additionally has low-
overhead access. Lastly, a tracing system must solve the problems of trace buffer allocation
and trace I/O. The mechanisms used to store the trace often determine the performance and
versatility of the tracing system. Not only do issues of trace buffer size have to be considered
(this determines where event data can be stored), but the dynamic event bandwidth into the
tracing system must be compared to its output bandwidth to determine where trace buffering
should be place and what limits exist on real-time trace output.

Below, we consider these problems in the context of software-based and hardware-based

solutions to software event tracing.

2.4.2 Software-Based Solutions

Software-based solutions to tracing use the resources of the computer system to log events,
to buffer the trace, and to output the trace. The process of logging the events involves event
construction and trace buffer access. Although hardware-based solutions also depend on soft-

ware instrumentation for event generation, information such as the timestamp and processor
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identifier could be off-loaded to the hardware tracing system. In software approaches, this data
must be retrieved by software and packaged with the event, causing logging delays. Access to
trace buffers depends on the trace buffer allocation strategy. Ideally, each thread of execution
would be assigned a separate, static trace buffer so that trace buffer contention is eliminated.
However, to efficiently use trace buffer memory, some form of dynamic trace buffer sharing is
often required; see below. With respect to the logging of events, dynamic trace buffer allocation
and trace I/O necessitate mechanisms for the error-free use of trace buffer resources.

There are two general approaches to software-based trace buffer allocation: shared and
private; see Figure 2.3. Shared trace buffer allocation is only possible on shared memory multi-
processors. The most restrictive approach requires that all tracing tasks gain exclusive access to
a common trace buffer with every event logging operation. Although this increases the overhead
of event logging, it has advantages in maximizing buffer memory utilization and in implicitly
merging multiple events streams — the timestamp can be generated after buffer access has been
granted. To reduce the overhead of buffer access, various forms of dynamic buffer allocation
(where buffer blocks are allocated from a shared pool) are possible. For this discussion, we
consider these dynamic approaches to be shared buffer allocation policies. However, the use
of buffer blocks for parallel event logging gives up the implicit merging capability of the basic
shared queue and this merging operation must explicitly be done later on.

To completely remove the overhead of trace buffer contention, tasks can be allocated private
buffers. For distributed memory systems, private buffer allocation is the only scheme possible.
In shared-memory systems, private trace buffers are also an option, but the drawback is less
efficient use of trace buffer memory. In addition to removing the contention overhead, private
buffer allocation has the benefit in hierarchical memory machines of being able to “cache”
portions of the event trace buffer for faster access. Because most of the benefits of locally caching
shared buffers would be lost to the synchronization overheads, shared buffers are normally
allocated in globally shared memory regions.

The requirements for trace I/O depend on the need to free buffer space (in the case that
traces are larger than can be completely stored in buffer memory) and the need to analyze
the trace data as it is being produced. Clearly, if trace buffers fill, event logging must wait
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until buffer space is released.!® Depending on the buffer allocation scheme, several trace I/O
alternatives are possible. In the shared buffer case shown in Figure 2.3, a trace collector task
checks the trace buffer periodically for overflow conditions, writing trace data to a trace file
when necessary. The disadvantage of this approach is that the collector task competes for
processing resources with the other tasks. If there are fewer tasks than processors or the
average parallelism is less than the number of processors, the intrusion of collector tasks might
not be significant;!! otherwise, the performance might be perturbed [113]. It could also be the
responsibility of the tracing tasks to check for overflow and perform the I/O themselves when
overflow occurs. Although this removes the problems of processor sharing with a collector task,
it might significantly intrude on program execution. Two trace I/O examples are shown in
Figure 2.3 for private buffer allocation. The first has each task performing its own I/O to its
own trace file. Obviously, the task traces are not merged in this case and must be done after
program execution. The second example again uses a collector task. In addition to the trace
I/0, the collector task must merge the event streams; a single, merged trace file is generated.
For distributed memory systems, the collector task would reside on a (host) processor and
would access the task’s private buffers via the interconnection network.

The tracing facilities used in PIE [113, 170] and Cedar [119, 172] exemplify tracing ap-
proaches for shared memory multiprocessor systems. In PIE [113, 170], tasks are allocated
separate, fixed-size trace buffers. A collector task is responsible for removing events from all
task trace buffers and writing the combined traces to a file. The Cedar tracing system [119, 172]
allows the user to select among several alternatives for trace buffer allocation and trace I/0.
Each tracing task can either have statically allocated fixed size trace buffers or dynamically
allocated trace buffers using linked buffer blocks. Independently, the user can choose where the
trace buffers will be stored in Cedar’s memory hierarchy. Finally, run-time trace I/O can be
selected, causing a parasitic “snooper” task to run concurrently with the program task — the

trace I/O can be sent to a file or to a remote computer over a network.

19For virtual memory systems, very large trace buffers can be created in virtual space. Although virtual
memory is not infinite, in some cases, explicit software to handle trace buffer overflows can be avoided by just
allocating more virtual memory.

111 unused processors exist, the collector task could be bound to a processor for the duration of the compu-
tation.
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The software-based tracing approaches for distributed memory systems are restricted mainly
by the system architecture. Trace buffers cannot be shared and must instead be allocated in
the each processor’s memory. Buffer overflow can only be detected by tasks local to a processor
and message passing operations must be used to off-load the trace to a central point for trace
1/0.12 Furthermore, the generation of globally, synchronized timestamps in these systems is a
problem. Rudolph and Reed [161] give an excellent discussion of these issues in the context
of the Intel iPSC/2 multiprocessor. The tracing software developed by Rudolph [165] for the
iPSC/2 reflects the design constraints imposed by the architecture.

2.4.3 Hardware-Based Software Event Tracing

The purpose of considering hardware support for software event tracing is to reduce the over-
heads associated with event logging, to perform timestamping externally, to eliminate the need
for software trace buffering, and to improve file I/O, including real-time trace access. A hard-
ware tracer exists either as a memory-mapped device to which tasks can write events using mem-
ory operations [7, 59, 79], or as an I/O device accessible by I/O operations [125, 139, 140, 164].
As a memory-mapped device, the hardware tracer monitors the address bus for addresses falling
within its range. If a valid address is detected, the address and the data (on the data bus) are
logged. AsI/O devices, hardware tracers reside on special I/O ports implemented as part of the
standard machine. Hardware tracers can be centralized [59, 125, 139), where all event streams
come to a central monitoring system, or distributed [79, 138, 164], where event streams are
capturcd locally at each processur. '

Event logging is generally faster on memory-mapped hardware tracers because memory
operations can be used. However, when generating user-level events, it is important to have the
tracer visible in the user memory space. I/O operations must be used for tracers configured as
1/0 devices, resulting in greater event logging overheads due to system call delays. Hardware
tracers typically support the timestamping of events with a high-resolution clock. Because the
monitor is external, implementing a globally synchronized time source can take advantage of

standard hardware solutions to clock distribution [138].

13The existence of concurrent I/O facilities, such as provided on the Intel iPSC/2 system, alternately allows
1/0 to be done from each processor node.
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The most challenging aspect of designing a hardware tracer is the trace buffering system.
Although hardware can be designed for any level of tracing support desired, cost is often a
major design consideration. The approach taken for trace buffering, in particular the choice of
trace buffer size, is the prime determinant of the total cost. To the extent possible, the trace
buffer size should be expandable, allowing extra buffer capacity to be added if cost permits.
However, assuming that there are traces whose size will always be greater than the hardware
tracer’s buffer memory, the hardware tracer must also provide solutions to secondary memory
buffering. Whereas file access is commonly provided by computer systems and, thus, can
naturally be used for software tracing, the hardware tracer will not normally be able to take
advantage of it. However, approaches often support standard I/O interfaces (e.g., the tracer in
[7] uses the VME bus interface), allowing standard disk drive technology to be used. Perhaps
the most important problem related to trace buffering is its bandwidth. The hardware tracer
must be able to support the capture of event data at its nominal rate.

Hardware-based software event tracing for a large number of processors must look to logic
integration to be both economically and technically feasible. The design of VLSI components
for hardware tracing (138] can help to lower the unit cost but at the expense of reducing trace
buffer size (e.g., the buffer size in the sTRAMS chip [138] is 512 bytes). This places additional
burden on the supporting infrastructure used to extract the trace data from each processor
tracer. This support system serves the function of merging the trace streams, and must rely
on a combination of high-bandwidth networks and a hierarchical organization to handle the

potentially large amount and rate of trace data [160).

2.4.4 Remarks

The development and deployment of trace measurement tools would be facilitated by the adop-
tion of standards for trace format, software interfaces for software-event tracing, tracing li-
braries for software-based tracing, and instrumentation interfaces for hardware-based tracing
(123]. A standard trace interchange format (STIF) [89] promotes the development of trace
analysis and visualization software that can be used with traces from a variety of machines.
Similarly, standard software interfaces to tracing systems provide a portable instrumentation
interface between parallel systems [123]. This helps minimize the code modifications needed to

port instrumented codes between machines. Standards for hardware-based tracing might seem
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unrealistic. However, in the area of defining an external hardware tracing interface (EHTI)
between the computer system and the hardware tracer to support software event tracing, both
the memory-mapped and I/O-mapped approaches have standards potential. The EHTI speci-
fication would define the address size, data size, control signals, and the timing characteristics
of the external interface. In this case, simplicity is the key — a 32-bit address port, 32-bit data
port, and one control signal to indicate valid address and data have been suggested [123].

The adoption of standards depends on the significance of the problem and the need for a set
of standard solutions. In the area of tracing for performance measurement, it is likely standards
will never be adopted. However, as more tools are made available and components of a tracing
system are developed (e.g., the y.TRAMS chip), a de facto consensus on approaches may be
reached.

2.5 A Hardware-Based Monitor for the Intel iPSC/2

Although we can compare different performance measurement techniques and argue for basic
levels of instrumentation support, ultimately performance measurement solutions will be evalu-
ated in terms of their expense versus their perceived importance. Because of the design time and
cost involved in building performance measurement systems, often these projects exist as re-
search efforts where tools are either implemented on prototype machines (e.g., [22, 60, 79, 162])
or retrofitted onto existing systems (e.g., {94, 120, 137, 140}). It is a sad fact that many of the
commercial computer systems contain minimal performance measurement support — this is
especially true in the case of high-performance systems where performance measurement needs
are more profound. Two notable exceptions exist. Encore’s Parasight tool [8] provides an
integrated software environment for parallel program debugging and performance evaluation.
However, Parasight is completely software based, limiting it use in obtaining high-frequency
performance data. The hardware performance monitor on the Cray X-MP and Y-MP super-

computers [107] has been beneficial for capturing performance data about hardware operation,

13Portions of §2.5 appear in the papers “A Hardware-Based Performance Monitor for the Intel iPSC/2 Hy-
percube” in the Proceedings of the 1990 International Conference on Supercomputing [125), and “An Integrated
Performance Data Collection, Analysis, and Visualisation System” in the Proceedings of the Fourth Conference
on Hypercube Concurrent Computers and Applications [126).

29



but it cannot be used in practice for parallel programs and its software support is based only
on profiling,14

‘ To answer the questions of cost effectiveness of a performance measurement system, it is
important to understand the design factors and the trade-offs that must be considered when
developing one for a particular machine. Reilly [162] describes such issues in detail for the hybrid
monitor he developed for Digital Equipment’s experimental M31 multiprocessor. He concludes
that while the monitoring system resulted in an extremely versatile measurement tool, its
implementation was too complex and expensive to be adapted to a commercial multiprocessor.
In this section, we consider similar issues with‘ respect to a performance measurement system
for message passing multiprocessors, namely the Intel iPSC/2.

Message passing systems pose particularly acute measurement problems. First, detectable
events occur locally at each processor. Identifying global events requires associating two or more
events from different processors. The obvious approach imposes a total order on events, based
on event timestamps, and identifies global events from temporally proximate event groups.
Unfortunately, the second problem complicates solutions to the first: most message passing
systems, including the Intel iPSC/2, lack a globally synchronized clock to create event times-
tamps — this clock is needed to maintain event causality. With a global time reference, the
distributed event data still must be collected for analysis and presentation.

Our measurement solution approach for the Intel iPSC/2 hypercube was the design of
HyperMon, a hardware system to capture and record software performance traces. HyperMon
represents a compromise between fully-passive hardware monitoring and software event tracing;
software generated events are extracted from each node, timestamped, and externally recorded
by HyperMon. Using an instrumented version of the iPSC/2 operating system and several
application programs, we present a performance analysis of an operational HyperMon prototype
and assess the limitations of the current design. Based on these results, we suggest design
modifications that should permit capture of event traces from the coming generation of high-

performance distributed memory parallel systems.

14Chapter 7 describe a software event tracing system we developed for the Cray X-MP with the capability of
sampling Cray hardware performance monitor statistics with each event.

30



2.5.1 Intel iPSC/2 Description

The design of hardware support for performance data capture necessarily depends on the un-
derlying parallel system — system software and hardware determine the requirements for and
limitations of the data capture interface. Thus, an instrumentation environment must be un-
derstood in the context of the intended architecture — the Intel iPSC/2, a second generation,
distributed memory parallel system.

The Intel iPSC/2 hypercube [10, 33] incorporates evolutionary advances in technology, in-
cluding an Intel 80386/80387 microprocessor pair, a 64K byte cache, and up to 16 megabytes of
memory on each node. The iPSC/2 includes an autonomous routing controller to support fixed
path, circuit-switched communication between nodes. This communication system eliminates
most of the store-and-forward latency that existed in earlier distributed memory systems.

The software development interface for the iPSC/2 is a standard Unix system that transmits
executable programs to the nodes, accepts results from the nodes, and can, if desired, participate
in the computation. Finally, the Unix host supports node file I/O to its local disk and to remote
disks via a network file system protocol.

To reduce dependence on the Unix host and to provide input/output performance com-
mensurate with computing power, the Intel iPSC/2 nodes also support link connections to I/O
nodes. Each I/0 node is identical to a standard compute node, with the exception of an addi-
tional daughter card that provides a SCSI bus interface. The SCSI bus supports up to seven
peripherals and has a peak transfer rate of 4 megabytes/second. Physicﬂy, the I/0 sub-system
can be packaged as a separate cabinet with cable connections to the compute nodes.

Because the I/O nodes provide a superset of the compute node functionality, software sup-
port for disk and file access is realized by augmenting the NX/2 node operating system on both
the compute and I/O nodes. The Concurrent File System (CFS) allows application programs to
create, access, or modify files on both the hypercube host and the individual hypercube disks.
As we shall see, this provides the mechanism for archiving performance data after its capture
by our HyperMon instrumentation support hardware.

Although each iPSC/2 node contains a local clock with one microsecond resolution, the node
clocks are not globally synchronized and can drift apart at a measurable rate. Consequently,

event timestamps on different nodes may violate casuality (e.g., a message might appear to be
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received before its transmission). Although software techniques can ameliorate the effects of
clock drift by synchronizing the clocks and reordering timestamped events, a high-resolution,
global time reference is the simplest and most desirable solution.!® Even with a global time

reference, the distributed event data still must be collected for analysis and presentation.

2.5.2 HyperMon Design

The absence of a global, accurate, and consistent time exacerbates the already difficult mea-
surement and recording of distributed events [104]. The constraints on measurement resolution
created by distributed clock synchronization, coupled with the overheads of software tracing,
limit the range of performance behavior that can be accurately observed. The désign of the Hy-
perMon architecture attempts to circumvent these problems. Below, we describe the design and
operation of HyperMon, followed in §2.5.4 by a summary of results obtained from HyperMon

bandwidth experiments and performance tests using real message passing programs.

2.5.2.1 iPSC/2 Event Visibility

The hardware basis for HyperMon is a little-known, though standard, feature of the iPSC/2 that
makes possible external access to software events generated by each node. Five “performance”
bits from a port in the I/O address space on each iPSC/2 node board are routed via the system
backplane to an empty slot in the system cabinet. The standard cabinet holds up to 32 iPSC/2
nodes and all 160 signals are present at the spare node slot. However, the current HyperMon
prototype supports data capture from only the first 16 nodes.

Because the software performance instrumentation generates event data by writing to an
I/O port, one bit must be reserved as a software strobe to signal that the remaining four event

data bits are valid. The five data bits written to the I/O port are interpreted as follows.

4 3 0
Strobe | Event Data

A software event is generated by writing the event data to the 5-bit port, first with a strobe of

zero then with a strobe of one. The 16 MHz 80386 microprocessor in the Intel iPSC/2 requires

¥8See [161] for a description of software causality maintenance and its limitations.
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approximately six cycles to complete an I/O write operation, versus two for a standard memory
access. Thus, a minimum of twelve cycles are needed to write a 4-bit software event.

Clearly, the sixteen possible events representable with a 4-bit event identifier greatly restrict
the range of possible instrumentation. If additional events are needed, or, equally likely, if data
are associated with an eveat, multiple I/O write operations wiil be required. A performance
instrumentation of the Intel NX/2 operating system [165] produces a range of event sizes,
ranging from two to thirteen bytes plus a timestamp. Moreover, an analysis of these operating
system traces shows that most events are four or more bytes, excluding the software timestamp.

Unfortunately, transmitting larger events is expensive. In addition to the twelve cycle
memory access penalty for each 4-bit I/O operation, there is software shift and mask overhead
to extract 4-bit items from event words. Clearly, a larger I/O event field is desirable to increase
event bandwidth and to reduce the cost of bit field extraction. However, backplane hardware
constraints limit the number of available backplane signals. Despite these limitations, hardware
support for data collection permits real-time extraction of performance data and, consequently,

capture of larger traces than otherwise possible with node memory trace buffering.16

2.6.2.2 Hypermon Architecture

Figure 2.4 shows the primary components of the HyperMon architecture and their physical
relation to the Intel iPSC/2. Reflecting the physical packaging of the iPSC/2, HyperMon

is partitioned between the cabinet that contains the iPSC/2 compute nodes and the cabinet

%1n §2.5.4 and §2.5.5, we will return to the question of node hardware support for data extraction. The current
HyperMon design reflects the 5-bit iPSC/2 data extraction interface.
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containing the I/O nodes and disks. As just described in §2.5.2.1, each iPSC/2 compute node
independently sends 5-bit (four bits and a strobe) event data to HyperMon.

In the compute node cabinet, the HyperMon event regeneration board (ERB) converts the
5-bit TTL-level event signals from each node into differential form before transfer to the event
capture board (ECB) residing in the I/O cabinet. The ECB captures the events, generates
global timestamps, and stores the resulting event data in internal memory buffers for access by
I/0 nodes. To prevent disruption of event data capture and perturbation of user I/O requests,
one or more I/O nodes are dedicated to event data recording.

In principle, the I/O nodes can be used for preliminary analysis of the event data. In
practice, however, the desirability of real-time data reduction, with a possible decrease in disk
I/0 requirements for data recording, must be balanced against the probability of ECB data
buffer overruns if too many I/O node compute cycles are diverted from disk service. Clearly, the
most efficacious mix of real-time data reduction and disk recording, with post-mortem analysis,

depends on the event data rate and instrumentation requirements.

Event Capture

Figure 2.5 shows the functional design of the event capture board, the primary hardware compo-
nent of HyperMon. There are five major parts: event data queueing, event strobe synchroniza-
tion, timestamp generation, event frame construction, and I/O node interface; each is described
below.

After signal regeneration by the HyperMon ERB board, the 4-bit event data from each
iPSC/2 node are placed in a separate FIFO buffer that is clocked by the corresponding software
event strobe signal (i.e., the fifth bit from each node). Each node FIFO is 64, 4-bit entries deep
and provides buffering during the event frame construction process; see below. Figure 2.6 shows
the timing diagram for the two writes needed to assert valid event data from a node.

Because the individual node clocks are asynchronous, there is no direct timing relationship
among the valid event data in FIFOs for different nodes. Thus, early in the HyperMon design,
we were forced to decide where to synchronize the externally received event data with the
internal ECB clock. Because the event data FIFOs provide implicit synchronization of the data
bits, only the event strobe signals need be sampled relative to the internal ECB clock. In the

HyperMon design, the software event strobes are sampled in successive 800 nanosecond time
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Figure 2.7: Strobe Vector Example

windows.17 Valid event strobes within a time window are marked in an event strobe vector and
stored in the strobe vector FIFO.

Figure 2.7 illustrates event strobes from different nodes and the corresponding strobe vectors
during three successive time windows. The shaded bits in each strobe vector indicate which
event data FIFOs have valid data from compute nodes.

Separate from the synchronization issue is the generation of event data timestamps. Al-
though high-level events can be of any length, and one need generate only one timestamp for
each event, the HyperMon hardware must assume that every four bits of event data represeat
a separate software event. Why? The HyperMon hardware embodies no notion of event types
or lengths. Thus, each event data nibble must be assigned a 32-bit timestamp.

To avoid the expense of separate timestamp hardware for each node, a single timestamp
generator is used. For each generated strobe vector, a timestamp also is stored in the timestamp
FIFO. In general, the choice of timestamp resolution need not be dependent on the event strobe
synchronization period. However, in the current ECB hardware, they are equal.

The design motivation for strobe vector and timestamp unification is to reduce hardware
complexity, As a design alternative, each event nibble, a 4-bit node identifier, and a 32-bit
timestamp could be sent to the I/O node. However, in this approach, 80 percent of the in-
formation would represent timestamp data. Moreover, for events occurring within the same
time 800 nanosecond window, the timestamps for these events would be redundant. Instead,
we adopted a strategy that packages event data as event frames. These event frames are the

unit of transfer to the I/O node.

Y*The synchronisation period can be shortened to 400 nanoseconds or 200 nanoseconds through jumpers on
the ECB. This allows faster event generation rates to be accommodated in the future.
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Figure 2.8: Event Frame Format

In the event frame approach, the strobe synchronization period is the time basis for event
frame construction. Each such event frame consists of four 32-bit words; see Figure 2.8. Four
event data bits from each node FIFO always are placed in the frame. However, only those
FIFO’s with valid data, as determined by the strobe vector, for this time window, will be
shifted into the event frame; the other event data fields in the frame are undefined. The strobe
vector is recorded as part of the frame to identify the valid event data fields. Finally, the
corresponding 32-bit timestamp is saved with each frame. Once an event frame is constructed,
it is saved in the ECB’s frame FIFO. To eliminate useless data, an event frame is constructed
for a time window only if at least one of the nodes produces an event during the window.

If we compare separately transferring each event nibble to the use of event frames, it is
clear that when there is only one valid event nibble in a frame, the overhead is substantial. In
this case, only three percent of the frame is data. Only when four or more nodes have valid
event data will transfer of event frames require fewer bits. The motivation for merging event
data from multiple nodes is that the efficiency of event transfer is more important when more
nodes are producing event data. In this case, the likelihood of multiple nodes producing event
data within the same time window increases, and the ratio of valid event data to overhead also
increases. When few nodes are generating event data, the need for efficient transfers to the I/O

node is not as great.

Event Processing

The ECB supports a parallel bus interface (the PBX bus) to an iPSC/2 I/O node. Via this
bus, event frames can be transferred to the I/O node’s memory. These PBX bus transfers
are mapped through the I/O node’s memory space. In addition, the ECB provides a writable

8-bit control register to reset the board. There is a 4-bit status register used to signal error
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conditions, most often FIFO overruns. The number of event frames generated since the last
reset is accessible through a 12-bit frame count register. Finally, the event frame can be accessed
using a single frame FIFO address. Referencing this PBX address will transfer one 32-bit frame
word to the I/O node.

Once in the I/O node’s memory, event frames can be decomposed into separate event streams
for each instrumented node. Additionally, the I/O node’s processor can be used to compress
the event trace by computing statistics directly from the event data. Finally, the event trace
data can be stored on the I/O node CFS disks for post-mortem analysis or transferred to the
iPSC/2 host and associated workstations for analysis and presentation.

The ability to record trace data on local CFS disks or on remote disks attached to either
the iPSC/2 host or a workstation, coupled with real-time or deferred trace analysis, provides
a wide variety of trace storage and analysis configurations with distinct costs; see Figure 2.9.
Selection of a trace processing mode depends on event frequency, density, and complexity. If the
mean time interval between valid event frames is small, and we have observed that this often
is true for operating system event traces, real-time event processing (e.g., statistical analysis)

may not be possible — the I/0 node minimally must record event data without loss.
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2.5.8 Current Configuration

The HyperMon prototype is implemented as a wire-wrapped, two-board set consisting of 115
integrated circuits — 20 on the ERB and 95 on the ECB. The experimental results reported
here were obtained with eight nodes. We currently are testing HyperMon with sixteen nodes.

Figure 2.10 shows the current HyperMon configuration. At present, we are using a PBX-
equipped node processor to communicate with HyperMon. Disk access must be done through
the iPSC/2 host using the hypercube message communication links. Upon addition of an I/O
node with PBX support, we will be able to test I/O transfer to CFS storage.

2.5.4 HyperMon Evaluation

The value of the HyperMon design can only be determined through experiments with real
applications and software instrumentation support. Architecturally, HyperMon has the advan-
tages of external event capture and real-time data access, but this must be weighed against the
substantial overheads in event production; see §2.5.2.1.

In the remainder of this section, we describe the results of a set of experiments conducted
with the HyperMon prototype. First, we used a series of synthetic benchmarks to measure the
raw data bandwidth of the current configuration. Here, the goal was to determine potential
data recording bottlenecks. Second, we used a software instrumentation [161] of the Intel
iPSC/2 NX/2 operating system as a source of event data for HyperMon. This instrumentation
generates a detailed event trace of operating system and application program interactions. The

results of these experiments are discussed below.
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2.5.4.1 Bﬂndwsdth Tests

A cursory examination of the HyperMon architecture suggests several points where measure-
ment of raw bandwidth might reveal fundamental performance constraints. Below, we examine
three: event generation from the node processors, ECB internal event frame construction, and
PBX event frame transfers.

Given the interface constraints on the individual iPSC/2 nodes (software event strobing, a
three-fold increase in access time to an I/O port, and software extraction of event nibbles), the
overhead to send event data to the HyperMon ECB is substantially greater than that needed
to record event data in a node’s memory. To quantify this overhead, we began our tests with
a simple, synthetic benchmark that generated events at the maximum possible rate on a single
node. With software event recording, 3.9 seconds were needed to produce 1,000,000 events
(assuming four bytes per event). This translates to a maximum software event recording rate
of 1.02 Mbytes/second. In contrast, HyperMon recorded an equal amount of event data in
88.5 seconds, a hardware data recording rate of 45 Kbytes/second.’® Simply put, the Intel
iPSC/2 interface to HyperMon transfers data at a rate roughly 22.7 times less than that for
software recording. Although the timestamp generation is done automatically by the Hyper-
Mon hardware, this savings in data transfer is greatly overshadowed by the costs of nibble
extraction, software event strobing, and the use of an I/O instruction rather than a memory
MOVE operation.,

Internally, the HyperMon ECB can sustain a high event frame production rate. This value
can be calculated directly from the internal ECB timing. The finite state machine controlling
event frame generation operates at 20 MHz and requires eight cycles to build a frame. When
all sixteen nibbles of event data in a frame are valid, this translates to a peak event data
bandwidth of 10 Mbytes/second. As the number of valid data nibbles decreases, the event
bandwidth decreases proportionally.

Finally, an I/O node must retrieve the event data from the ECB via the PBX bus. The
PBX is an asynchronous, master-slave bus with a peak bandwidth of 18 Mbytes/second. How-
ever, when synchronization, address decoding, and data enabling overheads are included, the
potential transfer rate across the PBX interface drops to 8 Mbytes/second. In practice, the

1%Recall that the total amount of data recorded by HyperMon is much larger and includes the strobe vectors
and invalid data nibbles in each event frame.
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software overheads for PBX transfers to the I/O node (the master) degrade bandwidth perfor-
mance further. Using optimized PBX interface software, we have achieved PBX transfer rates
of 5 Mbytes/second to an I/O node.

To assess the interactions of the bandwidth limitations just described, we constructed a
synthetic benchmark that generates a specified volume of event data for a user-selectable number
of nodes. Figure 2.11 shows the maximum experimental bandwidths obtained via HyperMon
when running this benchmark. In the benchmark, a delay parameter controls each node’s event
nibble generation rate; this delay parameter is the number of iterations of a null wait loop on
the 16 MHz 80386. As expected, when the delay interval decreases, the bandwidth through
HyperMon incraases.

When only one node generates event data, every four bits of event data forces the creation
of a separate event frame. A single node can generate significant frame bandwidth (113,000
frames/second, or equivalently, 1.8 Mbytes/second at sixteen bytes per frame). However, when
two nodes produce event data at their maximum rates, the PBX bandwidth limits are challenged
(202,000 frames/second or 3.2 Mbytes/second). Beyond two nodes, the ECB reports a frame
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FIFO overrun condition, and no experimental data can be obtained unless nodes delay the
creation of successive event nibbles.

We indicated earlier that HyperMon was designed to be more efficient as the demand for
event data bandwidth increased. This requires increased frame merging and amortization of
the strobe vector and timestamp overhead over move valid event nibbles (i.e., the event frame
creation rate should increase sublinearly with the number of nodes that simultaneously generate
event data). Unfortunately, our experimental results suggest that the event data bandwidths
must be very high to achieve effective merging. Figure 2.12 shows the percentage of merged
event data as a function of the number of active nodes. Although the figure suggests that a high
merging percentage should occur with high event data rates, merging does not increase quickly
enough to offset the increase in the total event frame bandwidth seen at the PBX interface.

Although the high event data rates that cause PBX bandwidth saturation (evidenced by
frame FIFO overruns) are beyond the sustained rate requirements for the HyperMon design,
such conditions can exist during event data bursts; see §2.5.5. Overrun conditions depend

on the length of these bursts relative to the size of data buffers in the ECB. Our prototype
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Code Description

Simplez a parallel linear optimization program based on a column-wise Simplex al-
gorithm [187]
Life a parallel implementation of Conway’s famous cellular automaton [70]
MatMul a simple distributed memory matrix multiplication code
" Place a standard cell placement algorithm based on simulated annealing [24)

Table 2.2: Application Test Programs

implementation limits the frame FIFO size to 1K frames. As our results below suggest, this
buffer size makes HyperMon susceptible to event data bursts of moderate duration.

2.6.4.2 Monitoring Real Applications

Ultimately, the software instrumentation level required to capture the execution behavior of
a parallel computation will dictate the frequency and volume of data that must be recorded
by the monitoring system. Not surprisingly, certain instrumentation levels can exceed the
capabilities of any data recording system. Event processing and analysis requirements impose
additional constraints on feasible performance experiments. As a consequence, performance
observability mandates a balance between the rate of event data generation and analysis, and
the fundamental limitations of the monitor’s operation.

To understand HyperMon performance in an instrumentation environment for real applica-
tions, we compared the execution of four programs in three monitoring environments: no event
data generation (raw), software event recording to node memory, and hardware event recording
with HyperMon. The execution data for the latter two cases was restricted to that captured
by an instrumentation of the iPSC/2 NX/2 operating system source code [166]. This system
generates three classes of operating system events: message transmissions, process states tran-
sitions including context switches, and system calls. Below, we describe the characteristics of

the application programs, the observed performance data, and HyperMon’s performance.

Execution Statistics

Table 2.2 shows the four application programs used in our study of data capture for operating
system instrumentation. Each of these applications was run on 1, 2, 4, and 8 nodes for each of

the three data capture scenarios. To prevent event data bursts that might saturate the PBX
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Logged Data Logging Rate
(bytes/second)

151.059 151.261 154.838 2302144 14868
77.850 78.396 86.524 10373040 118730
42.068 42.561 54.338 27763296 510937
24.277 24.931 41.045 67493104 1644368

152.322 152.335 154.157 1204608 || 7814

111.869 112.274 120.280 10155584 84433
78.508 79.112 93.048 27607776 296705
43.981 44.741 58.202 60352768 1036954 |

245.840 1928096

123.210 1947792
62.045 1985376 |
31.423 2069136

318.012 318.473 322.325 74225 2628192 8154
82.000 85.071 143.356 2018749 74003616 516223
69.668 73.851 137.145 4147564 149195680 1087868
38.498 41.427 | 102.221 7977226 (overrun) (overrun)

Table 2.3: HyperMon Application Results

bandwidth and overrun the event frame FIFO, we set the delay interval for hardware event
recording to twenty (i.e., writing of successive event nibbles was separated by twenty iterations
of a null loop).

Not surprisingly, Table 2.3 shows that hardware data recording using HyperMon consistently
causes greater perturbations than software recording in the node memories. This was expected
from our earlier analysis of performance penalties imposed by the node interface to HyperMon.
However, the degree of perturbation differs for each application program and number of nodes.
Simply put, differences in program behavior are manifest as differences in the time varying
demands placed on the data recording system. For instance, the minor perturbations of the
MatMul code contrast sharply with the substantial slowdown of the Place code when data are
recorded from eight nodes with HyperMon. Unlike matrix multiplication, which generates only
a small number of instrumentation events, the cell placement code is highly dynamic and the
variance in its event generation rate is high; see §2.5.5.

Table 2.3 further shows that the difference in total data volume between software and
hardware data recording is large. With software event recording in individual node memories,

each recorded event includes the associated data and a 16-bit timestamp delta. In contrast,
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the total data volume recorded using HyperMon is calculated from the total number of event
frames transferred across the PBX interface. With software data recording, only one timestamp
is assigned to a multiple byte event; HyperMon must timestamp each data nibble.

Clearly there is greater overhead with hardware data recording, but one might expect merg-
ing to increase the efficiency at higher event rates by amortizing timestamps across multiple
event nibbles. Unfortunately, the software recording rates indicate that the potential for merg-
ing is small. Thus, we conclude that the large difference in the volume of recorded data reflects
the fact that most event frames contain only one valid event data field.

Even when each node delays for twenty iterations of a null loop between transfer of event
data nibbles, data overruns occur in real applications (e.g., the eight node Place execution).
Although the sustained hardware recording rate of 2.5 Mbytes/second for this program (as
extrapolated from the software recording rate) does not exceed the PBX bandwidth, the burst
event rate is higher. In this case, the only alternative is to increase the interval between the

output of successive event nibbles.

Dynamic Monitoring Requirements

As just noted, sustained recording rates do not reflect instantaneous demands on the monitoring
system. Understanding the dynamics of event creation is important for two reasons. First, it
suggests where buffers in HyperMon are most needed to ameliorate the effects of event data
bursts. Second, it identifies those portions of a parallel computation where program execution
might be most susceptible to performance perturbation from performance instrumentation. |

For each of the four application programs of Table 2.2, we used HyperMon to record and
compute statistics on the time varying rate of operating system event generation. For each
application program, we recorded in the PBX node’s memory the number of event frames and
the elapsed time between the first and last frame for each group of event frames read.}®

To generate Figures 2.13-2.16, the elapsed time for each program was divided into one
hundred intervals of fixed size and the average event frame rate was computed for each interval.

To show differing numbers of nodes on a single graph, we show normalized time intervals (i.e.,

}*Recall that the HyperMon interface to the PBX 1/O node includes a counter of the number of buffered event
frames. This count defines the number of events read in each “group.” Due to PBX node memory limits, only
the first 100,000 event rate distribution samples were recorded.
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for each numbez of nodes, an interval represents a different absolute amount of time). The total
time range for each curve is shown in the legend.

Figure 2.13 shows the time varying event frame rate for the Simplez code. Clearly, the event
fr;me rates follow a periodic pattern, and analysis of the code shows a regular cycle of compu-
tation and global data exchange [187]. Communication generates a burst of operating system
instrumentation events (e.g., context switches, message buffering, and message transmission)
[126), and this is reflected in the event frame rate. As the number of nodes increases, the ratio
of communication to computation increases and the event frame rate increases commensurately.

Unlike the Simplez or MatMul codes, where the amount of computation on each node varies
little during successive computation cycles, the Life code updates a grid of cells whose sparsity
changes over time. Figure 2.14 shows that the data recording requirements of such codes can
change substantially as the computation load balance changes. -

The MatMul event frame rate distribution in Figure 2.15 reflects the simple structure of
the application code. The computation first distributes the matrix to the nodes, where they
compute independently until returning their partial results to the host. The initial matrix
broadcast is not shown in Figure 2.15, but the transmission of sub-matrices to the host is clearly
visible. Because no communication occurs during the computation phase, most recorded events
are node time slice context switches., Finally, the event rates for Place application, shown in
Figure 2.16, are random, bursty, and high. In §2.5.5, we describe the underlying reasons for
this behavior and the implications for hardware event data recording.

As Figures 2.13-2.16 show, the dynamics of event frame rates are closely tied to applica-
tion behavior and can vary widely across application types. This disparity in burst rates has

important implications for capture hardware design, the subject of the next section.

2.5.5 Lessons Learned

The design of HyperMon was subject to the engineering constraints imposed by the iPSC/2
system: the 4-bit I/O event data interface, the physical separation of event regeneration from
event capture, and the PBX I/O node interface. Although the larger overhead for recording
event data via HyperMon was expected, and we knew that many applications exhibited cyclic

communication behavior, we did not foresee all the implications of bursty event data rates.
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The lesson regarding decreased execution time perturbations with hardware data record-
ing is clear. External interfaces used to record event data via hardware should have sufficient
bandwidth to avoid delaying the computation processors. Ideally, the access time to the inter-
face should be no larger than that needed to write the event words to memory (i.e., hardware
event recording should have less overhead than that for software buffer managenent and data
recording).

Regarding bursty event data rates, further investigation of event data bursts using software
event traces reveals significant variances in event data rates during the lifetime of most com-
putations. Figure 2.17 shows the event data volume generated by our NX/2 operating system
instrumentation [161] in one millisecond intervals for the Place application on four, eight and
sixteen nodes. Although the average event data rates are 82 Kbytes/second, 276 Kbytes/second,
and 629 Kbytes/second, respectively, event data bursts significantly exceed these rates. In par-
ticular, the data rate for the sixteen node Place execution can reach two to three Mbytes/second
in twenty millisecond bursts. To support this type of software performance instrumentation, a
hardware data recording system must be designed with sufficient buffer capacity to accommo-
date event data bursts. Analysis of software event traces can be instrumental in defining buffer
requirements. At present, we are using the software traces as input to simulation models of
monitor designs to understand dynamic buffering requirements.

