Performance-Oriented Development of Irregular, Unstructured
and Unbalanced Parallel Applications in the
N-MAP Environment*

Alois Ferscha! and Allen D. Malony?

! Institut fiir Angewandte Informatik, Universitat Wien, Lenaugasse 2/8, A-1080 Vienna, Austria
2 Computer Science Department, University of Oregon, Eugene, OR 97403, U.S.A.

Abstract. Performance prediction methods and tools based on analytical models often fail in forecast-
ing the performance of real systems due to inappropriateness of model assumptions, irregularities in
the problem structure that cannot be described within the modeling formalism, unstructured execution
behavior that leads to unforeseen system states, etc. Prediction accuracy and tractability is acceptable
for systems with deterministic operational characteristics, for static, regularly structured problems, and
non-changing environments.

In this work we present a method and the corresponding tools that we have developed to support
a performance-oriented development process of parallel software. The N-MAP environment incorpo-
rates tools for the specification and early evaluation of skeletal program designs from a performance
viewpoint, providing the possibility for the application developer to investigate performance critical
design choices far ahead of coding the program. Program skeletons are incrementally refined to the full
implementation under N-MAP’s performance supervision, i.e. the real code instead of an (analytical)
performance model is “engineered”. We demonstrate the use of N-MAP for the development of a chal-
lenging application with extensive irregularities in the execution behavior, unstructured communication
patterns and dynamically varying workload characteristics, thus resisting an automatic parallelization
by a compiler and the respective runtime system, but also being prohibitive to classical “model based”
performance prediction.

Keywords: Performance Prediction, Parallel Programming, Task Level Parallelism, Irregular Prob-
lems, Parallel Simulation, Time Warp, CM-5, Cluster Computing.

1 Introduction

Attempts of relating performance engineering activities to the development process of parallel software have
been made since parallel machines started to reliably generate computational results [22, 23, 20]. Early
work in the performance analysis of parallel systems mainly focused on the mechanics of empirical analysis:
measurement and monitoring, automatic probe insertion, trace generation, post execution trace analysis,
perturbation analysis [21] and trace visualization [16]. Tt was soon recognized that starting with performance
debugging activities after fully functional executable code has been developed, reduces the degrees of freedom
for program modifications to those that do not require significant changes to the original program structure
[9]. Large-scale code redesigns for performance optimization are costly. Hence, a large body of work in
classical performance analysis appeared to offer alternative engineering solutions, contributing markovian
stochastic process, queuing network, timed Petri net, series parallel task graph, etc. models to different
parallel performance problems. Modeling has been applied to understand performance interdependencies of
hardware resources [19], to characterize the behavior of parallel program components, and to abstract the
workload for parallel systems [3]. Also the integration of parallel program, multiprocessor hardware and

* This work was conducted while Alois Ferscha was visiting the University of Oregon, Computer Science Department,
supported by a grant from the Academic Senate of the University of Vienna and the Department of Computer
and Information Science at the University of Oregon. The research is also supported by a NSF National Young
Investigator (NYT) award.

mapping factors for performance evaluation have been reported. The natural abstraction process inherent
in the design and use of performance models lends itself to a model-based performance analysis approach to
performance engineering that can be induced in earlier phases of parallel program development.

Recent success in integrating performance engineering into the parallel software development process can
be found in the application of parallel performance prediction tools. Performance estimates obtained from
these tools can be shown to provide feedback to high level design considerations, such as choice of partitioning
strategy, that often are difficult, if not impossible to obtain from traditional parallelizing compiler approaches,
where the fully specified source code is required. However, prediction accuracy and tractability often depends
on specific assumptions about the target system and on the deterministic operational characteristics of
(mostly) static problems executing in regularly structured, non-changing environments [8].

In practice, however, applications fail to achieve the performance predicted by models. There are many
possible reasons: inappropriateness of model assumptions (like Markovian timing), irregularities in the prob-
lem structure that cannot be described within the modeling formalism, unstructured execution patterns of
parallel applications, widely nondeterministic behavior in the software layers of runtime environments, data
dependencies determining the performance of memory hierarchies, and unforeseen dynamics of interacting
parts and layers of the application at run time. In general, performance prediction accurate enough to rank
different implementation alternatives of an application based on program or workload models is just not
feasible. To overcome the limitations of the pure modeling approach for parallel performance engineering, a
technique for the performance behavior prediction of parallel programs based on real (skeletal) codes rather
than on models has been proposed [12]. A set of tools for an incremental development process of parallel pro-
grams driven by performance engineering activities, called the N-MAP (N-(virtual) processor map) toolset,
has been developed [13], following the idea of pursuing performance engineering activities as early as possible
in the development process, namely in the implementation design phase. N-MAP supports the specification
and early evaluation of skeletal program designs from a performance point of view, such that performance
critical design choices can be investigated far ahead of the full coding of the application. Program skeletons
can be provided very quickly by the application programmer and are incrementally refined to the full im-
plementation under N-MAP’s performance supervision. We call this implementation strategy performance
oriented parallel program development [9].

1.1 Problem Classes

In previous work [13], we have shown the successful use of N-MAP in the context of numerical applications
with a static structure of task occurrences and regular communication patterns. By incrementally developing
the implementation of parallel Householder reduction algorithms [2] we have demonstrated that very early
performance predictions are possible with very little specification efforts, and that arbitrary prediction accu-
racy could be achieved by adding more and more detailed functionality specifications of the application. In
this paper, we demonstrate N-MAP abilities in cases where conventional program model based performance
prediction methodologies fail. Specifically, problems with the following properties are addressed:

Irregular. Many important scientific applications like molecular dynamics codes, fluid dynamic solvers, Monte
Carlo codes, multigrid solvers, etc. make extensive use of indirectly indexed arrays in data parallel embeddings
of HPF, Vienna Fortran or Fortran-D codes onto distributed memory multiprocessors. Since an efficient
address translation cannot be generated at compile time, compiler runtime support libraries for automatic
data partitioning, for sharing data along partitioning boundaries, for communication cost optimization and
for automatic dynamic load balancing are necessary for gaining reasonable performance on irregular problems
[17]. However, a general purpose compiler, even together with a specialized runtime system, cannot be
expected to deliver good or near optimum performance on problems that do not reflect regular data reference
patterns, thereby leaving open a set of applications where a direct programming approach still remains the
most promising one. In this work, we demonstrate the tool-support provided by N-MAP for the development
of an application with extensive irregularities.

