
PERFORMANCE MEASUREMENT AND MODELING OF COMPONENT

APPLICATIONS IN A HIGH PERFORMANCE

COMPUTING ENVIRONMENT

by

NICHOLAS DALE TREBON

A THESIS

Presented to the Department of Computer
and Information Sciences

and the Graduate School of the University of Oregon
in partial fulfillment of the requirements

for the degree of
Master of Science

June 2005



ii

“Performance Measurement and Modeling of Component Applications in a High

Performance Computing Environment,” is a thesis prepared by Nicholas Dale Trebon in

partial fulfillment of the requirements for the Master of Science degree in the Department

of Computer and Information Sciences.  This thesis has been approved and accepted by:

____________________________________________________________
Dr. Allen Malony, Chair of the Examining Committee

_______________________________________
Date

Committee in Charge: Dr. Allen Malony, Chair
Dr. Jaideep Ray
Dr. Sameer Shende

Accepted by:

____________________________________________________________
Dean of the Graduate School



iii

An Abstract of the Thesis of

Nicholas Dale Trebon            for the degree of                    Master of Science

in the Department of Computer and Information Sciences          to be taken        June 2005

Title: PERFORMANCE MEASUREMENT AND MODELING OF COMPONENT

APPLICATIONS IN A HIGH PERFORMANCE COMPUTING

ENVIRONMENT

Approved:  __________________________________________
                                  Dr. Allen Malony 

A parallel component environment places constraints on performance measurement and

modeling.  For instance, it must be possible to observe component operation without

access to the source code.  Furthermore, applications that are composed dynamically at

run time require reusable performance interfaces for component interface monitoring.

This thesis describes a non-intrusive, coarse-grained performance measurement

framework that allows the user to gather performance data through the use of proxies that

conform to these constraints.  From this data, performance models for an individual
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component can be generated, and a performance model for the entire application can be

synthesized.  A validation framework is described, in which simple components with

known performance models are used to validate the measurement and modeling

methodologies included in the framework.  Finally, a case study involving the

measurement and modeling of a real scientific simulation code is also presented.
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I. Introduction

Scientific computing is commonly performed in high performance environments in order

to take advantage of parallelism to solve data-intensive problems.  The application

performance, in this context, is primarily influenced by two aspects: the (effective)

processor speeds of the individual CPUs and the inter-processor communication time.

Optimizing the performance on an individual CPU is often achieved through improving

data locality.  In distributed memory machines (MPPs and SMP clusters), inter-processor

communication is frequently achieved through message passing and often determines the

scalability and load balancing of the application.  Algorithmic solutions, such as

overlapping communication with computation and minimizing global reductions and

barriers, are often employed to reduce these costs.

Performance measurement is typically realized through two techniques: high precision

timers and hardware counters.  Timers enable a user to measure the execution time of a

section of code.  Hardware counters track the behavior of certain hardware aspects, such

as cache misses.  Both of these techniques provide the application developer with insight

into how the program interacts on a given machine.  In a parallel environment, publicly

available tools track the communication performance via metrics such as the size,

frequency, source, destination and time spent exchanging messages between processors

[1 – 3].   As a result of the measured data, it is possible to generate a performance model

for the application that represents the estimated performance for a particular selection of
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problem and platform-specific parameters.  Traditionally, performance measurement and

modeling are generally used in an analysis-and-optimization phase, for example, when

porting a stable code base to a new architecture.  Performance models are also used as a

predictive tool, for instance, in determining scalability [4, 5].

There has been a recent push in the scientific community to define a component-based

software model in High Performance Computing (HPC) environments.  This push is a

direct result of the growing complexity of scientific simulation code and the desire to

increase interdisciplinary collaboration.  This interest led to the formation of the

Common Component Architecture (CCA) Forum [6], a group of researchers affiliated

with various academic institutions and national labs.  The CCA Forum proposed the

Common Component Architecture [7], which is a high performance computing

component model.