An important decision in the HyperMon design was to treat each 4-bit event datum as
a potentially unique event. This determined timestamp generation and motivated the notion
of event frames to amortize timestamp overhead. In practice, our NX/2 operating system
instrumentation produced logical events composed of multiple event data nibbles. Significant
reductions in the volume of data recorded by HyperMon would have been possible had we
chosen to timestamp larger data units (e.g., 32-bit quantities). In this case we would accumulate
a 32-bit word on each 4-bit input port before storing it in the event data FIFO. The size of
timestamped quantities should be chosen so that only a small fraction of the available bandwidth
is lost. Ideally, there should be support for selective timestamping of event data such that
timestamps are produced only when directed by the software.

The experiménts conducted with the instrumented NX/2 operating system, described in
§2.5.4.2, represent HyperMon stress tests. Clearly, there exists a spectrum of data recording

and data analysis alternatives. No reduction of event data occurred in our experiments prior to
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writing data to HyperMon. The use of parallel, on-the-fly data reduction, possibly in the form
of periodic statistical summaries, would eliminate many of the problems encountered during
our stress tests of HyperMon operation. Although improvements in the HyperMon design can
extend its operational range, there are many performance experiments that can take advantage
of the current prototype’s real-time monitoring capabilities.

2.6 Comments

As technology makes possible the creation of ever more complex computing systems, which
combine advances in architecture, hardware, system software, and applications algorithms to
achieve high performance, we believe that the capture of detailed performance data will become
increasingly important to both system designers and application software developers. Although
the design of performance measurement systems is non-trivial and it is difficult determine
monitoring requirements without some rudimentary understanding of the performance data
bandwidth produced by a measured system, their implementation is not overly complex —
the lack of sophisticated performance measurement facilities in commercial computer systems
attests more to economic considerations rather than engineering.

Thus, in the future, one might imagine every computer system with a fully-integrated perfor-
mance measurement environment supporting both timing and tracing measurements for post-
mortem or real-time analysis. In particular, it is intriguing to consider the use of performance
measurement tools for adaptive control of computer system operations. In this case, the per-
formance measurements would be automatically analyzed at run-time and used to guide future
execution decisions. Performance-guided adaptive control could have immediate application to
problems such as load balancing and scheduling.
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Chapter 3

Time-Based Performance

Perturbation

Things are seldom what they seem,
Skim milk masquerades as cream.
— Gilbert and Sullivan, “H.M.S. Pinafore”

Many advances in modern science have been achieved through the systematic application of
the scientific method. The experimental measurement of phenomena in nature to test the
predictions of a model or validate a hypothesis is central to the advancement of operational
theories of how systems function. Experimental scientists have long understood the relationship
between the need to observe finer levels of operational behavior (e.g., to test the limits of a
theoretical framework) and the technological capabilities of the measurement tools to deliver
accurate observations. In physics, the Heisenberg uncertainty principle bounds the attainable
measurement certainty.? Clearly, instrumentation and phenomenon must be commensurate to
maintain instrumentation perturbations at acceptable levels and to achieve reliable observations.

The problems of uncertainty and instrumentation perturbation in computer system perfor-

mance analysis are no less profound than in other experimental sciences. The terms “Heisenberg

1The results presented in this chapter appear in the paper “Performance Measurement Intrusion and Pertur-
bation Analysis” submitted for publication to the IEEE Transactions on Parallel and Distributed Computing
[128).

2For example, in measurements of a particle’s position and momentum, the product of the measurement
uncertainties is constant. Attempting to measure one quantity with greater certainty increases the uncertainty
in measuzements of the other.
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Uncertainty” [112] and “probe effect” [62] have been used to describe the error introduced in
the performance measurement due to a monitor’s intrusion on computer system behavior. With
the exception of passive hardware performance monitors, performance experiments rely on soft-
ware instrumentation for performance data capture. Such instrumentation mandates a delicate
balance between volume and accuracy.® Excessive instrumentation perturbs the measured sys-
tem; limited instrumentation reduces measurement detail — system behavior must be inferred
from insufficient data. Simply put, performance instrumentation manifests an Instrumentation

Uncertainty Principle:
¢ Instrumentation perturbs the system state.
¢ Execution phenomena and instrumentation are coupled logically.

¢ Volume and accuracy are antithetical.

The primary source of instrumentation perturbations is execution of additional instructions.
However, ancillary perturbations can result from disabled compiler optimizations and additional
operating system overhead. These perturbations manifest themselves in several ways: execution
slowdown, changes in memory reference patterns, event reordering, and even register interlock
stalls, From a performance evaluation perspective, instrumentation perturbations must be bal-
anced against the need for detailed performance data. Regrettably, there are no formal models
of performance perturbation that would permit quantitative evaluation given instrumentation
costs, measured event frequency, and desired instrumentation detail. Given the lack of models
and the potential dangers of excessive instrumentation, detailed performance measurements,
mainly in the form of software event traces, often are rejected for fear of corrupting the data
(i.e., a small volume of accurate, though incomplete, instrumentation data is preferred). We
hypothesize that this restriction is, in many cases, unduly pessimistic.

Our approach to understanding the problem of performance perturbation involves both the
creation of perturbation models and the testing of those models through empirical studies.
The perturbation models we developed are based on timing and event analysis. Time-based

¥n contrast to other experimental disciplines, computer systems instrumentation does permit the episte-
mological trickery of declaring instrumentation part of the system, The perturbation is then, ipso facto, null.
However, users of computer systems, particular those of high-performance machines, are rarely willing to sacrifice
performance for permanently enabled instrumentation. Thus, our analysis here and in Chapters 4 and § excludes
such possibilities.
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perturbation models attempt to recover accurate t of trace events from knowledge of in-
strumentation overhead, assuming event independence. Event-based perturbation models focus
~ on removing the effects of instrumentation on the ordering of events in parallel execution. For
both time-based and event-based perturbation analysis, we conducted a series of instrumenta-
tion experiments to determine the validity of the models in an actual execution context. The
;emlts of these experiments suggest that a systematic applications of performance perturba-
tion analysis techniques will allow more detailed, accurate instrumentation than traditionally
believed possible.

This chapter concentrates on time-based perturbation analysis. Depending on the character-
istics of the execution environment, instrumentation perturbation manifests itself in different
ways. In §3.1, we describe an example execution environment, the Alliant FX/80, a shared
memory, vector multiprocessor, which embodies a variety of execution modes. In §3.2, we
discuss the range of possible instrumentation timing perturbations on the Alliant FX/80. In
§3.3, we develop several time-based models of performance perturbation that permit removal
of perturbations from application program traces. The trace instrumentation support for the
FX/80 system used in the empirical testing of the perturbation models is described §3.4. In
§3.5 and §3.6, we validate the models using experimental data obtained from execution of the
Livermore Loops on the Alliant FX/80. Finally, §3.7 discusses the limits of time-based pertur-
bation analysis and illustrate the need for the event-based perturbation models of Chapters 4
and 5.

3.1 Experimental Environment

The Alliant FX /80 contains a combination of hardware and software features that makes it an
interesting system for characterizing the types of perturbations that might occur in practice.
As such, it offers a rich environment for experimental perturbation analysis. Below, we briefly
describe the FX/80 architecture; see Figure 3.1.

The Alliant FX/80 consists of up to eight computational elements (CEs), each containing
a vector processor [5, 150]. The CEs are connected via a concurrency control bus that permits
dispatching of small computation granules to cooperating CEs. Using this bus, parallel loop
iterations can be directly allocated to the CEs through a hardware self-scheduling mechanism.
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Figure 3.1: Alliant FX/80 Architecture
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The memory system of the Alliant FX/80 combines parallel data access with a hierarchical
memory structure. It is organized as three levels: a large main memory, a 512K byte cache
shared by all CEs, and scalar and vector registers private to each CE. Each vector register
contains 32, double precision (64-bit) words and is accessed by each CE's vector processing
unit. The 64K word, write-back cache contains four banks that are connected to the eight CE's
via a crossbar switch. The cache can service up to eight simultaneous accesses per cycle. The
cache and the four-way interleaved main memory are connected via a main memory bus with
a peak transfer rate of four words per cycle. Therefore, the peak bandwidth between main
memory and the CEs is half that between the cache and the CEs.

The CE instruction set is a variation of the Motorola 68020 with certain extensions (e.g.,

vector and concurrency instructions). The Alliant vector instructions are of two types:
e Internal: all operands are contained in vector and scalar registers
o Ezternal: one operand involves a memory request

Within each type, most vector instructions have similar timing behavior, typically differing
only in their startup time. Because the internal, register-register instructions do not depend
on conditions extrinsic to each CE, their timings are deterministic. In contrast, the timing
behavior of external vector instructions depends on memory activity. Access contention, either
from the CE’s previous requests or from requests issued by other CEs, and data location, either
cache or main memory, both contribute to delays.

The memory hierarchy, multiple CEs, vector memory operations, and the concurrent ex-
ecution modes all make the Alliant FX/80 a complex experimental environment. Successful
hypothesis validation‘in this environment would provide strong evideuce ihat out timing per-
turbation models are applicable to parallel systems with simpler execution environments (e.g.,
the multiple processor Cray X-MP [29] or the distributed memory Intel iPSC/2 [10]).

3.2 Performance Perturbation

The number and complexit_y of the Alliant FX/80’s execution modes, and those of other high-
performance computer systems, are equaled in both number and complexity by perturbation

mechanisms for performance instrumentation. Unfortunately, perturbations are not additive,
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nor can perturbation magnitudes easily be deduced from measurement data without knowledge
of perturbation mechanisms. Thus, understanding these perturbation mechanisms is a prereq-
uisite for analysis of experimental performance data and application of sequential and parallel
performance perturbation models. Because the possible perturbations during sequential execu-
tion are but a subset of those possible during parallel execution, we begin with an analysis of

the former.

3.2.1 Sequential Perturbations

Although the range of possible instrumentation perturbations depends on the complexity of
the underlying architecture and system software, the single stream of control flow in sequential
programs localizes most perturbations about the instrumentation point. The localization of
perturbation effects means that the computation’s performance behavior is only affected within
a local region of the instrumentation. Although the timing error introduced by the perturba-
tion accumulates during the performance measurement, if the perturbations are assumed local,
we can empirically characterize different instrumentation perturbations in isolation and apply
models that remove the timing errors at the instrumentation source; see §3.3. Below, we discuss
the possible perturbations in the context of our example execution environment, the Alliant
FX/80. Many of the issues are equally relevant in other sequential execution environments
from complex RISC-based platforms, such as those built with the Intel i860 microprocessor, to
supercomputer systems, such as the Cray X-MP, the Cray Y-MP and the Cray 2.

As discussed in §3.1, the pipelined Alliant FX/80 processors are connected to a complex
hierarchy of registers, cache, and primary memory. A sophisticated compiler generates code to
maximize access frequency to the smaller, faster components of this hierarchy. For instance,
at the lowest level of the memory hierarchy, pipelined register dependencies arise when an
instruction accesses a register whose value has not yet been produced by a previous instruction.
Although these dependencies stall the processor or functional unit until the requisite value is
produced, optimizing compilers can reduce the number of stalls by judicious register allocation
and instruction scheduling.

At this level, instrumentation perturbations need not increase execution time; instrumenta-
tion can both add and remove register dependencies. The former can occur when the prologue

of the instrumentation code uses registers that have STORE operations pending. Typically, most
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instrumentation points first save the active registers on the local stack, generate the desired
performance data, and then restore the active registers. Because most registers are addressed
" during save and restore, dependencies between instructions just before or after the instrumen-
tation point are highly probable. Conversely, register dependencies can be removed by inserting
instrumentation between two instructions that have an existing register dependency. Execution
of the intervening instrumentation code will decouple the dependent instructions.

Even if instrumentation does not perturb register dependences, it can change both the
spatial and temporal patterns of cache and memory references, with both positive and negative
effects. Consider an application code fragment that contains a loop with a high density of
memory references. If the instrumentation generates large volumes of data, the resulting cache
and memory traffic may flush most application data from the cache. When application execution
resumes, the data cache will be reloaded by a sequence of cache misses. The overhead for this
“cold start” [178] may be comparable to that for a context switch.

If an application’s memory references generate bank conflicts in the interleaved memory
[179], instrumenting the code will distribute the application memory references across a larger
interval of time, decreasing the memory access time as perceived by the application code.
During execution of the instrumentation code, all outstanding memory references, including
those with bank conflict stalls, will compete. Because time spent in instrumentation code is
not charged to the application, the apparent memory access time decreases. The converse is
also true. If application data access patterns are structured to minimize bank conflicts, inserted
instrumentation code can disrupt the access pattern, perhaps creating a degraded, steady state
memory access pattern with bank conflicts.

As the magnitude of direct instrumentation perturbation grows (e.g., added register depen-
dencies or modified memory reference patterns), the probability of indirect perturbation grows
proportionately. For example, the probability of context switches is higher for instrumented
applications because they execute longer. Although the cost of these context switches can
be measured by instrumenting the operating system, identifying “real” and induced context
switches is non-trivial.

Perhaps more subtle than either direct perturbations or induced context switches are changes
in the application program’s executed code. Although the object code for a program with

source code instrumentation (i.e., instrumentation inserted in the application source code)
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clearly differs from the object code for the same program without instrumentation, removing
the instrumentation from the object code does not result in identical codes. For example, source
code instrumentation can prevent certain optimizations and can change register allocation.*
For vectorizing and parallelizing compilers, the potential for code perturbation is greater —

inserting instrumentation in a vectorizable loop can easily prevent vectorization.

8.2.2 Parallel Perturbations

As noted earlier, the class of possible perturbations during sequential execution is but a subset
of those possible for parallel programs. Parallel programs often stress their execution environ-
ment. For example, a single processor of the Alliant FX /80 cannot generate contention at the
shared cache, nor can it saturate the memory bus. In concurrent mode, however, both the
cache and memory bus can be performance bottlenecks [64]. This also is true of other parallel
machines with high-performance memory systems [179]. Instrumentation that causes only small
perturbations in sequential mode (e.g., memory traffic to save instrumentation data) can create
unacceptable perturbations in concurrent mode, including perturbations of the task execution
order.

With the exception of asynchronous input-output, the execution states of sequential pro-
grams form a total order. Sequential trace instrumentation may change event times, but it
rarely changes the event order. In contrast, the states of parallel programs inherently form
a partial order. Consequently, the reordering of instrumented states is not only possible but
likely. The number of reordered events depends on both the task scheduling algorithm and the
frequency of parallel task synchronization.

If parallel tasks are assigned to processors statically (i.e., the mapping of tasks to proces-
sors is known @ priori), the sequence of tasks executed by each processor cannot change as
a consequence of instrumentation. However, the lengths of the respective tasks can change,
and this may reorder events across tasks. Consider a parallel program with two tasks, where

task A reaches a synchronization point before task B. If the instrumentation overhead for task

$We return to the interaction of compiler and instrumentation in §3.4.
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A exceeds that for task B, the order that the tasks reach the synchronization point will be
reversed, and the recorded event order will differ from nominal.®

In general, some tasks are dynamically assigned to processors. Indeed, the Alliant FX/80
permits dynamic assignment of single loop iterations. If instrumentation changes task execution
times by disproportional, data dependent amounts, the sequence of tasks executed by each
processor, and the order of inter-task events cannot be predicted without knowledge of the task
scheduling algorithm.

Given the diversity and complexity of possible instrumentation perturbations, both direct
and indirect, software instrumentation must be designed to ameliorate or eliminate as many
perturbations as possible. However, timing perturbations cannot be removed solely by effi-
cient instrumentation, and perturbation analysis must be applied to resolve timing errors. An
instrumentation design for the Alliant FX/80 is the subject of §3.4. The following section de-
velops a theory of time-based performance perturbation and constructs perturbation models

for removing timing perturbations during sequential and concurrent execution.

3.3 Timing Perturbation Models

Models to capture and remove timing perturbations due to instrumentation must be based on
a particular instrumentation approach. Because tracing is the most general form of instrumen-
tation, allowing both static and dynamic analysis, we derive time-based perturbation models
for trace instrumentation. Given an understanding of possible performance instrumentation
perturbations (see §3.2), measures of in vitro trace instrumentation costs in an execution en-
vironment (see §3.4), and an instrumentation trace, our goal for perturbation analysis is to
recover the “true” trace of events as they would have been generated during an execution with

instrumentation. There are two phases in this perturbation analysis:

¢ Execution Timing Analysis — Given the measured costs of instrumentation, adjust the

trace event times to remove these perturbations.

$ Different parallel execution orders can occur, even without instrumentation, due to asynchronous task oper-
ation. The reproducibility of parallel executions is another aspect of uncertainty separate from instrumentation.
For our purposes, we assume the differences between possible event orders from executions without instrumen-
tation is minimal.
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¢ Event Trace Analysis — Given instrumentation perturbations that can reorder trace

events, adjust the event sequence based on knowledge of event dependencies, maintaining
causality.
In both phases, models are needed that describe observed behavior as a perturbation of true

behavior. For timing analysis, one must approximate true times of event occurrence, either for
each trace event or for the total execution time. That is, the timing model must describe how
the perturbations affect measured execution times. Event analysis models are more difficult;
program or system semantic information is needed to determine if the relative event order is
incorrect and, if so, generate a better approximation to the true order. We restrict our attention
here to two classes of timing analysis models; event-based perturbation modeling is the subject
of Chapters 4 and 5. The first, simpler model predicts total execution time given trace data.
The second adjusts the times of individual trace events. For both models, we discuss, where
a.ppropriate,' the perturbations that might be removed by appropriate event analysis models.

We begin, however, with a formal description of the instrumentation problem.

3.3.1 Definitions

Given a program P composed of a sequence of statements S, Sz,...,S5, and a set of instru-

mentation points I, I5,.. ., I,, an instrumentation of P is defined as
I(P) = I3, 81,12, 52y+ 0 .3 Iny S »

where some I; may be null (i.e., no instrumentation). Thus, we define instrumentation on a
statement basis, where an event represents the execution of a statement.

A logical event trace, T, is a time-ordered sequence of events ey, ...,e, Where each e; is of the
form {t(e;), eid;}, eid; is the event identifier for the i** event representing the statement S..,
in the program, and ¢(e;) is the time when the event occurred. If the program is instrumented,
we use the notation 7, to denote a measured event trace. Because a program can have both
sequential and concurrent components, we define the sequential event trace, 7* (733,), as the sub-
sequence of events ey, €q, . .., €, generated in sequential mode.® Similarly, the concurrent event
trace for processor 4, 7° (71), is the sub-sequence of events €}, el, ..., e executed in concurrent

mode on processor 1.

%Because sequential executions form a total ordering of events, 7° = 7.,
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Given these definitions and letting T'(Seig;) be the true execution time of statement Seiq;,
the total execution time of a sequential program P is
T*(P)= Y T(Saa) -
e €T’
The measured program execution time of an instrumentation of P is
TAEE) = T [T(5a) 0 TUa)]
where T'(Iq4;) is the true execution time overhead of the instrumentation point Ieig;. The
coupling of execution times for program statements and instrumentation, represented by @,
denotes perturbations not included in individual instrumentation and statement timings (e.g.,
the disruption of memory reference patterns).

For concurrent execution time one must determine the critical path during concurrent
computation. Let 7* = ep,eq,...,e, represent the locical trace of sequential events and
TP = €,,€4,...,€y the logical trace of concurrent events along the critical path, respectively.
The total true execution time of a concurrent program P is

T(P)= Y T(Seis;)+ 3 T(Seid;) -

ei€r? ejErer
Similarly, the measured program execution time of an instrumentation of P is:
To(Z(P)) = Y [T(Seia) @ T(eias) + 32 [T(Seidy) © T(Teigs)] -

¢ ETh e;€ral
where 7,7 = e, €y,...,€; represents the critical path of concurrent events in the instrumented
program. Unfortunately, the concurrent event sequence identified as the critical path in T¢(P),
7, may differ from that for T(Z(P)), 7P; this is the motivation for event trace analysis
models of Chapter 4 and 5.

From these execution time definitions one can define a series of instrumentation perturbation
metrics. We will use T'(P) and T,,(Z(P)) to represent true and measured execution times for
both sequential and concurrent timing measurements. The simplest metrics, absolute and
relative error for measured execution time, are defined in the standard way. The absolute error
AE is

AE =T,(Z(P))- T(P), (3.1)
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and the relative error RE is
_ Tu(Z(P)) - T(P)

() . (32)

RE

The direct perturbation DP
DP = DP’'+DP° (3.3)

is the increased execution time directly caused by instrumentation; its sequential and concurrent
components, DP* and DP¢, respectively, are
DP* = Y T(lLig)
e ETR

and :
DP°= Y T(Iig).

ej€Tsy
Although (3.1) and (3.2) estimate the instrumentation perturbation, they do not estimate
actual execution time from trace data. The approzimate execution time, To(P), is the difference

between the measured execution time and direct perturbation,
To(P) = Tr(Z(P)) - DP . (3.4)

That is, T,(P) is the approximated execution time after applying a timing analysis model that
includes only direct perturbations.
Finally, the relative approximate error, RAE, estimates the accuracy of a timing analysis

model (i.e., how accurately one can determine actual execution time from an instrumentation

trace):?
To(P) - T(P) _ Twm(Z(P)) - DP - T(P) )

RAE=="0my = T(P)

(3.5)

3.3.2 Execution Time Analysis

The test of a timing analysis model’s veracity is its ability to predict a program’s actual execu-
tion time given an instrumentation trace. In the remainder of this section, we present execution

time models for both sequential and concurrent execution.

"In the remainder of the paper we will use the measure %g} = RAE + 1 to express the accuracy of the
model.
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3.3.2.1 Sequential Execution

During sequential execution, the principal perturbation is direct — execution of additional
instrumentation instructions. Furthermore, instrumentation does not perturb the total order
of program events. Thus, our sequential perturbation model assumes that all perturbations
are direct (i.e., AE = DP) and that the cost for instrumentation is decoupled from statement
execution. Simply put, the model approximates actual execution time by the difference between
measured execution time and all direct instrumentation costs. More formally, the model’s

assumptions imply the following:

1. The actual cost T'(I,;4;) for each instrumentation point I; is approximated by a constant

a.

2. DP =3, .cr¢ T(Ieia;) = aN, where N is the number of instrumentation points.

3. Ta(P) = Tm(Z(P)) - DP = T(Z(P)) - aN.

4. RAE = l!';(;)&,’)l(f)l ~ (Tm!I‘P!S—aN!'g

As the approximate equality above suggests, the accuracy of our assumption depends on
the interaction of instrumentation perturbations and statement execution., With source code
instrumentation, compiler register optimizations can invalidate the assumption of a constant in-
strumentation perturbation; see §3.4. To remove these indirect perturbations, we first apply the
simple model above to approximate the actual execution time T}(P). This prediction reflects
direct perturbations from instrumentation execution. We then assume the instrumentation
code is removed from the instrumented program’s assembly code (or object code) and measure
the execution time of the resulting program. producing a second execution time estimate 72{ P)
that measures .only the code perturbations. The final execution time approximation in the case

of source code instrumentation is given by

T(P)
T(P)

The desired approximation in this case would be based on a non-uniform perturbation model

Tiouree(P) ~ TX(P)« (3.6)

(i.e., one that considered the effects of each individual instrumentation instance). However, the

$The astute reader may notice that we are assuming we know the actual execution time of P, T(P), in the
calculation of the relative approximate error. In actuality, 7(P) must be determined from measurement. This
will become clear in §3.5.
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number of different cases to consider can become large and requires an analysis of the differences
in the code generated with and without instrumentation. In light of these complications, the

scaled approximation above is reasonable when source code instrumentation is necessary.

3.3.2.2 Concurrent Execution

During concurrent execution, multiple threads of control may simultaneously reach trace instru-
mentation points. Intuitively, a critical path analysis would identify the set of instrumentation
points needed to compute total execution time [198]. Unfortunately, perturbation mechanisms
such as those described in §3.2.2 make this difficult. Events can be reordered, and the critical
path identiﬁed‘ from the instrumentation trace may not be the critical path in the real code.
Without resorting to the event analysis models of Chapters 4 and 5, we can assume that
events are not reordered and that the concurrent thread with the longest execution time (after
direct perturbations have been removed) is the critical path. If most threads execute similar
instruction streams (i.e., there is little data dependent code), this assumption is accurate.® Like

the sequential execution time model, our base assumption implies the following:
1. The actual cost T(I.:4;) for each instrumentation point I; is approximated by a constant
a‘

2. DP = DP* + DPF;,,, = DP* + aNp,g, Where

o (Tn(Z(Pmas)) - @lr™]) 2 (Tm(Z(P)) - afr]) Vi 0<i<p,
e p is the number of processors,
o T (Z(P;)) is the measured concurrent execution time on processor %,

® Npgz = |T™2%] is the number of instrumentation events in trace 7™42,

3. To(P) = Tn(Z(P)) — DP* = Ta(Z(P)) = DP* + aNpmas-

4. RAE = ‘T.‘P%—T‘Pn ~ Te(Z(P))-DP*+aNma .

In simpler terms, the concurrent perturbation model chooses as the critical path the sequential
execution path plus the execution path along the concurrent thread that has the greatest

accumulated execution time after the direct perturbation has been removed; see Figure 3.2.

°If not, an event analysis model is needed; see Chapters 4 and 5. However, in §3.6, we show that timing
analysis alone can yield significant insight in many practical cases.
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3.8.3 Event Trace Timing Analysis

To recover the true sequence of trace event times, one must consider not only the total execution
time but all possible inter-event dependencies and associated perturbations. Even given careful
analysis and a predictive model, one cannot directly determine the accuracy of the predicted
event times.!® Instead, one must infer the stability of the event timing model by comparing its
trace predictions with varying levels of trace instrumentation. As with execution time models,

we begin with the simpler, sequential case.

3.3.3.1 Sequential Trace Timing Analysis

Each trace event identifies a unique spatial and temporal state (i.e., a code location at a specified
time). In a sequential trace, each event is perturbed by the instrumentation for all previous
events. Thus, we iteratively calculate each event time, given the perturbations of previous
events.

For a trace 7* of sequential events e;,...,en where each e; is of the form {¢,,(e;), eid;}, we

approximate the actual time of event e; by t5(e;),
ta(e;) = tm(e) - i — 1), (3.7)

where « is the mean time for each trace instrumentation point and ¢,,(e;) is the measured time
of occurrence of e; from a trace of an instrumented execution.!!

Unfortunately, it is possible that two events e; and e; occur so close together that t,(e;) <
tm(ej) but ta(e;) > ta(e;). Simply put, software instrumentation may be unable to separate
closely spaced events because the hardware timer lacks the resolution to measure instrumenta-
tion overhead and elapsed time with sufficient accuracy. For example, on the Alliant FX/80,
the timer resolution is 10 microseconds, but the machine cycle time is 170 nanoseconds. In a 10
microsecond window, several events may occur. Although, for sequential programs, these events
form a total order, their times have a 10 microsecond uncertainty. As a consequence, we must

assume simultaneity for all events whose estimated times differ by less than 10 microseconds.

101¢ this were possible, event tracing would be unnecessary.
1 For example, if 101 is (854, 10) in the trace, the approximation of the actual time of occurrence would be
ta(es01) = 854 — 10.9 » 100 = 745, if a = 10.9.
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3.3.3.2 Concurrent Trace Timing Analysis

Approximating event times for concurrent traces is more difficult than for sequential traces. The
perturbation of each event depends oxi the perturbation of all events on the critical path to the
event. In the worst case, a complete characterization of the execution dependencies between
concurrent threads of execution is required. To simplify analysis, we assume that events on
separate concurrent threads are independent and that the program contains only a single level
of fork-join concurrency. With the requisite event analysis model, these assumptions can be

relaxed.
Given a trace 7§ of concurrent events el,..., ¢}, for each concurrent thread i, and a trace
7° of sequential events ef,..., e, we approximate the actual time of a concurrent event e, as

follows.

LK ef, is the first concurrent event after a sequential event e} in the time ordered trace,
then
t,(e}.,) = tvn(ei) = t,,.(e;) + t.(e;) .

We use the measured and approximated times of the last sequential event occurrence
as the time basis for computing the execution time of the first concurrent event of a

concurrent phase of computation.
2. If ¢}, immediately follows a concurrent event in the trace on thread i, then
t,.(e;',) = tm(ei) - t,,.(e}) + t.,(e;-) - aci )

where ¢} is the number of events in concurrent thread i after the last sequential event e}
in the trace. Along a sequence of concurrent events, we use the last sequential event as
the time basis for approximating the time of occurrence of e}, but the direct perturbation

along thread i also is removed.
We approximate the actual time of a sequential event ef, as follows.

1. If e} is the first sequential event in the trace after the last concurrent event from a

concurrent phase of computation, then

ta(ef) = tm(eh) ~ tm(€3) + ta(e}) »
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where #,(ef) > ta(e') for all n and m such that e} and e[ appear before ef, in the trace.
It is here that we determine the critical concurrent path in the instrumented execution.
The concurrent event appearing before ef in the trace with the greatest approximated

timestamp is used as the time basis to approximate the sequential event occurrence.
2. If e} follows a sequential event in the trace, then
ta(ef) = tm(ef) — tm(ef) +ta(ef) — acf ,

where cf, is the number cf events that have occurred in sequential mode since the last
app;'oximated concurrent event e;'- in the trace (or the beginning of the trace). Along a
sequence of sequential events, we again use the last approximated concurrent event as the
time basis for approximating the sequential event occurrence. Additionally, we remove

the direct sequential perturbation.

3.4 Performance Instrumentation

To validate our time-based pertubation models against the Alliant FX/80 execution environ-
ment, we constructed a performance instrumentation facility for the target machine. Below,
we describe the performance instrumentation implementation for the FX/80 and its instru-
mentation overhead, both in execution time and memory bandwidth. Measures of in vitro
instrumentation costs are necessary for practical application of the perturbation models.

For our experiments on the Alliant FX /80, we constructed a tracing library that includes
static trace buffer declarations and a set of assembly language tracing routines. The library
maintains a trace buffer for each of the eight potentially concurrent threads of execution on
the FX/80 and one additional buffer for events that occur during sequential execution. Each
invocation of the tracing routine records a 32-bit timestamp and 32-bit event identifier in the
appropriate trace buffer.

Trace instrumentation can be inserted at either source or assembly code levels. Although
easier to automate, source instrumentation can create register allocation and access problems.!?
For example, the procedure calling convention on the Alliant FX/80 has the caller save registers.

As a consequence, the invocation overhead for a source code trace event depends on the number

13These register management problems are in addition to those discussed in §3.2.1.
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of registers whose values must be retained across the instrumentation code boundaries. Because
the caller does not know what registers are used by the tracing library, it must save all active
" registers. The magnitude of this register management overhead depends on the current register
state. The alternative, saving registers in the callee, fixes the overhead — only the registers
used by the trace library need be saved. The disadvantage is that registers may be saved
unnecessarily.

Not only does source code instrumentation require register management, it may inhibit or
force different code optimizations. The latter depend on both the language and the code gener-
ator. On the Alliant FX/80, the C compiler does not restructure the source code prior to code
generation and optimization, nor does it generate vector or parallel code. Inspection of the
generated assembly code after source instrumentation shows only simple optimizations; source
statement boundaries were clearly delimited. As an artifact of the C compiler’s limited opti-
mization, the overhead for source instrumentation was nearly invariant across instrumentation
points.

Unlike source instrumentation in C, the overhead for a Fortran source instrumentation
point is context dependent. The preprocessor of Alliant Fortran compiler generates restruc-
tured Fortran source based on detected data dependencies. Although the resulting Fortran
is functionally equivalent, statements can be reordered, loops can be fused or distributed, and
new variables can be created [197). Inserting trace instrumentation can inhibit a subset of these
transformations.

As an example of the interaction of instrumentation and source restructuring, Table 3.1
shows the generated code for the following code drawn from the Livermore loops [131], both

with and without source code instrumentation.

DO 10 k=1, n
c instrumentation point
X(k) = Q + Y(k)*(R+ZX(k+10) + T*ZX(k+11))
c instrumentation point
10 CONTIRUE

When no source code instrumentation is included, the Alliant Fortran compiler generates code

to pre-load the scalar operands (Q, R, and T) in floating point registers (fp7, fp5, and fp6,
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Expression Normal Instrumented
a = R*ZX(k+10) | fmuls zx+410{d7],fp5,fp0 fmoves 2x+10{d7],fp1
fmuls r,fp1,fp0
(b = T*ZX(k+11) | fmuls sx-+11[d7),fp7,fp1 fmoves zx+11[d7],fp3
fmuls ¢,fp3,fp2
c=a+b fadds fp1,fp0,fp0 fadds fp2,fp0,fp0
d = c*Y(k) fmuls y[d7],fp0,fp2 fmuls y[d7],fp0,fp4
(X(k)=Q +d | fadds fp6,ip2,ip2 fadds q,fp4,fp5
fmoves fp2,x[d7] fmoves fp5,x[d7]

Table 3.1: Fortran Perturbations with Source Code Instrumentation

respectively) before the beginning of loop execution; these instructions are not shown in Table
3.1. When instrumentation is added to the source code, the Fortran optimizer recognized that
loading the registers during each loop iteration would eliminate the register save and restore
overhead for the instrumentation call. Thus, the instrumented loop iterations fetch the scalar
operands from memory. As a consequence, the first two floating point multiplications in the
code without instrumentation become a sequence of two floating point register loads followed
by two floating point multiplications in the instrumented code.

Given the perturbation variance for Fortran source instrumentation and the desire to post-
process the tzace data using models of performance instrumentation with known costs, we opted
to instrument all applications at the assembly code level. In this mode, the compiler generates
code without knowledge of the instrumentation, the fixed instrumentation is inserted in the
resulting code, and the code perturbation is context independent.!®* With this approach, an
@ priori measurement of instrumentation overhead is possible and, by hypothesis, a posteriori
removal of perturbations via performance perturbation models.

To determine instrumentation overheads, we conducted a series of preliminary experiments
that measured the in vitro costs of trace instrumentation. These costs provide the basis for the
in vivo tests of our primary hypothesis, that instrumentation overheads can be removed from
detailed performance traces. Among the possible perturbations discussed in §3.2, the most

significant are increased execution time (i.e., time dilation) and increased memory bandwidth.

13We avoided the problems of variable costs for register save and restore by implementing an assembly code
version of our trace library with the callee saves convention.
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Execution Mode | Level | Mean Time | Standard Deviation

Sequent C Source 10.26 +1.76
_Sequential Assembly 11.01 +2.52
Concurrent Assembly 12.25 +2.60

Table 3.2: Instrumentation Time Dilation (Microseconds)

We began by measuring the cost to record an instrumentation trace event for both sequential
and concurrent execution on the Alliant FX/80; see Table 3.2. A test program performed one
thousand calls to the tracing routine, and call overhead statistics were calculated from the trace
data.

Table 3.2 shows instrumentation statistics for three forms of instrumentation. The smaller
time for sequential source instrumentation is directly attributable to the C compiler’s optimiza-
tions for register save and restore. Because the assembly code instrumentation always saves all
registers, it has a slightly higher cost. With concurrent tracing, all 8 CE’s must write to differ-
ent trace buffers. In this case, the total cache and memory traffic is greater and is distributed
across a larger fraction of the address space. Because there are more cache misses and memory
contention, the time dilation is greater.

In our implementation, each trace instrumentation point generates 48 bytes of memory
traffic. Using the execution time measurements above, sequential and concurrent tracing can
generate at most 4.36 megabytes/second and 31.35 megabytes/second of memory traffic, re-
spectively. Although these are well below the peak bandwidth of the Alliant FX/80 memory
bus, the additional memory traffic is substantial, particularly for concurrent tracing. If the
application program is memory intensive, the potential memory perturbations of §3.2.1 become
real.

3.5 Execution Time Experiments

Our instrumentation hypothesis suggests that the perturbations attributable to detailed perfor-
mance instrumentation can be minimized in sequential, vector, and parallel execution modes.

To test this hypothesis, we conducted a series of instrumentation experiments to determine
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Loop | Description Loop | Description

1 Hydrodynamics Fragment 13 2-D Particle In Cell
2 Incomplete Cholesky - Conjugate || 14 1-D Particle In Cell
Gradient
3 Inner Product 15 Casual Fortran
4 “Banded Linear Equations 16 Monte Carlo Search Loop
5 Tri-diagonal Elimination, Below || 17 Implicit, Conditional Computa-
Diagonal tion
6 ‘General Linear Recurrence Equa- || 18 2-D Explicit Hydrodynamics ‘F—&—ag-
tions ment
7 " Equation of State Fragment 19 General Linear Recurrence Equa-
tions
8 A.D.L Integration 20 Discrete Ordinates Transport
9 Integrate Predictors 21 Matrix-Matrix Product
10 Difference Predictors 22  Planckian Distribution
11 First Sum, Partial Sums 23 2-D Implicit Hydrodynamics Frag-
ment
12 | First Difference 24 Find Locations of First Minimum
in Array

Table 3.3: Lawrence Livermore Loops

the magnitude of performance perturbations as a function of instrumentation frequency and
execution mode (i.e., sequential, vector, and parallel on the Alliant FX/80).

All experiments used C and Fortran versions of the Lawrence Livermore loops (LLL) [131],
a set of 24 loops often used to benchmark high-performance computer systems; see Table 3.3
for a brief description of each loop. These loops contain a diversity of language constructs,
yet remain small enough to permit detailed analysis of performance perturbations. Table 3.4
summarizes the combinations of language and instrumentation used in our experiments. We
emphasize that the purpose of our analysis was not to characterize the performance of the
Livermore loops. Instead, the Livermore loops constitute a set of test cases for our performance
perturbation models. Successful prediction of loop execution times and recreation of event
times would validate our models.

For each Livermore loop, two experiments were conducted in each category; see Figure 3.3.
In the first experiment, trace instrumentation was placed at the beginning and the end of the

loop to determine total loop execution time, the so-called raw instrumentation. The second

73



Language | Mode Type Description

C Sequential Source sequential C loops, instrumentation at

source level

C Sequential NOP sequential C loops, NOP instrumenta-
tion using asm() construct

Fortran Sequential “Source sequential Fortran loops, instrumenta-

] tion at source level

Fortran Sequential Null sequential Fortran loops, instrumenta-
tion at source level but with instru-
mentation removed

Fortran Sequential Assembly | sequential Fortran loops, assembly
level instrumentation

Fortran Sequential NoP sequential Fortran loops, NOP instru-

‘ mentation of assembly code

[ Fortran Vector Assembly | vector Fortran loops, assembly level
instrumentation

[ Fortran Vector NOP vector Fortran loops, NOP instrumen-
tation of assembly code

[ Fortran Concurrent Assembly | concurrent Fortran loops, assembly
level instrumentation

[ Fortran Vector Concurrent Assembly vector-concurrent Fortran loops, as-
sembly level instrumentation

Table 3.4: Experiment Categories for the Lawrence Livermore Loops
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Figure 3.3: Instrumentation Alternatives

experiment produced traces from a full instrumentation with trace events for each source state-
ment. For a typical loop, this instrumentation generated over 2000 trace events, with a total
instrumented execution time of less than 0.1 seconds. Despite this density of trace instru-
mentation, our perturbation models recover actual execution time with less than ten percent
error, confirming our hypothesis that detailed performance data need rot be incompatible with
accurate measurement.