Unstructured. Many common techniques for the acceleration of solving partial differential equations involve
irregular meshes. For instance, the multigrid method employs regular meshes, but with different resolution

at different levels, and the multiblock method, couples regular meshes in an irregular arrangement [1]. In
both cases, non-uniform data movements caused when shifting between different multigrid levels or updating
the boundaries among adjacent blocks intrude the independent local computations (on a multigrid level or
block), which are basically regular. Since the communication patterns induced by the data references do not
exhibit any particular structure, we refer to these kinds of problems as “unstructured”. The problem to be
studied using N-MAP does not exhibit any kind of communication pattern whatsoever, representing a stress
case for previous performance prediction methodologies.

Unbalanced. For certain simulation applications, like N-body codes [25], that simulate the movement of ob-
Jjects (particles) through a bounded area of the k-dimensional space, subject to mutual forces and adhesion
influenced by the respective masses, velocities etc., data reference locality is exhibited, but patterns of data
interaction change over time. Load balancing must be dynamic and is determined by the specific characteris-
tics of the simulated system. In these cases, 1t is not the source code of the program, but the characteristics of
the system to be simulated (or in other words the program input) that needs to be understood and exploited
to generate good performance decisions. We shall present how N-MAP, by automated scenario management,
lets the user figure out the sensitivity of parallel program performance to program input, requiring merely
an abstraction of the input data.

This paper will present the N-MAP approach for performance engineering parallel applications with
unstructured communication and computation behavior. In Section 2 we will present the aims and the
methodological approach implemented in the N-MAP tool, and how early performance and behavior predic-
tions are generated. Section 3 is devoted to the N-MAP capabilities for automated scenario management and
performance sensitivity analysis. In Section 4 we demonstrate how N-MAP copes with the crucial problem
of predicting the performance of statically nondetermined problems. As a stress test case we have chosen to
study a parallel simulation protocol (Time Warp) in the context of Petri net simulation models. A detailed
sensitwity analysis will work out the performance influence of the various Time Warp execution parameters
(simulation model, LVT progression, rollback costs, message load, internal event simulation costs, etc.).

2 Parallel Application Development with N-MAP

2.1 N-MAP: Rationale and Environment

As a performance oriented parallel program development environment, the goal of N-MAP is to provide per-
formance and behavior prediction for early program specifications, namely “rough” but quick specifications
of program skeletons that reflect the constituent and performance critical program parts of eventually fully
operable program code. The N-MAP specification language is based on C, and includes language constructs
for intuitive concepts of parallel programming like tasks, processes and (communication) packets. By pro-
viding direct language support for parallelism at the task level, N-MAP encourages a top-down, stepwise
refinement approach of program development. Initially in this process, describing the task behavior and
functionality is of lesser importance than capturing its performance impacts; with progressive refinements of
the specification, full functionality will eventually be reached.

A task in the N-MAP sense is self contained, contiguous block of program code. Its functionality is
described like an ordinary C-procedure (called the task behavior specification, tbs), whereas the quantification
of its real or expected execution time is expressed with a C-function (the task requirement specification,
trs). The task requirements reflect the resource demands for executing the task. A task can implement
computation or communication as its behavior. An ordered set of tasks defines a process, which appears as a
stream of task calls in the task structure specification (tss), the top level source code of the program. Since
the mental model of a process being a piece of code to be assigned to a physical processor is appropriate, we
often refer to processes as “virtual processors”. Communication objects; are referred to as packets (i.e. the
actual data to be transferred among virtual processors). Similar to tasks, packets are characterized by their
packet behavior specification (pbs) (functionality to gather and pack the data), and the packet requirements
specification (prs), i.e. the quantification of the amount of data to be transferred among virtual processors.

The respective specification sources representing the input to the N-MAP compilation and simulation system
are shown in Figure 1, which explains tool architecture of N-MAP (see [13] for further details).

Algorithmic Idea

|

N-MAP Specification

tracing routines tracing routines
tss for simulator for target syst.
#define N MAXP) .

simulator runtime
task readmatrix, transformvector[N; B P
packet vector[N, matrix[N[N; Cases library libraries
{process colum(i) where { i=0:N-1; } C.<n>.<m>...<p> trandlation trandation
int j; templates templates

readmatrix(); c.<1><1>.<3>
for (j=0; j<i; j++)

recv(col um(i- 1), vector (j)); C<I><1>.<2>

if (i<N-1) send(col unm(i+1).vector(j)): C<l> <>, <1>

—_ N-MAP Parser

Code Generator

ths trs T i i

bs rs Virtual Processor Physical Processor
p p N-MAP Program Program

System Requirements / Management
. simulate execute
Exec. Environment

Characterization ems.f B T il I

Scenarios Predicted Observed
Performance Data) |Performance Data

Program Input
Characterization

/\

Fig. 1. The N-MAP Compilation and Simulation System

Operationally, the N-MAP specification sources tss, tbs, pbs, trs and pbs, together with a system re-
quirements specification are parsed and translated into a discrete event simulation program. The execution of
this simulation program generates the behavior of the parallel program as if it were executed on a set of N vir-
tual processors, and performance data are collected to analyze this behavior. The default statistics computed
include busy, overhead and idle time for each virtual processor, as well as the number of messages/bytes
sent /received, but also any user defined performance index can be computed upon requested. Additionally,
trace files can be generated that meet standard file formats (PICL [15]), giving access to standard analysis
visualization tools (e.g. ParaGraph [16]), which can further characterize the simulated behavior. Tt should
be noticed at this point that the N-MAP compilation system merely requires the tss to be able to generate
the simulated execution behavior, allowing a very fast performance prediction and visualization from the
program skeleton. If in further development steps program information is provided to N-MAP via tbs, pbs,
trs and pbs, the prediction accuracy can be subsequently improved. Once the characteristics of a certain
execution environment are described in terms of <sys>.r file (e.g. cm5.r or rs6k.r shown in Figure 1),
N-MAP will automatically make use of this information to mimic a parallel execution of the program on
that platform. A thread mechanism is used in N-MAP to simulate the behavior of the virtual processors.
Fast context switching calls (setjmp() and longjmp()) transfer control from one “virtual processor” thread
to the other, which is necessary whenever a simulated message is to be transferred among them. Because
each virtual processor is executing in its own context, no adjustments must be made to the program code
to be simulated in order to allow for concurrent operation. Tasks for which full code has been developed in
the respective tbs are executed directly and the actual execution time as measured during the simulation
is used to progress the simulated time. With this “simulated direct execution” N-MAP achieves excellent
prediction accuracy for CM-5 codes on a Sun Sparc workstation [13].