Component-based applications introduce several interesting challenges with respect to

performance measurement and modeling.  First, the performance of a component

application is comprised of the performance of the components and the performance of

the interaction between the components.  Additionally, there may exist multiple

implementations of a given component (i.e., components that provide the same

functionality but implement a different algorithm or use a different internal data

structure).  An arbitrary selection of implementations may result in a correct but sub-

optimal component assembly.  As a result, performance measurement and modeling in a
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component environment must provide a way to analyze the performance of a given

component in the context of a complete component assembly.  In addition, in contrast to

traditional monolithic codes, direct instrumentation of the source code may not be

possible in a component environment.  The component user will frequently not be the

author of the component and may not have access to the source code.  These additional

constraints highlight the need for a non-intrusive, coarse-grained measurement

framework that can measure an application at the component-level.

This thesis describes a non-intrusive, coarse-grained performance measurement

framework that allows the user to instrument a high performance component application

through the use of proxies.  From the measured data, performance models for an

individual component can be generated and a performance model for the entire

application can be synthesized.  In addition, this thesis presents an approach to determine

an approximately optimal component configuration to solve a given problem.  The

remainder of this thesis is organized as follows.  Section II presents a literature survey

that discusses the significance of several related works.  Section III introduces the

Common Component Architecture, which is the high performance software component

model that this work is built upon.   Section IV describes a proxy-based performance

measurement framework that enables instrumentation of CCA applications.  Section V

proposes an approach to identify a nearly optimal component ensemble through the

identification and optimization of core components.  Section VI details a validation

framework for testing the measurement and optimization framework.  A case study of an
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application of the measurement and optimization framework to an actual scientific

simulation code is presented in section VII.  Areas of future work are outlined in section

VIII.  Conclusions are presented in section IX,
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II. Literature Survey

There are numerous projects that are related to various aspects of this research.  This

section describes these projects and their relevance to this work.

A.  Software Component Models

The three most popular commodity software component models are CORBA [8],

COM/DCOM [9] and Enterprise Java Beans [10].  These models are inadequate for the

needs of high performance computing because they lack support for efficient parallel

communication, sufficient data abstractions (e.g., complex numbers or multi-dimensional

arrays) and/or do not provide language interoperability.  Because these commercial

models are developed for serial applications, there is little reason for them to be

concerned with the hardware details and memory hierarchy of the underlying system –

aspects that are critical in HPC.  Another difference is the platforms the non-HPC

component models are geared towards.  Their distributed applications are often executed

over LANs (Local Area Networks) or WANs (Wide Area Networks); HPC applications

are almost exclusively done on tightly coupled clusters of MPPs (Massively Parallel

Processors) or SMPs (Symmetric Multi-Processors).  As a result, inter-processor

communication round-trip times and message latencies are high enough in these

commercial frameworks so as to make them unsuitable for use in HPC applications.
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B.  Component Measurement Frameworks

Despite the shortcomings of the commercial frameworks, these models often utilize

similar approaches in measuring performance.  A proxy-based approach is described for

the Java Beans component model [11].  For each component to be monitored, a proxy is

created to intercept calls and notify a monitor component.  The monitor is responsible for

notifications and selecting the data to present.  The principle objective of this monitoring

framework is to identify hotspots or components that do not scale well in the component

application.

For the CORBA component model, there is the WABASH [12, 13] tool for performance

measurement.  This tool is specifically designed for pre-deployment testing and

monitoring of distributed CORBA systems.  WABASH uses a proxy (which they refer to

as an “interceptor”) to manage incoming and outgoing requests to all components that

provide services (servers).  WABASH also defines a manager component that is

responsible for querying the interceptors for data retrieval and event management.

The Parallel Software Group at the Imperial College of Science in London [14, 15] works

with grid-based component computing.  Their performance measurement proposal is also

proxy-based.  The performance system is designed to select the optimal implementation

of each component based on performance models and available resources.  With n

components, each having Ci implementations, there is a total of               implementations
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to choose from.  The component developer is responsible for submitting a performance

model and performance characteristics of the implementation into a repository.   The

proxies are used to simulate the application and develop a call-path.  Using the call-path

created by the proxies, a recursive composite performance model can be created by

examining each method-call in the call-path.  To ensure an implementation-independent

composite model, variables are used in place of implementation references.  To evaluate

the composite model, implementation performance models may be substituted for the

variables, yielding an estimated execution cost.  The model returning the lowest cost is

selected and an execution plan is built accordingly.