In the remainder of this section, we describe the result of an execution time analysis of the
experimental results for C, Fortran, vector Fortran, concurrent Fortran, and vector-concurrent
Fortran.!* In each case, we first analyze the the direct perturbations caused by the performance
instrumentation using the simple models of §3.3. We then explain any deviations from the

models by investigating sources of indirect perturbation (e.g., changes in the generated code).

38.5.1 Sequential C Experiments

The goal of our sequential C experiments was to compare source level instrumentation across
languages. As mentioned earlier, the Alliant C compiler’s optimizations are but a subset of
those performed by the Fortran compiler, and we conjectured that source instrumentation in

C was less susceptible to indirect performance perturbations. Figure 3.4 shows the results of

4 The cross product of Livermoze loops, instrumentation types, languages, and parallelism represent an enor-
mous volume of experimental data.
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Figure 3.4: Source Instrumentation of C Loops

our experiments with complete source instrumentation for some of the loops. In the figure, the
black bars represent the ratio of full instrumentation execution time to the raw instrumentation
execution time; note that only a subset of the LLL loops are shown. The dotted bars represent
the ratio of the predicted execution time, using the model of §3.3.2.1, to the raw execution
time for the same loop. Clearly, the simple perturbation model predicts the major sources of
perturbation and accurately predicts actual execution time. This result is true for all of the
loops.

Although the simple perturbation model bounds the possible indirect perturbations of source
code instrumentation, it cannot quantify these effects. However, replacing the C instrumen-
tation statements with NoPs, retains the perturbations of code generation but removes all
ancillary perturbations of instrumentation (e.g., memory referencing). The direct effects of
instrumentation, assumed to be constant in our model, are emulated by the fixed execution
time of the NoPs. Thus, the difference between the real source instrumentation approximation
and the approximation from the NOP instrumentation are largely attributable to the ancillary
perturbations. Figure 3.5 shows the result of predicting performance with NOP instrumenta-
tion at every source statement. All predictions are within three percent. This small error is
attributable solely to the indirect perturbations of source code instrumentation. This supports
our claim that the perturbations of code generation are small; a study of the assembly code
produced from the C source instrumentation also shows that the changes are minimal. As an
example, the model’s approximation for loop 10 improves from 1.16 to 1.02. This suggests

that there are perturbations different from instrumentation execution time, which the C-Nop
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Figure 8.5: NOP Source Instrumentation of C Loops

experiments model, accounting for the slowdown of the trace-instrumented run. Upon inspec-
tion of the generated assembly code one sees that a register dependency is introduced by the
tracing instrumentation that is not present in the code without instrumentation and the nop
instrumented testcases. This dependency stalls the instruction following the instrumentation
by 3 cycles on the Alliant FX/8 or 510 nanosecods. If we modify the simple sequential model to
include this stalling, the approximation of the instrumented execution improves to 1.09 (within

9 percent of real execution time).

3.5.2 Sequential Fortran Experiments

Unlike source level instrumentation in C, the breadth of the Alliant Fortran compiler’s optimiza-
tions creates large perturbations with source instrumentation. To quantify these perturbations
and to determine an acceptable instrumentation methodology, we conducted experiments using
four combinations of source and assembly code instrumentation; see Table 3.4.

Figure 3.6 shows the simplest test, complete instrumentation at the source code level. Unlike
the comparable C experiment in Figure 3.4, the Fortran perturbations cannot be explained by
our simple perturbation model, The model’s approximations differ as much as 80 percent from
the actual execution times. Clearly, some perturbations are indirect.

To determine the indirect perturbations, including changes to the generated code, we com-
piled each loop with source instrumentation inserted. We then removed the generated instru-

mentation from the assembly code. This null instrumentation retains all perturbations of code
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Figure 3.8: Assembly Code Instrumentation of Fortran Loops

generation without the direct perturbations that accrue from execution of instrumentation. As
Figure 3.7 shows, these indirect perturbations are substantial; inserting source instrumentation
inhibits mary code optimizations. Do the perturbations of code generation account for a sig-
nificant fraction of all perturbations? The white bars in Figure 3.7 show the approximations of
the model of §3.3.2.1 when equation (3.6) is applied; that is, the code generation perturbatiors
have been removed from the original approximations. As can be seen, the model predicts well
for some loops. However, significant perturbations remain, and one must consider additional
perturbations to fully explain the instrumentation’s effect on loop performance in all cases.

The complex interactions of source instrumentation and Fortran compiler make isolation of
instrumentation perturbations difficult, if not impossible. Because our goal is the systematic
application of a standard perturbation model, the remainder of our experiments were conducted
by instrumenting the generated assembly code of each loop.!®

Figure 3.8 shows the merit of Fortran assembly instrumentation, and indirectly, the need
for compiler supported performance instrumentation. If code generation is not perturbed, me-
chanical application of our simple perturbation model permits recovery of total execution time
with small error, typically less than five percent. For those Livermore loops where this approach
fails, and the error never exceeds 40 percent, detailed analysis reveals an extraordinary ratio

of instrumentation to application code (e.g., instrumentation of a single machine instruction).

18 With suitable modifications, a compiler could generate this instrumentation after all optimisation, eliminating
indirect perturbations during code generation.
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[Livermore | Scalar | Vector || Livermore | Scalar | Vector
Loop Events | Events Loop Events | Events

1 2006 68 9 206 12

3 2007 0 12 2004 68

4 1820 68 13 1092 43

6 © 4162 381 14 17024 3424

7 1994 68 15 10648 1040

8 1395 75 18 4498 203

Table 3.5: Fortran Trace Event Counts

Often, accounting for a single, 170 nanosecond cycle register stall in the instrumented code
reduces the error to less than five percent. It is also possible that the instrumentation causes a
register dependency, present in the code without instrumentation, to be eliminated. Single cycle
instrumentation typically requires hardware support; even in these stress tests, the accuracy of

the software model is surprising.

3.5.3 Vectorized Fortran Experiments

Instrumenting the iterations of a sequential loop produces a sequence of trace events for each
loop iteration. If the same loop is vectorized and the loop bound is less than the vector register
length, a single machine instruction may represent the entire computation. Thus, a vectorized
loop contains fewer potential instrumentation points. For example, if the vector loop bound
exceeds the vector register length, the loop can be instrumented only at those points were
register reloads occur.

Table 3.5 shows those Livermore loops that the Alliant Fortran compiler vectorized and the
number of associated instrumentation trace events. The number of vector events depends on
the vector length and loop complexity.

Because a vector instruction performs many identical operations, it represents a larger
computational granule than a simple scalar instruction. Consequently, the relative perturbation
for instrumented vector instructions is less than that for scalar instructions, and perturbation

models should more accurately predict execution time. Figure 3.9 shows precisely this result.
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Figure 3.9: Assembly Code Instrumentation of Vectorized Fortran Loops

1041 g oo

Figure 3.10: Assembly Code Instrumentation of Concurrent Fortran Loops

3.5.4 Concurrent Fortran Experiments

Unlike vectorization, compiling for concurrency does not condense multiple statements; all
observable events in a sequential trace remain present, but a subset of the events execute
concurrently. Moreover, tracing instrumentation may dominate concurrent execution of some
loops (i.e., a significant fraction of concurrent time may be spent in instrumentation code). In
these cases, critical paths must be identified with care.1®

Figure 3.10 shows the result of our concurrent perturbation model for those loops concur-
rentized by the Alliant Fortran compiler. Clearly, the concurrent perturbation model yields

approximations that are both high and low. For most loops, the errors can be explained via a

1$Recall that the concurrent model of §3.3.2.2 makes restrictive assumptions about execution behavior.
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combination of register dependencies and increased memory traffic. For instance, by applying
concurrent trace instrumentation overheads in the timing analysis for those loops where tracing
dominates execution (8, 12, 13, 14, and 18) we were able to reduce errors to within 10 percent.
For other codes, in particular loops 3, 4, and 17, the concurrent execution model assumed by
the timing model is violated due to data dependent behavior. Because the timing model does
not include critical path analysis, substantial approximation errors occur in these codes. We
consider loops 3 and 17 in more detail to explain why these errors occur.

For Livermore loop 3 (Inner Product), our execution time model overestimates the instru-
mentation perturbation (i.e., the model’s estimate of total execution time is too low). Because
the perturbation model charges only for direct perturbations, one infers that the instrumen-
tation reduces the execution time of the application code. For loop 3, the Alliant Fortran
compiler creates a critical section around the update of the inner product sum. Without in-
strumentation, most processors are blocked on entry to the loop’s critical section. Adding
instrumentation increases the total computation in each concurrent iteration and reduces the
probability of blocking at the critical section. In consequence, the processors spend less time
waiting when the code is instrumented; subtracting a fixed overhead underestimates the total
execution time. Interesting, this analysis also applies in the case of loop 4 (Banded Linear
Equations).

For loop 17 (Implicit, Conditional Computation), our model underestimates the instrumen-
tation perturbation. Surprisingly, the reason is the same as that for loop 3 — the loop contains
& critical section. Unlike loop 3, however, the trace instrumentation lies inside the critical
section. This increases the probability of contention, and the critical section becomes a larger
fraction of the total execution time in the instrumented code. Subtracting a fixed overhead
overestimates the total execution time.

The concurrency experiments reveal both the importance of instrumentation placement and
the need for accurate critical path analysis. The latter permits identification and removal of
indirect perturbations (e.g., synchronization stalls). This is considered in detail in Chapters 4
and 5.
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Figure 3.11: Assembly Code Instrumentation of Vector Concurrent Fortran Loops

3.5.5 Vector Concurrent Fortran Experiments

Vector concurrent execution mode combines the perturbations of both vectorization and concur-
rentization. Fortuitously, the respective perturbations are not additive. Vectorization damps
perturbation by increasing computation granules while reducing the number of instrumenta-
tion events. Concurrency, however, reduces the execution time and increases the stress on the
memory hierarchy.

Figure 3.11 shows the result of our experiments for those loops that executed in vector
concurrent mode. In contrast to Figure 3.8 or even Figures 3.9 or 3.10, the ratio of instrumented
to actual execution time is small; each processor records a smaller number of events. With
one exception, our perturbation model consistently underestimates total execution time. As
discussed below, we conjecture that the underlying reason is the same for each loop.

Most loops contain sequences of vector memory operations, separated by instrumentation.
Moreover, earlier studies have shown that the Alliant FX/80 is susceptible to cache bank con-
tention in vector concurrent mode [3, 64). Although the trace instrumentation also references
the cache, the request rate is modest compared to that for vector instruction sequences. We
conjecture that tracing changes the temporal distribution of memory references, reducing the
number of cache and memory bank conflicts. This, in turn, reduces the total execution time.

With rare exception, our performance instrumentation models accurately predict total exe-
cution time for the Alliant FX/80's seqﬁential, vector, concurrent, and vector-concurrent modes.

In those instances where the models are inaccurate, most inaccuracies can be explained by sim-
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ple analysis of the instrumented code. This suggests that simple perturbation timing models,

coupled with event trace models, would permit detailed, but accurate, performance tracing.

3.6 Event Trace Analysis

The experiments described in §3.5 evaluated the feasibility of predicting total execution time in
the presence of massive instrumentation. Experimental results show that global performance
measures, such as total execution time, are still computable to a acceptable accuracy via ap-
plication of performance perturbation models. Clearly, one need not instrument every source
language statement to determine total execution time; simpler, less intrusive methods exist.
The motivation of this approach is to obtain additional performance data. However, the ben-
efit of this trace data depends on its accuracy (i.e., how well it reflects actual event times and
orders).

To determine the accuracy of trace data, one needs a standard of reference. Without a
passive hardware monitor to capture and record events, no such standard exists. Instead, one
must compare a sequence of event traces, each produced with successively smaller subsets of
the complete trace instrumentation. As the number of trace events decreases, the presumed
accuracy of the event times and orders increases.

From the 24 Livermore loops, we selected two loops for detailed study. The first, loop two,
executes in sequential mode; the second, loop eight, executes in sequential, vector, concurrent,
and vector-concurrent modes. For each loop, we created a trace by instrumenting each source
language statement, the full trace. In addition, we generated traces using two partial instrumen-
tations, each a successive subset of the complete instrumentation, traces partial-1 and partial-2,
respectively. After applying the trace perturbation model to each trace, we used Gantt charts
[69] to verify qualitative agreement; comparison of the mean percent difference between event

times confirmed quantitative agreement.

3.6.1 Loop Two ~ Incomplete Cholesky Conjugate Gradient

Livermore loop two, shown in Figure 3.12, is an excerpt from an incomplete Cholesky conjugate

gradient code that executes in sequential mode. Figure 3.13 shows the Gantt charts of traces
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call trace_event(0)
II = 104

call trace_event(1)
IPETP = 0

call trace_event(2)

222 CONTIRUE

call trace_event(3)
IPRT = IPNTP

call trace_event(4)
IPRTP = IPNTP + II

call trace_event(5)

11 = I1/2
call trace_event(6)
I = IPRTP

call trace_event(7)
D0 2 K = IPNT+2, IPNTP ,2
call trace_event(8)
Is=s I+l
call trace_event(9)
I(I) = X(X) - V(E)*X(K-1) - V(E+1)*X(K+1)
call trace_event(10)
2 CORTIRUE
call trace_event(1i1l)
IF(II.GT.1) GO TO 222
call trace_event(12)

Figure 3.12: Instrumented Livermore Loop Two

85



Reference Analysed Total | Mean | Percent
| Trace | Events | Time || Trace | Events | Time || Delta | Delta | Delta

Full
= Full 333 | 383.4 || Partial-2 139 | 380.6
Partial-1 236 | 378.7 || Partial-2 139 | 380.6

402.8 2.90 0.76
429.3 3.09 0.81

Table 3.6: Event Time Differences for Loop Two

from three levels of instrumentation.!” Events 3 and 11 mark the beginning and end, respec-
tively of e'ach outer loop iteration. Traces full and partial-1 also show the inner loop iterations,
marked by events 8 and 10, respectively.

Although the three traces agree qualitatively, there are small quantitative differences. The
total execution times, as predicted by the trace perturbation models, do differ by a small
amount, but not greater than 1.25 percent. To verify event times, we correlated trace events
and compared their times for three combinations of a reference trace, which contains the larger
number of events, and an analyzed trace, which contains a subset of the events in the reference
trace. The sum of the absolute differences between matched event times is the total event delta.
Dividing this number by the number of events in the analyzed trace yields the mean event
delta. Finally, dividing the mean event delta by the number of events yields the percent event
delta. Table 3.6 shows the result of this analysis for loop two. The mean difference between
corresponding event times is less than 2 percent of the total execution time, or 8 microseconds.

This is an excellent match, given the Alliant FX/80 timer resolution of 10 microseconds.

3.6.2 Loop Eight — ADI Integration

Loop eight, an ADI integration, can be both vectorized and parallelized. This permits evaluation
of trace perturbation for all the Alliant’s execution modes. Figures 3.14 and 3.15 show the Gantt
charts for sequential and vector mode, respectively. Although the number of sequential events
makes visual comparison difficult, the temporal event correlation for vector mode is striking.

This is a direct consequent of the high accuracy of the total execution time approximations.

'7In Figures 3.13 and 3.15, individual events are marked by the symbol +; the display scale for other Gantt
charts does not permit display of individual events. In the figures, event simultaneity is a consequence of limited
instrumentation clock resolution; see §3.4.
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Figure 3.13: Sequential Execution of Loop Two
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Figure 3.14: Sequential Execution of Loop Eight
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Reference Analysed Total | Mean | Percent
[~ Trace | Events | Time || Trace | Events | Time || Delta | Delta | Delta

4100.0 4051.8 || 22415.1
Full 1395 | 4100.0 || Partial-2 402 | 3990.0 || 24038.8 | 59.80 1.50
Partial-1 801 | 4051.8 || Partial-2 402 | 3990.0 |} 12992.1 | 32.32 0.81

Table 3.7: Event Time Differences for Loop Eight, Sequential Execution

| Reference Analyzed Total | Mean | Percent
Trace | Events | Time | Trace | Events Delta | Delta | Delta

Full 1285.2
| Full 75 | 1285.2 || Partial-2 38 | 1278.5 || 238.3 6.27 0.49
Partial-1 59 | 1280.5 || Partial-2 1278.5 || 226.9 5.97 0.47

Table 3.8: Event Time Differences for Loop Eight, Vector Execution

The accuracy of the event times, as predicted by the trace perturbation model for sequential
and vector execution, is confirmed by Tables 3.7 and 3.8. In sequential execution mode, event
timing differences, although as much as 60 microseconds on average, are less than 1.5 percent
of the total execution time. The discrepancies for vector mode are even smaller — the mean
difference is less than the timing resolution, and the percent difference is less than 0.5 percent.

Figure 3.16 shows the Gantt charts for the sequential thread and all concurrent threads from
the concurrent execution of Livermore loop eight on six processors.!® In this code, there are two
concurrent loops of equal complexity, separated by a sequential operation. During concurrent
computation, each thread receives roughly the same amount of work. These execution behavior
characteristics are similar for each set of traces.

Although there are qualitative similarities between the traces of Figure 3.16, the differences
in predicted total execution time suggest substantial error in individual event times. Indeed,
the execution time difference between the full and partial-2 trace is 18 percent; see Table 3.9.
Surprisingly, however, the percent event delta between the full and partial-1 traces is less than 6

percent; the same is true for the comparison of traces partial-1 and partial-2. As the difference

1We used only six Alliant CE’s in these experiments to reduce the visual complexity of the figures.
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1077.5

Full Partial-2
Seq 9] 1126.6 ]| Seq 6] 952.4
0 238 | 1020.3 0 68 | 910.6
1 231 | 1030.3 1 66 | 910.6
2 238 | 1030.3 2 68 | 910.6
3 224 | 1046.6 3 64| 8924
4 231 | 1046.6 4 66 | 892.4
5 224 | 1077.5 5 64 | 9224

Partial-1 Partial-2
“Seq 9 [ 1052.1 Seq 6| 952.4
(] 136 | 989.4 0 68 | 910.6
1 132 | 989.4 1 66 | 910.6
2 136 | 989.4 2 68 | 910.6
3 128 | 963.0 3 64| 892.4
4 132 | 963.0 4 66 | 892.4
5 128 | 1013.0 5 64| 922.4

Total
Delta

355.3
2926.1
4930.2
32724
6294.3
4890.5
§631.7

444.6
4045.4
5304.8
4240.9
4453.3
4937.9
5590.1

267.9
2664.8
2859.6
2710.3
3400.2
2535.4
2762.1

Mean
Delta

21.51
37.35
24.06
49.17
37.05

74.10
59.49
80.38
62.37
69.58
74.82
87.35

44.65
39.19
43.33
39.86
53.13
38.42
43.16

Percent
Delta

2.17
3.78
2.43
5.11
3.85

7.78
6.53

8.8
6.85
7.80
8.38
9.47

4.69
4.30
4.76
4.38
5.95
4.30
4.68

Table 3.9: Event Time Differences for Loop Eight, Concurrent Execution
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between the number of events in the reference trace and those in the analyzed trace increases
(e-g., in the comparison of full and partial-2), the percent event delta rises. However, even in
the worst case it does not exceed 10 percent of the total execution time. Stated another way,
the average uncertainty between two matched events in the full and partial-2 traces is less than
10 percent.

Finally, Figure 3.17 shows the Gantt charts for vector-concurrent execution mode. Vectorization
reduces the number of possible instrumentation points and the total number of trace events,
and the predicted execution times differ by less than 3 percent. Because the two loops in the
code are statically scheduled in vector-concurrent mode, unlike the dynamic schedule in con-
current mode, the execution behavior across processors should not differ. In Figure 3.17, the
execution signatures are indistinguishable. Moreover, Table 3.10 shows that the percent delta
in event times is less that 5 percent. More importantly, the mean differences are at the limits

of the timer resolution.

3.7 Comments

The experiments discussed in §3.5 and §3.6 are stress tests for the time-based performance
perturbation models. The ability to approximate actual code execution times to within 15
percent from full trace instrumentations, with execution time perturbations exceeding four
orders of magnitude, is remarkable, especially for such relatively simple models. Even for
certain Livermore Loops that are not well approximated, often minor adjustments in the models
to account for register interlock stalls or increased memory reference density due to tracing
operations can account for the error. Not only do the models perform well whea approximating
total execution time of the fully-instrumented Livermore loops, but the accuracy of individual
event timings are equally impressive.

The time-based perturbation models accurately capture the effects of instrumentation per-
turbation when the time and order events occur is execution independent. This is true for
sequential execution because the execution states of sequential programs form a total order,
and event times are affected only by instrumentation overhead. Our timing model approxima-

tions for the Livermore loops in sequential and vector modes were extremely accurate. Even for
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Figure 8.17: Vector-Concurrent Execution of Loop Eight

94



Reference Trace

Thread | Events
jsecs

Events

“Percent
Delta

[ Se 470.2
0 18 | 452.0 0 68 | 429.7 | 195.7| 16.31 3.79
1 18 | 451.1 1 66 | 440.2 || 182.4| 15.20 3.45
2 18| 452.0 2 68 | 429.7 | 184.3] 15.35 3.57
3 18 | 451.1 3 64 | 440.2 || 253.8| 21.15 4.81
4 18 | 451.1 4 66 | 429.7 | 204.8| 17.06 3.97
5 18 | 452.0 5 64 | 439.2 | 2042 17.02 3.87

Table 3.10: Event Time Differences for Loop Eight, Vector-Concurrent Execution
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some concurrent execution scenarios, typically those with fork-join behavior and no inter-thread
dependencies, the time-based perturbation models are good.

In general, concurrent execution involves data dependent behavior. The states of parallel
programs inherently form a partial order that must be followed during execution. If dependency
control is spread across threads of execution, instrumentation can perturb the timing relation-
ships of events. Direct applications of time-based perturbation models will fail because they
do not capture these inter-thread event dependencies. Under the timing model assumptions
of event independence, approximated event timings for concurrent execution can violate the
required partial order. Furthermore, critical performance phenomena such as synchronization
behavior cannot be accurately modeled using timing information alone.

Clearly, concurrent perturbation analysis necessitates a model of event dependencies and

instrumentation. The next two chapters explore these issues.
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Chapter 4

Event-Based Performance

Perturbation: Synchronization

“Curiouser and curiouser.”

— Alice, “Alice In Wonderland”

The performance of parallel computations often depends on the relative ordering of dependent
events across multiple threads of execution. Each parallel thread can be viewed as making
transitions between phases of independent and dependent execution. That is, either the thread
can proceed with a computation independent of the activities in the other threads, or the thread
is dependent on some conditions that must be satisfied before proceeding. In cases where a
thread is waiting for a synchronization action, overall performance is reduced. However, parallel
performance is also dependent on the efficient allocation and utilization of resources, mainly
processor, memory, and network resources. Scheduling, load balancing, data partitioning, and
communication overhead are among the many performance issues that must be addressed.
The fundamental problem with making detailed measurements of parallel computations is
not performance degradation, as it with sequential computations, but rather the perturbation
of the set of “likely” event orderings, resulting in the re-mapping of event occurrence to threads
of execution, the re-assignment of computational resources [113], and changes in the behavior of
resource use. Unlike parallel debugging approaches that attempt to detect data races in parallel

programs by applying an event-based, partial order theory of “feasible” program execution
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[48, 53, 145, 146, 156], perturbation analysis must recover the actual run-time performance
behavior from a perturbed performance measurement.

If performance instrumentation is designed correctly [86], an un-instrumented parallel ex-
ecution that satisfies Lamport’s sequential consistency criterion! [105, 116] implies that the
performance measurement will be non-interfering and safe [86]). If the performance measure-
ments involve only the detection and recording of event occurrence (i.e. tracing), the partial
order relationships will be unaffected and the set of feasible executions? will remain unchanged
[133, 146). This consequence will also be true in the less restricted condition of weak ordering
[4). Thus, perturbation analysis begins with a total ordering of measured events consistent with
the happened before relation [104] defined by the original partial order execution. To this total
order, we can apply time-based perturbation analysis to thread events that occurred during
independent execution to remove the instrumentation overhead. Similarly, event-based pertur-
bation analysis (to be discussed below) can be applied to the synchronization operations (e.g.,
barriers, semaphores, advance/await) that implement the dependency relationships. As long as
the total ordering of dependent events present in the measured execution is maintained during
the analysis, the approximated execution also will be a feasible execution. We will call such an
approximated execution a conservative approzimation.

However, the important question is not whether the conservative approximation is a feasible
execution, but whether it is a likely execution. The set of likely executions is the subset of the
feasible executions that are most probable. Computing the likelihood distribution of feasible
executions is a extremely difficult problem, requiring a model of time and concurrent execution.
Analytical queueing models have been used to predict the performance of parallel computations
[84, 85], including general, parallel execution structures with precedence constraints [117, 142,
190, 191} and synchronization [2]. However, these approaches typically model execution time
behavior stochastically, limiting their use in practice. Other approaches attempt to model time
dependent behavior in concurrent software. Lane [106] proposes the event dependency tree

model that includes time semantics but lacks a broad set of synchronization operations to make

1A parallel execution is sequentially consistent (or equivalently has interleaving semantics [173]) if the result
is the same as if the operations were executed in some sequential order obtained by arbitrarily interleaving the
thread execution streams.

?Helmbold and Bryan refer to the set of feasible executions defined by the partial order of program events as
the partially ordered set [86].
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it a practical approach. Haase [82] and Shaw [174] on the other hand, each define a time logic
based on program statements for reasoning about timing properties in programs. Shaw’s work
is more robust, considers a larger class of program constructs and uses interval arithmetic in
the logic specification, but it only superficially treats timing issues in dependent concurrent
execution. Shaw comments that an approach to concurrent timing analysis must consider the
specific context within which synchronization statements are used, including their overheads
and interactions.

The inability to predict likely executions makes it difficult to bound the error of conser-
vative approximations. Simple examples can demonstrate significant errors for conservative
approximations (i.e., the execution order is not representative of a likely execution without
instrumentation). Furthermore, no intrusive performance measurements can possibly allow
event-based perturbation analysis to determine the proper assignment and use of resources in
the approximated execution. To improve the “accuracy” of the conservative approximation,
additional information must be provided to the perturbation analysis process that describes
certain behavioral properties of the computation (e.g., data dependency information and loop
scheduling algorithms). The perturbation analysis can use this information to make more
“liberal” approximations. Although the liberal approximations might be more accurate than
conservative ones, in the sense that they are closer to likely executions, it is still difficult to
show error bounds without a more formal timing model.

In this chapter, we describe methods for conservative perturbation analysis of synchroniza-
tion operations found in concurrent programs. The approaches described are constructive; they
can be applied to a trace of a measured execution to eliminate instrumentation overhead while
maintaining observed dependency relationships. The main issues addressed concern what data
must be measured to resolve dependent relationships between the threads and what assump-
tions are made about synchronization operation. In §4.2 we consider a general case of dependent
execution between two threads to emphasize the importance of measuring synchronization op-
erations for correct perturbation analysis. In §4.3, §4.4, and §4.5 we present the perturbation
analysis models of barrier, éemaphore, and advance/await synchronization, respectively. In
Chapter 5, we expand the perturbation analysis to larger program segments, mainly loops.

Initially, however, we provide a brief background discussion on dependencies.
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4.1 Dependence Preliminaries

A data dependence [97] is defined from the order of read and write accesses to a data variable
in a sequential execution. During parallel execution, the sequential order of accesses must be
maintained to insure correct data values. A data dependence is either a flow dependence (a
variable is read after it has been written), an anti-dependence (a variable is written after it has
been read), or an output dependence (a variable is written after previously written) [12, 197).
A forward dependence means that a statement §; dependent on a statement S; is syntactically
after S; in the program; the dependency is from S; to S;. A backward dependence means that
a statement S; dependent on a statement S; is syntactically before S; in the program; the
dependency is from S; to S;. If a statement S; is dependent on a statement S;, we use the
notation S; — §; to denote the dependency.

A control dependence [97] arises from the flow of control between statements. If the execution
of S; is affected by the execution of statement §;, then a control dependence exists between
statement S; and statement Sj. We use the term ezecution dependence [197] to describe an
execution-time ordering relationship between two events occurring on the same thread. If the
event e; occurs before the event e;, then e; is execution dependent on e;, but only in the context

of that particular execution.

4.2 Event Perturbation Modeling

In the previous chapter, the notion of a “time basis” was used to compute the approximate time
of event occurrence. If an event z occurs before an event z on the same thread of execution,
z is execution order dependent on z. For sequential execution, the approximated time that
event 2 occurs, ¢,(2), could be used as the time basis for computing t,(2). However, during
concurrent execution, the occurrence of an event 2 may depend on both intra-thread execution
order dependencies AND inter-thread control and data dependencies. When intra- and inter-
thread dependencies exist, choosing a time basis for resolving the approximated execution time
of a dependent event is non-trivial.

Below, we reason about the constructive application of event-based perturbation analysis
by first considering a simple set of general cases involving dependent execution behavior. In

subsequent sections, we analyze more specific types of dependency synchronization. Throughout
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the discussion, event perturbation analysis should be viewed as a “process” that uses measured
event information, plus a knowledge of event semantics, to derive an approximation to event
occurrence times. In this respect, the accuracy of event perturbation analysis is limited not
only by what can be measured, but also what can be inferred about execution behavior.
Consider the problem of approximating the time for an event z, ¢,(z), from two other events
z and y. Events z and 2z occur on the same thread, T3, and z is execution order dependent on
2. The event y occurs cn another thread, 73. By assumption, z is also dependent on y. This
dependency of z on y is input data for the event perturbation analysis, perhaps obtained from a
data dependence analysis [12]. The measured execution times for z, y, and z are t,,(z), tm(¥),
and t,,(2), respectively. By assumption, the approximated execution times for z and y, t,(z)
and ¢,(y), respectively, have been resolved previously. For convenience, we define the measured

time between two events { and j, A4, as
A5 = Jtm(5) = tm(d)l-

Similarly, we define the approximated time between two events i and j, A7, as
AT = Jta(§) - tali)l-

Figures 4.1, 4.4, 4.6, and 4.8 show the four cases that can occur in the perturbation analysis
of events z, y, and z. Each case shows the measured and approximated timelines for threads
T, and T;. Time increases from top to bottom in each diagram.? The measured timelines reflect
the relative execution ordering and timing of the events for the threads with instrumentation
included. The approximated timelines reflect the execution time approximations as generated
by the perturbation analysis. Because ¢,(z) and ,(y) are, by assumption, known, the problem
is to determine t,(z). The four cases represent the four possible event orders in the measured

and approximated executions.

4.2.1 Case One

In case one, shown in Figure 4.1, the relative ordering of z and y is the same for both the

measured and approximated timelines. Because y occurs before 2, the time basis for z is

3The timelines are used only to show the ordering relationship of the three events; the measured and approx-
imated time scales need not be the same.
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Measured Approximated

ta(2) = ts(2) + A% —a

Figure 4.1: Measured and Approximated Event Ordering: Case One

program producer program consumer
i=0 i=0

loop: call produce(w) loop: call wait(x)
call wait(y) call output(w)
call input(w) call post(y)
call post(x) call consume(w)
call event(i) call event(i)
i=i+1 i=i+ 1
goto loop goto loop
stop stop
end end

Figure 4.2: Producer-Consumer Example
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independent of y. Thus, #,(2) must be computed using ¢,(z) as the time basis. Clearly, all
computation that occurred between z and z in the measured execution must also exist in the
approximated execution. The execution time of this computation, denoted by A%;"*, is used to

approximate the time that event z occurred. That is,
to(z) 4 tg(z) + A:‘-‘ - a’

where a is the instrumentation overhead.

4.2.2 Case Two

By assumption, the events y and z reflect a dependent execution relationship between the two
threads. However, they may or may not explicitly indicate the points of synchronization where
thread T, tests the dependency and thread T) satisfies the dependency. A simple example
will make this clear. Suppose our measurement captures the behavior of a producer-consumer
computation [34]; see Figure 4.2, Thread T produces items of work, w, which are placed in
a buffer of length N, Thread T, consumes the items of work in the order of their placement.
A counter z indicates the number of currently used positions in the buffer (initially 0) and a
counter y the number of currently unused positions (initially N'). The routines post and wait

are used to control access to the buffer:

subroutine post(c) subroutine wait(c)
integer ¢ integer ¢
c=c+1 loop: if (¢.LE.O) return
end c=¢c-~-1

goto loop

end

The producer generates events indicating that it has placed an item of work in the buffer;
the event is designated by an item number, i. The consumer generates events indicating that it
has consumed the work item; again, the event designates the specific item. The producer and
consumer code are shown in Figure 4.2.4

Figure 4.3 shows a portion of a measured execution for the producer-consumer example for

T, and T;. The white nodes represent the captured events; e; is the event representing the

4The input routine puts items in the buffer, the output routine removes items from the buffer, and the
event routine logs the event to the trace for the respective thread.
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wait(x)
post(x) —t>
€i
€i
g | %
O events D independent execution
' synchronization . waiting

Figure 4.3: Producer-Consumer Execution

ith work item put in the buffer and e} is its dependent event representing the ith work item
consumed. The shaded nodes represent the synchronization operations for which no events
are captured. The black region represents waiting time encountered in the measured execution.
Unless the synchronization operations are also monitored, the perturbation analysis can only use
measured information about the events e;, e]_;, and e} in approximating the actual execution.®

We refer to un-monitored synchronization operations as hidden dependencies. For the fol-
lowing general cases, it is important to remember that the event perturbation analysis has
no knowledge of the hidden dependencies and, thus, incomplete knowledge of the actual op-
erational characteristics of dependency synchronization. Our goal is to understand what the
perturbation analysis can conclude in these cases regarding the relative occurrence of event z
in the approximated execution and what bounds can be placed on the accuracy of t,(z). We
will use the producer-consumer example to illustrate our analysis.

In case two, shown in Figure 4.4, 2 precedes y in both the measured and approximated exe-
cution. Without knowing where the hidden dependence is tested on thread T; relative to where
it is satisfied on T}, the perturbation analysis must pessimistically assume that the dependence

represented by y and z is satisfied by T} and tested by T exactly at time ¢;,(z). Why? Because

%The event e; corresponds to the ith work item produced and the event ef corresponds to the ith work item
consumed.
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Measured Approximated

c" é;:-y AT:’Z 24“2
y y
& [ & caraay
Y '
n % n %

ta(s) = ta(y)+ D4 -a
ta(y) + DI+ AE* —a

Figure 4.4: Measured and Approximated Event Ordering: Case Two, Analysis

all computation represented by A7V + A¥~* could be entirely independent, except for the
synchronization test that would immediately succeed. This assumption is pessimistic because
all this time must be accounted for in the approximation. However, in the approximated ex-
ecution, it is possible that the dependency between y and z is not satisfied until time ¢,(y),®
implying thread T; would wait from #,(z) to t,(y). Hence, in the pessimistic approximation,
event y must be regarded as the time basis for z and A5V + A¥~* work must be performed by

thread T3 after t,(y). Thus,
ta(z) = ti(y)+AV*-a
= o))+ ALY+ AL —a
Case two is demonstrated in the producer-consumer example shown in Figure 4.5. The
synchronization for the hidden dependency shows how the pessimistic approximation can be in

error. Asrequired, the order of events ef_; and e; is the same in the measured and approximated

executions. However, because

tm(e:) — tm(el_1) < ta(ei) — ta(e-1),

$Note, there is no information to indicate otherwise.
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Measured Approximated

*
. S o
o—_-__> €i-1 call wait(x
call post(x) call wait(x) waiting
call post(x)
e: independent error
1 C execution
. i
€i
€i
Y Y
Ty T2 T T2
O events D independent execution error
’ synchronization - waiting

Figure 4.5: Measured and Approximated Event Ordering: Case Two, Example

the hidden dependency might have been satisfied (indicated by the post(x) synchronization)
at the time shown in the approximated timeline for T. If ‘events representing the hidden
dependency had been captured, the waiting time indicated could be approximated. However,
since these events are not captured, the pessimistic analysis must assume the post action does
not occur until ¢,(e;). In this example, t,(e?) is over-approximated by the amount of the error
shown.

As implied in the example, the actual time event z occurs relative to z and y can differ sig-
nificantly from the pessimistic approximation. For instance, if t,(y) = ¢,(z), the approximation
could over-estimate the correct time by as much as A%V, if A%V was, in fact, waiting time in

the measured execution. The bounds on the time approximations between the events are

A:—‘ 2 Ag.-z

and

AV-F < AV 4 AV,
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4.2.8 Case Three

In cases three and four, the order of events z and y changes from the measured execution to
the approximated execution. In case three, shown in Figure 4.6, event 2’s dependency on y is
satisfied by time ¢,,(z) in the measured execution, because the hidden dependency is satisfied
before event y on thread T;. However, the approximated times of z and y suggest that the
approximated time of z should be based on ¢,(y). It is easy to imagine how the order of z and y
can change from the measured to the approximated execution. If there is more instrumentation
overhead prior to z on thread T than before y on thread 7), removing this overhead could
result in the order of z and y being reversed in the approximation.

Should the time basis for #;(z) be ¢,(y)? This depends on what the measured data indicates
regarding where the hidden dependency test on T; actually occurs. If it can be determined that
T, explicitly waits on T, ¢,(y) will be chosen as the time basis for ¢,(z).

Figure 4.6 shows two approximated timelines for case three; one for each of the two possible
sub-cases. Notice that all computation performed by T, between 2 and z in the measured
execution, as represented by A7"*, must occur in the approximated execution; AZ~* in the
approximated execution is at least AZ;"%.