While N-MAP has proven to be successful in its application to regularly structured problems, the dif-
ficulties of specifying irregular, unstructured, and unbalanced computations and predicting their behavior
challenges the N-M AP process. As a stress test of N-MAP, we choose the Time Warp application and attempt
to determine implementation functions from multiple experiments for different system scenarios that would
enable a prediction of a high performing Time Warp solution. This work is described below.

2.2 Time Warp

Time Warp [18] is a well established parallel and distributed discrete event simulation (DDES) protocol,
aiming to accelerate simulations that take exceedingly long to execute on a single processor. Basically a
global simulation task is divided into a set of subtasks, each of which is executed by a logical process (LP)
that simulates occurrences of events in a spatial subspace of the space-time. Time Warp as a synchronization
protocol that can guarantee that the partial event ordering as generated by the individual asynchronous
LPs is consistent with the total event ordering that would have been generated by a sequential event driven
simulator, can automatically make use of the parallelism among events in the different subspaces.

The operational principle of a single LP is basically the same as for a sequential simulation engine: A set
of variables S representing the current state of the simulated system is modified over simulated time due to
event occurrences, the only difference being that each LP; in Time Warp has access only to a (static) subset
of the state variables S; C S (disjoint to state variables assigned to other LPs). An LP executes a sequence of
event occurrences (potentially modifying the local state variables) prescheduled in an chronologically ordered
event list (EVL), thus advancing a local clock (local virtual time, LVT). Two kinds of events are processed
in LP;: internal events which have causal impact only to S; C S, and external events that also affect S; C S
(¢ # j) the local states of other LPs. A communication interface (CT) attached to each LP takes care for the
propagation of effects causal to events to be simulated by remote LPs, and the proper inclusion of causal
effects to the local simulation as produced by remote LPs. The main mechanism for this is the sending,
receiving and processing of (event-)messages piggybacked with copies of the senders LVT at the sending
instant. As depicted in Figure 2, CI has two components, the input interface (IT) accepts messages from
remote LPs, while the output interface (OI) takes care of the distribution of messages concerning remote
LPs. The simulation engine (SE) itself keeps and maintains the local state variables .S, LVT and EVL.

from other LPs
Input Interface Output Interface toother LPs
GVT LvT GVT LVT
\ B + o+ ' | ' v - 2 /
\ S 5~ eel ee3 ee5 ee2 eel eed eel ee6 eel S /
7 % @9 3 4 4 6 9 3 4 6 7 9 -
' 8 (§ + \

_ o+ o+ o+ o+ + o+ o+ o+ _ '
‘
B 1Q oQ oB \

Simulation Engine

LvT @ s EVL jel 8 —>ie7 8 > ie2 9 >e59°¢

State History Iy wr
SS0 1 1 1 2 2 3 4 4 4 5 5 6

GVT@ SO SI S2 S3 S4 S5 S6 ST S8 S9 SIOSILSI2

VYV Y Yy oy

EVL EVL EVL EVL EVL EVL EVL

L e e
Simulation Model

Fig. 2. Architecture of Logical Process Executing the Time Warp Protocol

A locally induced mechanism for causality preservation across LPs called rollback is employed to take
care of proper synchronization of LPs with respect to timestamps of events as carried by messages. If an
external event arrives out of chronological order (i.e. having a timestamp less than LVT, straggler message),
then the Time Warp scheme rolls back to the most recently saved state in the simulation history consistent
with the time stamp of the arriving external event, and restarts simulation from that state on as a matter
of causality violation correction. Rollback therefore requires a record of the LP’s history with respect to the
simulation of internal and external events. To keep sufficient internal state information the implementation
of a state stack SS which allows for restoring a past state is appropriate. The messages sent and received can
be administrated in an input queue 1Q and an output queue OQ respectively. For reasons to be seen, this
logging of the LP’s communication history must be done in chronological order. Since the arrival of event
messages in increasing time stamp order cannot be guaranteed, two different kinds of messages are necessary
to implement the synchronization protocol: first the usual external event messages (m* = (ee@t, +)), (where
ee is the external event and ¢ is its timestamp) which we will subsequently call positive messages. Opposed
to that are messages of type (m~ = (ee@t, —)) called negative- or antimessages, which in case of rollback are
transmitted among LPs as a request to annihilate the prematurely sent positive message containing ee, for
which it meanwhile turned out that it was computed based on a causally erroneous state. In our example in
Figure 2, the message (ee2@6, —) residing in the LP’s IB is supposed to annihilate the dual positive message
(e€2@6, +) previously received and stored in the 1Q.

The Time Warp protocol in every LP mainly loops over four algorithm parts: (7) an input-synchronization
part that percepts messages from other LPs, (ii) a local event processing part that simulates event occur-
rences, (i7i) the propagation of external effects via the sending of locally generated messages, and (iv) the
(global) confirmation of locally simulated events, i.e. the verification for each event whether it can become
the subject of a future rollback or not. To assure from which state in the history (and back) computations
can be considered fully committed, the determination of the value of global virtual time (GVT) is necessary,
which is the minimum over all LVTs and all timestamps of messages currently in transit. With the knowl-
edge of GVT, a procedure called fossil collection can return memory space used by history records that
will no longer be used by the rollback synchronization mechanism. The Time Warp protocol terminates the
execution of all LPs once GVT has reached a predefined simulation endtime.