C.  Runtime Optimization

Two projects with similar approaches to runtime automated optimization of codes are

Autopilot [16, 17] and Active Harmony [18].  Both systems require the identification of

performance parameters to a monitoring and tuning infrastructure.  In the case of Active

Harmony, each of these parameters is perturbed during execution and the resulting effect

is recorded.  Active Harmony relies on a simplex algorithm to identify optimal values of

the parameters, whereas Autopilot uses fuzzy logic.  Both of these systems require the

parameter space to be reduced by identifying “bad” regions that the system avoids.

Active Harmony provides an infrastructure that enables libraries to be swapped in order

to identify an optimal implementation.
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D.  CCA Performance Measurement and Monitoring

In CCA related optimization research [19], an extension to the CCA architecture and

Ccaffeine framework is proposed in order to allow for self-managing components.  These

changes include modifying components to support monitoring and control capabilities

and extending the framework to support rule-based management actions. The

infrastructure defines two additional types of components: a component manager and a

composition manager.  The component manager is responsible for intra-component

decisions; the composition manager administers inter-component actions.  The interaction

and behavior of components is expressed in high-level rules, which the system enforces.

Current research at Argonne National Laboratory is also very similar in spirit [20].  The

research proposes a software infrastructure for performance monitoring, performance

data management and adaptive algorithm development for parallel component PDE-

based simulations.  In PDE-based simulations the majority of the computation occurs in

nonlinear and linear solver components.  As a result, these are the two components that

this software infrastructure instruments and monitors.  Similar to the work described in

this paper, TAU [3, 21] is used to instrument the code and performance data is stored in

the PerfDMF [22] database.  The goal of the infrastructure is to use the performance data

and models to help in the generation of multimethod strategies (i.e., the application of

several algorithms in solving a single problem) for solving large sparse linear systems of

equations.  This research also attempts to incorporate a quality of service aspect.

Application characteristics that affect performance, such as convergence rate, parallel
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scalability and accuracy are stored as metadata in a persistent database.  These

characteristics can also be evaluated along with the performance model when a decision

is made.
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III.  The Common Component Architecture

The Common Component Architecture is a set of standards that define a lightweight

component model specifically designed for high performance computing.  Prior to the

CCA, the existing commodity component software models, such as CORBA [8],

Microsoft’s COM/DCOM [9] and Enterprise Java Beans [10], were unsuitable for HPC

for a variety of reasons.  Namely, they were unequipped to handle efficient parallel

communication, did not provide necessary scientific data abstractions (e.g., complex

numbers and multidimensional arrays) and/or offered limited language interoperability.

The Common Component Architecture model is comprised of components that interact

through well defined, standardized interfaces.  Thus, application modification is achieved

through altering a single component or replacing a component with an alternate that

implements the same interface.  This plug-and-play property is one of the driving forces

behind software component models.  The CCA specification is based upon the provides-

uses communication model.  Components provide functionality through the interfaces

they export and use functionalities provided by other components.   The interfaces are

referred to as ports.
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Components are loaded and instantiated in a framework.  The CCA does not provide an

actual framework, but rather, a framework specification.  As a result, there are several

CCA-compliant frameworks available.   For the research presented in this thesis, the

Ccaffeine framework [23], developed at Sandia National Laboratories, is used.  The

Ccaffeine framework utilizes the SCMD (Single Component Multiple Data) parallel

communication model – which is simply the SPMD (Single Program Multiple Data

parallel computation abstraction extended to component software.  In other words, the

component application is replicated on each processor, and each processor executes the

application.

In Figure 1, a simple CCA application is presented.  Instantiated components appear in

the Arena portion of the diagram.  Provides ports appear on the left side of a component;

uses ports are located on the right.  In order to connect a provides and uses port together,

Figure 1:  A simple CCA application wiring diagram.
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they must be of the same type.  The driver component provides an unconnected Go port.