In sub-case A, the approximated time difference between z and y, A2, is greater than the
measured time between z and z, A% *. Waiting has to occur on T; between t,(z) and t,(z)
to account for the extra time. Thus, event y is selected as the time basis for z. If the cost of
testing a satisfied dependency is A;, the approximated time of z's occurrence after y is given
by the inequality

Oy < AVF < ATE

The inequality bounds A¥~* because no measured information is available to the perturbation

analysis to indicate where the hidden dependency actually is satisfied. Thus, in sub-case A,
LW +A S talz) € L@)+AS -a
Sub-case A is demonstrated in Figure 4.7 for the producer-consumer example. Because
[tm(e:) — tm(ef_1)| < |ta(es) — ta(ed_1)ls

we use #,(e;) as the time basis for event ef. Unknowing when the post action occurs, it must

be assumed to occur (under a pessimistic approximation) at ¢5(e;). The example shows when
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Figure 4.6: Measured and Approximated Event Ordering: Case Three, Analysis
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Figure 4.7: Measured and Approximated Event Ordering: Case Three, Example
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the post might occur in the approximation and the error introduced in the approximation for
ta(el).

In Figure 4.6, sub-case B gelects event z as the time basis for z if the approximated time
difference between z and y, AZ~Y, is less than the measured time between z and z, AF;"*. Here,
the perturbation analysis cannot conclude whether waiting occurs. If no waiting occurs, AZ~*
is correctly estimated by AZ%*, the independent execution time in the measured execution.
However, if waiting does occur, the approximated time difference between z and z can be as
much as twice the measured execution time, 2A%"*. How? Even though A3~V < A%*, the
hidden dependency might not be satisfied until immediately before f,(y) in the approximated
execution. If the hidden dependency is tested immediately after event z, thread T, must wait
in the approximation until after the hidden dependency is satisfied. Thus, the approximation
of t,(2) in sub-case B is bounded by the inequality

ta(2) + A  —a £ to(2) S ta(2)+24%F -a.

Sub-case B of case three is demonstrated in Figure 4.7. Although we have been describing
pessimistic approximations, the perturbation analysis can also make optimistic approximations
in the cases where t5(2) is bounded by an inequality. In this case, we have shown an optimistic

approximation of sub-case B (i.e., it is assumed no waiting occurs).

4.2.4 Case Four

Finally, case four results when event y occurs after z in the measured execution but before z
in the approximated execution; see Figure 4.8. The event z serves as the time basis in the
approximation, but the estimate of A5~* depends on when the hidden dependency between
y and z is tested by T3 (i.e., how much T, waits in the measured execution). Because A%V
already includes any waiting time, A2~* cannot be more than A%V + A¥-#, Similarly, because
the hidden dependency between y and z is known to be satisfied by £,,(y), AZ~* cannot be less
than A¥2%,

In the approximated execution, no waiting occurs. If the hidden dependency represented by
events y and z is tested at ¢,n(z) and satisfied at ¢ (y), AZ™* = AY*; A%V would be waiting

time in the measured execution. Conversely, if the hidden dependency is tested by T2 at t,,(2)

110



Measured Approximated

¢
bePotte Pl
-+

AL AT < A
L

v Y
T B T B

ta(2)+ AU F —a < t(2) < ta(z)+AV+ AL -a
Figure 4.8: Measured and Approximated Event Ordering: Case Four, Analysis

and satisfied by T) at ¢m(2z), no waiting occurs and
AR =AY+ AR
Thus, the approximation ¢,(z) is bounded by the inequality
ta(2) + AN —a < t4(2) < ta(2)+ ALY+ AR —a.

Figure 4.9 demonstrates case four in the producer-consumer example. Because the analysis
assumes that no waiting occurs in the measured execution, all of the time t,(ef_;) — tm(ef)
must accounted for in a pessimistic approximation. However, as shown, undetected waiting

does occur, introducing an error in the approximation.

4.2.5 General Synchronization Events

The uncertainty in the approximations of the time that event z occurs in cases two, three,
and four above reflects the lack of “measured” synchronization events that resolve the assumed
dependency between y and z. Thread T, must test this dependency somewhere between events
z and z, but the event perturbation analysis has no additional information to determine the test
location. Given the boundaries of the dependency test on thread T (i.e., when the dependency
is satisfied), more accurate time approximations might be possible. However, obtaining this

information requires additional instrumentation.
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Figure 4.9: Measured and Approximated Event Ordering: Case Four, Example

In the framework of the general cases presented above, assume that there are two additional
events that bound the dependency testing between y and z (i.e., events b and e). Figure 4.10
shows general case four with these events included in the measurement. The measured amount
of synchronization waiting is denoted by A¥.

The added waiting events allow the time approximation of z, t,(z), to be quantified by a
single value. Because the waiting time is known, the perturbation analysis can determine the
amount of “independent” work on thread T, between events z and z that must be completed in
the approximated execution. The occurrence of z after y in the approximated execution implies
that the dependency test will immediately succeed. Thus, the time A¥% can be removed when
approximating t,(z). That is,

to(2) =ta(2) + AP+ AL+ A - a

Instrumenting only for dependency waiting is not sufficient to remove all inaccuracies in
event-based perturbation analysis approximations. Even with events b and e measured in
the general case two, t;(z) would still be bounded by an inequality. The problem is clearly

seen in the example in Figure 4.4; unless the perturbation analysis can determine where the
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post operation occurs in the approximated execution, it must assume T, waits until z,(e;).
Thus, in addition to waiting events, there must be measurements of when dependencies have
been satisfied. We let event p designate the synchronization “posting” action that indicates a
dependency has been satisfied. Figure 4.11 shows the general case two with both post and wait
instrumentation added.

In the measured execution, the dependency is satisfied on thread T, before it is tested
on T, and no waiting occurs. In the approximated execution, the post event occurs after
the dependency testing begins. Waiting occurs on thread T, until the dependency is satisfied.
Although the wait instrumentation can be used to determine the amount of computation before
and after the synchronization and, therefore, the relative offset of event z from event e, it cannot

fix t5(z) at a single point in time. However, the resolution of the post event p in approximated
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time does provide the time basis for the resolution of e and, hence, 2. That is,

ta(z) = ta(p) + Ac + AL

The use of post events to get tighter estimates of ¢,(z) in case two applies directly to case three.

Intuitively, using more instrumentation to increase the accuracy of event-based perturbation
analysis conflicts with the general notions of the instrumentation uncertainty principle; mainly,
that measurement volume and accuracy are contrary. Although the additional instrumenta-
tion used to capture dependency synchronization actions will perturb measured, and therefore
approximated behavior, it makes it possible to resolve certain characteristics of dependent ex-
ecution behavior, such as the amount of time spent waiting. This was demonstrated in the

general cases above. In Chapter 5, we give experimental results that validate this claim.

4.3 Barrier Perturbation Analysis

Based on the general cases of dependent events, to derive accurate approximations of a concur-
rent execution from its measured performance, the event-based perturbation analysis requires
measurements of synchronization actions. Furthermore, the perturbation analysis must under-
stand the semantics of the synchronization operations so that the measured data can be applied
correctly in the approximated time domain. There are many possible forms of synchronization
operations that could be analyzed [6]; we consider three: barrier, semaphore, and advance/await
synchronization. These were chosen because they represent a cross-section of synchronization
alternatives. Our goals in analyzing these three forms of synchronization are, first, to determine
what measurements must be made to apply perturbation analysis, and, second, to understand
the approximation capabilities of the perturbation analysis techniques. We begin with barrier

synchronization.

4.3.1 Barrier Operation

Simply, a barrier is a piece of code used to synchronize multiple threads of execution at a
single point in time. Each thread participating in a barrier synchronization will first enter
the barrier, wait for all the other threads to arrive, and then exit the barrier with all other
threads. The unique feature of the barrier is that all threads will block until the last thread
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enters, establishing a point in the computation where the states of all threads participating in
the barrier synchronization are known. This point occurs when the barrier synchronization has

been satisfied and all threads are allowed to proceed.

4.3.2 Barrier Instrumentation

The performance instrumentation of a barrier should allow one to determine the sequence of
thread arrivals at the barrier, the waiting time of each thread, and the time the threads exit
the barrier [9, 11]. This analysis requires capture of two barrier events for each thread: enter
and ezit. The enter event is recorded immediately after a thread enters the barrier and the
ezit event is recorded immediately before the thread exits the barrier. From the standpoint of
perturbation analysis, we are primarily interested in the ezit events — these establish a time
basis for all following events on each thread; see below. However, the enter events are also
important for barrier performance analysis.

Consider Figure 4.12 which shows four threads synchronizing at a barrier b When a thread
reaches the barrier, it executes instrumentation corresponding to barrier entry (indicated by
light shading) before executing the barrier code. After the last thread reaches the barrier and
the threads have synchronized, they all execute instrumentation code corresponding to barrier

exit (indicated by darker shading) before continuing along their separate execution paths.
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The barrier events are recorded in a trace for each thread. To uniquely identify a particular
barrier, we assume the entry and ezit events recorded are additionally typed with this infor-
mation. The ability to distinguish different barriers is required by the perturbation analysis.

The measured timeline shows an example of how the threads might have execuiad at the
barrier. Diagrammatically, we represent the barrier’s synchronization code executed after the
last thread reaches the barrier by [J. The enter and exit barrier instrumentation and the
waiting time on each thread are shown. The timeline reflects only the measured execution
behavior. It is clearly possible that instrumentation on each thread prior to the barrier can
affect the order that threads arrive. Thus, the timing relationships shown between the entry

and ezit events may not be representative of actual barrier behavior.

4.3.3 Barrier Approximation

The perturbation analysis of the instrumented barrier is based solely on the ezit events. The
enter events are used to approximate certain performance characteristics of the barrier, but it
is the ezit events that are used to resolve the time approximations of future events. Figure 4.13

shows a possible timeline of the approximated barrier execution. We assume the enter events
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for each thread, whose approximated time of occurrence is represented by the white arrows,
have been previously resolved by perturbation analysis. The approximated time the first thread
enters the barrier is denoted by ¢,(entery) and the approximated time the last thread enters
the barrier is denoted by t,(enter;).

The perturbation analysis problem is to approximate the barrier exit behavior. By assump-
tion, all threads are known to be present at the barrier at approximated time ¢,(enter;). The
approximated execution time of the barrier code after this point is given by

tm(ezits) — tm(enter;) — a,

where t,,(ezity) is the measured time the first thread exits the barrier, and ¢,,(enter;) is the
measured time the last thread enters the barrier. The approximated time the first thread exits
the barrier is

ta(ezity) = ty(enter;) + tm(ezity) — tm(enter) — c.

Because we use t,,(ezity) in computing ¢,(ezits), the thread first to exit the barrier in the
measured execution is the same one that exits first in the approximated execution. The ap-

proximated time the jth thread exits the barrier after the first is given by
ta(ezit;) = ta(ezity) + tm(ezit;) — tm(ezity) — a,

where the event ezit; is obviously the ezit event of the jth thread. The ordering relationships
of barrier exit in the measured execution are maintained in the approximated execution with
ta(ezity) serving as the time basis for all other ezit event approximations.

The barrier perturbation analysis assumes that the overhead for executing the barrier code
remains unchanged from the measured to the approximated execution. Furthermore, the anal-
ysis assumes that approximated barrier performance depends solely on the approximated entry
times of the threads and the measured barrier code overhead. In general, the execution of
the barrier code can take variable time, depending on the barrier’s implementation [9]. For
instance, if a single lock is used to control access to a counter indicating the number of threads
which have entered the barrier, the lock becomes an access “hot spot™ [151] in the computation.
The performance of barrier code implemented in this manner will depend on the degree of lock
contention; in general, the higher the contention, the poorer the performance. Because the

measured thread arrival behavior can be different from the actual behavior, there can be errors
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in the perturbation analysis because of differences in barrier code performance. These errors
can be both positive (over-approximations due to poorer barrier code performance in the mea-
sured execution) and negative (under-approximations due to poorer barrier code performance
during the actual execution). Ideally, the barrier performance would be modeled by the per-
turbation analysis based on known performance behavior of the barrier implementation. The

o o

barrier entry event times for each thread would provide barrier entry timings to the model.

4.4 Semaphore Perturbation Analysis

The perturbation analysis of barrier synchronization could be easily understood because the
barrier creates a global synchronization point. If all threads meet at a barrier synchronization,
the perturbation analysis of events after the barrier will not be affected by the errors resulting
from the perturbation analysis of events prior to the barrier. In effect, the barrier provides
event-based perturbation analysis with a means of partitioning the computation between barrier
synchronizations and isolating perturbation analysis errors to individual partitions.

Not all synchronization operations are as well behaved. In particular, the semaphore repre-
sents one of the most primitive forms of synchronization, and hence one of the least restrictive.
The semaphore establishes a synchronization relationship between only two events and, thus,
does not have the global synchronization ramifications of the barrier. Furthermore, the pairing

of semaphore synchronization events can change from actual to measured execution.

4.4.1 Semaphore Operation

The basic semaphore embodies the most recent history of two operations: P and V. The
P operation signals that some execution dependency has been satisfied. The V operation
checks the state of the semaphore to determine whether a dependency has been satisfied. The
semaphore’s state indicates only whether the last operation on the semaphore was at P ora V.
If it was & P, the next 'V operation will not wait. Otherwise, the next V operation will wait.
If S is a semaphore whose value can be P or V, the semantics of the P and V synchronization

operations are shown below:
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P(S): S=P
V(S): if (S equals P)
S=V
else
wait until S equals P
s=V.
More complex semaphores, such as counting semaphores, maintain additional history of
P and V operations as well as allow multiple threads to wait. From a perturbation analysis
perspective, we will consider only the basic semaphore case. All the problems we encounter

with this case also appear in the more complex semaphore types.

4.4.2 Semaphore Instrumentation

There are five important events that must be monitored in the semaphore’s operation: the P
event, the V, event, the V,, event, the V;, event, and the V. event. The P event corresponds
directly to the P operation on the semaphore and is recorded immediately after the P operation
is performed. The V, event is recorded immediately before 'V code is executed and signifies that
the semaphore state is about to be tested. If the V operation blocks, the V,, events is recorded
before the thread begins to wait; otherwise, the V} event is recorded before the semaphore state
is set to V. Finally, the V, event is recorded immediately before a thread performing a V
operation leaves the semaphore.

Because multiple semaphores may be active in a program, to correctly identify the P and
V operations on a particular semaphore during perturbation analysis, information uniquely

identifying the semaphore must must be recorded with the P and V events.

4.4.3 Semaphore Approximation

The perturbation analysis of a semaphore’s instrumentation is concerned not so much with the
removal of instrumentation overhead that comes with recording the P and V events, although
this is important to achieve timing accuracy, but rather with identifying anomalous semaphore
operation that might occur in the approximated execution as a result of perturbation analysis

errors. In fact, this is the main reason for studying the semaphore form of synchronization.
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Under a limited set of assumptions regarding how a semaphore is used during execution, we
describe several cases where questions arise concerning how event-based perturbation analysis
should resolve approximated semaphore behavior. To simplify the discussion, we assume in the

following cases that an equal number of P and V operations are performed on each semaphore.

4.4.3.1 Single-P, Single-V

If a semaphore is used by only two threads, every V operation will be “satisfied” by a unique P
operation; success of the ith V operation will depend only on the ith P operation. We refer to
such a semaphore as a single-P, single-V semaphore. The P and V events for this semaphore
can be matched explicitly by the perturbation analysis based on their order of occurrence. For
each ith P-V pair, the time-order relationship of the P and V' events must be maintained in
the approximated execution.

Figure 4.14 shows three different approximated executions that can result from the per-
turbation analysis of a single-P, single-V semaphore. The left graph in cases A and B shows
the ordering relationship of the P and V events in the measured execution. The right graph
shows the events in the approximated execution. In case A, no waiting is encountered at the
semaphore in the measured execution because t,n(P) < t,,(V,). However, in the approximated
timeline, ¢,(V,) < ta(P) and tread T2 must wait. We assume events V, and P have been re-
solved in the approximated execution and that ¢,(V;) and #,(V,) must be determined. There
is no information from the measured execution to indicate how long after event P the event V,
occurs in the approximated execution, so we must assume it is immediate.” This establishes

ta(Vp) as the time basis for approximating t,(V.). Thus,

ta(Ve) = ta(Vp) + tm(Ve) — tm(V3).
The amount of waiting time can be calculated as

(V) = £a(Va) + (tm(V) = tm(V2)).

In case B, the opposite conditions exist. That is, waiting occurs in the measured execution

but not in the approximated execution. Instead of the event V} indicating the V operation

"Performance measurements of semaphore operation could be applied here to establish a minimum separation
between P and V;,.
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Figure 4.14: Single-P, Single-V Perturbation Analysis
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succeeded, we are interested in when waiting begins. The V,, event provides a time basis for
ta(Ve) in the approximation. We can calculate from the measured execution how long after
event P the event V, occurs in the approximated execution. From this value, the approximated
time of V, is given by

ta(Ve) = ta(Va) + tm(Ve) — tm(P).

Because the approximated time of the P is not affected by semaphore waiting, it is possible
that the situation in case C may be encountered due to perturbation analysis errors. As shown,
two successive P events, P* and Pit!, are approximated to occur prior to the ith V events.
This violates the assumed operation of the semaphore. There are two recourses if this situation
occurs. The perturbation analysis could halt, indicating that a violation of semaphore execution
semantics has occurred. A less abrupt action logs the violation, adjusts the approximated time
of Pit! to be immediately after t,(V,) (see figure), and continues the perturbation analysis.

Notice that the situation presented in case C cannot be true of the approximated time of
the V events. Thai is, given two successive V, events in the trace, V;} and V+1, and the ith P
event, P*,

ta(P') < ta(ViH).

The approximated time ¢,(Vi+?) will always be adjusted by the perturbation analysis to be
greater than P%,

4.4.3.2 Multiple-P, Single-V

During execution, a 'V operation will always be satisfied by one particular P operation —
either the one that occurred most recently (if S equals P), or the next one to occur. During
perturbation analysis for any of the following semaphore cases, once the P event has been
identified for a particular V event, the approximation techniques discussed for the single-P,
single-V semaphore case can be applied. Hence, we will not reiterate these details but instead
will focus on those situations where it is unclear how the perturbation analysis should proceed.

Figure 4.15 shows the two different approximations that can result from the perturbation
analysis of a multiple-P, single-V semaphore. This semaphore type allows multiple threads to

perform P operations but only one thread can perform V operations. As before, it is assumed
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that the same number of P and V operations are performed. Therefore, the ith V operation is
satisfied by the ith P.

In the measured execution timeline, we see the V operation on thread T satisfied by the
P operation on thread T as indicated by the arrow. If the P operation on thread T’ precedes
the P operation on thread T} in the approximated execution (as determined by the P and V
events), thread T3’s P operation continues to satisfy Ts’s V. However, if the order of the two
P operations is reversed in the approximated execution, there is a question about which of the
P operations should satisfly the V.

In the approximated execution for case A, the pairing of P and V operations determined
from the measured execution has been maintained by the perturbation analysis; the P oper-
ation on 7} is matched with a future V operation on T3. Because the perturbation analysis
can measure the time between T’s P event and ¢,,(V;), it can apply this in the estimation
of t,(V.). However, the existence of two P operations before one V operation completes in
the approximated execution violates the assumptions of semaphore operation. Perturbation
analysis can be discontinued when this violation is detected, as in the single-P, single-V case.
In order to continue perturbation analysis, the time of occurrence of P on T} must be adjusted
to be after ¢,(V,), as shown.

Alternatively, the perturbation analysis could emulate the semaphore’s operation and match
V operation with the earliest P operation on any thread that satisfies it. In case B of Figure
4.15, the P event on thread T} is used as the time basis to calculate t,(V.). Because the P
operation on thread T) is not matched with the V operation in the measured execution, the
time 2,(V,) — to(P*) must be estimated by 2,(V;) — ta(P?), where P is the P event on T and
P’ is the P event on T5.

Although the approach followed in case B avoids violations in semaphore operation, it
implicitly assumes that the computation following V, on T} is independent of which threads’ P
operation satisfied the V operation. In general, no additional information is known from the
measurement that indicates that this assumption is valid. Devoid of any additional knowledge
from the user, the perturbation analysis cannot assume that the measured computation after V,
is independent of the measured P-V pairing without running the risk of introducing significant
errors in the approximation. However, it is not unreasonable to think that additional knowledge
might be provided to the event perturbation analysis indicating that this approach is valid.
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Figure 4.16: Single-P, Multiple-V Perturbation Analysis

4.4.3.3 Single-P, Multiple-V

If multiple threads perform V operations on a single semaphore with only one thread performing
the P operation, we have the single-P, multiple-V semaphore case. Figure 4.16 shows two
examples of an approximated execution involving a single-P, multiple-V semaphore. As in the
case of the P operations in the multiple-P, single-V semaphore case above, if the ordering
relationships of the V operations are maintained in the approximated execution of the single-P,
multiple-V semaphore, the perturbation analysis of the single-P, single-V semaphore will apply.
However, if the order has changed, as in the examples shown, the perturbation analysis must

resolve the P-V pairing in the approximated execution.
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Case A shows the measured P-V pairing maintained in the approximation. However, we
again have the problem of a perceived violation of the semaphore’s operation. In this case, the
semaphore does not function as a first-come, first-serve system; the V operation on T; waits
until after the V operation on T3 has been satisfied, even though it appears first in approximated
time. To correct this violation, the perturbation analysis must adjust the time the event V,
occurs on T to be after £,(V;) on T, as shown in the figure.

Case B adheres to the first-come, first-serve semaphore operation by matching the P event
on T with the V events on T;. As in case B of the multiple-P, single-V semaphore, the
perturbation analysis makes the implicit assumption that the computation on T} after event
V. is independent of the P-V pairing relationship in the measured execution. This assumption
could cause the approximation execution to misrepresent actual execution behavior. Only in
the case additional knowledge about the execution behavior is provided should the perturbation

analysis proceed on this assumption.

4.4.3.4 Multiple-P, Multiple-V

Finally, the multiple-P, multiple-V semaphore case shown in Figure 4.17 demonstrates the vari-
ations in approximated execution that can occur under different assumptions of P-V reordering.
The multiple-P, multiple-V semaphore allows several threads to perform P and V operations.
The possible approximated execution characteristics of the multiple-P, single-V and single-P,
multiple-V semaphores are combined in the multiple-P, multiple-V semaphore.

In case A, the measured P-V matching is maintained by perturbation analysis, thereby es-
timating a significant waiting period on thread T4 until its V, event occurs. The violation of
the operational semantics of the semaphore by the P event on T is clearly apparent, unless the
approximated time of occurrence of P on T} is adjusted as shown. In case B the perturbation
analysis matches the P events with the V events in the order of approximated execution occur-
rence. Although this makes it possible to reduce the waiting time on 74 by approximating an
earlier execution time for event V,, the perturbation analysis again proceeds on the assumption
that this re-assignment of P and V events is acceptable execution behavior. Again, the user
maust provide explicit directives to the perturbation analysis that such techniques can be safely
applied.
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4.5 Advance/Await Perturbation Analysis

As observed in the perturbation analysis of semaphores involving multiple P and/or V op-
erations, reordering measured P-V event pairs in the approximated execution fundamentally
depends on what is known about the execution behavior between concurrent threads. This
knowledge cannot be measured from the execution but must be supplied externally during the
perturbation analysis process. The advance/await form of synchronization makes explicit the
“post” and “wait” actions involved in the synchronization. Because the synchronization is
explicit, the perturbation analysis cannot reassign advance and await events in the approx-
imation. However, the concurrent work constrained by these operations might be scheduled
differently in the actual execution than what is observed from the measured events. The per-
turbation analysis does not know a priori that work reassignment to threads is allowed for
the same reasons governing P-V event reassignment. However, the use of external execution
information to reassign the work bounded by advance and await events during perturbation

analysis can lead to significant differences in approximated execution behavior.

4.5.1 Advance/Await Operation

The advance/await form of synchronization is a special case of the general single P, single
V semaphore. Each await operation synchronizes with a unique advance cperation. Each
advance/await operation pair can be thought of as operating on a unique semaphore. A
general advance/await synchronization variable, A, stores the history of advance operations.

The semantics of the advance and await operations are shown below:®

advance(4, ¢{): mark in A that i was advanced
await(4, £): if (i has not been advanced in A4)

wait until  has been advanced

4.5.2 Advance/Await Instrumentation

To correctly identify which advance and await operations should be paired during perturbation

analysis, advance and await events must be recorded with a unique value identifying the pair.

*Our definition of the advance and await operations is more general than what is often described. However,
the perturbation analysis discussion still applies in the more restrictive case.
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Typically, advance/await synchronization is used to control the execution of loops with iteration
dependencies [38, 39]. The unique identifier in this case might be the loop iteration index. In
general, the instrumentation for capturing the advance and await events must generate the
unique identifier itself. From the semantics of the advance and await primitives above, this

unique identifier could be the argument 4.

4.5.3 Advance/Await Approximation

One interesting aspect of advance/await synchronization is that the pair of threads synchroniz-
ing can change dynamically during execution. Although the perturbation analysis of the single
P, single-V semaphore applies directly to each pair of advance and await events, on which
thread(s) the events occur is an artifact of the measured execution; the same thread could even
perform both the advance and the await operations.

Because of the strict synchronization enforced by the advance and await operations, a
partial ordering of these actions can be determined directly from the measured advance and
await events. Independent of how advance and await operations are assigned to threads, this
partial ordering must be maintained in the approximated execution. Figure 4.18 shows part of
a measured computation involving advance/await synchronization. The arrows represent the
ordering relationships between different pieces of work imposed by the advance operations,
shown by light shading in the figure, and the await operations, shown by darker shading.

Without knowledge of the scheduling policy for assigning work to threads, the perturbation
analysis must maintain not only the partial order of the advance and await events but also the
event-to-thread assignment. This is shown in the approximated execution graph A. Obviously,
due to prior perturbation removal, the relative ordering of the pieces of work, as well as the
waiting delays, may change from the measured execution. In case A, because of the partial
ordering of work and the fixed scheduling assumption, thread T must wait until work v com-
pletes on T} before executing work z. Likewise, thread T; must wait for Ts to complete work
z.

If additional information is made available to the perturbation analysis indicating that the
work bounded by advance/await synchronization can be assigned to any available thread as
long as the partial order is maintained, alternative scheduling strategies could be applied in

the approximation to reduce waiting delays. Case B is an approximation generated when the
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perturbation analysis simulated a dynamic work scheduling policy. The result is a smaller total
execution time with significant reductions in waiting delay. In theory, the perturbation analysis
could compute a minimum critical path execution time for the partial order computation by
applying a generalized bin packing algorithm that ignores thread scheduling issues.

The same basic question arises in the case of advance/await perturbation analysis as with
semaphore synchronization. What is reasonable for the perturbation analysis to be able to
assume about how the work between synchronization points is executed? The conclusion is that
without additional knowledge from the user regarding work independence and reordering, no

assumptions can be made without risking approximation errors or causing execution violations.

4.6 Comments

Given the operational definition of synchronization constructs used in a program and a trace
of the program’s execution containing enough event data to identify individual instances of
synchronization use, the event-based perturbation analysis methods discussed above can be
applied to remove instrumentation overhead while maintaining sequential consistency. However,
the “conservative” approximation that results from the application of these techniques leaves
the assignment of events to threads the same and the matching of dependent events unchanged.
In cases where the approximated execution behavior violates the semantics of synchronization
operation (as discussed in the semaphore analysis), the conservative perturbation analysis either
will return an error, or will flag the error, adjust the event approximations to remove the
violation, and continue.

Perturbation due to instrumentation has two effects on the events occurring during concur-
rent execution: temporal effects and resource assignment effects. In addition to the slcvdown
caused by instrumentation overhead, temporal effects include possible event re-orderings as the
measurement alters the set of likely partial order executions. Resource assignment effects occur
because the instrumentation changes the dynamic resource demands. In instances where the
computation dynamically adapts to resource availability, instrumentation can perturb resource
allocation and utilization. This is particularly important to understand with respect to pro-

cessor assignment. Performance approximations can differ significantly from actual execution
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(as observed in the advance/await analysis), unless resource assignment effects are taken into
account.

Unfortunately, the conservative approximation does not attempt to quantify performance
effects dues to dependent event re-ordering or resource use. Any perturbation analysis ap-
proximation must be safe [86] (i.e., must not violate the partial ordering relationships) and,
thus, must be provided sufficient measurements that capture the ordering dependencies during
execution. However, the accuracy of perturbation analysis depends not only on more precise
synchronization measurements (see §4.2), but also on additional knowledge of actual (likely)
execution behavior, unattainable from measurements alone. This can include the scheduling
policies used by a program, more detailed data dependency information, and even the perfor-
mance characterization of certain synchronization operations (e.g. barrier performance). This
information can be used together with the performance measurements obtained from the event
data to drive (in a sense) a simulation of the execution. Although the approximations resulting
from this more “liberal” perturbation analysis approach are potentially closer to the set of likely
executions, such a result is difficult to analytically verify [174).
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Chapter 5

Event-Based Performance

Perturbation: Loop Analysis

Persecution is used in theology, not in arithmetic, because in arithmetic there is
knowledge, but in theology there is only opinion. So whenever you find yourself
getting angry about a difference of opinion, be on your guard; you will probably

find, on examination, that your belief is getting beyond what the evidence warrants.

— Bertrand Russell, “Unpopular Essays”

Devoid of any user-supplied information, event-based perturbation analysis must assume that
all events occurring on a thread of execution (and the work bounded by these events) during
the performance measurement remain present on the same thread in the approximated exe-
cution. If the partial order and thread assignment of events in the actual execution remain
unchanged in the approximated execution, this would confirm that the perturbation analysis
preserved execution order and, therefore, that any perturbation error was due directly to errors
in the timing measurements. Of course, it is exactly the ordering and timing relationships of
the actual execution that is being observed. Furthermore, the actual execution might have
inherent nondeterministic behavior, represented by a set of possible execution orderings. The
perturbation analysis of a single performance measurement, while potentially resulting in an
actual execution ordering, may reflect only one possible execution.

Clearly, to further understand and quantify the perturbations caused by the instrumentation

of concurrent computations, we must consider an execution context larger than the localized
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analysis of individual synchronization operations treated in Chapter 4. To be complete, we
should consider the combined effects of multiple forms of synchronization in different execution
environments and for a variety of concurrent computations. In this analysis, we would study the
localization of perturbation influence, the propagation of perturbation analysis errors, and the
confidence of analysis approximations, especially as it relates to the nondeterministic properties
of the computation. Given the large scope of such a project (due mainly to the diversity of
concurrent execution environments) a comprehensive treatment of all factors represents a major
undertaking. At a minimum, the effort presumes knowledge of concurrent execution behavior
with which the perturbation analysis approximations can be compared. Unfortunately, the
formulation and understanding of standard concurrent execution models is still an open research
area [91].

Instead, we focus in this chapter on the influences of instrumentation on the execution of
parallel loops. Parallel loops form an execution context large enough to observe interesting
perturbation effects, but small enough to make perturbation analysis possible. Furthermore,
there has been substantial work done in the area of parallel loop classification and execution
[12, 38, 40, 97, 197] that can provide a basis for a perturbation study

We begin in §5.1 with a formal treatment of loops with no execution dependencies between
iterations. Although such loops can be executed entirely in parallel given as many processors
as loop iterations, the practical limitation of a finite number of processors implies an assign-
ment of iterations to processors via some scheduling algorithm. Instrumentation can change
the scheduling behavior, particularly the iteration assignment properties. Moreover, the instru-
mentation overhead can influence certain dynamics of the loop execution, such as causing more
or less scheduling contention, or changing the amount of waiting at critical regions; this was
observed in §3.5. Our goal is to understand the limits of perturbation analysis for these loops
under a restrictive set of execution assumptions.

In §5.2, we consider loops with dependencies between iterations. We use an empirical ap-
proach to study the performance of event-based perturbation analysis in this context. We
compare the accuracy of perturbation analysis given different levels of event instrumentation
on a set of synthetic loops. The goal is to provide empirical evidence that more accurate pertur-
batior. analysis sometimes requires more detailed instrumentation of synchronization behavior,

as discussed in Chapter 4.
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In §5.3, we take the Lawrence Livermore loops that could not be accurately approximated
using time-based perturbation analysis and re-instrument them for event-based analysis. Since
these loops contain iteration execution dependencies, they do not conform to the restrictive
parallel model supported by timing analysis. Instead, an event-based perturbation analysis
is required. We present results showing the improvements achieved in the execution time

approximations and discuss other performance characterizations that can be obtained.

5.1 DOALL Loop Perturbation Analysis

In most scientific applications, loops contain a significant portion of the computation and are a
key source of parallelism [98]. Because of this, the execution of loops on parallel processors has
been studied extensively [12, 38, 40, 97, 197]. The important performance issues concerning
parallel loop execution deal with iteration scheduling [96, 153, 189] and iteration synchronization
[134, 188, 189] — the obvious goal being to execute the loop as fast as possible. A performance
characterization of loop execution might include a trace of tae time each iteration was scheduled
and on what processor, the time each iteration completed, and the synchronization events. The
iteration begin and end times can be used to quantify scheduling overheads and to determine
load balance, while the synchronization events capture processor weiting information.

However, the measurement of parallel loop execution can have several effects on performance
behavior, as observed in Chapter 3. An event-based perturbation analysis of parallel loop mea-
surements attempts to quantify these effects. Although a taxonomy of parallel loops [40] and
the formulation of their parallel execution are well defined, there is no pre-existing theoreti-
cal or empirical foundation for understanding the performance effects due to execution-time
perturbations caused by instrumentation.

In this section, we consider the constrained problem of executing a parallel loop on a fixed
number of processors where there are no execution dependencies between the loop iterations.
Such a loop is commonly referred to as a DOALL loop [40]. In principle, the loop iterations
could be executed in any order on any thread (processor). In practice, iterations typically are
scheduled in some execution-independent fixed order. The most restrictive scheduling mecha-
nism is static scheduling [96]. Here iterations are statically assigned to processors. The most

general case is dynamic self-scheduling [50], where each iteration could potentially be executed
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on any of the processors. There are a variety of other scheduling algorithms between these two
extremes, such as dynamic block scheduling [96] and guided self-scheduling [154], but for our
analysis we will consider only static scheduling and dynamic self-scheduling.

Our goal is to determine, under the assumptions of a fixed number of processors, the effects
of instrumentation on the performance of a DOALL loop and what is possible to conclude
about actual execution from perturbation analysis. We will first consider the case where the
the DOALL loop is instrumented to record the time each iteration begins executing and the time
it ends. In addition to the execution timestamp and the processor identifier, the iteration index
is recorded. Because we assume no dependencies between the iterations, no synchronization

events need be recorded.

5.1.1 Static Scheduling

With static scheduling, the assignment of iterations to processors is deterministic. Hence the
execution ordering of iterations on a single processor will be the same in both the actual and the
approximated execution. The only “nondeterminism” in the execution will be the variations
in iteration times the instrumentation might cause. These effects can be quantified by an
additional experiment that captures the beginning time of the first iteration and the ending
time of the last iteration on each processor. The approximated loop execution time in this case
can be compared with the approximated execution from the per iteration instrumentation to
determine the timing effects of more intrusive instrumentation. To the extent that the time
values differ indicates possible influences of the instrumentation on the iteration times.
Because there is a fixed assignment of iterations to processors, time-based perturbation

analysis is sufficient in the case of statically scheduled DOALL loops. In fact, each proces-
sor participating in the DOALL loop can be analyzed separately. If processor P; is assigned
iterations (r, s,...,t), the execution time accumulated by P; in the DOALL loop is given by

3 )

3=t
where ¢(j) is the execution time of iteration j € (r,s,...,t). The execution time of P; in the
approximated execution is given by

Y m(D-8-1) = X tm()-m(B+7)

I=Py8yent =P8yt
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where t,(j) is the measured execution time of iteration j € (r,s,...,¢), B is the measured
fixed overhead of the instrumentation at the begin of the iteration, v is the overhead of the
instrumentation at the end of the iteration, and n; is the number of iterations assigned to F;.
The total time of the DOALL loop will be the longest approximated execution time of any
processor participating in the loop.

5.1.2 Dynamic Self-Scheduling

If every processor competes for each iteration, the assignment of iterations to processors is,
in general, nondeterministic. In practice, under certain known conditions and depending on
the characteristics of the iteration times, some assignments of iterations to processors are more
likely than others. Adding instrumentation overhead to every iteration skews the set of likely
iteration-to-processor assignments. The amount of perturbation in the assignment depends
directly on the relative sizes of the instrumentation overhead and the iteration times.

Because DOALL loops contain no synchronization operations (save for the implicit scheduler
synchronization at iteration assignment), one might initially consider a time-based perturba-
tion analysis approach for dynamically self-scheduled DOALL loops. In general, it is impossi-
ble for the perturbation analysis (time-based or event-based) to conclude that an approximated
DOALL execution is representative of or “close to” one of the likely actual executions. We could
empirically validate the approximated total execution time by comparing it against the mea-
sured execution time of the DOALL loop, but even an empirically accurate time approximation
does not necessarily imply a representative iteration assignment.

However, an event-based perturbation analysis must default to a time-based approach when
there are no synchronization events in the measurement that capture dependent operation and
when there is no additional information supplied regarding how iterations are assigned to pro-
cessors and if the perturbation analysis is allowed to re-assign iterations. In the case of the
DOALL loop there is no dependent operation and, hence, no synchronization events will be
recorded in a performance measurement. On the other hand, knowledge that the DOALL
loop is dynamically self-scheduled might allow an event-based perturbation analysis to be im-
proved. Below we consider the effectiveness of event-based approximations for different classes
of DOALL loops and different instrumentation perturbation scenarios. Our goal is to start

with a default time-based approach and to consider successively more complex cases until the
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approach breaks down. We then consider how knowledge of scheduling behavior can be used
to regain accuracy in the approximations.

For this study, we simplify the DOALL execution model as follows. The loop startup
time and the iteration assignment time are assumed to be zero, and all processors are initially
assigned an iteration. The iterations are numbered from one to N and are assigned to éroceuors

in increasing order and on a first-come, first-serve basis; effectively, a processor will never wait

for an iteration.

5.1.2.1 Uniform Iteration Time, Constant Instrumentation Overhead

With this simplified model, we first consider the case where all iterations have the same exe-
cution time A and the iteration instrumentation overhead (begin and end) is a constant aj i.e.,
B = 9 = a. The perturbation analysis independently applies a timing analysis to each thread

of execution. The following lemma holds.

Lemma 1 For DOALL loops with a constant iteration ezecution time A, the measured differ-
ence in ezecution lime between the beginning of iteration i and any iteration j < i + P cannot
be greater than A + 2a, where P is the number of processors participating in the DOALL loop

and a is the instrumentation overhead. That is,
tm(7) = tm(d) < A+ 2a.