2.3 Time Warp Performance

Due to an overwhelming degree of interweaving factors influencing the performance of the Time Warp
protocol, a general statement about its performance behavior cannot be formulated [14]. A few of those
factors are:

Event Structure of Simulation Model Certainly, overall performance is determined by the amount of
model parallelism inherent to simulation model. Specifically, the rollback mechanism is known to be
prone to inefficient behavior in situations where event occurrences are highly dispersed in space and
time. Such “imbalanced” simulation models can yield recursive rollback invocations over long cascades
of LPs which will eventually terminate. An excessive amount of local and remote state restorations is the
consequence of the annihilation requests for effects that have been diffused widely in space and too far
ahead in simulated time, consuming considerable amounts of computational, memory and communication
resources while not contributing to the simulation as such. This pathological behavior is referred to as
rollback thrashing, and is influenced by the simulation model.

Partitioning Dividing the global simulation task into subtask therefore is crucial for avoiding the possi-
bilities of rollback thrashing. If partitioning can be done such that the average LVT progression as seen
across all LPs is about the same, this effect can be widely avoided. But also other methods like controlling
the amount of available memory or the optimism by artificially throttling LVT progression can achieve
the same result for such “imbalanced” partitionings.

Hardware Performance The processor speed on the individual nodes executing the various LPs con-
tributes to the overall Time Warp performance. But neither can high processor speed, nor large amounts

of memory, nor low communication latency guarantee good performance. Time Warp can potentially
perform better on “slow” processor than on fast ones if the communication-computation speed ratio of
the platform fits better to the event structure induced by the partitioning. High memory cycle time on
the other hand can considerably accelerate the rollback procedure, but again this does not necessarily
need to contribute to an overall acceleration, since an early annihilation message sendout could induce
substantially more rollbacks than a more conservative policy.

Protocol Optimizations A variety of amendments and optimization to the standard Time Warp protocol
have been proposed in the literature [10], mostly intending to reduce rollback overhead. But even for
the aggressive and the lazy cancellation strategy (the former sends out antimessages immediately after
receiving a straggler, while the latter waits whether recomputation after rollback does not generate the
same output messages again and thereby potentially gains form a local message annihilation) it was
proven [24] that depending on the event structure one can arbitrarily outperform the other.

Implementation Optimizations Experiences with implementing Time Warp on shared [7, 4] or dis-
tributed memory machines [5] revealed that the protocol can gain considerably if nonstandard techniques
are used for implementing memory management, event list manipulation, and interrupt based handling
of messages [6]. “Tricky” implementations of fossil collection and GVT algorithms can have a significant
performance influence.

The diverse set of factors contributing to the Time Warp performance makes an optimal implementation
of the protocol for a particular platform problematic. Implementation design considerations that lead to good
Time Warp performance for a class of simulation models that the user is interested in and for a machine
environment that the user has access to require an early evaluation to avoid the development of a large,
poorly performing Time Warp code. Is it possible, to follow a performance engineering methodology for
irregular, unbalanced, and unstructured computations such as Time Warp? If so, one might be interested in
whether

(7) Time Warp can accelerate the execution of particular simulation models, given an implementation on a
dedicated platform. In our case we are interested in evaluating simulation models that evaluate perfor-
mance behavior of data parallel computations and cluster based parallel systems.

(73) Given the simulation model (e.g. of a HPF program), one might ot target a particular type of machine,
where it is most promising to have Time Warp implemented as the parallel simulation engine.

Below, we show how N-MAP has been used to conduct a performance engineering study of Time Warp,
avoiding a full, cuambersome implementation of the protocol for evaluation.

2.4 Time Warp Task Structure

The verbal description of the Time Warp protocol lets us directly provide an implementation prototype.
Figure 3 shows the tss, defining a set of virtual processors LP(i) with indices assigned by the selector
where {i=0:MAXP-1;}, that execute tasks declared separately (taskdeclarations.h). Task requirement
specifications (trs) can be edited via the N-MAP task attribute panel. In Figure 4 for example we set the
requirements for the task fossil_collection() to a variate distributed according to N (340, 10?%) truncated
between 200 and 500. For a better interpretation of performance data and readability of traces, N-MAP
provides the possibility of grouping task into sets (fossil_collection() is in the task group 0 as indicated
by < 0 > in the header of the panel (Figure 4). For the Time Warp tss we have chosen the task grouping
in Figure 5.

With the tss given in Figure 3, N-MAP would already be able to generate a simulated execution of
the Time Warp protocol, using the default settings for task timing. In order to generate more meaning-
ful performance predictions we would, however, have to add requirements reflecting the relative resource
consumptions caused by task executions. For example, while the test ts_less_than_LVT() requires just a
negligible amount CPU cycles, other tasks like fossil_collection() can be rather CPU time consuming.

/* Task Structure Specification */

1 #include "datadeclarations.h"

2 #include '"taskdeclarations.h"

3 process LP(i) where {i=0:MAXP-1;}

4 A

5 GVT=0.0; LVT=0.0; EVL=NULL; S=initialstate();

6 while(ie=next_ie()) chronological_insert(ie, ts(ie), ’+’, EVL);
7 while (GVT <= endtime) {

8 while (m=next_IB()) {

9 if (ts_less_than_LVT(m)){

10 if ((positive_and_not_dual_in_IQ(m)) ||

11 (negative_and_dual_in_IQ(m))) {

12 restore_ecarliest_state_before(ts(m));

13 generate_and_sendout_ant imessages (ts(m)) ;
14 LVT=earliest_state_timestamp_before(ts(m));
15 }

16 }

17 if (dual_in_IQ(m)) remove_dual_from_IQ(m);

18 else chronological_insert(m, ts(m), sign(m), IQ);
19 }
20 if (first_EVL_less_than_first_IQ()) e = remove_first(EVL);
21 else e = remove_first_nonnegative(IQ);
22 LVT = ts(e);
23 S = modified_by_occurrence_of (e);
24 while(ie=next_ie()) chronological_insert(ie, ts(ie), ’+’, EVL);
25 while(ie=next_preempted_ie()) remove_event (ie, EVL);
26 log_new_state(LVT, S, EVL, SS);

27 while (ee=next_ee()) {

28 deposit(ee, ts(ee), ’+’, 0B);

29 chronological_insert(ee, ts(ee), ’+’, 0Q);

30 }

31 send_out_contents (0OB) ;

32 GVT = advance_GVT();

33 fossil_collection(GVT);