This port’s functionality can be manipulated through the framework to start the

application.
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IV. Performance Measurement Framework

The composite performance of a component application depends upon the performance

of the individual components and the efficiency of their interactions.  The performance of

a given component is meaningless without considering the context in which it is being

used.  This context is defined by three factors: (1) the problem being solved, (2) the input

to a component and (3) the interaction between the caller and callee components.

Imagine a component that has to perform two functions on a large array.  The first

function accesses the array in sequential order and the second utilizes a strided access.

Clearly, the performance of the component depends upon the problem being solved –

which mode of access is being used.  The input to the component also contributes the

component’s overall performance.  In the previous example, the performance for both

modes of access will depend on the size of the array being processed.  Increasing the

amount of work a component has to perform will increase the execution time.  The final

contextual factor relates to the potential for mismatched data types between interacting

components.  In a monolithic code, the entire application is created under common

assumptions and data types.  This is not the case in a component environment.  If a data

transformation is necessary in order for two components to communicate, this conversion

must be taken into account.  Once a context is defined for a component, then there is an

optimal choice of component implementations.
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The execution of most scientific components consists of compute-intensive phases

followed by inter-processor communication calls.  These communication calls may

include synchronization costs, such as a global reduction or barrier.  This thesis makes a

simplifying assumption in order to ease the construction of the performance models.

Namely, it is assumed that all inter-processor communication is blocking.  Thus, there is

no overlap between communication and computation.  This creates a clear distinction

between computation phases and communication phases.  As a result of this assumption,

in order to generate a performance model for a component, the following is needed (for

each invocation of a component’s method that is exported as a Provides Port):

1. The execution time.
2. The time spent in inter-processor communication.  This can be determined by

calculating the total inclusive time spent in all MPI calls that originate from
inside the method invocation.

3. The computation time, which is calculated as the difference between the two
values above.

4. The input parameters that affect performance.  Often, these parameters will
include the size of the data being operated on (e.g., size of an array) and/or a
measure of some repetitive operation (e.g., the number of times a smoother
may be applied in a multi-grid solution).

The first three requirements are readily available through publicly available tools, such as

the Tuning and Analysis Utilities Toolkit (TAU) [3, 21].  The fourth requirement requires

an understanding of the algorithm that a particular component implements.

As mentioned previously, component environments introduce new challenges in

performance measurement.  First, the application developer may not have access to the

source code of the component, which necessitates a non-intrusive measurement

framework.  Second, the application developer is interested in how a component performs
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in a given context.  From an optimization viewpoint, the application developer is

interested in selecting the best set of implementations to solve a given problem, rather

than improving the performance of given component.  Because of this, the application

developer will be interested in a coarse-grained performance of a component at the

method-level.  Based upon related work [11 - 15], a proxy-based measurement

framework provides an ideal infrastructure that fulfills both requirements.  This proxy-

based system is described in detail below.

The measurement framework consists of three distinct component types that work

together to measure, compile and report the performance data for a component

application.   The three types are: (1) the set of proxy components, (2) a measurement

component and (3) a manager component.  Each type is discussed in turn.

A. Proxy Components

A proxy component is a lightweight component that is logically placed in front of the

component to be measured.  The proxy’s primary task is to intercept each method

invocation to the actual component and forward the call.  By trapping the invocation, the

performance of the method call may be monitored.  In the CCA environment, the proxy

will provide (and use) the same ports that the component-to-be-instrumented provides.

The relationship between a component and a proxy is depicted in Figure 2.  In this

example, component C has two provides ports, a and b, which are located on the left side
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of the component.   Uses ports are

located on the right side of the

component and are distinguished with

an apostrophe (“’”).

Due to the proxy’s lightweight nature and predictable construction, a tool has been

developed that can automatically

create proxies to instrument a CCA

application.  The tool is based upon

the Program Database Toolkit [24],

which enables analysis and

processing of C++ source code.

Originally, proxies were created on a

component-by-component basis.  If

a component provided multiple ports with methods to be monitored, a proxy was created

by hand that would monitor all the ports.  The proxy generator, on the other hand, creates

a proxy for a single port.  For a component providing multiple ports, multiple proxies

would be created.  Figure 3 illustrates the configuration if the proxy generator is used to

instrument component C from before.