Note, the measured iteration ezecution time includes the iteration instrumentation. Further-

more, for any iteration k > i+ P,
tm(k) — tm(8) > A + 2.
Proof: Suppose there exists an iteration i < j < i + P such that
tm(F) = tm(8) > A + 205

i.e.,
tm(i) + A + 2a < tm(j)-

Let iteration ¢ be assigned to processor p. At time ¢,,(i), a processor s # p is either executing
an iteration or has just finished an iteration and will be assigned an iteration after £ on a first-

come, first-serve basis. If the former is true, s will be assigned a new iteration & at some time
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tm(k),

tm(i) < tm(k) < tm(8) + A + 20
If the latter is true, s will be assigned a new iteration k at the same time p is assigned i;
tm(k) = tm(i). In either case, each of the processors other than p will be assigned an iteration
greater than i at a time less than or equal to ¢,(i) + A+ 2a. Processor p will be assigned a new
iteration at time ta(%) + A + 2a. Thus, for any iteration k, i < k< i+ P,

ta(i) < ta(k) < ta() + A + 2a.
A contradiction results. The second part of the lemma is proved in a similar manner. n

Corollary 1 For DOALL loops with a constant iteration ezecution time A, the approzimated
ezecution time difference between the beginning of iteration i and any steration j < i+ P cannot

be greater than \, where P is the number of processors participating in the DOALL. That is,
ta(§) — ta(f) < A

Furthermore, for any iteration k > i + P,
ta(k) = ta(£) > A

Proof: The proof follows the same approach as in Lemma 1 except that the instrumentation
overhead for iteration begin and end, 2a, is removed. n

The simple conclusion from Lemma 1 is that the perturbation effects of instrumentation
with constant overhead on the measured execution time ordering of DOALL iterations with a
constant execution time are bounded. Furthermore, Corollary 1 implies that the approximated

execution will be within ) of the true result.

5.1.2.2 Non-Uniform Iteration Time, Proportional Instrumentation Overhead

We now consider the case where the iterations can have different execution times, but the
instrumentation overhead (iteration begin and end instrumentation) will be proportional to the
iteration execution time.! That is, if 7'(¢) is the execution time of iteration i, o(i) = BT(i), where
o() is the total instrumentation overhead for iteration i and 3 is the constant of proportionality

to be applied to all iterations. The following lemma holds in this case.

!This condition might occur, for instance, if a diffexent number of instructions are executed in each iteration
and every instruction was instrumented.
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Lemma 2 Let s(i) be the amount of time after the start of the DOALL loop until iteration
i begins in the actual ezecution; i.e. s(3) = t(i) — t(DOALL). Let s,,(3) be defined similarly
for the measured ezecution. For DOALL loops with unequal iteration ezecution times, if the
instrumentation overhead for each iteration is proportional to the ileration’s ezecution time,
o) = BT (i), then

sm (i) = Pa(i).

Proof: Proof by Induction.

Basis: The DOALL execution model assumes every processor receives an iteration at the be-
ginning of the loop. Thus, the first P iterations 1, ..., P are assigned to the P processors when
the loop begins. For iteration i,1 < i < P, s(i) = 0, and s,,(f) = 8% 0= 0.

Induction Hypothesis: Assume sp,(8) = Bs(i) is true for all iterations < 4. After ¢ iterations
have been assigned, let R = r;,...,rp denote the current set qf iterations assigned to processors
1...P, respectively, at time s,(%)

Induction Step: In the measured execution, the next iteration ¢ 4+ 1 will be assigned to the

processor p when 8, (rp) + o(rp) < sm(rr) + o(ri), 1 < 7% # rp < P. This will occur when

sm(i+1) sm(rp) + o(rp)
Bs(rp) + BT (rp)

B(s(rp) + T(rp))-

From the induction hypothesis, we know s(r) = ’ﬁ‘ﬂ, Vr € R. In the actual execution, iteration
 + 1 would have been scheduled processor j where

8(rj) + T(r;) < sm(rs) + T(rs),

1 < rj # r < P. Substituting for s(r) above, we find that r; = r,. Thus, in the actual

execution, iteration 7 + 1 would have been scheduled when
8(i+1) = s(rp) + T(rp)
From the equation s, (i + 1) = B(s(rp) + T(r,)) above, we have

3m(i +1) = B(s(rp) + T(rp)) = Bs(i +1). n
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Lemma 2 indicates that, under the model assumptions, the iteration assignment behavior
(when iterations are scheduled) remains unchanged, in a relative sense, between the actual and
" measured DOALL execution. Because the perturbation analysis can determine s, (3) from the
instrumentation measurements of each iteration i, it can derive an accurate approximation of

the entire DOALL loop execution given only knowledge of 3.

Corollary 2 Let s,(i) be the amount time afier the start of the DOALL loop until iteration i
begins in the approzimated ezecution (assuming B is known); i.e., 84(8) = to(i) — ta(DOALL).
For DOALL loops with unegqual iteration ezecution times, if the instrumentation overhead for
each iteration is proportional to the iteration’s ezecution time, o(i) = BT(i), then s,(i) = s(i).

Proof: From the measured execution, s,,(i) is known for each iteration i. If B is known by
the perturbation analysis, s(f) can be approximated exactly by s,,/8 from Lemma 2. Thus,
84(i) = sm/B = 8(%). [ ]

The perturbation analysis used in this case is still basically a time-based approach because

only the overhead of instrumentation, o(3), is being removed.

5.1.2.83 Non-Uniform Iteration Time, Constant Instrumentation Overhead

If we consider again the case of a constant instrumentation overhead per iteration but allow
iteration times to be non-uniform, the iteration assignment behavior between an actual and
a measured execution can be quite different. Figure 5.1 shows a simple example. Because
of the unequal distribution of instrumentation overhead across the two processors, the timing
relationships between the iterations changes. In this case, iterations 5 and 6 are scheduled at the
same time in the measured execution whereas they were consecutively executed on processor
P, in the actual execution. When the instrumentation is removed by perturbation analysis
to produce the approximated execution (using a timing analysis approach for each processor),
significant timing deviations from the actual DOALL execution result. As seen, it is even
possible to have approximated iteration orderings that violate the assumed increasing order of
iteration assignment. In this case, iteration 7 appears before 6, and 9 appears before iteration 8.
This is an immediate indication that an approximation error has occurred. Another indication
of an approximation efror is when a processor waits for remaining iterations to be assigned, as

in the case of processor P; and iteration 10.
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Figure 5.1: DOALL Loop Example with Non-Uniform Iteration Times
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Without knowledge of the iteration scheduling algorithm, the perturbation analysis cannot
estimate the error in the event approximations using only time-based approaches. With knowl-
edge of the iteration scheduling algorithm, the perturbation analysis can use the approximated
execution times of the iterations to drive a simulation of the DOALL execution. However, the
simulated schedule will be computed under the assumptions of the scheduling algorithm. Any
errors in the simulated execution will be attributed to these assumptions.

Figure 5.1 shows a simulated execution using iteration execution times approximated from
the measured execution under the assumption of dynamic self-scheduling with round-robin
resolution in the case of scheduling ties. Since the original execution was self-scheduled, the
simulated execution is in closer agreement with the actual execution. The differences in iteration
assignments to processors could be due to errors in the iteration execution time approximations
or to the assumptions made by the simulation regarding tie resolution.

In addition to improving the accuracy of execution approximations, a simulation-based
perturbation analysis approach can be applied in a predictive manner to estimate DOALL
execution in simulated environments other than that which produced the measured execution.
For instance, the user could request the perturbation analysis to predict an optimal iteration

scheduling, or a scheduling for a different number of processors.

5.2 A DOACROSS Perturbation Analysis Study

Often, the iterations of a parallel loop have data dependencies on other iterations; either the
result produced in one iteration is used in a later iteration, or data fetched in one iteration is
updated in a later iteration [97]. Unlike DOALL loops, the execution of parallel loops with
iteration dependencies is not entirely nondeterministic — the execution is constrained by the
synchronization points within each iteration and by their partially ordered execution. Although
the scheduling aberrations in the measured execution resulting from instrumentation overhead
can still occur (see Figure 5.1), requiring some form of scheduling simulation in the perturbation
analysis to improve approximation accuracy, the dependent execution can restrict the possible
run-time behaviors [2].

As observed in Chapter 3, time-based perturbation analysis of parallel loops containing de-

pendencies can produce significant approximation errors. Event-based approaches that apply
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the synchronization perturbation models discussed in Chapter 4 must instead be used. To eval-
uate the practical capabilities of event-based perturbation analysis of parallel loops with itera-
tion dependencies, we implemented a trace analyzer that understands the advance and await
synchronization constructs. With this tool we studied the effects of software instrumentation
on a series of synthetic parallel loops with cross-iteration dependencies. We varied the place-
ment and degree of instrumentation to determine the effects monitoring (or not monitoring)
synchronization points has on perturbation analysis accuracy. In the study, the perturbation
analysis did not simulate any scheduling algorithm but instead relied solely on the synchroniza-
tion ordering data found in the trace. The perturbation analysis techniques for advance/await
synchronization discussed in Chapter 4 were used.

To validate the performance of the event-based perturbation analyzer, we applied it to
the Lawrence Livermore loops [128, 131] for which time-based analysis failed. These loops
contain execution ordering dependencies not accounted for by the timing models. We re-
instrumented the loops to capture the advance and await synchronization points. The results

of the perturbation analysis are given in §5.3.

5.2.1 The DOACROSS Loop Model

A DOACROSS loop [39, 38] contains data dependencies (see Chapter 4) between iterations that
that must be enforced to maintain correct execution order. The notion of a data dependence
distance [197], d, is used to quantify the dependencies within an iteration of a DOACROSS
loop. If iteration ¢ 4+ d is dependent on iteration i, the distance of the data dependence is d.
A data dependence graph [100] is useful for viewing the program dependencies. It is drawn
as a directed graph with each statement represented by a node and the directed arcs showing
forward and backward dependencies. The data dependence distance between statements is often
included in data dependence graphs. An ezpanded data dependence graph [100] (also called an
iteration space graph [197]) for a DOACROSS loop shows the loop statements for each iteration
and the dependencies for each particular statement execution. Figure 5.2 shows an example
DOACROSS loop drawn as a data dependence graph and an iteration space graph. In Figure
5.2, the distance of the §1 — S2 dependency is 2, and the distance of the S1 — $3 dependency

is 1. For our purposes, we will focus on constant-distance dependencies [197]; i.e., dependencies
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Figure 5.2: DOACROSS Loop Example

with constant data dependence distances. Constant-distance dependencies occur frequently in
numerical programs [38].

Some form of synchronization is required in DOACROSS loops to correctly execute state-
ments with data dependencies during parallel execution. There are several data synchronization
schemes that can be applied to handle constant-distance dependencies [188]. We concentrate
on advance/await synchronization [5, 134] because the semantics of the operation fit well with
the meaning of constant-distance dependencies. To simplify the discussion, we consider only
one-level DOACROSS loops; i.e., no loop nesting.

Figure 5.3 shows the DOACROSS loop structures used for our synthetic experiments.
Ignoring the synchronization operations for the moment, the basic loop structure has three
code bodies. The loop is entered at the top and executes these three code bodies in sequence
within each iteration. Before loop entry, we assume the execution is sequential. After the loop is
entered, the iterations are dynamically self-scheduled across the processors. An implicit barrier
is assumed at the end of loop. After the last iterations have executed on each processor, all
processors will synchronize before exiting the loop. The computation after the loop is assumed
to be sequential.

Each body reflects a block of computation. However, in the DOACROSS loop labeled
Forward in Figure 5.3, we assume a forward dependency [38] exists between body 1 (B1) and
body 3 (B3); Bl — B3. To satisfy this dependency during parallel execution, an advance
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operation is placed between B1 and body 2 (B2) and an await operation is placed between
B2 and B3. In the DOACROSS loop labeled Backward in Figure 5.3, we assume a backward
dependency [38] exists between statements within B2. In this case, an await operation is placed
between Bl and B2, and an advance operation is placed between B2 and B3. The dependence
distance, d, is a parameter of the synthetic experiment for both the forward and backward loop
structures; see §5.2.3. The iteration space graphs for both the forward and backward loops are
also shown in Figure 5.3.

5.2.2 DOACROSS Instrumentation

The synthetic DOACROSS loops were instrumented in four ways. Figure 5.4 shows these four
instrumentations for the forward DOACROSS loop; the same instrumentations were applied
to the backward case. The raw instrumentation is used to measure the total execution time
of the synthetic loop. The beginning of the DOACROSS loop is designated by event 0 in the
instrumentation and the end of the loop by event -1. The iteration instrumentation records the
beginning (event 1) and end (event 4) of each iteration in addition to the raw instrumentation
events.

The no-synchronization instrumentation places instrumentation around the body code in-
volved in the dependency but does not explicitly instrument the synchronization points them-
selves. In the case of the forward DOACROSS loop shown, events 2 and 3 are added to provide
instrumentation for B1 and B3. In the case of the backward DOACROSS loop (not shown),
events 2 and 3 are placed around B2. The synchronization instrumentation provides instrumen-
tation for loop begin and end, iteration begin and end, all body code, AND the synchronization
operations. Event 5 is recorded to indicate the completion of the advance operation (await
in the backward case). Event 6 is recorded to indicate the completion of the await operation

(advance in the backward case).

5.2.8 Synthetic DOACROSS Experiments

The set of synthetic experiments were defined by the relative execution times of the loop body
code and the data dependence distance d. We made the body execution time dependent on
the loop iteration being executed to test different body execution time distributions. Different

distributions of execution times could be chosen for the three respective body components of
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Distribution | Description

Fized The number of null loop iterations is fixed at a constant.
Increasing The number of null loop iterations increases from a starting
value with each successive DOACROSS iteration.
Decreasing The number of _nuﬁ loop iterations decreases from a starting
value with each successive DOACROSS iteration.
Triangular The number of null loop iterations first increases from a
starting value with each successive DOACROSS iteration,
but then begins decreasing at the same rate after half the
DOACROSS have been assigned.

Inverted The number of null loop iterations first decreases from a start-
ing value with each successive DOACROSS iteration, but
then begins increasing after half the DOACROSS have been

assigned.

Random “The number of null loop iterations i8 drawn from a random
sample for each DOACROSS iteration.

Normal The number of null loop iterations is drawn from a normal

distribution for each DOACROSS iteration.

Table 5.1: Execution Time Distributions for DOACROSS Experiments

the loop. The different execution time distributions we used in the construction of the synthetic
DOACROSS experiments are described in Table 5.1.

Generating a synthetic DOACROSS experiment allows us to easily test the accuracy of
event-based perturbation analysis for different combinations of body execution times and de-
pendence distance. Although a large number of experiments were performed, we report in §5.2.5
the results for the experiments shown in Table 5.2. Each row of Table 5.2 actually designates
a set of experiments as indicated in the description. Each set of experiments was run for both

forward and backward loop configurations and with dependence distances of 1, 2, 4, and 8.

5.2.4 Target Environment

The Alliant FX/80 was chosen as the target machine because of its instruction set supports
advance/await-style synchronization. The details of the FX/80 environment are discussed in
§3.1. All the experiments were performed with all eight FX/80 processors executing in parallel.
The loops were dynamically self-scheduled on the processors. The instrumentation support was
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Experiment

Description

Both body 1 and body 3 are fixed at 10 iterations of the null
loop. Body 2 is fixed and the number of iterations of the null
loop is drawn from the set {10, 20, 30, 40, 50, 60, 70, 80, 90,
100}.

FIXED-2

Both body 1 and body 3 are fixed and the number of itera-
tions of the null loop is drawn from the set {10, 20, 30, 40,
50, 60, 70, 80, 90, 100}. Body 2 is fixed at 10 iterations of
the null loop.

Both body 1 and body 3 are increasing starting with 1 itera-
tion of the null loop and incrementing by 1 with each succes-
sive DOACROSS iteration. Body 2 is fixed and the number
of iterations of the null loop is drawn from the set {10, 20,
30, 40, 50, 60, 70, 80, 90, 100}.

‘Both body 1 and body 3 are fixed and the number of itera-
tions of the null loop is drawn from the set {10, 20, 30, 40,
59, 60, 70, 80, 90, 100}. Body 2 is increasing starting with
1 iteration of the null loop and incrementing by 1 with each
successive DOACROSS iteration.

RANDOM-1

‘Both body 1 and body 3 are random with iterations of the
null loop falling in the range of 0 to 100. Body 2 is fixed and
the number of iterations of the null loop is drawn from the
set {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

RANDOM-2

Both body 1 and body 3 are fixed and the number of itera-
tions of the null loop is drawn from the set {10, 20, 30, 40,
50, 60, 70, 80, 90, 100}. Body 2 is random with iterations of
the null loop falling in the range of 0 to 100.

Table 5.2: Synthetic DOACROSS Experiments
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altered from the timing experiments (see §3.4) to additionally store the loop iteration number

with every event. This was necessary to support the advance/await synchronization analysis.

5.2.5 Synthetic DOACROSS Experiment Results

The goal of the synthetic DOACROSS study was to test event-based perturbation analysis
across a variety of loop executions. Although the set of experiments should not be regarded as
comprehensive, the results do provide some insight into the robustness of the event perturba-
tion models. We are primarily interested in the model’s performance on the experiments with
synchronization instrumentation; the traces from these experiments contain all synchronization
information needed to approximate the actual execution. The tests with the other forms of
instrumentation are important for observing the approximation error that results when syn-
chronization information is not recorded.

We look first at the complete .set of results for the test cases with synchronization instru-
mentation. Tables 5.3 and 5.4 give the approximation errors of the event-based perturbation
analysis of the synchronization instrumentation for the forward and backward experiments, re-
spectively. All the errors are calculated using the estimated execution time of the DOACROSS
loop from the raw instrumentation. The errors are reported as ranges that bound the errors
witl;in the corresponding set of experiments. Results from the four dependence distances tested
are given,

In all cases, the approximation errors are significantly smaller, in absolute terms, than the
measured errors. The measured execution time includes the instrumentation overhead and can
be as much as 102% (greater than a factor of two slowdown) in error of the actual execution
time. In contrast, the approximated execution errors overall are in the range -2.7% to 2.1%
for the forward experiments, and -3.5% to 4.2% for the backward experiments.? The greatest
improvements are in the FIXED-1 and FIXED-2 sets of experiments. Curiously, no differences
are seen in measured errors across dependence distance for the forward experiments. We suspect
this to be an artifact of the experiments. In general, if the degree of waiting is unaffected by

the instrumentation, the measured error and the dependence distance will not be correlated;

?Negative percent errors indicate approximated execution times less than actual.
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Dependence Distance
Experiment 1 2 4 8

FIXED-1
measured percent error
approximated percent error

27.6 to 96.9
'001 to 002

27.3 t0 95.9
-0.3 to -0.3

27.6 to 95.9
0.0 to 0.2

27.4 to 97.8
0.3 to 2.1

FIXED-2

RANDOM-3

RANDOM-2

measurcd percent error || 15.9 to 96.4 | 16.2 to 96.5 | 16.1 to 96.1 | 15.9 to 97.2
approximated percent error || -0.4 to 0.3 0.2 to 0.7 0.0t00.3 | -0.2 to -0.1
INCREASING-1

measured percent error || 16.7 to 27.0 | 16.6 to 27.0 | 16.4 to 27.0 | 16.4 to 27.3
approximated percent error || -1.9t0-0.6 | -1.9t0-0.8 | -1.9 to -0.9 | -1.1 to -0.9
INCREASING-2

measured percent error || 13.1 to 42.4 | 12.9 to 41.8 | 12.7 to 41.8 | 12.7 to 42.4
approximated percent error || -1.7t0-0.3 { -25t0-0.4 | -2.5 t0-0.7| -1.7 to -0.7]’

measured percent error || 15.8 to 25.5 | 15.8 to 25.5 | 16.2 to 26.2 | 16.2 to 26.2
approximated percent error || -2.0to-1.1| -2.7to-1.1} -1.9to-0.8 | -1.1 to-0.8

measured percent error || 12.8 to 47.3 | 12.9 to 46.3 | 12.9 to 47.3 | 12.9 to 46.1
approximated percent error || -2.3t0-1.2| -1.7t0-1.0}| -1.0to-0.5| -1.0 to 0.4

Table 5.3: Forward DOACROSS Measured and Approximated Errors
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Dependence Distance
Experiment 1 2 4 8

FIXED-1

FIXED-2

RANDOM-1

RANDOM-2

measured percent error || 11.2 to 99.6 | 11.8 to 100.6 | 12.3 to 98.8 | 25.2 to 96.0
approximated percent error -0.7 to 0.2 -0.1 to 2.7 08tol3]| -0.2to00.8

measured percent szror || 15.8 to 100.4 | 156.9 to 102.0 | 16.1 to 97.8 | 16.2 to 97.8
approximated percent error -3.4 to 1.2 -0.6 to 4.2 0.0 to 0.6 0.0 to 1.6
INCREASING-1

measured percent error || 11.0 to 44.4 | 12.5 to 28.0 | 13.3 to 27.8 | 16.6 to 29.7
approximated percent error -3.4 to -0.5 -32t0-0.1| -1.5t0-0.9| -1.8 to -0.9
INCREASING-2

measured percent error [| 17.1 to 21.8 | 13.4 to 21.5 | 12.7 to 23.2 | 12.7 to 42.9
approximated percent error -3.5 to -1.2 -0.7t0-0.6 | -0.9to0-0.8| -1.6 to -0.8 "

measured percent error || 11.2 to 49.4 | 11.6 to 27.9 | 13.9 to 25.4 | 16.0 to 25.2
approximated percent error -3.4 to -2.4 -21%t00.3 | -1.7t0-0.2 | -3.4 to-1.3

measured percent error || 22.8 to 25.6 | 13.1 to 19.7 | 12.9 to 18.5 | 12.8 to 34.8
approximated percent error -3.1t0-20] -3.2t0-0.1| -3.5t00.3| -2.9t0-0.4

Table 5.4: Backward DOACROSS Measured and Approximated Errors
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this is the case for our forward experiments where little or no waiting occurs in the measured
execution.

In general, the dependence distance could affect the execution behavior and the degree of
waiting, possibly altering total execution time. This is true in the case of the backward ex-
periments. As a rule of thumb, increasii\g dependence distance for backward synchronization
reduces the likelihood of synchronization waiting. However, if the execution time of the critical
section bounded by the await and advance operations (i.e., body 2 in the backward experi-
ments) is non-uniformly distributed, the instrumentation overhead could have different relative
influences on waiting at different times during the execution. Increasing the dependence dis-
tance in this case can both positively and negatively affect the measured error. We see both of
these effects in the backward experiments.

Figures 5.5 through 5.10 show the measured versus approximated errors for the different sets
of forward experiments. Figures 5.11 through 5.16 do the same for the backward experiments.
These curves again demonstrate the good accuracy of the approximations and show the effects
of varying body execution times within each experiment set.

The question we addressed with the experiments using the iteration and no-synchronization
instrumentation methods was how approximation accuracy is affected when synchronization
events are not recorded. The perturbation analysis of these experiments applied the default
timing model to removing the instrumentation overhead from the trace of each processor’s
events. Because less monitoring is done in these experiments, we would expect to see smaller
measured errors than in the experiments with synchronization instrumentation. However, the
approximation errors in the iteration and no synchronization instrumentation experiments will
depend on how much synchronization waiting occurs that the timing analysis does cannot take
into account.

Figures 5.17 and 5.18 show the measured and approximated errors for the different in-
strumentation test cases for the set of forward FIXED-1 experiments. The relationship of the
measured errors is as expected. Surprisingly, however, the timing-based analysis delivers almost
as good an error range as the event-based analysis. The principal reason for this is that only
a small amount of waiting occurs in these forward experiments. In fact, from the event-based
analysis, we calculated the percentage waiting time for each processor and found it to be zero.
Figures 5.19 and 5.20 show similar results for the set of experiments INCREASE-1. We sur-
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mise from these and the other forward experiments that when an execution of a DOACROSS
loop encounters little or no waiting, a timing-based approximation will be almost as accurate
as an event-based approximation.

In the case of the backward experiments, waiting occurs during the DOACROSS execution.
Figures 5.21 and 5.22 show the execution history trace for each processor for the measured
and approximated execution of the FIXED-1 experiment with body 2 fixed at ten iterations
using synchronization instrumentation. The execution time accumulated while in event 2
on the graphs is directly representative of synchronization waiting time. The approximated
execution graphs, drawn to the same scale as the measured graphs to emphasize the degree of
time adjustment, shows the approximate waiting behavior of the actual execution.

Figures 5.23 and 5.24 show the measured and approximated errors for the different instru-
mentation test cases for the set of backward FIXED-1 experiments. The measured esror for the
test cases with no-synchronization instrumentation is less than in the corresponding backward
experiments because only body 2 is being instrumented. However, some of the instrumentation
overhead is also hidden by processor waiting, keeping the measured error low. In other words,
the instrumentation less severely impacts the critical path as in the forward cases. This reason-
ing also applies to the measured errors for iteration instrumentation. The measured errors for
the test cases with synchronization instrumentation remain high because the instrumentation
does affect the time between synchronization operations.

The approximated errors show the effects of waiting on the default timing-based analy-
sis. Whereas the event-based perturbation analysis can use the synchronization information
found in the traces of the test cases with synchronization instrumentation to recognize wait-
ing situations during execution, the timing-based approach removes instrumentation overhead,
disregarding execution overheads caused by synchronization for data dependencies. In fact,
the timing approach can produce an approximated execution that not only has high error but
thaf potentially violates the DOACROSS data dependencies. The large errors in the test cases
with iteration and no-synchronization instrumentation are representative of the inability of the
timing-based analysis to correctly resolve waiting behavior.

Figures 5.25 and 5.26 show similar results for the set of backward FIXED-2 experiments.
In addition, we see the effects increasing the execution time of the body components outside the

critical section has on the errors. There are large approximation errors for the test cases with
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iteration and no-synchronization instrumentation until a body 1 and body 3 size of 40 iterations
of the null loop is reached. It is at this point that we suspect the percentage of waiting time
in the execution has been reduced effectively zero and the timing-based analysis could deliver
accurate approximations. We also see support for this hypothesis in the measured errors — as
the relative execution time of body 2 (and the associated synchronization waiting) decreases,
the total execution time will be more affected by the instrumentation of body 1 and body 3.
The instrumentation overhead will no longer be hidden and should, therefore, be reflected in
the measured time. Event-based analysis revealed that waiting time decreased and became zero
at 40 null loop iterations.

5.3 Event-Based Perturbation Analysis of the Livermore Loops

In §3.5, we saw that not all of the Livermore loops were amenable to timing-based perturbation
analysis of concurrent execution. Loops 3, 4, and 17 in particular, show significant errors in the
timing model approximations on the Alliant FX/80. All three loops execute as DOACROSS
loops with advance/await synchronization to prevent concurrent access to a critical section.
The concurrent execution behavior of the loops violates the assumptions of the time-based
perturbation analysis. An event-based approach must be applied instead. To evaluate the ef-
fectiveness of our event-based perturbation analysis, in particular the models for advance/await
synchronization in DOACROSS loops, we applied the event trace analysis tool to these three
Livermore loops.

Figure 5.27 shows the structure of the three loops, including the placement of DOACROSS
loop begin and end, and the advance and await synchronization operations. Every statement
in the loop was instrumented — each node in the graph corresponds to a statement in the loop
and, hence, an event in the trace. The statement dependencies are shown by the white arrows.
The events following the advance and await operations are identified as special synchronization
events by the analysis tool so that the advance/await semantics can be correctly enforced.® The
end of the DOACROSS loops are handled as barriers.*

3 As discussed in 5.2, the instrumentation for event perturbation analysis stores additional information with
synchronization events to correctly determine their relationship. In the case of the loops here, we store the

iteration number with every event.
4The Alliant FX/80 uses a hardware-based barrier synchronization mechanism to terminate parallel loops.
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Execution Ratio

Livermore Loop [ ;m

2.48

ured

E

M.
w

4.56

Time Approzimated |Event Approzimated
ﬁu

0.37

2.64

3.38

0.57

1.06

9.97

14.08

8.31

0.97

Table 5.5: Loop Execution Time Ratios per Instrumentation

Table 5.5 gives the ratio of different execution time approximations to the raw execution time
of the loops. The %ﬂﬂ ratio compares the measured execution time of the loops from a
full instrumentation for timing analysis to the raw time. The -E-'ﬁ‘-‘-i%'m ratio compares the
measured execution time from a full instrumentation for event analysis to the raw time. The
T—‘"M%'?;mﬂ ratio shows the accuracy of the approximation from timing-based perturbation
analysis. For loops 3 and 4, the timing model approximates a smaller execution time (indicated
by the ratio being less than one), than that measured with the raw instrumentation. As
discussed in §3.5, the timing model does not treat the advance and await events as special,
and waiting times that should result because of the synchronization are not maintained in the
approximation. In contrast, the timing-based model approximates an execution time slower
than actual for loop 17. Here the instrumentation in the critical section of the loop results in
greater waiting during measured execution which cannot be removed by the timing analysis.

Applying event-based perturbation analysis to ensure the partial ordering of advance and
await operations in the approximated execution significantly improves the accuracy of the
execution time estimation, as seen in the M—%”"—"‘"ﬂ column of Table 5.5. In the case
of loop 3, the actual execution time is 2.7 times that of the timing-based approximation (a -63
percent error). However, event perturbation modeling improves the approximation to be a factor
of 0.96 of the actual time (a -4 percent error). The improvements in the loop 4 approximation
are similar. The event model achieves a 6 percent error in this case. The most dramatic
improvement in accuracy is found in the case of loop 17. Even with a 14 times slowdown in
the measured execution, event-based perturbation modeling accurately resolves the timing of
advance and await synchronization events to produce an approximation with only a -3 percent
error. The advantage over the timing-based model is also apparent — a factor of over 8 in

improved accuracy is achieved.
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Processor
0 1 2 3 4 5 6 7

4.05 % | 8.09 % | 4.05 % | 2.70 4.05 % | 5.40 % | 2.70 4.05 %

Table 8.6: DOACROSS Waiting Time in Loop 17

In addition to producing total execution time approximations, the event analysis can also
generate statistics about loop execution such as the amount of waiting on each processor and
the degree of parallelism across processors. As an example, we computed the percentage of total
execution time spent waiting on each processor in loop 17. These results are shown in Table
5.6. A execution time history graph of waiting time for each processor is shown in Figure 5.28.
The sequential portions before and after the parallel DOACROSS loop are shown as processor
zero active.

From the waiting information, we can compute the level of parallelism in the computation.
The average level of parallelism of loop 17, excluding the sequential portions, is 7.5. More
insight into parallelism behavior can be gained from a graph of parallelism over time. This
graph is shown in Figure 5.29. All the waiting and parallelism curves presented were generated

from the execution approximations of the event-based perturbation model.

5.4 Comments

The event-based perturbation analysis of DOALL and DOACROSS loops has demonstrated
several important points. Although DOALL loops are nondeterministic in their execution,
default time-based analysis can result in significant approximation errors. The reason is that
performance instrumentation can perturb how resources (particularly processing resources) are
assigned during execution. This is also the case with DOACROSS loops. No performance
data can be captured that will indicate the resource allocation strategy in the actual execution.
This information must be obtained from outside the performance measurement. The event-
based perturbation analysis uses this information to construct an event-driven simulation of
the execution environment from which an approximated execution is produced.

The DOACROSS loop represents a constrained, partial-order execution. Although the prob-

lems with DOALL loops still exist, the perturbation effects of performance measurement is more

172



waiting -

| P

no waiting

waiting

no waiting -

(|

waiting
no waiting -

L]

waiting

no waiting -

waiting

no waiting -

L ]

waiting

no waiting

L]

waiting

no waiting -

L

waiting

no waiting .

[N EEEEEE

0

r
60

] L ] ] 1 |
120 180 240 300 360 420 480
Time (microseconds)

Figure 5.28: Approximated Waiting Behavior in Livermore Loop 17

173

Processor
0

Processor
1

Processor
2

Processor
3

Processor
4

Processor
8

Processor
6

Processor
7



6 -
Parallelism 4 -
2

| 1 ] ] ) ] L
0 60 120 180 240 300 360 420 480
Time (microseconds)

Figure 5.29: Approximated Parallelism Behavior in Livermore Loop 17

restricted. It is even possible for the performance intrusion to be hidden by other aspects of
the computation. All synchronization operations must be instrumented in DOACROSS loops
to correctly account for waiting behavior. This demonstrates the need in some performance

measurement scenarios to risk more performance perturbation due to extra instrumentation in

order to achieve more accurate performance approximations.

.-
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Chapter 6

Performance Visualization

What is to be sought in designs for the display of quantitative information is the
clear portrayal of complexity. Not the complication of the simple; rather the task
of the designer is to give visual access to the subtle and the difficult — that is, the

revelation of the complex.
Graphics reveal data.
— Edward Tufte, “The Visual Display of Quantitative Information”

Performance visualization is simply the application of visual display techniques to the analysis
of performance data. The main goal of performance visualization is to improve our ability
to understand performance data. This can occur in two ways. First, there is the potential
insight gained from a graphical representation of performance data that would be difficult or
impossible to obtain otherwise. The challenge here is in determining the types of visual displays
that are most useful for presenting performance data, Clearly, the attributes of the data will be
important in evaluating the appropriateness of different display alternatives. Even without the
“gestalt” insight, performance visualization serves as a tool for data exploration. It can be used
to show all or part of the performance data at several levels of detail. Performance visualization
environments allow the performance analyst to “investigate” the performance data by providing
facilities to filter the data set, to define functional combinations or reductions of data elements,
to select among various display choices, to compare different data values, or to inquire for
performance data details. Performance visualization, in this respect, also encompasses the

display of real-time performance data.
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Although there is a well-founded discipline for the graphical presentation of statistical data
[31, 32) and significant research advances have been made in visualizing scientific data [58], the
visualization of computer system performance data has remained ad hoc, a practice engaged
in only by a few. Certainly, there are past examples where graphics have been used to display
performance data [49, 95], but it has not been until recently that tools which incorporate
performance visualization as a main component of their design have begun to emerge. Below,
we give a brief review of the developments in this area.

There has been a growing use of performance visualization ideas in integrated programming,
debugging, and performance measurement environments, particularly for parallel systems [36,
45, 57, 59, 74, 115, 137, 170, 182]. The performance tools for the Erlangen processor array
[59] are an early example of how graphical displays of processor execution events are used to
obgerve parallelism. The PIE project [74, 170, 171] treated performance visualization as an
integral component in the programming and instrumentation environment design. Although
the extent of the performance views supported by the PIE system was somewhat limited, it is a
good example of how visualization can be used for performance debugging [115]. Miller’s IPS-2
system [137], the work by Fowler, LeBlanc, and Mellor-Crummey [57, 111], and Couch and
Krumme’s Triplex tools (36] all emphasize the use of performance visualization in the context
of a parallel program measurement system. The Poker programming environment of Snyder
[182] together with the Voyeur visualization tool [184], and the Schedule tool by Dongarra and
Sorenson [45] demonstrate how the visualization of parallel programs is supported in a general
proyMg system,

Other tools have focused on specific applications of performance visualization. Seager de-
veloped the GMAT tool [169] to graphically observe the operation of multitasking programs
run on the Cray X-MP. Stone [186] introduced the notion of a concurrency map as a graph-
ical representation of potential concurrency behavior of a program. The Seecube system of
Couch [35] offers a variety of topological display choices for graphically representing program
performance on a hypercube message passing system. Moviola [56] is an interactive execution
history browser used to show the synchronization activity of concurrent programs. PIE has
been used to visualize context switch behavior of parallel programs [114] for use in the analysis
of scheduling algorithms. Dongarra has developed the MAP [23] and SHMAP [43] tools to

visualize shared memory access patterns of parallel matrix algorithms.

176



Lastly, there is an increasing interest in the real-time display of performance information.
Several of the tools described above support a replay mode for viewing execution histories, but
few provide the ability to display performance data in real-time. The Triplex toolset [36] is
an exception, allowing the user to view state variables and summary statistics from multiple
processors as a program’s execution proceeds. Katseff [93], with his Software Oscilloscope,
investigated tradeoffs in the frequency and amount of data recording versus the rate of display
update. Recently, Trammel [192] has studied the visualization of system behavior in real-time,
focusing on efficient system performance measurement to reduce the observer (probe) effect and
different tradeoffs in data presentation.

In this chapter, we develop three general themes of performance visualization. The first is
that there is a need for performance visualization; that is, performance data analysis benefits
from the use of graphics. We discuss the characteristics of performance data that make it inter-
esting to apply graphics. Second, performance visualization must be interactive and automatic.
If the performance visualization process is awkward or time-consuming, the performance ana-
lyst will seek simpler tools. It must be easy to use and it must provide the performance analyst
an automatic way of displaying and interacting with the performance data. Lastly, performance
visualization is an experimental process, dependent on the need to gain different perspectives
on the performance data. Performance visualization environments must provide the perfor-
mance analyst the flexibility to explore the performance data and make display choices based
on current observations.}

We will describe, by way of example and discussion of the above three themes, several
prototype performance visualization tools we have developed; see §6.2. Our main interest in
describing these tools is to demonstrate the utility of visualization for performance obsesvation
and to motivate the design of a general performance visualization environment architecture.
The ideal performance visualization environment would support the definition and creation of
performance displays that can be easily matched to different performance data values. We define
a general performance visualization architecture in §6.3 that reflects these goals. A prototype
performance visualization environment developed following the general architecture guidelines

is discussed in §6.4.

1This theme has many corollaries with Tukey's concept of exploratory data analysis [195).
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6.1 Performance Data and Displays

. If the goal of performance visualization is to aid in the understanding of performance data, we
need to have a better characterization of the data itself and of the performance phenomena
we want to observe. As the performance of a computer system is inextricably tied to the
combined performance of its constituent hardware and software levels, for any performance
experiment, we may collect performance data about the hardware, the system software, the
run-time environment, and the application software. We must be able to examine this multi-
level data both separately and collectively. Separately, the performance data of each level
reflects both the use of components at that level and their dynamic interaction. Collectively,
the data provide a global performance view and allow one to correlate inter-level behavior.