34 }

35 %

Fig. 3. The Task Structure Specification for the Time Warp Protocol

fﬂ Attribute Panel (fossil_collection <0>)

TN(W) | |

LN ETERT 0 minf200 maxf500 |

| Copy | Show | Paste | Import | Export | TRS | TBS || M Trace | W TBS | Ok | close ||

Fig. 4. Task Attribute Panel: Editing Requirements for the Fossil-Collection Task

fﬂ Task List

Select Tasks Selection Deselect
_Select | Deselect |

[;
«0% advance GVT Al 2> generate and sendout _antimessages |4
<0 chronological insert “<2» restore earliest_state before

<0» clean up

<0> deposit

«0» dual_in_IQ

“0x earliest_state timestamp before
“0x first_EVL_less_than first_IQ
<0> fossil_oollecticon

<0> get_time first

0> initialstate

“0x log _new state

0> modified by occourrence of
<0> negative_and dual_in_ IQ

<0> next_se

“0» next_ie

“0» next_preempted ie

<0 positive_and not_dual_in Ig
<0 remove_dual from IQ

«0> remove_event

“0x remove first

<0 remove first nonnegative
<0> ts_less_than IVT

<l» next_IEB

“l» send_out_contents

&~

Search I vy

Hew | Clone | Delete Sort Panel Edit Group Close

Fig. 5. Task Grouping

Another observation about the requirement specifications is that some tasks would cause the same re-
quirements irrespective of the state of the simulation (e.g. removing the first element from a list like in
remove_first()), while others would entail state dependent requirements (e.g. like inserting an element in
an ordered list like in chronological_insert (), which depends on the current list length). A major feature
of the N-MAP simulation engine is the possibility of handling state dependent requirement specifications,
which makes it superior over model based performance predictions not providing this option. As an example,
suppose the cost for inserting an element in an ordered list is given by the seeking cost (logarithmic in the
list length) and the insertion cost (constant). In this case the trs and tbs for chronological_insert()
would be written as shown in Figure 6. Here the tbs of chronological_insert() is used to increment list
element counters for the EVL, IQ, 0Q, IB and 0B (which are subject to insertion calls), such that the trs for
REQ_chronological_insert() could then use the actual count values to return state dependent require-
ments. (Element counters would be decremented in the tbs of remove_dual_from_IQ(), remove_first(),
etc.) Another option is to provide probabilistic requirement specifications. The test whether an arriving mes-
sage is a straggler (ts_less_than_LVT()) depends on the timestamp of the message as compared to the
local value of LVT. In an early development phase where no explicit implementation of LVT progression is
available, one might at least conduct a “what-if” analysis by providing an explicit rollback probability like:

int ts_less_than_LVT(); {return (drand48() < 0.25);}.

Here, the number of new events generated by modified_by_occurrence_of () could be described by a
random variate drawn from an arbitrary theoretical or empirical distribution.

Task Behavior Specification

Task Requirement Specification

void chronological_insert

(event, time, sign, list)
struct Event *event; float time;
char sign; struct Event *list;
{ switch (list)

void REQ_chronological_insert (event, time, sign, list)
struct Event *event; float time;
char sign; struct Event *list;

{ switch (list)

{ case EVL: { case EVL:
EVL_cnt++; break; return log2(EVL_cnt)*REQ_seek+REQ_insert; break;
case IQ: case 1IQ:

IQ_cnt++; break; return log2(IQ_cnt)*REQ_seek+REQ_insert; break;

Fig. 6. State dependent requirement specifications

3 Scenarios and Performance Sensitivity Analysis

N-MAP provides the concept of mutable characterization parameters (“mutables”, for short) as a means for
scenario control (Figure 7). For the N-MAP parser and code generator, a mutable appears as a symbolic
name, and therefore does not necessarily need to represent a program constant, but can be a parameterized
function call as well. To ease the use of mutables, their values (or symbolic instancies) are varied by the
scenario manager automatically, once the user provides certain parameter ranges and stepping frequencies. A
specific setting of mutables is called a case, a set of cases (automatically generated as the cartesian product
over all mutable settings, or composed by hand) is called a scenario (Figure 1). The user can arbitrarily define
N-MAP simulation output parameters called responses, i.e. the performance metrics of interest. Provided
with a scenario, N-MAP iterates over all the contained cases (Figure 1) and produces performance predictions
in a systematic way. Figure 8 shows how the user can compose a case by selecting mutables and ranges of
their instancies, as well as responses to set up a scenario as a collection of cases.

Mutables Symbolic Instancies Parallel Application: Time Warp Responses
Parameter Fields ‘ ‘

Model _Paral lelism <4> <8> <16>, <32> ... —_— —_ % Simulation

Event _Grain_Si ze <nor mal (nmu, sigma)> [(1.0,0.316), (10.0, 1.0) ...]=——p N-MAP —_— % Communication

LVT_pr ogr essi on <exponenti al (1 anbda)> [(1.0), (0.50), (0.25) ...]—p Scenario Management —> % Rollback

Fanout <equal _prob_dest (0, NVP- 1, Myl D) > —_— —_— % Waiting

t t

System Requirement Files

Fig. 7. Scenario Management: Mutables and Responses

3.1 Characterizations for Time Warp

For a performance sensitivity analysis of Time Warp, in addition to the “algorithmic idea” as developed in
the tss above, we have to provide a characterization of the program input which in our case is the simulation
model executed by the Time Warp protocol, as well as a characterization of the ezecution environment (see
Figure 1). From prior work [12], we used the characterization of two execution environments: the CM-5

T | Scenario Editor b
Mutable Case Response
MODEL_PZRATLELISM <1> 4 [5] c.0.0.0.0 ; Simulaticn 0.0 3

EVENT _GRAIN_SIZE <l1= 100 S, 00,1 Rollbkack 0.0
LVT_ PEOGEEBSSEION <l1= 1.C c.0.0.0.2 Simulaticn 0.0
FANOUT <1>= 1 c.0.0.0.3 Waiting 0.0
c.0.0.1.0
c.0.0.1.1
S0, 0.1 .2
/| pd Fd
Hudd | Edit | Delete | Delete |Generate| Sort Hudd | Edit | Delete |
Repurt' Save | Load | Close |
|

Fig. 8. The N-MAP Scenario Manager

being programmed using CMMD message passing calls, and a cluster of RS6000 workstations with Token
Ring interconnect and PVM 3.2. The respective system requirements files cm5.r and rs6k.r for those two
environments are used in the sequel of this study.

To support a program input characterization at the level of events to be simulated by Time Warp, tasks
in the tss (Figure 3) that cause modifications of LVT and GVT have been assigned tbs’s that actually
do handle timestamp manipulations based on values of the mutable LVT_Progression. For example, if
the occurrence of the event e as simulated by statement 23 in Figure 3 causes the scheduling of a new
event, then the tbs of modified_by_occurrence_of () inserts a newly created event in EVL with the
increment ev->1vt = LVT+LVT_progression. The following mutables were defined for a characterization of
the simulation model to be executed by the Time Warp protocol (Figure 7):

— Model_Parallelism to control for every LP(i) the amount of events initially scheduled in the local EVL
(encoded in the tbs of task initialstate()).In an abstract sense, Model_Parallelism represents the
number of objects initially assigned to one LP, but subject to migration to other LPs.

— Event_Grain_Size to control the amount of CPU consumption for the execution of a single event (object)
(encoded in the tbs of task modified_by_occurrence_of ()).

— LVT_Progression to control the amount of LVT increment imposed by an event scheduled in EVL
(encoded in the tbs of task modified_by_occurrence_of ()).

— Fanout to control the selection of a target LP for which an output message is generated (object migration)
(encoded in the tbs of task modified_by_occurrence_of ()).

As N-MAP simulation output parameters (responses), we have chosen the percentages of CPU time
expected to be used for executing tasks as grouped in Figure 5, i.e. simulation, communication, rollback
and waiting. Any other performance characteristic like absolute number of messages generated, speedup,
processor utilization, etc. could have been used, but our main goal was to study the sensitivity of Time Warp
to certain simulation model characteristics and target platform performance.

3.2 Early Behavior Predictions

Using the mutables defined above, N-MAP can generate simulated execution behaviors from the code skeleton
in Figure 3. As an example, for the case:

Model_Parallelism = 4;
Event_Grain_Size = (normal(10.0,1.0));
LVT_Progression = (exponential(1.0/8.0));

Fanout (equal_prob_dest(0,NVP-1,coMyID));

] Spacetime Diagram] Task Gantt Chart
SPACETIME DIAGRAM TASE GANTT CHART

I R T
T =T L .
T 5 VLY

T

T el T AT
T M;)ﬁ #5#]% IFAVT
IRTAN L
TYIu o

AMmICTZ MowwmoomT

@
AMmICcCzZ monumoomT

Fig. 9. Predicted Time Warp Execution Behavior for CM-5

i.e. 4 objects scheduled initially scheduled in every LP, a (truncated) normally distributed event grain size
of N(10.0,1.0) psecs, an exponentially distributed LVT increment of eazp(%) per executed event and an
equally distributed destination selection probability for migrating objects, N-MAP predicted the execution
behavior for a 32 processor CM-5 as depicted in Figure 9 (0 simulation, 1 communication, 2 waiting for
messages). The displays clearly indicate the lack of any structure in the communication pattern (left), as
well as the irregularities in computations and the imbalance occasionally induced due to waiting for messages
(right). Point-predictions (evaluations for a single case) like this can help when reasoning about Time Warp
performance on a particular simulation model and a particular target platform. In general, however, one would
be interested in how sensitive the parallel application is to the variation of one or more of the mutables before
a full implementation of the application is undertaken. Setting up N-MAP scenarios would be the method
of choice in this case (Figure 7).

Scenario 1: Model Parallelism and LVT Imbalance In a first performance scenario, we investigate in
the impact of different LVT progressions in the various LPs. Specifically we are interested in the rollback
thrashing effect described in Section 2.3, and its relation to the model parallelism on a target system with
relatively high communication performance (CM-5). To make effects more transparent, we only consider the
response of two LPs. Suppose also that due to the simulation model one LP increments LVT in larger steps
than the other (think of two interacting objects, one with high, the other with low response time). The
scenario set-up is as follows:

Scenario 1: Model Parallelism and LVT Imbalance
Mutable Symbolic Instance Parameters
Model Parallelism |MP MP =4, 8, 12, 16, 20, 24
Event _Grain_Size normal (mu,sigma) (u,0) = (10.0,2.0)
LVT progression LPO|exponential (lambda) A=1
LVT progression LP1|exponential (lambda) A=1, %, %, %, 11—6
Fanout equal _prob_dest(0,NVP-1,MyID) |NVP =2

The responses for Scenario 1 are depicted in Figure 10. We observe that at an Event_Grain_Size of
10 psec the LPs cannot utilize more than about 75 % of the overall execution time for doing ‘real’ simulation
work (i.e., simulation work that would also have to be executed on a sequential simulator). With the same
argument, given that a simulation model employs events that have an average CPU requirement of about
10 psec, a Time Warp simulation of that model running on only 2 processors would already accelerate the
sequential execution by a factor of 1.5. The more the overall simulation system becomes imbalanced (e.g.,
LP1 progressing LVT 16 times (1/A) as fast than LPO0), the more the data structures become loaded in
LP1, causing a shift of workload from LP0 to LP1 (a similar phenomenon has been observed in [11] on the

iPSC/860). On the other hand, LP0O becomes increasingly depleted, and starts wasting CPU-cycles due to
message waiting. This is clearly seen in the “% Waiting” response for LP0, but also the one for LP1 vanishes
in cases of slight imbalance. Counterintuitively, model parallelism (at least for this event grain size) does
not have that much influence. However, it is interesting that with increasing load in LP1 the percentage of
CPU time for executing rollbacks at high model parallelism becomes smaller than the one for low model
parallelism. This is due to the fact that at a higher object (message) population in the system, communication

load starts dominating rollback load at some point of imbalance (here between A = % and A = %)

Senario 2: Event Grain Size, CM-5 vs. RS6000 Cluster The second scenario is devoted to address
the questions raised in Section 2.3 on issues of simulation model and execution platforms combinations. For a
simulation model with stationary LVT increments, we investigate the impact of average CPU time consumed
per executed event, related to an increasing number of processors and model parallelism. Predictions for a
CM-5 are related to the ones for an RS6000 workstation cluster:

Scenario 2: Event Grain Size, CM-5 vs. RS6000 Cluster
Mutable Symbolic Instance Parameters
Model Parallelism |MP MP = 4 (each LP)
Event Grain Size |normal(mu,sigma) (u,0) = (1.0, \/(0.1)), (10.0, \/(_1.0))7
(100.0, \/(10.0)), ..+, (10000.0, \/(_1000.0))
LVT progression LP|exponential (lambda) A= %
Fanout equal_prob_dest(O,NVP—l,MyID)|NVP =2,4,8, 16, 32, 64, 128

Looking at the responses for Scenario 2 (Figure 11) tells that the RS6000 cluster is not a promising target
platform for Time Warp in conjunction with simulation models that have small grain size. Simulation models
with event executions of at least 1000 psec of CPU demand are required in order to obtain speedup over
a sequential simulation. Clearly, this is due to the comparably high communication latencies on the Token
Ring. A CM-5 implementation of Time Warp, however, is promising also for simulation models with far
smaller event grain size, and it appears that this platform reacts more sensitive to low grain workloads if
the number of processors involved is increased. Indeed we find the best relative performance if just a few
processors are used (e.g. NVP=2), since contention on the CM-5’s data network can be kept small. This effect
vanishes, however, the higher the event grain size becomes: less frequent messages reduce contention (and by
that communication overhead) in a natural way. On the RS6000 cluster, for small event grain sizes, blocking
of LPs frequently occurs since messages are longer in transit than the simulation of the corresponding events
takes in terms of CPU time (“% Waiting”).

4 Conclusions

Traditionally, performance engineering approaches for parallel software development have focussed on ap-
plications that behave in predictable ways. That is, the applications have enough structure in problem
decomposition, regularity in execution behavior and balance in computational load that assumptions about
deterministic operational characteristics and static execution environments do not disqualify the performance
evaluation obtained from parallel prediction models. For irregular, unstructured and unbalanced problems,
full code implementation is often the only available alternative to determine the performance consequences
of algorithm design choices.

Here, we have demonstrated a performance engineering methodology for this class of problems that
merges a performance-oriented parallel software design system, N-MAP, with a systematic approach to
scenario management and sensitivity analysis. As a tool, N-MAP accepts program descriptions at the task
structure level (task structure specifications) as input. Parametrized with quantitative workload parameters
and target specific performance characteristics, the specifications are parsed and translated into a thread
based virtual processor parallel program, the execution of which on-the-fly generates execution statistics, or

model parallelism = 4
8

12 -

16
20
24

04 L . :
@-@) D)-(112) (1)-(1/4) (2)-(1/8) (1)-(1/16)
Degree of Imbalance
% Communication: LPO
03 T T
model parallelism = 4 -o—

8 —+-
12 -8-
16 -

0.25 - 20 - -
24 %~

0.05 - 4
0 I .)
Om -2 W-am -we) -w1e)
Degree of Imbalance
% Rollback: LPO
0.2 . .
model parallelism = 4 ~—
8 -+
12 -8-

16
20
24

.
D)-(112)

(1)-(1/4)
Degree of Imbalance

9% Waiting: LPO
T

(2)-(1/8)

(1)-(1/16)

03 [

01

0.05 [

T
model parallelism = 4
8

0
@-@)

Fig. 10. Responses for Scenario 1: Model Parallelism, LVT imbalance,

a2

(1)-(1/4)
Degree of Imbalance

()

(1)-(1/16)

model parallelism = 4 ——
8 +

04 L . :
@-@) D)-(112) (1)-(1/4) (2)-(1/8) (1)-(1/16)
Degree of Imbalance
% Communication: LP1
03 T T
model parallelism = 4 -o—

8 —+-
12 -8-
16 %

0.25 - 20 - -
24 %~

0.05 - 4
0 I .)
Om -2 W-am -we) -w16)
Degree of Imbalance
% Rollback: LP1
0.2 . .
model parallelism = 4 ~—
8 -+
12 -8-

16
20
24

0 1 1 1
@-@) D)-(112) (1)-(1/4) (2)-(1/8) (1)-(1/16)
Degree of Imbalance
% Waiting: LP1
05 T T
model parallelism = 4 -o—
8 —+-
0.45 12 g
16 -
20 -&-
04 24 %~ o
0.35 [B
03 [B
0.25 [B
02 [B
0.15 |- B
01 B
0.05 [B
0 & " &
@-@) D)-(112) (1)-(1/4) (2)-(1/8) (1)-(1/16)
Degree of Imbalance

% Simulation: CM-5 % Simulation: RS6000 Cluster

1 T ps 1 T T
CM-5/CMMB=RO. of Processors = 2 —— RS6000/PVM: No. of Proce: T
= 4 - -
: 8 -o- 8 -o-
16 % 16 -
32 - 32 -&-
08 64 % 64 %~
128 o 128 o
0.6 g g
04 R]
02 g g
0 . . . 0 . . .
1 10 100 1000 10000 1 10 100 1000 10000
Event Grain Size Event Grain Size
9% Communication: CM-5 9% Communication: RS6000 Cluster
0.7 T T 0.7 T T
CM-5/CMMD: No. of Processors =2 -— RS6000/PVM: No. of Processors = 2 ——
- 4+
8 -o- 8 -o-
06 16 - 16 -
32 &~ 32 -
64 %~ 64 %~
128 -0 128 -0
05 g g
04 g 04 g
¢
03¢ g 03 s g
g 02 g
g 01t g
0 . . 0 . . .
1 10 1000 10000 1 10 1000 10000

100 100
Event Grain Size Event Grain Size

Fig. 11. Responses for Scenario 2: Event Grain Size, CM-5 vs. RS6000 Cluster

traces from which all relevant program performance characteristics can be deduced in a subsequent analysis.
After a selection of mutable (input) parameters, N-MAP automatically manages the construction of scenarios
and visually reports back performance sensitivities on the response parameters of interest.