Performance data can be generally characterized according to the type of performance anal-
ysis that it supports: static or dynamic. Static performance analysis reports performance
sumimaries or instantaneous performance state. The performance data often are in the form of
usage statistics (counts and times), such as in the case of program profiling, but also can be
samples of state variables or performance metrics at particular times. Dynamic performance
analysis, on the other hand, captures changes in performance behavior, allowing the perfor-
mance analyst to observe time-based performance phenomena. The performance data in this
case must explicitly or implicitly encode timing information; typically the performance data is
in the form of a time-stamped trace.

The type of performance data collected depends on the requirements of the performance ex-
periment being conducted. In general, the complexity of performance data measured (types and
amount) is directly related to the complexity of the performance phenomena being observed. To
understand a complex performance phenomenon, we must be able to analyze a potentially large
volume of information that describes complex relationships within and between performance
levels. In addition, the visualization of the data will depend on a knowledge of the performance
behavior the data represents.

6.1.1 Performance Data Views

We adopt a framework proposed by LeBlanc, Mellor-Crummey, and Fowler [111] for classify-

ing performance data as different “views” of a program’s execution. They draw an important
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Figure 6.1: Performance View Dimensions

distinction between a view and a visualization — a view generally defines what performance
information is to be presented; a visualization describes how the information is displayed. Al-
though our discussion of fundamental view dimensions (see below) and types is different than
[111], the basic approach is similar. We give a more general definition of view dimensions which
includes the performance data levels.

Performance data views are described across several dimensions and any particular view
can be a composition of more basic views; see Figure 6.1. One fundamental dimension (or view
attribute) contrasts a physical view with a logical view; this might be regarded as a structural
dimension. A physical view provides information on the operational use of physical resources
during execution. This could be the allocation of processors, the functioning of a memory
system, or the operation of communication resources. A logical view relates the performance
data to some conceptual execution framework. An example can be taken from message-passing

systems. The physical view of one node exchanging a message with another might indicate
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the identities of each node, the size of the message, and the communications path in terms of
intermediate nodes and links. A logical view, on the other hand, might instead identify the
message type, and the sending and receiving tasks, but not the processing nodes.

The notion of time need not be included in the definition of physical and logical views. More
appropriately, time reflects another fundamental view dimension, ranging from a real time view
to a virtual time view. Essentially, a point on the time dimension defines ordering relationships
between execution events. A real time view bases this ordering on some derivative of a real-
time clock. A virtual time view defines the observable ordering of events based on causal
relationships; for instance, Lamport’s notion of logical time as defined by the kappened before
relation.? A performance data view including the time dimension implies the existence of the
information needed to derive timing relationships, real or virtual. We can add the time attribute
to the above example by recording either the actual time the message was sent and received
(a real time view) or information concerning the relative order of message communication (a
virtual time view). Notice that both time views are valid with either the physical or logical
views.

Another fundamental view dimension contrasts performance data about the state of an
execution with data that summarizes execution performance; a range dimension. We define a
state view as embodying performance information relative to an execution state. A summary
view, however, reports performance data accumulated over multiple execution states. Although
there is an intuitive continuum of state and summary views from an execution state view at
the smallest observable instance of time (real or virtual) to a performance summary view of
the entire execution, the difference between a state view and a summary view depends on the
definition of execution state. An example of a state view might be the number of floating point
operations produced by a subroutine for a particular call instance; the state here is defined by
a subroutine invocation. An associated summary view would be the total number of floating
point operations produced by that subroutine for the complete program execution.

The three fundamental performance data view dimensions discussed above define certain
properties of the data but not what the data represents. A fourth view dimension can be defined
based on performance data level. A performance level view associates the performance data

with the analysis of a particular component of the execution. Views of this type include the

3We use the term virtual time instead of logical time so as not to confuse it with a logical view.

180



hardware view, system sofiware view, run-time environment view, and application view. This
deviates from [111] which treats views of different performance levels in the context of process
interaction views and process state views. Our position is that performance levels define a more
basic dimension for performance analysis since any performance experiment will necessarily
involve all performance levels even if data is captured for only a subset. A performance view at
both the hardware and system software levels can provide important insight for system design
and analysis. And because system performance is manifest in the application software, system
level performance visualization indirectly provides application performance insight. However,
a system performance view must be directly coupled with an application performance view to
understand the interactions of different performance levels.

One final fundamental dimension is that of performance behavior. A performance behavior
view relates the performance data to a particular performance behavior. It places the interpre-
tation of the performance data in the context of some behavioral abstraction [14] of interest.
Some the more important behavior views might be the process (or task) behavior view, the data
access behavior view, the communications behavior view, the synchronization behavior view, and
the routine behavior view. More than any of the other dimensions, the performance behavior
dimension embodies performance data meaning,.

Any performance analysis will necessarily be based on a multiplicity of execution views.
No single view will be complete — any particular view, while providing insight into some
performance phenomenon, will insufficiently characterize some other aspect of the execution.
The fundamental view types are too general to be applied directly. Rather they reflect the basic
view attributes from which more refined views will be composed in the context of a specific
performance analysis. Additionally, they define the basic view properties that will be important

to consider when developing appropriate performance display approaches.

6.1.2 Performance Data Displays

The performance data from any experiment can potentially be large and can represent multiple
views of an execution that describe complex relationships across several performance dimen-
sions. For each performance view, there are many different ways to present (visualize) the
information. Tufte’s definition of a graphic visualization is one that attempts to efficiently

communicate a complex set of quantitative ideas [194]. For performance visualization, we use
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graphic displays to express the characteristics of the different view dimensions. Although graph-
ics can display a large amount of quantitative information, interesting phenomena can be lost in
the sheer volume of information. Performance data must be presented in ways that emphasize
important events while eliding irrelevant details, but that also support performance data in-
vestigation, including selecting performance views, changing display types and their attributes,
and querying for performance data details.

The main question for performance visualization concerns what types of displays are ap-
propriate for the performance behavior. one wants to observe. Because the most useful set
of displays are likely to be determined only from experience and will depend on the personal
preference and needs of the performance analyst, we approach the question by listing several
display types and commenting on their use in performance visualization.

The following display types have been or can be used in performance visualization:

o two-dimensional (2-D) line and scatter plots

e 2-D surface and contour plots

o three-dimensional (3-D) plots

o analog and digital meters

¢ histograms and LEDs (discrete histograms)

e PIE charts

o Chernoff faces and Kiviat diagrams

e strip charts and Gantt charts

o activity profiles and timeline displays

o event graphs

o time-process diagrams, synchronization graphs, and concurrency maps
execution graphs, task graphs, and callgraphs

o activity matrix displays

¢ topological displays

Two-dimensional and three-dimensional plots have long been used for the display of general
statistical data [195, 31), including multi-dimensional performance statistics. Parallel execu-
tion speedup, floating point performance, and memory reference performance, among other
performance metrics, have been presented using line plots. Scatter plots can effectively display
density distributions and have been used to show summary views of memory referencing behav-
ior [43] and the distribution of floating point performance across application program routines
[122]. Surface and contour plots highlight regional activity within a data set. We have used
these displays, plus 3-D perspective plots, to show both physical and logical views of message

communication behavior [124].

182



Unlike 2-D and 3-D plots, analog and digital meters, histograms, LEDs, PIE charts, Cher-
noff faces, and Kiviat diagrams only show one or a few performance values. They can be
replicated or used in combination to show more values but they are particularly suited to dis-
playing performance state values and reflecting changes in that state, not in the display of large
performance data sets. Meters, histograms, and LEDs can be used to show any single value
performance metrics, including processor utilization [21), process state times (79}, and certain
virtual memory statistics [192]. In addition, histograms and LEDs are applicable to the display
of physical hardware state (e.g., showing buffer queue lengths in a switching network [147]) or
the display of physical state system views (e.g., message buffering in a message passing system
[35]). The graphics are simple enough in these displays that the performance value is easily
conveyed and changes in the value easily observed. Chernoff faces [30] and Kiviat diagrams
[143] are presentation devices that take advantage of our visual system’s sensitivity to subtle
changes in human facial expression and shape, and to detect small deviations from perfect sym-
metry in star designs, respectively. Possibly because of their cartoon-like appearance, Chernoff
faces have not been applied in a serious manner to performance visualization. Kiviat diagrams,
however, have been extensively used to show physical hardware and system performance views
(95, 52].

Strip charts and Gantt charts [69] are general purpose 2-D plotting displays but with time
(real or virtual) as either the abscissa or the ordinate. These displays have been used in many
ways, including to show CPU utilization [137), speedup [18], page faults [192], memory access
rates [183), and levels of parallelism [111, 103, 115]. Just as strip charts and Gantt charts show
how a performance value changes over time, activity profiles [74] and timeline displays [35) show
when different components of an execution are active over a time interval. A 2-D graph format
is still used except the execution components, rather than the performance metric, are placed
on the non-time axis and lines are used to represent regions of time the component is active.
The activity profiles in [74] and [114] are used to show system and run-time behavior through
process and task activity. Couch [35] uses timeline displays to shown hardware and system level
message communication activity.

Event graphs are a more sophisticated form of activity profiles and timeline displays because
time regions are graphically-coded to reflect different types of activity (or events) in the same

display. Seager [169] used event graphs effectively to show multi/micro tasking behavior on

183



Cray multiprocessors. In his displays, the activities on the tasks are shown as different event
icons representing multitasking operations. More recently, Lehr (115, 114] has used event graphs
to show time-based process and CPU views of application performance, where the event regions
are colored to indicate the execution of a particular routine or tasking operation. System views
also have been displayed in this way, with regions indicating different process states and context
switch events [114, 161].

An enhanced form of the event graph is found in time-process diagrams [81], concurrency
maps [186}, and synchronization graphs [56]. Time is still the fundamental axis with the other
axis most often describing application processes or tasks. The unique feature of these displays
is the time-based representation of process interaction showing both potential and observed
temporal relationships among the processes. Processes interact in two ways: through com-
munication (the exchange of data information) and through synchronization (the exchange of
control information). The IDD tool [81] shows message transmission and receipt between pro-
cesses in a message passing system. Moviola [56, 111] displays synchronization actions between
processes, helping to visualize process-local and program-global dependency behavior. Stone
[186, 185] uses concurrency maps as a graphical way of displaying potential concurrent combi-
nations of independent and dependent process events. This is an interesting example of showing
a logical and virtual time view in a single display.

Execution graphs, task graphs, and call graphs all show a state view of program execution
performance via a program structure display. The components of the program are shown
as nodes in some logical relationship, usually a hierarchical task invocation graph or routine
calling graph, and are graphically animated as the program state changes during execution. The
PARET tool [147] uses execution graphs in a general manner to characterize the interactions
of tasks, modules, and objects in a parallel computer. The Schedule tool [45, 44] uses an
acyclic directed graph to show the structure of a paralle] application’s execution. In both tools,
during execution replay, the nodes of the graph are highlighted to indicate the execution state
of the components. A task graph, in the form of a task genealogy tree, is used in GMAT [169)
to show task creation history, task state (running or waiting), task operation (multitasking
and microtasking events), and the assignment of tasks to processors. PIE [74] has promoted
the idea of a general purpose call graph display that allows any program execution object
with parent/child relations to be represented in the form of a tree. The visualization system of
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Zimmermann [199, 200] provides a call graph display of execution flow where modules, routines,
and other program components, such as synchronization objects, are included. A multi-threaded
call graph display has been used in the Faust environment [76] to show the routine calling state
of parallel execution threads, and Miller [137, 198] has used a program call graph to show
critical paths in a program.

Execution graphs, task graphs, and call graphs reflect application state views; activity
matrix displays and topological displays have been used to show both state and sumiary
views but with a hardware and system configuration representation. Activity matrix displays '
associate each axis with some set of physical or logical resources of the system. Each matrix cell
graphically reflects the activity occurring when the resources represented by the corresponding
coordinates are taken in combination. Voyeur [184] humorously uses activity matrix displays to
show system load balancing behavior between processors as animated sharks and fishes. Couch
[35] has made use of activity matrix displays, as well as topological displays, to show hardware
and system performance of hypercube message passing multiprocessors. His topological displays
include several representations of the logical hypercube interconnection of processors: binary
Pascal triangle, Gray code, multi-dimensicnal hypercube, FFT butterfly, and toroidal grid.
During execution replay, the nodes and links in the displays are colored to signify the current
state of varioug performance statistics, such as processor utilization, and change color to indicate
different activi'ty within the system, such as the use of a link for message communication.

Performance data can not only characterize instantaneous or cumulative performance on dif-
ferent levels, but also can embody time-varying performance dynamics. Phases and transitions
in performance behavior can be seen only by examining time-relative sequences of performance
data instances. Although some of the performance displays above are specifically designed to
show changing performance values and state over time, any of the displays through animation
or multiple windows can be used to show time-based performance behavior.

The time dimension can be presented either spatially or temporally, corresponding loosely to
a state-based or summary-based (historical) view, respectively [111]. The Gantt charts, activity
profiles, and timeline displays use space to present time, translating the temporal dimension of
performance data into a spatial dimension, usually in the form of an axis on a graph. Temporally
proximate performance data are shown as spatially proximate in the display. In addition, real-

time views can be shown with the true timing intervals maintained in the display, or using
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“time warping” to graphically compress time regions with little or no performance data as in
the case of GMAT [169].

. Temporal presentation of time-based performance data uses animation [25] to divide an

execution into time frames. Typically, the execution state is represented through a combination

of statistical displays (e.g., plots and meters) and structure displays (e.g., task graphs and

topological displays), onto which performance data is superimposed over time. The changing

graphical attributes of the displays reflect the performance dynamics.

In addition to the basic display types and the methods for displaying time, many graphical
techniques applied in scientific visualization to present complex quantitative data [58] could
be used in performance visualization graphics. There techniques take advantage of the abil-
ities of the human visual system to interpret and identify anomalies in false color data [46],
and to extract features and recognize patterns in graphic images. Performance visualization of
complex parallel systems, in particular, pose a vexing perfgrmance interpretation problem of
displaying potentially large amounts of performance state data in ways that emphasize impor-
tant behavior while eliding irrelevant data. The techniques of scientific visualization for visual
data compression, visual cuing, and sophisticated graphics make it natural for this problem.

However, depending on the monetary constraints for performance measurement and visual-
ization, there may be practical limits to the range of dispay techniques a performance analyst
can apply. For instance, scientific visualization often requires expensive, high-performance com-
puter equipment for graphics algorithm processing and rendering. If the techniques and tools
for performance visualization are to find pervasive application among performance analysts, the
system used to display performance data should be only a small relative fraction of the cost of
the system being measured. For most performance analysts, high-performance graphics systems
are still a luxury, but this does not mean we should not continue to investigate approaches.

In another example, near real-time processing and display of detailed performance data
(e.g., memory reference patterns) implies prodigious, often unrealistic, computing, storage,
and display requirements. A posteriori examination of performance data means that all data
of potential interest must be captured a priori. Despite the consequent increase in storage
requirements, this is often desirable — it permits performance data browsing across the entire
range of execution, and it permits data capture at a level of detail incompatible with near

real-time processing. However, a posteriori examination also precludes dynamic system or
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application reconfiguration based on observed performance. Real-time display of even a portion
of the captured data would permit the performance analyst to selectively enable and disable
performance instrumentation based on observed behavior, reducing the storage requirements.
Despite certain advantages of interactive, real-time performance display, for most perfor-
mance visualization systems, a posteriori display data is unavoidable because there is insufficient
communication bandwidth to transmit performance data to an external host without distorting
the performance being measured; see §2.5. Furthermore, the analysis and visualization hard-
ware must be able to process the performance data at the rate it is received. The physical
operation of graphics monitors place an additional restriction on the ability to visualize dy-
namic chaunges in performance data in real time. If the frequency of change in a performance
metric or state is faster than the monitor’s refresh rate, normally once every 315 of a second, only
part of the performance data will be shown. The human eye also limits the maximum rate that
changes in visual context can be perceived. Finally, the real-time graphics processing required
to render a performance image can further restrict the rate performance data is presented.
For the application of advanced visualization techniques, including real-time display, to
performance data presentation, a balance must be reached between the need to visually observe
performance state and dynamics, and the capabilities of the available measurement and display
environment. To raise the level of performance observability, we must enhance performance
analysis and display techniques, but we must do so aware of the fact that to receive broad

acceptance, the resulting tools must be easy to use and cost-effective to apply.

6.2 Case Studies in Performance Visualization

The purpose of performance visualization is to lend insight into the performance data while
providing an environment for performance data investigation. The insight gained from pre-
senting performance data views via different performance displays can only be assessed in the
context of existing visualization tools and their use in real performance analysis scenarios. Be-
low we describe several case studies where tools have been developed for specific performance
visualization purposes. Our goal is to demonstrate the utility of the performance visualization

techniques in the context of these tools both in terms of performance data insight and support
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for performance investigation. We use the performance level addressed by the tools to organize
the discussion. A

As discussed in the previous section, performance data can be presented in a variety of ways.
The tools below embody certain choices for display alternatives. We assess the tools not on the
choice of display but rather on the extent that performance visualization improves performance
observability in the tool’s target environment. In general, an integrated performance visual-
ization system should permit the performance analyst to select those display alternatives that
best match his or her conceptual image of the data, preferences, and needs. An architecture for
such a performance visualization environment is presented in §6.3 and a prototype environment

is discussed in §6.4.

6.2.1 Hardware Performance Visualization

A common perception of hardware performance visualization might be waveforms on a logic
analyzer. Although the idea of viewing a trace of hardware operation is a good one, the use
of logic analyzers for general hardware performance observation is not. Typically, hardware
performance data is collected in the form of counter values captured by a hardware monitor.
These can include cache misses or hits, memory references, and floating point operations. Indi-
vidual counts can be presented using a variety of single value displays discussed in the previous
section. Often, however, the performance analyst wants to observe the execution history of
multiple performance metrics and be able to correlate these metrics at different points in time.
Although this necessitates a hardware monitoring system capable of capturing hardware perfor-
mance traces, the interesting visualization challenges come in determining how dynamic, rather
than static, hardware performance should be observed.

The case studies below feature visualization approaches for multiple samples of hardware
data. The first is a post-mortem visualization of a trace of hardware performance data from the
Cray X-MP supercomputer [29, 107, 122]. The next two are dynamic, animated visualization
tools for looking at hardware data captured from the Cedar multiprocessor system [99).

Although not shown in these examples, the visualization of hardware performance sometimes
can be enhanced by using a graphical representation of the physical system as a visual cue.
This might be applied in the case of visualizing processor utilization, memory referencing, or

interconnection network operation.
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6.2.1.1 Cray Performance Visualization

The Cray X-MP [29] supercomputer architecture supports up to four vector processors, each
with multiple scalar and vector functional units, hardware for vector chaining, and two load
ports and one store port to memory. Furthermore, the X-MP provides a hardware performance
monitor [107] capable of recording hardware level statistics for up to 32 different performance
metrics of machine operation. Best floating point operation performance is achieved on the
X-MP during vector operation when vector chaining and memory port use are maximized.
Unlike the average floating point performance of an application, a dynamic view of floating
point operation reveals significant performance variability. A similar view of memory operations
would allow one to correlate floating point operation performance with memory system activity,
possibly providing insight into the efficiency of the vector computation.

We conducted a Cray X-MP performance observability study [122], to be discussed more
fully in Chapter 7, that used the hardware performance monitor to collect trace histories of
machine performance for an application code execution. We use data from this study to demon-
strate the utility of a tool to visualize the hardware performance data and to provide insight into
the vector processing and memory referencing operation. Although the architecture supports
multiprocessor configurations, we concentrate here on single processor performance.

The tool, Xgantt, is based on the Gantt chart and shows time-based performance data; see
Figure 6.2. The performance analyst specifies each Gantt display through a set of commands
that define the range and labeling of the abscissa (time) and ordinate (performance metric)
axes, and indicates the file where the sequence of performance values is stored. Xgantt controls
positioning and zooming on the displays through the use of a scrollbar; the left mouse button
sets the left edge of the visible region, the right mouse button sets the right edge, and the
middle button allows the region to be repositioned.® The performance analyst also can select
a point in a chart using the mouse. The closest time with a performance value is selected and
that value is reported through a textual window. The zooming and selection functions facilitate
performance investigation.

Figure 6.2 shows seven performance metrics from the Cray X-MP hardware performance

monitor drawn in the range of zero to seven seconds.* The ability to view several performance

3We see the entire region in Figure 6.2.
4 All performance metrics are given as rates in terms of millions of units per second.

189



Clook
Periods
Holding lesue

References

Float
Point e
Rdde

Floating
Hultiplies

LB

Floating
Potnt
Reciprocals

LEL LI

Float
Poime
Oparstione

References
por Flop

T T

= ® o QSRR veool KRESB KRHET WOBRE LEJAR SBYEE

Figure 6.2: Xgantt Display of Cray X-MP Hardware Performance Data

190



metrics simultaneously over time allows one to visually correlate the behavior of different ma-
chine functions, and to associate that behavior with regions in the execution history. Here
the curves clearly reflect three major phases of the computation. In addition to showing the
raw performance values, the floating point and memory reference curves show increasing rates
in successive phases indicating either that a different, higher performing set of vector oper-
ations are being performed, or that the vector operations are becoming more efficient. The
Memory References per Flop curve indicates that the basic performance properties of the
vector operations are unchanged (each phase shows the same number of memory reference per
floating operation), leading one to believe the vector execution efficiency is improving. In fact,
knowledge of the application code substantiates this position (the executed code is the same
in the three phases) as does another performance metric (not shown) indicating an increase in
vector length in successive phases — increased vector lengths improve the efficiency of vector
operations by reducing vector startup overheads.

The Xgantt tool provides a basic example of a performance visualization tool that can
provide significant performance insight (in this case into the hardware performance of the Cray
X-MP) and interactive support for performance investigation. Although we used the Xgantt
tool to show hardware performance data, visualization of time-based data for all performance

levels could use the Xgantt Gantt-style displays and query control.

6.2.1.2 Cedar Performance Visualization

The Cedar machine [99] has a multi-cluster, multi-vector processor architecture with a hierar-
chical memory system and a global two-stage, Omega network connecting processors to a shared
global memory. Cedar is a particularly interesting machine on which to conduct performance
studies because of its multiple levels of parallelism (vector-level within a processor, loop-level
between cluster processors, and task-level between clusters) and the complex interactions of the
maultiple levels of memory. Currently, the Cedar system consists of four clusters each with four
processors. The final target configuration is a 32-processor system — four clusters with eight
processors per cluster.

The Cedar hardware has been built with visibility connectors for monitoring the operation
of hardware elements. Among the signals that can be observed are CPU activity, indicating

whether a processor is active or idle, network busy, indicating the presence of network contention
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Figure 8.3: Cedar Machine Architecture and Hardware Monitor

and thus a stalling of a processor’s access to global memory, and memory operation, classifying
the type of memory request to a memory module. In addition to hardware signal visibility,
hardware performance monitoring equipment also has been developed [109, 7, 16]. Figure 6.3
shows the Cedar architecture together with the configuration of the hardware performance
monitor for the two experiments discussed below.

As with any multiprocessor system, the degree of real-time parallelism achieved during
execution is a measure of machine efficiency. Observing processor activity at the hardware
level provides a raw performance characterization of parallel operation. In the first hardware
performance visualization experiment for Cedar, we constructed an analysis and display tool

to show CPU activity in real-time across the 16-processor Cedar machine. The hardware
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performance monitor was configured to capture the state of every processor activity signal for
each 170 nanosecond clock cycle. The 16-bit vector describing Cedar-global CPU activity for
a particular clock cycle was used as an address into a 64K array of counters and the counter
representing that combination of CPU activity was incremented. The counter values were
sampled by a processor connected to the hardware monitor approximately every 1.8 seconds.
After each sample was read, the counters were immediately cleared to capture the next CPU
activity sample. Meanwhile, the processor computed two sets of statistics: the number of cycles
each individual CPU was active during the sample interval, and the concurrency distribution in
the interval ( i.e., the number of cycles i CPUs were active, 0 < i < 16). After being computed,
these 32 values are sent to the performance visualization station for display.

A snapshot of the CPU activity displays is presented in Figure 6.4; the hardware perfor-
mance data comes from a study of a conjugate gradient algorithm written for the Cedar system
[132]. The top sixteen bargraphs shown the relative distribution of CPU activity, with each
bargraph indicating the percentage of the sample interval that that CPU was active. These
displays are useful for observing a balance or imbalance of activity within the system. The
next set of sixteen vertical bargraphs show the relative distribution of concurrency during the
interval. The bargraph for each concurrency level reflects the percentage of the sample inter-
val Cedar was running with that level of concurrency. The sum of the bargraph values totals
100 percent. A shifting of the concurrency distribution to the higher concurrency levels is an
indication of greater parallelism being achieved in the interval. The bottom display is a matrix
of historical CPU concurrency. The last sixteen states of CPU concurrency are shown, from
the most recent on the left to the oldest on the right, where within each column the sixteen
processor concurrency level is at the top and the one processor level at the bottom. The concur-
rency values are mapped to colors based on heat intensity with dark blue signifying low values
(cool), yellow/orange medium range values (warm), and red high values (hot). This historical
CPU concurrency display allows one to see the variability in CPU concurrency across a range
of samples rather than just the instantaneous distribution from the CPU concurrency display.

As new CPU statistics are received, the CPU activity and CPU concurrency bargraphs
are updated, and the historical CPU concurrency matrix is shifted right with the last CPU
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concurrency vector added on the left.® Control of the animation rate is important if one
wishes to gain performance perspectives at different levels of granularity. It would be easy
to increase the real-time update interval, but the 1.8 second update interval is currently the
minimum update period. The hardware data processor is unable to read the 64K counter values,
reduce them to the 32 CPU activity statistics, and then transmit the statistics to the remote
visualization station in less time. Because only a few data values are being displayed, sustained
update rates could be greater if the CPU statistics were received that fast. We have measured
display update rates of eight updates per second in a system where pre-recorded, reduced
statistics were read from a file and transmitted to the visualization station for display. Thus,
the reading of the counters and the data reduction are the bottlenecks. The counter access
performance is limited by the bandwidth of the hardware monitor interface. The measured
overhead to read the 64K counters is roughly 0.5 seconds. Thus, slightly less than 1.3 seconds
is needed to generate the CPU activity statistics. Only a faster processor will reduce this time
further.9

The second Cedar hardware visualization experiment focused on observing Cedar network
performance behavior. Because the overall performance of a multiprocessor system with a hi-
erarchical memory organization, such as Cedar, critically depends on minimizing contention to
components (buses, networks, memory modules) within the memory system [68, 64, 67}, un-
derstanding where contention occurs during an execution will provide insight into how memory
referencing behavior affects memory system operation. Via the Cedar visibility connectors, we
could monitor network busy signals generated at each processor-network interface. These reflect
contention on network access paths to the shared global memory. We configured the hardware
monitor to count the number of network busy signals generated at each global interface board
(Gib) — the hardware realization of the processor-network interface. Five hundred, one mil-
lisecond samples were collected for each processor, representing network behavior during a half
second interval.” Again, the samples were read by the hardware data processor but this time

all data reduction was done at the remote visualization station.

S Unfortunately, much of the visualisation dynamics cannot be seen in Figure 6.4. This is also true of Figure

6.5.
$We currently are using Motorola 68020-based Sun 3/160 as the hardware data processor.
"Because of hardware monitor constraints, only four processors in one cluster could be monitored.
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The visualization display in Figure 6.5 shows network busy samples over a half second in-
terval for four processors in a single Cedar cluster; the data are taken from a study of vector
prefetch performance [63]).% The Maximum Network Busy display shows the maximum percent-
age of time, in a one millisecond interval, that a processor found the network busy; one hundred
percent busy is at the top. This metric is easily computed, and the display provides a quick
indication of any serious contention. The Average Network Busy display shows the average
level of network busy for a processor during the half second interval. This metric is important
for observing the balance of network contention, or more appropriately its inverse, network
access. In both the Maximum and Average Network Busy displays, the increase in the metric
from Gib 0 to Gib 3 reflects the fixed network contention resolution scheme used in Cedar. Gib
0 of a cluster has highest priority (less likely to observe contention), and Gib 3 has the lowest
priority (most like to observe contention). Whereas the Maximum and Average Network Busy
displays show summary views, the Network Busy graphs detail every network busy state for
each processor in the interval. The first millisecond period is shown on the left and the last on
the right; the entire range represents the half second time interval. Time-based network busy
behavior can be observed clearly from these graphs and can be compared across processors.

Finally, the Network Busy Intervals Kiviat display shows four ranges of network busy
activity for each processor. Each quadrant of the display represents a processor, and each line
within a quadrant represents a different range of relative network activity: 0 to 25 percent
busy, 26 to 50 percent busy, 51 to 75 percent busy, and 76 to 100 percent busy. The number
of samples in each range determines a point on each axis. The points are connected by line
segments, forming a sixteen-sided polygon. Within each quadrant, the shape can provide a
quick visual interpretation of the distribution of network busy activity. Symmetry in the Kiviat
diagram signifies a balanced and equal distribution of network busy activity across processors.
Moreover, as the display updates occur, rotational changes in the diagram reflect increases
(clockwise rotation) or decreases (counter clockwise rotation) in network activity. |

As with the CPU activity displays, the network busy displays are animated, changing ap-
proximately once a second. With successive animation frames, one can quickly observe quanti-

tative differences between samples through qualitative changes in the Fetwork Busy waveforms.

$The Cedar global network interface hardware supports vector prefetch operations from the cluster processors
and maintains buffers for prefetched vector data.
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In the vector prefetch study, we observed differences in vector block size and network access in-
tensity between display updates. However, one second is the fastest rate the sample values can
be read, transmitted to the visualization station, processed to produce the maximum, interval,
and average metrics, and displayed. Because the samples reflect only a half second interval,
some data is lost between successive display updates. Perhaps a more appropriate time interval
is one second, but a larger number of samples (1000 per processor) would have to be captured to
maintain the same level of aetaﬂ, further increasing the overhead. Although the total number
of samples is less than in the CPU activity case, a slower interface is used to acquire the network
busy signals plus a larger amount data is communicated to the remote visualization station.
Thus, the bottlenecks to faster animation rates in the network busy case are the network busy
data access and the remote cormmunication; the performance statistics processing was done on
significantly less data (2000 versus 64K) and by a ten times faster processor.?

Both Cedar performance visualization tools demonstrate real-time visualization environ-
ments. Although the display types were moderately simple, they effectively convey the hardware-
level performance data. A textual presentation of the data certainly cannot be interpreted as
quickly. More importantly, the tools emphasize the need to consider all aspects of the monitor-
ing, analysis, and display system used for real-time visualization. As our need for more detail
performance data and faster animation increases, we must identify and remove bottlenecks

present along the entire monitor-analyze-display path.

8.2.2 System Performance Visualization

In general, system behavior is transitory, depending on the current workload and state of the
system resources. Although state-based views are needed to understand how resources are
presently assigned and being used, summary views that embody historical resource behavior
also are important for understanding the system dynamics. A static or average performance
state analysis may mask transients. Thus, time-varying measurements, at different levels of
detail, are required to determine both system performance trends and transitions. The display
of historical data must simultaneously include gross behavior and permit detailed operation to

be investigated.

*We used a Sun SparcStation for the performance visualisation station.
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| Color/Graphic | Description |

blue user computation

idle

OS activity for message processing
system code

message transmission

7 horizontal lines

Table 8.1: Encoding of Color Graphics for iPSC/2 Event Graph Display

An event graph display has been developed by Rudolph [165] for studying operating sys-
tem events relating to message communication in the Intel iPSC/2 multiprocessor [10, 161).1°
We discuss it here as an excellent example of a performance visualization environment that
can effectively display a large volume of performance data but that also provides support for
investigations of detailed behavior.

The interactive event graph tool simultaneously shows the system state of each iPSC/2
processing node over a user-controlled time period. Each state is graphically encoded, revealing
patterns of system activity on each node. The activities displayed include application execution,
operating system actions, message related actions, and idle time. The encoding of color graphics
is given in Table 6.1. Further graphic highlighting allows individual communication events (send
and receive) to be observed and matched between nodes.

Figure 6.6 shows the highest level view the tool provides of system activity during an
application’s execution on the iPSC/2.1! The display shows a window on the two-dimensional
space of processors and time — here the entire trace of system events is seen. Because the
number of events can be larger than the display resolution, the tool divides the trace into
equal-sized blocks of time, and for each block, calculates the system activity that dominates
the corresponding time interval. The extent to which an activity dominates its block is indicated
by the intensity of the graphic pattern. Lighter shades of blue indicate smaller percentages of
time devoted to application code. Similarly, lighter shades of red and green indicate smaller
ratios of message or system code activity. However, for idle time, darker shades of gray indica‘e

smaller ratios of idle time. This is because idle time is a negative quantity — less idle time

108¢ce Chapter 2 for a description of the iPSC/2 and the operating system instrumentation.
11The application is a Simplex linear optimisation algorithm {187, 55]. The event displays shown have been
reproduced from [161}.
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means more activity. At this time scale, we see that application processing dominates the
execution, but there are areas of other system activity that we might want to observe in more
detail.

The Up and Down buttons control scrolling across processors — in this case, system activity
from all eight processors participating in the computation is shown. Similarly, the Left and
Right buttons control scrolling forward and backward in time. The Expand and Zoom menus
at the upper left of the display window control the fraction of the trace that will fill the
display. Figure 6.7 is the result of a display expansion, showing roughly 0.5 seconds of the event
trace. In this figure, the dark bands of processor activity are clearly delimited by intervals of
communication and idle time. We have chosen the A11 Events selection (not shown) from the
Show Events menu to display message communication events. Message sends are marked by
an s and message receives by an r. Clicking the mouse on any event marker displays additional
data about that event. In this case, we clicked on a send marker in the node 7 graph and
were presented a textual window showing the corresponding message size, receiving node, and
message transmission times.

Because idle time spent waiting for messages has an obvious negative impact on parallel
program performance, we can expand the trace display further to focus on system behavior in
regions where high idle times occur. In Figure 6.8, we have expanded the display by a factor of
100 to show only five milliseconds of the program’s total execution. The horizontal lines denote
intervals when the iPSC/2’s autonomous routing hardware was transmitting a message. The
selected message communication pair delineates one such region and clearly shows the receiver
on node 5 waiting for the message transmission by node 4.

The event graph tool used to show iPSC/2 system behavior is a simple but powerful display
mechanism for performance visualization of large system event traces. The ability to focus on
regions of interest to see more detail permits performance investigation, whereas the global,
summary views convey aggregate system activity, As with the Xgantt tool, however, only a
single display type is used by the tool. Ideally, the performance analyst should be allowed to
graphically present system performance data in a variety of ways, depending on preference and

need. In §6.3 we return to this issue.
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Figure 6.6: System Event Trace Timeline (Entire Trace)
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6.2.3 Program Event Visualization

Views of application performance data might be divided between program event views and
algorithm views. In a program event view, the performance data represent the occurrence of
events associated with the execution of program statements, such as routine entry and exit
events. On the other hand, an algorithm view reflects the operation and performance of the
algorithms used in a program. Although the display of algorithm views may provide a more
logical and meaningful representation of the performance of an application, program event views
are necessary to associate performance behavior with the actual code executed. This section
describes a tool for program event visualization of multitasking applications run on the Cedar
system. The section following gives an example of algorithm visualization.

Program event views are represented either as summary statistics, as produced by profiling
tools [28, 72, 73] or event traces. Summary statistics, while reporting the distribution of program
execution time, do not permit a dynamic characterization of program flow or the interaction of
program components. Event traces capture this behavior, and a tool to visualize program events
should provide a time-based display of event occurrence. However, tools to study an event trace
typically are specialized to particular types of event data. Usually, trace analyses and displays
are developed around some event interpretation model [180]. Although this approach will give
specific information about particular events and their occurrence, it is not particularly easy to
extend; new events often require new analysis and display techniques.

The program event visualization tool discussed below emphasizes a major theme in per-
formance visualization implementation — advances in the development of performance visu-
alization environments demand advances in the technology to build performance visualization
environments. To rapidly prototype performance visualization tools, we must first design and
build reusable components that provide standard operation for common functions {123]. In §6.3
we argue for an extensible, general purpose performance visualization architecture that can be
applied in many performance data scenarios. Here, we give an example using trace-based pro-
gram event data.

In the first phases of application performance measurement, a user often is interested in such
performance information as the time a certain event occurs in the computation, the relative

sequence of events on different execution threads, or the state of each task. In this case, the user
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Trace Control | This component is responsible for reading the trace, positioning
within the trace, and searching for particular events.

Event Control | This component provides event definition services, It allows the user
to associate names and graphic icons with events. The mapping of
events to graphic icons can be controlled interactively, as can the
visibility of events in a task trace display.

"Task Display This component opens viewports onto the trace and allows events for
tasks assigned to the viewports to be displayed in a Gantt chart-style
form.

 Event Display This component controls how events are shown when “clicked” on in
the task display. A standard event display is provided but the user
can override this default by specifying event display modules that
will be dynamically linked with JED at run-time.

Table 6.2: JED Functions

might only desire to observe the sequence of trace events, each event’s type, its time and place of
occurrence, and other event-specific data. A simple presentation of individual events, together
with basic support for event query, constitutes a rudimentary program event visualization tool
with a reusable foundation for further extension and customization.

In this framework, we developed a generic program event visualization tool call JED [121]
for displaying program events from multitasked Cedar application programs.!? JED provides
support for event trace management, event trace display, and event query, but allows user-
definable event specification and user-customizable graphical event presentation. I"lnthermo’re,
JED allows the user to extend analysis and display functionality. JED contains four separate
functions as described in Table 6.2.

Figure 6.9 shows a sample JED session. The top-level interface to JED (the jed window in
Figure 6.9) allows the user to specify the trace file locations and the events that appear in the
task traces. The event control component of JED maintains information about the events in the
traces and how they are to be shown in the displays. A definition file is provided at initialization
for labeling events and indicating how data for events should be displayed. Additionally, a user-
supplied image map associates events with graphic event icons. Interactive control of event

displays includes changing event graphics and visibility. The Event Control window shows

12JED stands for (J)ust an (E)vent (D)isplay tool.
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the current event specifications, including icon assignment and visibility control. Clicking on
an event icon in the Event Control window raises the Image Map window (unlabeled in Figure
6.9), allowing the user to change event graphics. Doing so will have an immediate effect in the
event trace displays.