This methodology, captured in the N-MAP system, was tested on the Time Warp parallel and distributed
discrete event simulation protocol, which has resisted a general performance characterization in the past be-
cause of its strong interdependence between multiple performance factors. As Time Warp stresses the ability
of performance prediction for irregular, unstructured and unbalanced computation, the results produced are
quite encouraging. The task structure specification of the Time Warp protocol is significantly less than what
would be required of a fully operational implementation. Nevertheless, the N-MAP predictions for the dif-
ferent scenarios described were able to reveal certain performance sensitivities that would be important for
parallel simulation application developers to know, as they relate to issues of appropriate simulation model
partitioning (Scenario 1), preferred execution architecture, and potential gains of a parallel simulation for
certain simulation models (Scenario 2). The prediction quality of the N-MAP scenarios shown in this work
finds a solid empirical validation in our full Time Warp implementations [6].

References

1. G. Agrawal, A. Sussman, and J. Saltz. Efficient Runtime Support for Parallelizing Block Structured Applications.
In Proc. of the Scalable High Performance Computing Conference, pages 158 — 167. [EEE CS Press, 1994.

2. P. Brinch Hansen. Householder Reduction of Linear Equations. ACM Computing Surveys, 24(2):185 — 194, 1992.

M. Calzarossa and G. Serazzi. Workload Characterization: A Survey. In Proceedings of the IEEFE, 1993.

4. Ch. D. Carothers, R. M. Fujimoto, and P. England. Effect of Communication Overheads on Time Warp Perfor-
mance: An Experimental Study. In D. K. Arvind, Rajive Bagrodia, and Jason Yi-Bing Lin, editors, Proceedings

i

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

of the 8th Workshop on Parallel and Distributed Simulation (PADS ’94), pages 118-125, July 1994.

. G. Chiola and A. Ferscha. Distributed Simulation of Petri Nets. IFEF Parallel and Distributed Technology,

1(3):33 — 50, August 1993.

. G. Chiola and A. Ferscha. Performance Comparable Design of Efficient Synchronization Protocols for Distributed

Simulation. In Proc. of MASCOTS’ 95, pages 343 — 348. IEEE Computer Society Press, 1995.

S. Das, R. Fujimoto, K. Panesar, D. Allison, and M. Hybinette. GTW: A Time Warp System for Shared Memory
Multiprocessors. In J. D. Tew and S. Manivannan, editors, Proceedings of the 1994 Winter Simulation Conference,
1994. to appear.

. T. Fahringer and H.P. Zima. A Static Parameter based Performance Prediction Tool for Parallel Program. In

Proc. 19983 ACM Int. Conf. on Supercomputing, July 1993, Tokyo, Japan, 1993.

A. Ferscha. A Petri Net Approach for Performance Oriented Parallel Program Design. Journal of Parallel and
Distributed Computing, 15(3):188 — 206, July 1992.

A. Ferscha. Parallel and Distributed Simulation of Discrete Event Systems. In A. Y. Zomaya, editor, Parallel
and Distributed Computing Handbook. McGraw-Hill, 1995.

A. Ferscha and G. Chiola. Accelerating the Evaluation of Parallel Program Performance Models using Distributed
Simulation. In Proc. of. the 7" Int. Conf. on Modelling Techniques and Tools for Computer Performance
FEvaluation., Lecture Notes in Computer Science, pages 231-252. Springer Verlag, 1994.

A. Ferscha and J. Johnson. Performance Oriented Development of SPMD Programs Based on Task Structure
Specifications. In B. Buchberger and J. Volkert, editors, Parallel Processing: CONPAR94-VAPP VI LNCS 854,
pages 51-65. Springer Verlag, 1994.

A. Ferscha and J. Johnson. N-MAP: A Virtual Processor Discrete Event Simulation Tool for Performance Predici-
tion in CAPSE. In Proceedings of the HICCS28. IEEE Computer Society Press, 1995. to appear.

R. M. Fujimoto. Performance of Time Warp under Sythetic Workloads. In D. Nicol, editor, Proc. of the SCS
Multiconf. on Distributed Simulation, pages 23 — 28, 1990.

G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A users’ guide to PICL: a portable instrumented
communication library. Technical Report ORNL/TM-11616, Oak Ridge National Laboratory, August 1990.

M. T. Heath and J. A. Etheridge. Visualizing Performance of Parallel Programs. Technical Report ORNL/TM-
11813, Oak Ridge National Laboratory, May 1991.

Y-S. Hwang, B. Moon, Sh. Sharma, R. Das, and J. Saltz. Runtime Support to Parallelize Adaptive Irregular
Programs. In L. L. Dongarra and B. Tourancheau, editors, Proc. of the 2" Workshop on Environments and
Tools for Parallel Scientific Computing, pages 19 — 32. STAM, 1994.

D. A. Jefferson. Virtual Time. ACM TOPLAS, 7(3):404-425, July 1985.

I. O. Mahgoub and A. K. Elmagarmid. Performance Analysis of a Generalized Class of m-Level Hierarchical
Multiprocessor Systems. IEEE Transactions on Parallel and Distributed Systems, 3(2):129 — 138, March 1992.
A. D. Malony. Performance Observability. PhD thesis, University of Illinois, Department of Computer Science,
University of Illinois, 1304 W. Springfield Avenue, Urbana, IL. 61801, October 1990.

A. D. Malony, D. A. Reed, and H. A. G. Wijshoff. Performance Measurement Intrusion and Perturbation Anal-
ysis. IEEE Transactions on Parallel and Distributed Systems, 3(4):433 — 450, July 1992.

D. C. Marinescu, J. E. Lumpp, T. L. Casavant, and H. J. Siegel. Models for Monitoring and Debugging Tools
for Parallel and Distributed Software. Journal of Parallel and Distributed Computing, 9:171-184, 1990.

B. P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S.-S. Lim, and T. Torzewski. [PS-2: The Second Gen-
eration of a Parallel Program Measurement System. [IEEFE Transactions on Parallel and Distributed Systems,
1(2):206-217, April 1990.

P. L. Reiher, R. M. Fujimoto, S. Bellenot, and D. Jefferson. Cancellation Strategies in Optimistic Execution
Systems. In Proc. of the SCS Multiconf. on Distributed Simulation Vol. 22 (1), pages 112-121. SCS, January
1990.

J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for Shared Memory. Technical
report, Computer Systems Laboratory, Stanford University, CA 94305, 1993.