To see the trace for a task in JED, the user must first open a Task Group window; a task
group is essentially a viewport (time window) into the trace files for all tasks assigned to the
task group. A task display is a region of the task group window created when a task is assigned
to a task group. The Task Group O window in Figure 6.9 shows task displays for tasks 1 and 2.
The graphics part of the displays shows events for the each task that occur in the time region
defined by the task group. Events are shown by their graphic icons. Clicking on an event icon
in a task display opens an Event Display window. This provides additional information about
the selected event. In the case of our Cedar implementation, the events for each processor of
a cluster are shown separately in the task display. Lines are drawn to show sequential and
concurrent activity; vertical lines indicates concurrency transitions. The vertical alignment of
the task displays allows inter-task events to be correlated in time.

The basic functionality of JED can be statically customized through an event specification
file, and dynamically, through the event and task display controls. In this manner, JED provides
a reusable platform for program event visualization of different Cedar application programs.!3
However, JED also supports functional extensions by allowing the user to dynamically link
modules that will graphically display event data, overriding the default textual representation.

JED has much in common with the BBN Gist tool [15]. However, unlike Gist, JED provides
a simple environment foundation for program event visualization that can be customized and
extended by the user. Future performance visualization systems will be built from reusable
performance data analysis and display components, and will provide facilities for customization
and extension. JED is a example of such tool. In §6.4 we describe efforts in the development

of a general purpose performance visualization environment.

13JED has been used in the study of circuit simulation codes [65] and in tests of the Cedar Fortran run-time
library {78, 77, 87).
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6.2.3.1 Algorithm Performance Visualisation

An application’s execution (and indirectly its performance) is a result of the problem being
solved and the algorithms used to solve it. Observing the operational behavior of an application
in terms of the computational properties of its algorithms provides insight on the efficiency
and correctness of the solution approach [25]. Indirectly it can provide insights to improving
application performance. '

A general tool to visualize application performance is necessarily incomplete, given the infi-
nite number of problem areas and algorithms. However, viewing certain key algorithm compo-
nents, mostly related to the data structures used, can sometimes provide a clear understanding
of algorithm and application operation. The Balsa-II algorithm animation system [26] is an
application domain-independent algorithm visualization environment. It has been effectively
applied to the display of algorithms such as sorting and searching. In scientific applications,
numerical algorithms often use vector and matrix data structures to maintain execution state.
Displaying vector and matrix operations can provide insight into the performance of these codes.
Below we discuss matrix visualization as a techrique for application performance visualization.

Matrix visualization has been applied in two general ways to the study of numerical al-
gorithms. The MAP tool (23] and its successor SHMAP [43] were developed to understand
the access patterns of parallel matrix algorithms. These tools display the matrices used in an
algorithm and color their elements to represent the history of element access. The display is
animated, allowing the user to observe the pattern of access for each matrix as the algorithm
proceeds. The tools are useful not only for verifying algorithm operation but in seeing how
the temporal locality of matrix references change. They have been applied in the development
of block structured numerical algorithms for hierarchical memory systems, where knowledge
of the memory address assignment of matrices and the memory management of the different
memory levels is crucial [43].

| Tuchman and Berry have developed the MatVu tool to look specifically at the values of
matrices used in numerical algorithms [193]. This tool has proved useful in understanding
the behavior of linear algebra problems, particularly the chaotic behavior of some numerical
approaches. The tool has led to new algorithms with substantial performance improvements

for certain applications [20].
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Because matrix visualization can be applied to other performance levels as well (see §6.4.2),
we have developed a general purpose matrix visualization tool for X windows call Xmatrix.
Using Xmatrix, the performance analyst can control all aspects of the matrix display by inter-
actively loading data files, choosing display attributes (e.g., color maps, labels), and selecting
matrix regions for separate display. Xmatrix also supports the animation of multiple matrix
data sets. Figure 6.10 shows Xmatrix being used to view the convergence behavior of a one-
sided Jacobi algorithm used in singular value decomposition [193).1* Four frames from the
animation are shown, labeled by the iteration count of the algorithm. The convergence of the
matrix to block diagonal form is clearly apparent.

Similar to the Xgantt and JED tools discussed earlier, Xmatrix is a user-customizable
performance visualization tool. As with the Xgantt tool, Xmatrix can be used to display a
variety of performance data from different performance levels. However, each of these tools
limits the number of fundamental display types. Moreover, the format of the performance
data is restricted, limiting the ability to combine different performance views in a common
visualization framework. It is our belief that general performance visualization tools can be
built that are not domain restrictive, but, to the degree possible, separate view semantics from
display, letting the user construct views from the available performance data and match them
to displays that are most meaningful to the type of performance data being visualized. The
following section describes a general performance visualization environment architecture that

supports this goal.

6.3 Performance Visualization Environment Architecture

For many performance visualization applications, there are common issues one must address
when designing a visualization environment. Problems of filtering and analysis can be found in
all performance visualization systems, although the implementations are typically performance
data dependent. Also, many of the displays may be similar across systems. Although the dis-
play types are common, often the display code is re-implemented with each new visualization

tool. The reason is that every visualization environment must solve another shared problem:

4 The details of the algorithm can be found in [193). Figure 6.10 has been reproduced with permission from
A. Tuchman and M. Berry,
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binding the performance data semantics, as represented by the filtered and analyzed perfor-
mance database, to the data display. The tight binding that occurs in the implementation
of most performance visualization environments restricts their range of application and limits
their reuse.

There is strong motivation for designing any performance visualization system with a gen-
eral purpose performance visualization environment architecture. Logical interfaces between
components of the environment can be defined which, in turn, promotes modular development. |
Organizational and functional standards can be adopted in the development of component mod-
ules to pr.mnote module reuse [123]. Finally, existing environments may be more easily adapted
to new performance visualization applications.

From another viewpoint, the development of a general purpose performance visualization
infrastructure based on the environment architecture would support the rapid prototyping of
new visualization tools [159]. Reuse and ease of customization would be strongly supported
by the infrastructure. New environment prototypes could use existing filtering, analysis, and
display modules, as well as the general organizational framework, in their construction.

A general performance visualization environment architecture is shown in Figure 6.11. The
performance data conceptually forms a database from which performance data views are con-
structed. A performance data view should be thought of as an abstraction of the total per-
formance data.!® A view is generated through any combination of data filtering, reduction,
and analysis. Each view understands the format of the performance database and maintains
an internal view state that is accessible through well-defined mechanisms. In a general per-
formance visualization environment, the performance analyst should be able to choose from
currently defined views and create new views either by changing the parameters of a current
view, combining views, or specifying the functions of a new view.

Display components should be developed in such a way that their implementation is in-
dependent of performance data semantics. Because a display might be used for a variety of
performance data views, embedding data semantics in the display would restrict its domain
of applicability. Rather, a set of resources and methods should be provided by each display.
Display resources are the configuration parameters used to define a display instance; in the

performance visualization environment, the performance analyst can customize the display’s

18This notion is similar to that of a view in database systems [196).
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resources. The display methods control the display’s operation. Each display should also sup-
port standard interface conventions, including user interaction; this promotes ease of use and
rapid construction of new displays. Basing development of performance displays on a common
graphics and windowing system, such as X Windows [168], will enhance portability.

The ability to support multiple performance views and displays in a general performance
visualization environment reflects our belief that the performance analyst should be allowed to
explore interesting performance visualizations; i.e., view/display mappings. The environment
architecture should provide support for dynamically selecting a performance data view and con-
necting it with a display to create what we will term a performance visualizer. The performance
visualizer, via access to the internal view state, produces a view-specific visualization using the
selected performance display; effectively, it provides the semantic binding between view and
display. The ability to dynamically construct performance visualizers allows performance visu-
alizations to be reconfigured based on the performance analyst's current interests.

Integration and flexibility are the twin keys to an effective performance visualization en-
vironment [124, 127]. If the interactions among the environment components are awkward or
inefficient, the performance analyst will seek simpler tools. Similarly, if the environment does
not permit diverse approaches to performance data reduction, analysis, and display, including
addition of new environment components (e.g., data filters and displays), its functional lifetime
will be limited. Given the implications of integration and flexibility, the general performance
visualization environment architecture presented above offers a framework for meeting the fol-

lowing specific environment design goals.

¢ The environment should support multiple analysis levels, including hardware, system

software, and application.

o It should be possible to dynamically configure data analysis and visualization cbmpo-
nents, allowing the performance analyst to change data perspectives during execution.

o The individual analysis and visualization components should be easy to build for many

different application types and system software environments.

e An extension interface should permit addition of new components or modification of

existing components without intimate knowledge of environment infrastructure.
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e The environment should be fast, preferably fast enough to process real-time data.

¢ Finally, the environment should be portable to different systems. Although the mecha-
nisms for performance data capture are inherently system dependent, performance data
reduction (e.g., computation of sliding window averages) and visualization are largely

system independent.

6.4 Performance Visualization Environments: HyperView

We have designed and implemented a prototype performance visualization environment, Hy-
perView, for distributed memory, message passing multiprocessors that follows the architecture
design guidelines discussed above. Our goals for implementing the HyperView environment were
to investigate the application of performance visualization ideas in a practical context. Hyper-
View integrates performance data analysis and visualization in an interactive system that allows
the performance analyst to browse through a trace of system and application execution.

Two generations of the HyperView environment have been built. The first explored the
display of architectural and system activity via a multiplicity of topological displays. Unfortu-
nately, the design of the first HyperView prototype could not easily be extended to the display
of application performance. The second generation HyperView system addressed this issue by
logically decoupling data analysis from display, permitting the performance analyst to explore
interesting performance data at any level by dynamically interconnecting new performance dis-
plays and data analysis. Because the contrast in the two generations of HyperView is important,

both are discussed below.

8.4.1 First Generation

The first HyperView prototype [124] was inspired by Seecube [35], a visualization system for
the NCUBE hypercube [83]. Although many of the displays were borrowed from Seecube, the

performance data and analysis were different. HyperView’s implementation also was based

1$Portions of §6.4 appear in the papers “Visualising Parallel Computer System Performance” in the book
Instrumentation for Future Parallel Computing Systems [124), “An Integrated Performance Data Collection,
Analysis, and Visualisation System” in the Proceedings of the Fourth Conference on Hypercube Concurrent
Computers and Applications [126], and “Integrating Performance Data Collection, Analysis, and Visualisation”
in the book Parallel Computer Systems: Performance Instrumentation and Visualisation [127).
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on the X Window system [168]. This improves the portability of the environment and allows
the data analysis and display components of HyperView to be decoupled — both logically
and physically. This decoupling not only makes the visualization portions independent of
message passing hardware and system software, it also is important for performance — the
data analysis and display components can run on physically distinct (and distributed) machines
with appropriate processing capabilities— and dynamic system reconfiguration — new analysis
actions or displays can be enabled without altering the interface between the components.

HyperView’s organization consisted of two main cooperating modules: state analysis and
visualization. The HyperView state analysis component accepts event traces generated by the
processors of a message passing system. Because the performance data capture is separate
from analysis and visualization, the event traces can be generated from actual program execu-
tion, or via simulation, permitting study of new message passing architectures. HyperView was
initially tested with data obtained from simulation of communication hardware for different
message passing paradigms [75], including store-and-forward message switching, circuit switch-
ing, staged circuit switching, and wormbhole circuit switching. Our experience had shown that
visual comparison of system dynamics quickly revealed differences in communication paradigms.
Thus, an interactive and dynamic visualization system seemed natural in this context.

In a distributed memory parallel system, such as a hypercube, each node must record events
based only on local knowledge; the ahsence of global memory precludes data sharing with the
granularity necessary to dynamically maintain a consistent, global state. Although the simu-
lation event trace contained information to describe complete messaging behavior, the global
state of the system had to be constructed during state analysis. The state information main-
tained by HyperView included individual message tracking in addition to statistics reflecting
the performance of each node and link.

The HyperView visualization component permits simultaneous display of the dynamic sys-
tem state via a variety of differing state views and their associated displays. Each view/display
combination emphasizes certain system aspects (e.g., the network topology, the multiplicity of
partially overlapping paths from a source to a destination node, or queues of waiting messages).

In addition to graphical displays, HyperView provides statistical displays at both macro-

scopic levels (e.g., number of messages transmitted) and microscopic levels (e.g., link utiliza-
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Figure 6.12: Top Level HyperView Window

TRACE DESCRIPTION

Trace File = packet.anti
Total Events = 18030

Total Time = 6929.500000
Total M es = 1120
Total Bytes Sent = 1182009
Max Message Size = 4096

Bytes Sent = 428343

Figure 6.13: HyperView Trace Menu and Trace Description Window

tion). HyperView also permits selective display of message traffic and statistics, permitting the
performance analyst to isolate anomalous behavior for further study.

Because HyperView is a dynamic performance visualization system, much is lost in de-
scription of static, monochrome images. Despite these limitations, we discuss HyperView as
a performance analyst might encounter it, beginning with the top-level user interface window
shown in Figure 6.12. User menus are shown at the top of the window. Pulling down the Trace

menu lists the Description, Execution Control, and Statistics items shown in Figure 6.13.

HYPERVIEW | Trace System Node Link

Pascal
2] Queueing

Figure 6.14: HyperView System Menu
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6.4.1.1 Trace Description

In the Trace Description window (see Figure 6.13), a performance analyst can select, by
clicking the mouse on the Trace File item, a trace file that contains the event information
captured during system execution. A dialogue box allows the user to enter the trace file name.
After reading the trace file, HyperView computes the trace summary statistics shown in the
Trace Description window. During state analysis, HyperView computes the the time varying
global state of the message passing system, including number of events, messages and bytes
transmitted. Throughout the visualization session, these statistics can be viewed by selecting

the Statistics item in the Trace Description menu; see the Trace Statistics window in

Figure 6.13.

6.4.1.2 Execution Control

The Execution Control window (not shown) controls updates to the graphical and statistical
displays. During state analysis, HyperView identifies a series of globally consistent display
points. During updates of the trace display, HyperView moves between these display points.
The current point can be marked by a position in time and/or location in the event trace.
When a new time or event is selected, HyperView moves to the next consistent system state
and updates the currently open displays. Because the event trace is processed a posteriors, the
performance analyst can move both forward and backward in time.

A frame in HyperView corresponds to a displayed system state. The user can change three
aspects of frame display — mode, rate, and state differential. Frames can be displayed either in
single-step mode or continuously. In single-step mode the user must explicitly request display
of the next frame. Conversely, continuous mode automatically advances to the next frame
specified by the frame rate and differential controls.

Via a frame rate control, the performance analyst can adjust the interval between display of
new frames. The third aspect of frame control is the change in system state, in events or time,
between successive, displayed frames. This state difference is the minimum of the specified
number of events-per-frame and the number of clock-ticks-per-frame. By adjusting the display
mode, frame rate, and state differential, the performance analyst can study gross behavior,

examining a small subset of all states, or examine the trace event by event.
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6.4.1.3 Global Statistics

The Statistics window shows the global system state, both cumulative message statistics
and current node and link activity. Because the performance analyst can browse the trace,
cumulative statistics are not monotonic — they reflect performance data relative to the current

trace state.

6.4.1.4 System Displays

Figure 6.14 lists the dynamic system displays provided by HyperView. The CUBE, PASCAL,
FFT, and QUEUE displays are shown in Figure 6.15. Each display gives a different represen-
tation of the distributed memory system (in this case the system has a hypercube topology)
that shows current system activity as highlighted nodes and links. Each provides a differ-
ent insight; collectively they convey system dynamics. For example, the CUBE display is the
“natural” multi-dimensional representation of a hypercube. In contrast, the FFT display em-
phasizes message routing paths. The GRAY CODE display (not shown) emphasizes sub-cube
communication — communication links connecting the two D — 1-dimensional subcubes of a
D-dimensional hypercube appear as parallel lines [35). The PASCAL display reflects the loga-
rithmic combining (e.g., global minimization) when logical trees are embedded in the hypercube
topology. Finally, the QUEUEF display shows the instantaneous state of the message queues
at each node. Each message awaiting transmission is shown as a small box. Communication
transients appear as bursts of enqueued messages. Similarly, the effects of differing communi-
cation paradigms (e.g., store-and-forward message switching and circuit switching) appear as
differences in mean queue size.

In all displays, colors emphasize activity — links change color when messages are sent, nodes
flash when processing messages. Moreover, each topological display window supports pull-down
menus for inquiries about nodes, links, messages, and circuits. Unwanted detail can be elided
via the Hode and Link menus. For example, display of any combination of transﬁtitting, active,
or receiving nodes and links can be disabled. Figure 6.16 shows the Link menu; the Node menu
is similar. A11, Active and Transmitting select the displayed link states. In Figure 6.16, only

the active links (i.e. links currently held for message communication) are shown.
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Figure 6.15: HyperView Topology Displays
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CUBE Node Link Message Circuit

Figure 6.17: HyperView Circuit Activity Window
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6.4.1.5 Message and Circuit Tracking

In addition to elision of unwanted node and link details, HyperView supports message tracking
and circuit tracking.!” After identifying source and destination nodes, only those messages in
transit between the specified nodes are displayed. Figure 6.17 illustrates message and circuit
tracking in a system with circuit switched communication. In the figure, nodes zero and twenty
have been selected for circuit tracking and message tracking, respectively. Node zero is trans-
mitting a message to node fifteen along the path shown. The intermediate nodes on the path
are not active (they are shown as white) because only circuit connections have been established
there. Concurrently, node zero is sending a message to node twenty, and node twenty is sending
a message to node twenty-nine.
Message and circuit tracking have proven invaluable when comparing communication paradigms.

By eliding extraneous detail, the dynamics of circuit establishment in both fixed and adaptive
routing paradigms can be easily compared.

6.4.1.6 Limitations

Although the first generation HyperView system proved insightful for understanding the be-
havior and performance of different simulated message communication paradigms, its use in
studying real application performance on the Intel iPSC/2 hypercube was less rewarding. The
design did not allow the easy extension of performance displays and the displays themselves
were strictly defined to present a certain type of performance data. We regard the ability to
let the performance analyst choose data and its display as of major importance to the gen-
eral acceptance of a performance visualization system. This capability was lacking in the first

generation HyperView design.

6.4.2 Second Generation

A performance visualization environment must be extensible, permitting addition of new display
formats and performance metrics, and flexible, permitting use with a variety of systems and

applications. The environment must be easy to use and permit diverse approaches to visualizing

17The choice and semantics depend on the underlying hardware communication paradigm.
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performance data. The second generation HyperView system [127] sought to overcome the

problems of extensibility and flexibility in the earlier design.

6.4.2.1 Infrastructure Design

The main principle followed in the second generation HyperView design was to logically separate
the performance data semantics from the displays. Given the diversity of performance data
and analysis, a variety of performance displays are required to display the dynamics of system
performance. We purposely implemented a variety of generic displays without any embedded
data interpretation. In addition to these displays, the environment includes a set of data filters
that process the event data input; although the semantics of each filter’s internal state differ,
these semantics need not be known by the display tools. By isolating semantic issues, different
filter data can be displayed in multiple ways using different standard views. Via an environment
control, the binding of data filter and display can be changed dynamically, allowing the user to
select the filters and display formats best suited to his or her needs.

Thus, the HyperView data analysis and visualization system contains a user interface, an
event preprocessor, a set of generic data analysis filters, a set of filter-display interfaces called
strainers, and a set of displays. The user interface allows the performance analyst to configure
and manage the filters, strainers and displays. Via this interface, the user can change the at-
tributes of performance views and experiment with different display combinations. The event
preprocessor converts a trace event stream from a performance experiment into a standard
format for use by the event filters. The event filters accept the trace events and maintain an
internal performance state reflective of the filter type. The HyperView prototype has been con-
figured to process traces from operating system and application performance instrumentation
on the Intel iPSC/2 [165, 166]. As such, the filters currently include

¢ message counts and message volume, selected by message type, message size, and source

and destination node,
e processor state, including utilization and context switches, and

e program state, including current procedure and execution profile.

Each filter has an associated set of event strainers that, via access to the internal filter state,

create a view-specific data representation.
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The environment defines several interface standards, allowing addition of new filters, strain-
ers and displays. These include standards for module initialization, termination and user cus-
tomization. The builder of a standard module (i.e., filter, strainer, or display) need only meet
these interface standards. The environment intrastructure then provides intermodule commu-
nication. This design promotes extensibility and design flexibility.

The following describes the performance displays constructed for the second generation
HyperView system. Examples are then given of HyperView application.

6.4.2.2 Performance Displays

The diversity of the performance data demands an equally rich set of performance displays.
Although the most useful set of displays can be determined only from experience, we constructed
a prototype set of displays using the widgets of the X window system [168]. The displays include

o dials

e bar charts

e LEDs

o Kiviat diagrams ‘

o matrix views

s X.Y plots

e contour plots

e gantt charts

e strip charts, and a

¢ general purpose graph display.

Each display is configurable, via the environment control and the X window manager, and is
capable of displaying data of various types.!® In addition, the portability provided by X permits
the display environment to execute on a wide variety of vendor workstations.

Three examples illustrate our approach to display development. First, we consider an LED
display that can represent a scalar with a finite range of assumable values; see Figure 6.18a.1?
The display includes an single method, used to set the scalar value, and four display resources,
range, levels, markers, and interval. The range resource defines the range of displayable values.

Wifhin this range, the levels resource controls the number of display levels and the mapping to

13Several of the displays were used in the performance visualisation of Cedar hardware operation in Figures

6.4 and 6.5.
1% Conceptually, an LED widget provides a bar chart with user definable discretisation of display values.
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a level (i.e., what values within the display range are mapped to each level). For the current
display value, the display will enable the level indicators, either with bitmaps or colors, from the
minimum value up to, and including, the level for current display value. The markers resource
defines the bitmaps or colors associated with each display level. Finally, the interval resources
specifies the number of display updates over which a maximum value, a “high water mark,”
should be shown. Figure 6.18 shows sixteen LED displays, each with thirty levels.

Our second example is a general matrix display that can be used to show one- and two-
dimensional array data.2? Widget resources specify the number of matrix rows and columns,
the range of expected values expected, and the mapping of values to bitmaps or colors. The
single display update method accepts a pointer to an array of display values. In the display,
each matrix cell corresponds to a particular value in the array. Its representation depends on
the value’s position within the range of values and the bitmap or color corresponding to that
position. Figure 6.18b shows a twenty row matrix with twenty columns; see Figure 6.21 for
matrix displays of actual performance data.

Finally, the graph display can draw an input graph (representing nodes and arcs in a virtual
coordinate space) within the dimensions of the display window. Resources specify node shapes,
labels, and connectivity. Via the graph display methods, nodes can be bitmap or color filled,
and links can be flashed or color coded. Finally, mouse clicks on nodes or links are reported
to the application using the widget.?! The generality of the graph display permits many uses,
including display of procedure call graphs and communication traffic. Figure 6.18c shows a
Pascal triangle representation of a 32-node hypercube topology. The colors of nodes and links
might be used to display node and link utilization.

6.4.2.3 HyperView Examples

As example of HyperView’s ability to flexibly present perfon;xance data using a variety of
displays, the following shows its application to performance visualization of trace data from
a parallel implementation of a Simplex linear optimization algorithm (187, 55]. Because the
HyperView performance visualization environment and its display widgets are designed to show

dynamic performance, again much is lost in the description of static, monochrome images.

20The matrix display widget was the main component in the implementation of Xmatrix.
31 Most displays provide some form of callback functionality.
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Figure 6.18: Performance Data Displays
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Figure 6.19: Visualization Environment Control

The top-level user interface, the Visual window, is shown in Figure 6.19. The command
buttons in the Visual window permit the performance analyst to control the environment
and create new display views. The trace description and control windows shown in Figure
6.19 are created via a pulldown menu from the Trace button. In the Description window, a
performance analyst can select a trace file that contains the event information captured by the
compiler and operating system instrumentation. '

As the name suggests, the Control window allows the performance analyst to control the
updates to the displays. It has the same basic functionality as in the first generation HyperView
implementation. The current time and current event displays show the current trace location
and are updated automatically. Again, the user can change the mode and state differential
aspects of frame display. Frames can be displayed either in single-step mode or continuous
mode as before.

As discussed in §6.4.2.1 and §6.4.2.2, the visualization environment includes a set of data
analysis filters and a set of displays. Figure 6.20 shows the configuration interface for connecting
filters and displays. The View Options window is created via the Create View button in Figure
6.19. In turn, the Display table and Filter table windows are created via the Filter Type
and Display Type buttons. In Figure 6.20, the user has previously selected a filter that counts

the volume and number of messages transmitted among processors, and has opted to display
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Figure 6.20: Visualization Environment Configuration

message counts as a source-destination processor matrix. Finally, the options particular to this
display choice are shown in the View Options window, including the defaults. Because display
views are dynamically bound to data filters, the user can add new display views at any time
and in arbitrary combinations.

Figure 6.21 shows some of the currently operational display views. The event trace file
used to generate these views was obtained via compiler and operating system instrumentation
[166] on an eight node Intel iPSC/2, and reflects the computation and communication behavior
of a Simplex linear optimization code [187). The Time Stamp window shows the effects of
local processor clocks. The CatxtSw:All PEs Interval window displays the number of state
changes by each node processor in a sliding window of time. Although not clearly shown in
Figure 6.21, the history dial display leaves shadows of the dial pointer, showing the rate of
change in the displayed variable. The Interval User window shows a plot of the amount
of computation time spent in user mode averaged over a sliding time interval. Although the
computation is well balanced, the disparity in processor computation times for an interval is
evident. Time spent in other system states can also be displayed. The current state of each
processor (idle, user computation, system state, or message transmission) is shown in the PE
Status window using a one-dimensional matrix (vector) display. A Kiviat display is used to
show the percentage of time each node processor is busy in a sliding interval.

The displays in the upper left of Figure 6.21 show communication traffic. The message count

and volume bar charts show the fraction of message counts and volume sent by each processor.
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The two-dimensional matrix displays of message count and volume reflect the total number
of messages and volume of data, respectively, sent between each source (row) and destination
(column) processor; the ninth row and column denote communication traffic to and from the
host processor. Notice that the distribution of message sizes is bimodal; the diagonal pattern
in message counts display is much less pronounced in the message volume display. Why? In
each cycle of the simplex algorithm, the processor collectively determine a global minimum via
logarithmic condensation [187], this generates many small messages — the diagonal pattern
seen in the message counts matrix display. This minimization is followed by the broadcast of
a row or column of the optimization constraint matrix. These row broadcasts constitute most
of the communication data volume but only a small fraction of the total message count. The
Message Bins Sxrc:0 window gives a vector display of message size distribution; as just noted,
most messages are small. Finally, the average message load display at the bottom of Figure
6.21 shows the sliding window average of the network communication traffic; in the display, the
repeated cycles of communication traffic caused by minimization and broadcast are evident.
The display views and options of Figure 6.21 are but a subset of those possible. Each display

has many options and can be bound to many data filters; this permits diverse display idioms.

6.5 Comments

The quintessential theme of this thesis is that the growing complexity of computer systems de-
mands advances in performance observability. In this chapter, we have shown several examples
how performance visualization techniques and tools can be applied to improve performance
observabﬂity. In addition, we have proposed a performance visualization environment architec-
ture for the development of new tools with common design principles and have demonstrated
the architecture ideas in two prototype environments. However, equally important as the tools
is their pervasive application to performance evaluation problems. We comment on two points
in this regard: expense and acceptance.

First, if the system used to visualize performance data is more expensive than the system
being measured, the application of performance visualization as a general purpose tool will
be lost. In contrast, high-performance graphics equipment is often required for scientific visu-

alization applications where complex graphics rendering and transformation algorithms must
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be performed. Whereas computational scientists are willing to pay a premium for scientific
visualization tools because these tools are so fundamental to their work, the cost-effectiveness
of performance visualization tools is less certain. Although the cost advantages of achieving
better performance on a computer system are clear, especially for expensive supercomputer
systems, and, in some cases, improved performance has a fundamental effect on the ability
to do science [157], the practical choice of spending some fraction of the cost of the machine
on performance visualization resources versus additional computer system options most often
would lean to the latter — increasing capacity, such as adding more processors to a multipro-
cessor system, has more appeal than merely improving efficiency at the same cost. The fallacy
that performance problems can necessarily be solved by increasing computer system resources
is becoming apparent [157), particularly for parallel processing systems [80], but the issue of
expense for performance visualization tools, and other tools for performance observability for
that matter, is still important in their general availability. ,

The second comment is that the acceptance of performance visualization tools depends on
how much they improve a performance analyst’s productivity. Not only must the tools be
regarded as offering better capabilities for performance investigation, they must be able to be
applied in a time-effective manner. We have shown examples of how performance visualization
can improve performance insight and can assist the performance analyst in interrogating the
performance data. However, performance analysis is an experimental and iterative process that
is part of a larger design-implement-evaluate-optimize cycle. Achieving a high-performance
system or application in a timely manner is the end goal of this development cycle, and the
performance analyst will choose his or her tools accordingly. Performance visualization tools
should be easy to learn and to apply or else the user might opt for simpler approaches, even at
the loss of reduced capabilities.
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Chapter 7

Performance Observability Study

The purpose of computing is insight, not numbers.

— Richard Hamming

The underlying theme of the thesis and the motivation for the development of integrated perfor-
mance environments is that improvements in performance observability are worthwhile. Intu-
itively, many would agree that greater insight into performance behavior has a beneficial impact
on better performance evaluation and optimization. In practice, however, the lack of available
detailed performance measurement systems, especially on high-performance machines, makes
it difficult to find actual evidence to this effect. Moreover, this is fundamentally a qualitative
judgement that often depends on the user’s level of sophistication and perspective.

This chapter describes results from a study of performance observability we performed on
the Cray X-MP and Cray 2 systems [122]. This work involved several aspects of performance
observability discussed in the previous chapters. The goal of the study was to investigate
the question of whether additional performance measurement and analysis tools applied in a
real system with full application codes has a significant advantage over the commonly applied
techniques. We use as our criteria the ability to gain greater insight into application performance
behavior and to deliver greater observable performance detail. We do not argue the issue of

whether a quantitative increase in performance observability leads to a qualitative improvement

'Part of the results presented in this chapter appears in the paper “Tracing Application Program Execution
on the Cray X-MP and Cray 2" to be included in the Proceedings of the 1990 Supercomputing Conference (122].
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in the user’s ability to optimize a code’s performance. Rather we conclude that such result would

be a logical consequence of better performance observability methodology and techniques.

7.1 Supercomputer Performance Characterization

The performance of an application is rarely in static equilibrium during execution. For super-
computers this situation is even more acute as, in general, the performauce range is greater
and performance variations among program segments can be more pronounced. The complex-
ity in the performance space surrounding the use and interactions of advanced architectural,
hardware, and software features of supercomputers often implies that minor alterations in ex-
ecution behavior can create large changes in achieved performance. Simply put, application
performance, especially for supercomputers, can be highly variable and depends significantly
oh the dynamic interaction of the code with the high-performance features of the machine.

The problem facing the performance analyst is how to characterize an application’s operation
both in terms of its overall performance and its dynamic execution behavior — what code is
being executed when and how the machine resources are being used. Profiling tools typically
report application code performance in the form of summary statistics showing how execution
time is allocated across program code blocks (72, 73]. Whereas summary performance statistics
directly identify code segments consuming large fractions of total execution time, they do not
provide insight into how the application executes over time nor its dynamic use of machine
resources.

In part, the goal of this chapter is to present techniques for capturing and analyzing dynamic
program execution on supercomputer systems and to show that performance measurements of
execution behavior can provide greater insight than summary statistics. But this conclusion is
not unexpected — other reseaich efforts have reported similar findings [59, 71, 133, 141, 170,
176, 177), although few have been in the context of supercomputer systems. There has been a
reluctance, however, to generally apply techniques to capture dynamic execution state for fear
that the measurement system will corrupt the execution behavior being ohserved, particularly
in the case of high-performance systems. In many cases, this fear is largely unfounded and
simple perturbation models, as described in Chapters 3, 4, and 5, can be applied to recover

true execution performance [113, 128]. To the extent that it does occur, the increased insight
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into applications operation offered by the trace data must be weighed against the perturbations,
and therefore performance inaccuracies, in observed execution behavior.

In the following sections, we describe a trace-based measurement system implemented for the
Cray supercomputers and its use in characterizing the performance dynamics of full application
codes. The Cray supercomputei's provide a practical environment to test the merits of trace-
based performance characterization. The Cray compilers support automatic instrumentation
at the routine level to capture entry and exit events [37, 108]. The existence of a fast-access,
high-resolution system clock allow fine-grained timing measurements. Furthermore, the Cray
X-MP includes a hardware performance monitor which can be sampled to show the run-time
behavior of several hardware metrics.

The remainder of the chapter is organized as follows. In §7.2, we briefly review the standard
profiling tools available on the Cray systems. In §7.3, we describe the tracing system developed
for the Cray X-MP and Cray 2. We introduce the applications codes from the Perfect Bench-
mark set used for testing purposes in §7.4. In §7.5, we compare the profiling results from the
standard tools to those calculated from the application code traces. We use the comparison of
these results as a measure of the reliability of the trace data. In §7.6 we analyze the execution
dynamics of the Perfect codes, primarily FLO52, on the Cray X-MP and Cray 2. The tracing
information obtained from the two systems is also used to make architectural comparisons.

Finally, we present some conclusions and directions for future research.

7.2 Standard Cray Tools

Two profiling tools are commonly used on Cray machines: Flowtrace and Perftrace. The
Flowtrace tool [37] is available on the Cray X-MP, Cray Y-MP, and Cray 2. It purpose is to
measure where time is spent in a program’s execution and to generate a time profile based
on program routines. Unlike sample-based, interrupt-driven profilers [72], Flowtrace calculates
the profile dynamically by inserting profiling code at the beginning and end of each routine;
similar approaches have been used in ELXSI systems [28]. This instrumentation is provided
automatically by the Cray compilers. At the end of the program’s execution, the time profile

is generated and written to a file. The profile includes the number of calls to the routines, the
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time spent in each routine, and the average time per routine call. Information regarding the
routine calling tree is also given.

The Perftrace tool [108] is available only on the Cray X-MP and Cray Y-MP systems.
Perfirace computes all the statistics of Flowtrace in addition to generating a profile of hardware
performance. Similar to the time profile measurement, Perfirace samples the counters of the
hardware performance monitor (HPM) at routine entry and exit to determine the distribution
of hardware performance across the program routines.? Because the HPM allows only one of
four hardware counter groups to be monitored at a time (each group contains eight counters),
Perfirace reports only the profiling statistics for the selected counter group. Multiple runs (up
to four) must be made in the case hardware profiles spanning counter groups are desired. In
addition to the time profile statistics, Perfirace reports the counter value of each hardware
metric accumulated for each routine (e.g., floating point operations or memory references), the
values shown in millions per second (e.g., megaflops® ), the percentage of the hardware metric
total the routine counter values represent, and different derived statistics depending on the
counter group (e.g., memory references per floating point operation).

Both Flowtrace and Perftrace produce summary performance statistics — the statistics
reflect performance totals accumulated for the entire program execution. Summary statistics
reflect dynamic execution but only in an averaged form. The fundamental property of the
Flowtrace and Perftrace statistics, from a performance characterization standpoint, is that they

show only cumulative performance behavior.

7.3 A Cray Tracing Environment

We developed a tracing system for the Cray machines for purposes of capturing a history of
a program’s performance behavior. We were able to leverage the pre-existing Cray compiler
support for Flowtrace and Perfirace to provide automatic instrumentation for tracing measure-
ment. The tracing environment includes a low-level library for trace logging plus libraries that

replace the standard Flowtrace and Perfirace routines.*

3The HPM is available only on the Cray X-MP and Y-MP machines. For further information on the HPM,
see [107].

3Millions of floating point operations per second.

“The compiler instrumentation called these routines.
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ﬂ Routine ] Description l]

tevent(tid, eid) writes a timestamp and the event eid to the trace buffer of

task tid

tdatas(tid, eid, data) writes a timestamp, the event eid, and the integer data item
data to the trace buffer of task tid

tdata(tid, eid, n, ptr) writes a timestamp, the event eid, and the first n integer

data items pointed to by ptr to the trace buffer of the task
tid; tdatas() is faster for a single data item

texit() writes the data currently in the trace buffers for each task to
files task.i where i is the task id

Table 7.1: Cray Tracing Library Routines

7.3.1 Software Event Tracing

The basic function of a software event tracing facility is to record the occurrence of an event
by writing a timestamped event identifier, with optional data, to a trace buffer. In the case
of concurrent event tracing, a buffering scheme is needed that allcws multiple tasks concurrent
access without conflicts. In our tracing facility for the Cray machines, we allocate trace buffers
statically, one for each possible task.

The routines in the Cray tracing library are described in Table 7.1. The event identifier and
optional data are supplied by the user with the high-resolution system clock being retrieved
from the Cray library routine irtc().® Because the high-resolution system clock is a register
shared by every processor in the machine, all tasks see a common global time value. The
side-effect of using the high-resolution cycle counter is that it is real-time and, therefore, timing
measurements are susceptible to multiprogramming influences. Thus, the current tracing library
can generate accurate timing measurements only in dedicated mode.

The routine tezit() is called at the end of program execution to save the trace data in
trace files. If, during execttion, the trace buffers overflow, the current trace data for the task
whose buffer overflowed are written out to the associated trace file before the task’s execution
continues. ‘

Although the tracing routines support the concurrent capture of trace events from multiple

tasks, all the results reported in the paper are from scalar and vector executions. Analysis of

®In Cray’s Fortran compiler, CFT77, irtc( ') is compiled into a single machine instruction.
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~ Cray X-MP Cray 2
Routine (cp = 8.5 ns) (cp = 4.1 ns)
Jtandard Jdtandard

Mean | Variance | Deviation Variance | Deviation
tevent()
clock periods 142 33 6 335 728 27
nanoseconds || 1207 281 51 || 1374 2985 111
tdatas()
clock periods 155 64 8 351 923 30
nanoseconds || 1318 544 68 || 1439 3784 123 ||
tdata()
clock periods || 1102 428 20 2662 12427 111
nanoseconds || 9367 3638 170 || 10914 50951 455

Table 7.2: Cray X-MP and 2 Tracing Execution Time Overheads

concurrent traces is complicated by the inability to efficiently determine the processing resource
where the event was recorded. We currently are pursuing solutions to this problem.

In general, the tracing routines should be implemented to minimize execution time everhead.
The current implementation of the tracing routines is in Fortran to enhance portability between
the Cray machines.® The execution time overheads (mean, variance, and standard deviation) for
the tracing routines on the Cray X-MP and Cray 2 are shown in Table 7.2. The {data() numbers
are for ten data items saved with the event identifier. In all cases, the subroutine invocation
times constitute a significant portion of the total. The execution time overheads of the tracing

routines are used during trace analysis to remove the intrusion due to instrumentation; see §7.5.

7.3.2 TraceFlow and TracePerf

We developed code that captures routine entry and exit events using the tracing library to
record the trace data. The goal was to extend the existing, automatic Flowtrace and Perftrace
instrdxnentaii':n provided by the Cray compilers [37, 108). Our approach replaced the Flowtrace
and Perfirace routines with versions that generate traces.

We refer to the traced Flowtrace routines as the TraceFlow library. The trace Perftrace
routines we refer to as the TracePerf library. The routines in each library are described in

Table 7.3. The principal difference between the TracePerf and TraceFlow libraries is that

®In fact, there are no differences in the tracing library for the Cray X-MP and the Cray 2, and the library
should port without change to the Cray Y-MP system.
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Description I
Routine TraceFlow TracePerf

flowentr()

records the routine entry event in
the trace for the calling task; the
routine identifier is saved

records the routine entry event in
the trace for the calling task; the
routine identifier and HPM coun-
ters are saved

flowexit()

records the routine exit event in
the trace for the calling task

records the routine exit event in
the trace for the calling task; the
HPM counters are saved

flowin(blockid)

records the block entry event in
the trace for the calling task; the
block identifier blockid is saved

records the block entry event in
the trace for the calling task; the
block identifier blockid and HPM
counters are saved

flowout() records the block exit event in the | records the block exit event in the
trace for the calling task trace for the calling task; the HPM
counters are saved
perfon() not defined same as flowin()
perfoff() not defined same as flowout()
flowstop() writes the trace files write the trace files It
flowoff() disable tracing disable tracing f

enable tracing

enable tracing i

“ flowon()

Table 7.3: Cray TraceFlow and TracePerf Routines
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[ f —__TracePerf _ I
Routine || TraceFlow [| Group 0| Group 1 | Group 2| Group 3

flowentr 307 1493 1492 1492 1492
flowexit 204 || 1481 1481 1481 1481 |
flowin IF 230 1495 1495 1497 1496 H
flowout || 204 " 1409 1409 1409 1409
[ perfenable || — 1534 1535 1534 1534 H
{l perfdisable [ — H 1460 1460 1460 1460

Table 7.4: Cray X-MP TraceFlow and TracePerf Execution Time Overheads

TraceFlow
Routine || Minimum || Average

flowentr 720 733.7

flowexit 476 || 491.96
flowin 514 535.12
flowout 480 495.04

Table 7.5: Cray 2 TraceFlow Execution Time Overheads

the TracePerf routines record current HPM counter values.” Note that for both TraceFlow
and TracePerf, the routine name is saved in the trace only for “entry” events. We assume
that entry/exit pairs can be determined from the trace during analysis. Because a frequently
called routine can cause the trace to grow large, the flowoff() and flowon() routines have been
implemented to control when trace data should be saved.

There is a significant practical difference between the overheads produced by the TraceFlow
and TracePerf routines. Table 7.4 gives the mean execution time overheads for calling the
TraceFlowand TracePerfroutines for the Cray X-MP.8 Table 7.5 shows the mean execution time
overheads for TraceFlow on the Cray 2 machine.® Although TracePerf records approximately
five times the amount of data as TraceFlow, the execution time difference is because TracePerf
routines require an I/O operation to retrieve HPM counter values. The Cray UNICOS operating
system [37] maintains HPM counter values only for user execution. In addition to the hardware

performance counters, the HPM keeps a cycle counter. Fortunately, because I/O operations

"We used the hardware performance monitor of the CRAY X-MP/48 running UNICOS at the National Center
for Supercomputing Applications in Urbana, Illinois.

$As in Perftrace, only one group of eight counters out of 32 are accessible during any execution. Thus,
execution time overheads are listed for each of the four groups.

?Because no hardware performance monitor exists on the Cray 2, no TracePerflibrary can be constructed.
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| Counter

Routine 0 11 2]3] 41|5]6]7
flowentr 0fjofo
flowexit 57211410 149|0] 0] 0
flowin 589 {13|]0]|158 |0} 0 Oju
flowout 543 | 12| 0]146|0] 0| O
perfenable 609 (14| 0(159|0]0]0O
perfdisable 5691 13|0]149{0]0}(O H

1 5|6
flowentr 3 0jojo
flowexit 312291289 |0|01}0 38“
flowin  ||3]3]216]301{0]0]|0]58|
flowout 3]/3|200[289 00038
perfenable || 3] 3]231 {306 (0]0)]0]|58
perfdisable || 3| 3| 229]288|0|0]0 374{

Table 7.7: Cray X-MP TracePerf HPM Counter Overheads - Group 1

take place in system mode, we can use HPM cycle counter as a “virtual” high-resolution system
clock in computing the execution time overheads in the trace.

For TracePerfthere are execution time overheads as well as overheads in the HPM counters.
That is, calling the TracePerfroutines will affect the HPM counters. To accurately recover HPM
counts during trace analysis, we measured the counter overheads for the TracePerfroutines for

each of the counter groups. These overheads are reported in Tables 7.6, 7.7, 7.8, and 7.9.

Counter
Routine ol 1 314 6

2
flowentr 13|53|0]0|0]100| 0] 36
flowexit 14151(0]0]0}) 98!0| 34
flowin 13|152|]0]0}0| 10610 42"
flowout 12/48[0f0]o] 98]0 34]
perfenable || 14 |53 [ 0[ 0] 0| 106 0| 42 |
perfdisable || 13 |51 0|0 0| 938|034 |
Table 7.8: Cray X-MP TracePerf HPM Counter Overheads - Group 2
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Counter |]

Routine || 0] 1 {2]3]4156]|6] 7
flowentr 0 410}0

flowexit || 79 | 302 | 0|0 | 4|00 34 |
flowin 8L[300[0|0[7][0[0][42]
flowout 761298 0|014]0]0] 34
perfenable [ 84310 0]0]7]0]0 42"
perfdisable || 79 | 302 [0 |0 | 4] 0] 0| 34 |

Table 7.9: Cray X-MP TracePerf HPM Counter Overheads - Group 3

7.4 Perfect Benchmarks

The applications codes used in our study (FLO52, OCEAN, and DYFESM) are benchmark
programs from the Perfect Benchmark suite [19]. The baseliné versions of the codes were
compiled with default CFT77 compiler options and executed on one processor. As such, our
results differ slightly from those presented in [152]. In particular, no preprocessors were used,
all codes were run on a single processor, and no hand optimizations were performed.

The benchmark codes were chosen from different application areas. FLO52 and OCEAN
are fluid dynamics programs. FLO52 is a two-dimensional analysis of the transonic inviscid
flow past an airfoil and solves the unsteady Euler equations. OCEAN solves the dynamical
equations of a two-dimensional Boussinesq fluid layer to study the chaotic behavior of free-
slip Rayleigh-Benard convection. DYFESM is a two-dimensional finite element program for
the analysis of symmetric anisotropic structures. An explicit leap-frog temporal method with
substructuring is used to solve for the displacements and stresses, along with the velocities and

accelerations at each time step.

7.5 Trace Verification

The primary motivation behind tracing application program execution is to capture dynamic
performance behavior. The TraceFlow library can be used to understand the timing properties
of routine execution. The TracePerflibrary can be used to obtain additional data on machine
performance. However, with the use of these libraries comes perturbations in the program’s
behavior, both in execution time and in the HPM counter data. The severity of these pertur-

bations and our ability to remove them will determine the reliability of the trace information.
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ADDX
BCFAR

COLLC
CPLOT

EFLUX
EULER
MESH

PSMOO

Routine

BCWALL

DFLUX |
DFLUXC

PRNTFF

Cray X-MP

Cray 2

1.002

1.175

1.177

Flowtrace | TraceFlow Flowtrace TraceFlow
Time | Percent | Percent || Time | Percent || Time | Percent

0.311 0.60 0.205| 0.50 || 0.301
0.918 1.78 0.815 1.38 [ 0.809
0.611 118 0.702 119 || 0.694
0.128| 0.25 0.207| 0.50 || 0.282
10.898 | 21.13 11.684 | 19.74 | 11.67
1.566 |  3.04 1.573| 266 1.578
15.125 | 20.33 17.218 | 2909 || 17.11
7.726 | 1498 8.603 | 14.54 || 8.534
0.00 0.9 0.108| 018 o0.108
0.113|  0.22 0.223| 0.38 | o0.266
10.370 14.583 |  24.64 || 14.314
1.749| 296 || 1.756

[51.570 | 99.78 || 52.184 59.186 | 99.74 || 58.826

Table 7.10: Flowtrace and TraceFlow Statistics for Scalar FLO52

It was shown in Chapters 3, 4, and 5 that perturbations due to trace-based monitoring can,

in many cases, be modeled and, subsequently, removed during trace analysis [128]. We applied
the perturbation analysis techniques in the development of our trace analysis programs. In

particular, we developed trace analysis programs that compute the same set of profile statistics

generated by Flowtrace and Perftrace. We used the results obtained from these programs as a

measure of the reliability of the trace data after perturbation analysis has been applied.

7.56.1 Flowtrace Profiling versus TraceFlow Profiling

The Flowtrace statistics summarize the distribution of execution time across an application’s

routines. The total number of calls to a routine and the total execution time within a routine

are reported. Information is also provided about the execution call graph. Our program to

analyze an application trace produces similar statistics, plus additional execution time profiles,

for the parents and children of each routine.

Table 7.10 shows the execution time in seconds for some of the routines in FLO52 when

executed in scalar mode as calculated by Flowtrace and from a TraceFlow trace. As shown, the

trace-generated statistics are very close to those produced by Flowirace. Table 7.11 gives the

same results for vector execution. Again, the statistics match extremely well. This result also
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Cray X-ILIP _ _
Routine Flowtrace TraceFlow Flowtrace TraceFlow

Time | Percent {| Time | Percent || Time | Percent Percent

ADDX [ 0.152| 2.29[ 0.154] 227 0.181] 1.900.182| 1.90
BCFAR [l 0.043] o0.65]0043] 064 003¢4] o036 0035] o036
BCWALL [ 0116 | 175} 0116| 172]0107| 113}0108| 113
COLLC [l 0.083| 125 0083| 1.23[o0180| 1.89}o0179| 1.87
CPLOT [ 0.128| 1.93fo0120| 192fo0.207| 3120281 293
DFLUX | 1.231] 18.53 ) 1.243| 1843 | 1.757| 1851 [ 1.760| 18.44
DFLUXC [ 0.214| 3.22]f0216| 321[0324]| 341f0323| 337
EFLUX |{1.787| 26.91 ] 1.803| 26.71 [ 2.165 | 22.81 || 2.158 | 22.51
EULER [ 0.999| 15.05]1.019| 1509 1.054]| 1110 1.076| 1122
MESH |[foa0o1| 152fo0102] 151f0113| 119]o0108| 113
PRNTFF [[0113| 1700119 1.77[ 0223| 235 0223| 232
PSMOO [l 1.317| 19.83 ) 1.330| 19.81 [ 2.718| 28.63 || 2.736 | 28.53
STEP 0256 | 3.86)0.250| 3.83}0188] 1980188 1.96
| TOTAL || 6.641| 98.49 || 6.749 | 98.14 || 9.493 | 98.38 || 9.590 | 97.67 ||

Table 7.11: Flowtrace and TraceFlow Statistics for Vector FLO52

holds true for both scalar and vector execution of the other two Perfect codes we tested.
There are two general conclusions from this analysis. First, we can accurately measure
gross execution performance characteristics, in the form of execution time profiles, from traces
of routine entry and exit by including perturbations introduced by the trace instrumentation.
Second, we believe the dynamic performance behavior, as represented by the full event trace,
should also be credible. Although this second conclusion is difficult to prove in practice, the

analysis in the preceding chapters supports this conclusion.

7.5.2 Perftrace Profiling versus TracePerf Profiling

An analysis similar to that used with Flowtrace and TraceFlow can be applied to Perfirace
and TracePerf. The corresponding results are given in Tables 7.12 and 7.13; only Cray X-MP
results can be reported. In addition to the execution time measurements, some of the operation
counts from counter data from group 0 are shown; Madds represents millions of floating point
additions, Mmult is millions of floating point multiplies, Mrecip is millions of floating point
reciprocals, and Mflops is millions of total floating point operations.

The statistics generated from the TracePerf trace are very close to those reported by Perf-

trace. The importance of the TracePerf data is its ability to associate dynamic machine opera-
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Routine | Measurement || Time | Percent | Madds | Mmult. | Mrecip. | Mflops

Flowtrace 15.1 29.30 101.0 106.0 10.60 218.0
TraceFlow 15.1 20.35 | 101.0 106.1 1059 | 217.7
Flowtrace 10.9 21.08 72.3 54.8 6.07| 133.0
TraceFlow 10.9 21.08 72.3 54.8 6.07| 133.1
Flowtrace 10.3 20.03 69.5 35.4 0.02 [ 105.0
TraceFlow 10.4 20.09 69.5 35.4 0.03]| 104.9
“Flowtrace 7.81 15.14 35.0 46.3 6.59 87.9
TraceFlow 7.76 15.03 35.0 46.2 6.59 87.8

2.59 5.02 12.8 17.7 4.42 34.9
2.60 5.03 12.8 17.7 4.42 34.9

Flowtrace
TraceFlow

 Flowtrace 1.55 3.01 9.42 8.98 1.29 19.7
TraceFlow 1.57 3.04 9.42 8.99 1.29 19.7

0.99 1.93 8.92 8.81 0.43 18.2
0.99 1.93 8.92 8.81 0.43 18.2
0.88 1.71 4.89 6.00 0.96 11.9

Flowtrace
_l_?aceFlow
Flowtrace

TraceFlow 0.92 1.78 4.90 6.01 0.97 11.9
Flowtrace 0.61 1.19 3.90 3.30 0.47 7.67
TraceFlow 0.61 1.19 3.90 3.30 0.47 7.67
Flowtrace 0.31 0.60 1.58 2.22 0.37 4.17
TraceFlow 0.31 0.61 1.58 2.22 0.37 4.16

Table 7.12: Perftrace and TracePerf Statistics for Scalar FLO52 - Cray X-MP, Group 0

tion with the sequence of application routine execution. The high reliability of this data implies
that a finer degree of performance characterization can be obtained than with summary results

of hardware performance.

7.5.3 Caveats

It should be mentioned that Flowtrace, Perftrace, TraceFlow, and TracePerf are prone to gen-
erating errors when measuring routines with small execution times. This is mainly the result of
instrumentation overhead and not timer resolution. Although the analysis programs attempt to
remove the overhead, a few percent deviation in the overhead relative to the routine execution
time could be significant.!® From the viewpoint of performance analysis, however, achieving
high measurement accuracy for routines representing a small fraction of total program execution

time is not of primary importance.

19The Cray tools do not report routine timings if the average time per call is less than 0.001 seconds because
the results are considered untrustworthy.
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ﬂ Routine l Measurement I] Time | Percent | Madds | Mmult. I Mrecip. | Mflop. l]
EFLUX | Flowtrace 1.76 26.40 | 101.0 106.0 10.60 | 218.0
TraceFlow 1.79 26.90 [ 101.0 106.2 10.59 | 217.8
Flowtrace 1.29 19.38 69.5 35.4 0.02| 105.0
TraceFlow 1.33 20.03 69.5 35.4 0.03| 104.9 "
Flowtrace 1.23 18.43 70.3 54.8 6.07| 131.0 H
TraceFlow 1.24 18.61 70.3 54.8 6.07| 131.1
“Flowtrace 1.07 16.08 35.4 46.3 6.59 88.3 n
TraceFlow 1.00 15.06 35.4 46.2 6.59 88.2
Flowtrace 0.25 3.77 12.8 19.0 4.42 36.3
TraceFlow f| o0.26 3.85 12.8 19.0 4.42 36.3
 Flowtrace 0.21 3.07 9.42 8.98 1.29 19.7
TraceFlow " 0.21 3.22 9.42 8.99 1.29 19.8
Flowtrace 0.15 2.26 8.92 8.81 0.43 18.2
TraceFlow 0.15 2.28 8.92 8.81 0.43 18.2
Flowtrace 0.13 1.92 0.00 0.07 0.00 0.07
| TraceFlow 0.13 1.92 0.00 0.07 0.00 0.07
Flowtrace 0.11 1.70 0.04 0.13 0.00 0.17
TraceFlow 0.11 1.70 0.04 0.13 0.00 0.17 "
Flowtrace 0.10 1.50 0.59 0.69 0.08 1.36
TraceFlow “ 0.10 1.51 0.59 0.69 0.08 1.36 "

Table 7.13: Perftrace and TracePerf Statistics for Vector FLO52 - Cray X-MP, Group 0
7.6 Dynamic Execution Analysis

Detailed event traces hold promise for characterizing dynamic execution performance if pertur-
bation effects can be understood and compensated. Earlier, we used the accuracy of execution
profile statistics, calculated from an event trace, as a measure of the reliability of the trace
data and the validity of the perturbation analysis techniques. Below, we demonstrate some
of the dynamic execution behavior analyses possible by applying the TraceFlow and TracePerf
tools. Although we show results for the thiee Perfect codes, for brevity’s sake, we concentrate

primarily on the FLO52 code.

7.6.1 Subroutine Events

Using TraceFlow trace data, one can analyze the dynamic characteristics of subroutine calls,
beginning with a simple procedure event graph that shows the subroutine and function transi-
tions during application program execution. In such graphs, the axes represent, respectively,

the currently executing application procedure and the procedure execution time.
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“ Routine l Event ﬂ Routine | Event "

Table 7.14: FLO52 Routine Names to Event Numbers

When the dynamic pattern of calls is correlated with application source code locations,
these procedure event graphs can show the spatial and temporal patterns of control low. More
abstractly, the procedure event graphs show application execution stages (e.g., the functional
combination of multiple application algorithms or the processing of multiple in'« data sets).

Generally, the dynamic pattern of procedure calls is identical for both scalar and vector
execution.!! Clearly, vectorization compresses the event time scale and may change the relative
execution times of individual procedure invocations. These are seen as changes in the “shape”
of the procedure event graph.

Figures 7.1 and 7.2 show the procedure event graphs for FLO52 executions on the Cray
X-MP in both scalar and vector modes, respectively. To provide sufficient resolution to display
all relevant calls, the procedure event graphs are drawn in eight sections. In each section, time
increases from top to bottom and continues at the top of the next strip. In the figures, each
procedure invocation is marked by a horizontal line (i.e., a state transition). Vertical lines
denote the amount of time spent in the currently executing procedure. To present an entire
execution history, while avoiding event clutter, some of the more frequent procedure events have
been elided. Finally, Table 7.14 shows the association of procedure names and event numbers
used in Figures 7.1 and 7.2,

From Figures 7.1 and 7.2, one can identify five major execution phases:

o Initialization

¢ Grid One

e Grid Two
e Grid Three

! Inline function substitution to increase vectorizalion is one possible exception.
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Figure 7.1: Event Graph for Scalar Execution of FLO52 on Cray X-MP (52.188527 seconds)
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Figure 7.2: Event Graph for Vector Execution of FLO52 on Cray X-MP (6.749813 seconds)
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¢ Termination

In the three grid phases, event analysis reveals a periodic sequence of procedure calls, where
each phase contains 48 periods of the procedure invocation sequence. Obviously, the application
phases, the repetition of procedure event sequences, and the procedure sequence itself are
manifestations of the application program’s call graph and the input data. Each grid phase
reflects a dynamic instantiation of the static procedure call graph for a particular grid. Here,
each “grid” phase represents a grid refinement of the FLO52 application’s multigrid algorithm.
In addition to the procedure calling behavior, Figures 7.1 and 7.2 show the changes in procedure
execution times across application algorithm phases (i.e., grid refinements).

By comparing procedure event graphs for scalar and vector execution, one can quantify
the interactions of vectorization, vector length, and grid size. For FLO52, the lack of vector-
ization in the initialization and termination phases increases their relative contribution to the
vectorized version’s total execution time. Moreover, grids two and three, with longer vectors,
attain a substantially higher fraction of the Cray X-MP’s peak performance in vector mode.
This illustrates the value of time-dependent information. The averag§ megaflop rate for this
application is the weighted average of the megaflop rates for the three grid computations and
depends on both the degree of application code vectorization and the range of vector lengths.
These interactions are best understood by direct examination of the time varying application
behavior, rather than attempting to infer interactions for first and second moments.

Although not shown, the procedure event graphs for the OCEAN and DYFESM Perfect
applications show equally interesting, though different, procedure invocation behavior. As
with the FLO52 code, these patterns of procedure calls can be correlated with the applications’
algorithms and computation stages.!?. Comparing procedure event graphs from the Cray 2 with
those from the X-MP shows non-linear compressions of the event graph time scale. Although
the general shapes of the graphs are similar, relative timing differences reflect architectural

features, compiler optimizations, and the match of application code to the machines.

3Space constraints preclude a complete discussion of the procedure event graphs for the Cray 2 and for the
other two Perfect codes.

248



7.6.2 Hardware Performance

In addition to generation and analysis of procedure call data the TracePerftraces permit analysis
of dynamic machine performance, as captured by the HPM counters, during a application
program execution. Below, we discuss a series of plots that display the the time-varying values
of hardware performance metrics (in millions of events per second) for the entire execution of
our example applications.

To simplify analysis and presentation, we divided each application program execution into
five hundred, fixed size intervals of time. In each interval, we computed the average value
for each hardware performance metric. Thus, applications that generate larger event traces
likely will show less variation across adjacent time intervals (e.g., a trace for OCEAN contains
ten times as many events as FLO52, and DYFESM contains twice as many as OCEAN).
Also, because only one quarter of the HPM counters can be captured during a single program
execution, we ran each application program eight times, once for each of the HPM counter
groups in scalar and vector mode, to capture a complete set of hardware performance data. In
the interests of space, we analyze only a small subset of the captured data.

Figures 7.3 and 7.4 show the data from HPM group zero for the scalar and vector execution
of FLO52, respectively. Similarly, Figures 7.5 and 7.6 show the vector execution of OCEAN and
DYFESM, respectively. In each figure’s graphs, the horizontal axis is program execution time,
and the vertical axis is the rate (in millions of events per second) of the associated hardware
performance metric. Although the scalar and vector executions of FLO52 show similar behavior,
the diﬁ‘etencés among the FLO52, OCEAN, and DYFESM codes are striking. The behavior of
the vector DYFESM code is very regular; in contrast, the vector version of OCEAN code shows
substantial variations in the floating point execution rate and the number of issued instructions.
On a vector architecture, instruction issue rate and vector operations are inversely related (i.e.,
as the number of vector operations increases, the total number of issued instructions decreases
~ each instructions represents more useful computation). Thus, the behavior of the OCEAN
code likely is attributable to frequent transitions to and from vector mode.

Although the application source code embodies a set of application algorithms and an
associated number of arithmetic operations, a program compilation potentially can produce

many different executable versions that are not work conservation equivalent. For example, a

249



vectorized version might introduce redundant arithmetic operations to increase the vectorization
level and execution performance. Thus, when comparing the performance of an application
~ program across scalar and vector modes, one must verify that work is conserved. For the
FLOS2 code, the total number of floating point operations (6.43 x 108) is the same for both
the scalar and vectorized versions.}® Below, we compare and contrast the two versions of this
code based on data obtained from the HPM counters.

In Figures 7.3 and 7.4, the three phases of grid evaluation are clear. In the vector case,
the successively larger grids have longer vectors. This is reflected in higher megaflop rates
(the ninth graph) and a lower instruction issue rate (the first graph). In both figures, “clock
periods holding issue” is a measure conflicts for access to both registers and functional units
that prevent release of an instruction to a functional unit. As vector length increases, more
time is spent waiting for vector registers and vector functional units.

Because the Cray X-MP contains an instruction buffer, not every instruction fetch generates
a memory reference. For example, if all code for a loop resides in the instruction buffer, instruc-
tion fetches from memory will cease during loop execution. As the third graph of Figures 7.3
and 7.4 suggests, the rate of instruction buffer fetches from memory is low, and the interference
with operand memory fetches is small. However, examining both the scalar and vector execu-
tions of FLO52 shows that the number of instruction buffer fetches increases sharply during
the transitions between grid sizes. In addition, the instruction buffer fetch rate is inversely
proportional to megaflop rate for vector execution. Simply put, as the vector length increases,
fewer instructions are needed to realize the same number of floating point operations.

Coupling our analysis of instruction buffer fetches with the graphs of CPU memory refer-
ences confirms that most memory operations are for data access. In Figure 7.4, the memory
reference rate is directly proportional to the megafiop rate.

Of the four floating point operation graphs, floating point reciprocals are the most inter-
esting. Recall that the Cray X-MP does not implement division directly; instead, application
program divisions require one reciprocal and three multiplication operations. In Figures 7.3 and
7.4 the floating point reciprocal rate, though small, is directly proportional to the megaflop,

addition, and multiplication rates.

13The ninth graph of Figures 7.3 and 7.4 shows the time varying rate of these floating point operations in
millions per second (i.e., megaflops).
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ﬂ Routine | Event l] Routine l Event ﬂ

ADDX
BCWALL
FLO52Q
STEP
EULER
DFLUX

DO W

DFLUXC | 12

Table 7.15: FLO52 Routine Names to Event Numbers for Event Correlation with Hardware
Monitor Metrics

Finally, the average number of memory references for each floating point operation is near
one. Although this might suggest that a single memory port, as found in the Cray-1, might
suffice, the small-scale variance is large.!* Without the Cray X-MP’s three memory ports,
performance would degrade substantially.

7.6.3 Procedure Execution and Hardware Performance

Although hardware performance graphs show the time-varying behavior of critical hardware
metrics, it is important to correlate this behavior with the execution of particular application
procedures. The event graph can be displayed next to the hardware performance graphs as
done in Figures 7.7, 7.8, and 7.9 — the three figures correspond to the three phases of the
vectorized FLO52 application where we have focussed in on one period of each phase. In each
figure, the routine event graph is shown at the top with the counter group 0 graphs below.
Because we are taking a more focussed view of the execution, all procedures events are shown.
The routine-to-event mapping for these figures is slightly different than before and is given in
Table 7.15.

Recall that each graph point represents the average over 1/500th of the computation. The size of these
intervals hides the most of the small-scale variance.
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To associate the hardware performance measures with the routine events at any point in
time, a vertical line should be drawn at the point to intersect all graphs. The horizontal line on
the event graph crossing this line identifies the currently active routine. The horizontal lines
on the hardware performance graphs crossing the line show the level of the associated metric
during the period the routine is active.

As is clearly evident from the three Figures, a significant amount of performance behavior
detail can be observed. The perceived variations in the hardware performance curves of Figures
7.4 are more pronounced here and greater transitions in the value of certain performance metrics
are seen. This is particularly true in the case of floating point adds, floating point multiplies,
and CPU memory references. Moving from phase 1 to phase 3, the maximum values of most
metrics increase, as expected, but so do the variations.

The increased detail of the graphs allows certain correlations with subroutine behavior to
be made. The strong positive correlation between the CPU memory references and floating
point operations suggests that the intervals these metrics are high correspond to periods of
vector operation. This is confirmed by the counter 2 graphs (not shown) which give vector
memory reference information. The routines generating this high level of vector floating point
performance are EULER and PSMOO.

It i> also interesting to observe additional micro-phase structure of routine execution. In
Figure 7.7 there appears two sub-phases whose boundary is marked by {}. In Figure 7.8 there
are three sub-phases and in Figure 7.9 there are four. The first sub-phase of each event graph
follows the same sequence of routines as a solution to the current grid step is computed. The
additional sub-phases correspond to an elongation phase that approximates from the fine grid
structure the solution on the courser mesh. Because the latter major phases correspond to
finer gridding, additional sub-phases are required at the end of a period to move back to the
course grid; one extra sub-phase for the phase 2 period and two extra for phase 3 period. As
the computation moves from the fine grid back to the course, there is a shortening of time for
each successive sub-phase as well as a drop in performance because it takes less time to reach
a solution (due to a reduction in required computations) and the vector calculations are less
efficient because of a decrease in vector length. We can see this occurring in the performance

curves.
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7.6.4 Megaflop Distributions

The Perftrace summary statistics show hardware performance data for each procedure, averaged
over the the computation lifetime. The performance curves above show the raw detail of
hardware performance for every procedure transition, demonstrating the extreme variation
of some performance metrics during execution. These variations can depend both on each
procedure’s computation and its input data. From the TracePerftraces, one can calculate these
per-procedure statistics (as in Tables 7.12 and 7.13), plus determine variations of performance
metrics per routine.

To understand the variations in measured megaflops for each procedure invocation, we gen-
erated megaflop distribution graphs that show the percentage of all calls made to a procedure
that executed at a given megaflop rate. As an example, Figure 7.10 shows the megaflop dis-
tribution graph for the FLO52 code in both scalar and vector execution modes. Although the
figures do not show the fraction of application execution time attributable to each procedure
call instance, the megaflop variations are clearly visible. For some procedures, the megaflop
range is small. For others, such as PSM00 and EULER, the range is quite large. As before,
much of this behavior can be explained based on knowledge of the application program. The
PSMO00 and EULER procedures are primary components of the FLO52 grid computation, and
the variations in megaflop rates reflect the changes in vector lengths across the three grids.

In addition to the producing megaflop distributions, using the TracePerftraces, it is possible
to compare scalar and vector hardware performance for all instances of a procedure. For
megaflops, this permits calculation of speedups for each procedure instantiation. In general,
knowing the range of procedure’s vector performance, rather than just the mean, provides

greater insight into optimization potential.

7.6.5 Trace-Based Applications Modeling

For codes that have a periodic behavior, such as FLO52 , it is possible to use traced perfor-
mance information to derive an abstract model of execution from event timings. The general
idea is to apply signal analysis techniques to identify regular patterns in the event or perfor-
mance curves that can be expressed in the form of an “execution” equation. The equation or

sequence of equations would not only model the application’s execution but also identify the
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l Term l ﬁescription | Scalar l Vector l

T(init) initialization execution time 0.27513765 | 0.28362232
n number of phase periods 48 48
, phase 1 period time 0.05249940 | 0.00849680
r_It'(l, 2) phase 1 to phase 2 transition time 0.07645036 | 0.05366612
P2 phase 2 period time 0.20451272 | 0.02751690
[ T(2,3) phase 2 to phase 3 transition time 0.21706780 | 0.11549555
P3 phase 3 period time 0.78509755 | 0.08967993
T'(term) termination execution time. 0.65705125 | 0.23356771
[T(FLO52) | total modeled execution time | 51.24699714 | 6.71964580 |
actual | 562.18852721 | 6.74981302
error -1.8% -0.4%

Table 7.16: FLO52 Execution Model Results

critical performance measurements. Given the model, one could adjust certain coefficients to
predict performance under a different set of execution conditions. It also allows a smaller set
of measurements to be made from which execution behavior can be predicted.

We attempted a simple form of this more general approach in the modeling of the FLO52
code. Because of the clearly periodic behavior evident in the event graphs, we modeled the
major phases of the computation by taking the execution time for one period in each phase
and multiplying by the number of periods. The initialization and termination timings, plus the

phase transition timings are treated separately. Our model of the FLO52 code is
T(FLOS52) = T(init) + nxpy + T(1,2) + n* p2 + T(2,3) + n * ps + T(term).

The results of applying this model to the scalar and vector execution are shown in Table 7.16.
It is surprising that the model can describe the detailed structure of the FLO52 computation
yet require only one percent of the measured data to produce an accurate prediction — only one
percent of the measured events were needed to calculate the values in Table 7.16. We caution
against the conclusion that such a modeling approach is possible for all applications. Indeed,
FLO52 has such regular behavior that it should be regarded as a special case. In general,
an application’s execution may be irregular, making repeated patterns difficult to identify.

However, if any such patterns can be identified from the performance measurement, it might
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enable the application’s performance behavior to be more concisely expressed and allow less

detailed (and thus less intrusive) measurements to be made.

7.7 Comments

It is becoming increasingly apparent that to achieve high performance on supercomputers, the
application programmer must have a better understanding of the dynamic execution character-
istics of the computation and its interactions with the high-performance features of the machine.
However, tools for capturing such data are not commonplace, and currently, users must instead
rely on execution summary statistics provided mainly by routine-based profilers. The perfor-
mance environment developed for the Cray X-MP and Cray 2 supercomputers applied several of
the performance observability techniques described in earlier chapters, including timing-based
perturbation analysis. The environment has been demonstrated in this chapter to provide im-
portant insights into time-dependent execution behavior and to provide greater performance
detail while maintaining a high degree of accuracy.

In general, there are several potential advantages provided by dynamic tracing over conven-
tional execution profiling. As a framework for future applications of our tracing facilities for
the Cray machines, and for potential tracing implementations on other systems, we have listed

some of the more important advantages below.

e A dynamic calling trace can be analyzed to show time-dependent calling relationships

between program units.

e Program execution phases can be identified, enhancing the understanding of program

function.

¢ Different modes of execution (sequential, vector, or multitasking) can be compared at a

finer level to show the effects of different source code optimizations.

o Parameters for execution models of certain program structures, such as po loops, can be

derived from the trace data.

o A realistic evaluation of performance improvement potential can be made from a study

of performance variability of routine execution.
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¢ Given access to hardware performance data, the high-performance features of the machine

can be more accurately correlated with time-varying performance behavior.

o In theory, decisions regarding future parallelism choices (vectorization and multitasking)
can be made at run-time based on previous trace-based performance knowledge of a
program and its current performance behavior. This allows the system to reconfigure the

parallelism of the program to better match the parallelism of the hardware.

e Comparisons between architectures based on specific, local information can be made.
Timing and performance characteristics deemed intrinsic to the program may be used to

directly evaluate the interaction of program constructs with architecture features.

o More appropriate selection of code characteristics for use in performance prediction model

design can be made.
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Chapter 8

Conclusions and Future Work

Believe nothing, no matter where you read it,
or who said it,
no matter if I have said it,
unless it agrees with your own reason and
your own common sense.

— Buddha

The increasing complexity of computer systems necessitates a re-evaluation of the tools used for
performance observation. This thesis proposes several methods and techniques for improving
performance observability in the areas of performance measurement, performance perturbation
analysis, and performance visualization. We have used prototype implementations of tools in-
corporating many of the ideas to study performance observability in real environments. The
main conclusion of the thesis is that the requirements and approaches for improved performance
ohservability depend significantly on context: the performance experiment being conducted, the
accessibility of performance data in the computer system, the type and overhead of performance
measurement, the perturbation sensitivity of the measured execution, the constraints on per-
turbation compensation, and the user’s preference for performance data presentation.

Specifically, in this thesis, we have accomplished the following:

o We outlined capabilities required of performance instrumentation and data collection
tools to support more precise performance measurements. We developed a hardware-

based software event tracing facility for the Intel iPSC/2 multiprocessor to examine the
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practical requirements and constraints of a performance measurement system in a real

computer system environment.

o We developed both timing-based and event-based models for removing performance per-
turbations due to instrumentation intrusion. These models are the first to be proposed
that are able to approximate performance behavior from program event traces. We ap-

plied these models to both synthetic and actual testcases with highly successful results.

e We showed several applications of performance visualization techniques for different types
of performance data. We proposed a general performance visualization architecture and

presented results from a prototype implementation.

e We demonstrated the usefulness of new performance observability tools for the Cray X-
MP and Cray 2 supercomputers in studying the performnace of the Perfect application
codes. Many of the insights gained in these experiments would have been difficult to
obtain using the standard performance measurement, analysis, and visualization tools for

these systems.

Based on the thesis results, several avenues for future research are worthwhile. The inte-
gration of tools for performance measurement, analysis, and visualization into a performance
environment will be important for their pervasive acceptance and use. The existence of per-
formance environments across a broader set of systems (both research and commercial) will, in
turn, allow more sophisticated performance benchmarking and characterization studies. Also,
gaining experience with integrated performance environments will provide the needed feedback
for the design of next generation performance tools. A particularly challenging proposition,
in this respect, is the building of portable or standard performance environments that allow
common performance experiments to be made on different computer systems using similar
measurement, analysis, and visualization methods. The definition of standard performance
measurements tools and interfaces, the adoption of common event trace formats, and the build-
ing of reusable visualization components have been by-products of this thesis research and are
beginning to gain acceptance.

Research in performance perturbation analysis is just beginning. The perturbation models

and experimental results presented in the thesis establish a foundation for future study, but

266



need to be extended in several ways. The perturbation theory must be advanced to include
a formulation of the errors incurred during perturbation analysis. Issues such as error accu-
mulation and error propagation should have a formal basis in the models. The computing of
confidence intervals both in the approximations and from multiple trial measurements must
also be studied.

The event-based perturbation models should be expanded to include a larger variety of
parallel execution paradigms and methods. For instance, the perturbation analysis techniques
developed for a single-P, single-V type of semaphore might apply to message passing systems
that use synchronous communications. However, asynchronous communications with typed
messages and priority sending and receiving requires different perturbation analysis solutions.
Similarly, there are many other forms of synchronization used in parallel computing that could
pose unique perturbation analysis issues. A general question is whether it is possible to define
a rigorous classification of synchronization techniques in terms of the perturbation analysis
approach.

We also need a better understanding of perturbation effects in the context of nondetermin-
istic execution. In many cases, the complete range of feasible executions will be restricted to a
smaller set of likely executions due to the computational environment. That is, the probability
distribution of feasible orderings of execution events is non-uniform. Not only is a better model
of nondeterministic execution in a real environments needed, but we need to understand how
instrumentation intrusion influences nondeterministic execution. There are two questions here.
First, how does one determine the likely set of behaviors? Second, how is the likely set of
behaviors perturbed by instrumentation? One might conjecture that the execution has been
perturbed in a deterministic way, but it may lead to a narrowing, widening, or even a shifting
in the set of likely executions. Even if these questions can be answered, there still remains the
problem of compensating for the perturbation.

In the area of performance visualization, displaying performance data from massively paral-
lel systems is an open research topic. The fundamental questions of what to show are the same,
but the answers are sensitive to scale. Displays of processor utilization, network utilization, and
load balancing over the whole system are likely to be more beneficial than showing detailed per-
formance data for each individual node. The real-time aspects are performance visualization is

another area that begs for further study. An investigation of the tradeoffs discussed in Chapter
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6 in an actual system context would help evaluate present day capabilities. As processing and
display technologies improve, it will also be interesting to track how the tradeoffs change.

At the heart of research in performance observability lies the goal of improving our ability
to evaluate computer systems — their design, their operation, and their use. Performance

observability is a means, not an end.
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