Figure 2:  Component instrumented by a single
proxy placed "in front" that intercepts and
forwards all method calls to component C.

Figure 3:  Component instrumented by multiple
proxies (i.e., one proxy per provides port).
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B. Measurement Component

The second component type in the measurement infrastructure is the type that is

responsible for timer creation and management, as well as interaction with the system’s

hardware.  This is achieved through the TAU component [25], which serves as a wrapper

to the TAU measurement library [3, 21].  TAU supports both profiling (recording

aggregate values of performance metrics) and tracing measurement options.  The TAU

component implements a MeasurementPort, which defines an interface for timing,

event management, timer control, memory tracking and measurement query.  The timing

interface allows for timer creation, naming, starting, stopping and grouping.  The event

interface allows the component to track application and runtime system level atomic

events.  For each event, the minimum, maximum, average, standard deviation and

number of occurrences are recorded.  In order to interact with processor-specific

hardware counters and high-performance timers, TAU relies on an external library, such

as the Performance Application Programming Interface [1] or the Performance Counter

Library [2].  The timer control interface allows groups of timers to be enabled or disabled

at runtime.  For example, TAU can be configured to instrument MPI routines through the

MPI Profiling Interface.  The MPI routines are automatically grouped together and the

timers can be enabled or disabled via a single call.  The query interface allows the

program to access the performance data being measured.  In addition, the TAU library

dumps out summary performance profiles upon program termination.
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C. Manager Component

The Manager, or Mastermind component, is responsible for collecting, storing and

reporting the performance data.  The Mastermind component implements a

MonitorPort, which allows proxies to start and stop monitoring.  For each method of

a given component that is being monitored, a record is created.  This record stores

performance data for the given method on a per invocation basis and is updated at each

successive invocation of the method.  For each invocation, performance data for the

computation phase and communication phase, as well as the input parameters, are

recorded.  Upon program termination, each record dumps their performance data to disk.

Combined, these three component types allow a component application to be non-

intrusively instrumented. In an instrumented application, there is a single instance of the

Mastermind and TAU components and, in most cases, multiple proxy components.  Each

proxy component uses the functionality provided by the Mastermind component to turn

monitoring on and off for a given method.  The automatic proxy generator will

instrument all methods by default, but disabling monitoring is easily accomplished.  The

Mastermind will use the TAU component’s functionality to make the performance

measurements.  Examples of the relationship between the measurement framework

component types are depicted in Figures 4 and 5.  In both figures, component C is being

instrumented.  Figure 4 illustrates using a single proxy component to instrument a

component with multiple provides ports.  Figure 5 demonstrates the configuration using

separate proxies for each provides port of component C – this is the configuration that
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would be constructed in conjunction with the automatic proxy generator. As seen from

this example, the use of the proxy

generator results in an increase of

proxies to be managed by the

application developer.  However,

proxy management is a simple task

and the one-proxy-per-component

methodology simplifies the

complexity of the automatic proxy

generator.

In order to ease the storage and

analysis of the measured data, the

Performance Data Management

Framework [22] was utilized.  This

framework includes a database to

store measurement data, which was

the primary use of the framework for

this study.

Figure 4:  The measurement framework using one
proxy per component.

Figure 5:  The measurement framework using one
proxy per port.
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V. Selection of the Optimal Component Implementation

With the ability to effectively instrument a component application and produce

performance data, empirical performance models for individual components can be

generated through a variety of methods, such as regression analysis.  These component

models can be composed together to create a performance model for the component

application.  This introduces the question of which component implementations will offer

the best performance for a given problem?  Optimizing decisions locally by simply

selecting the component with the best performance characteristics may not necessarily

guarantee an optimal global solution, as the individual component models do not take

into account interaction between components.  This interaction may include such

performance costs as translating input data for mismatched data structures.  An optimal

solution can be realized by evaluating the global performance model for all possible

realizations of the component ensemble.  This section describes an approach for an

approximately optimal global solution.

A typical scientific application may contain as many as 10 to 20 components.  If each

component has three realizations, then there are 310 to 320 total configurations.  The size

of the solution space makes the brute-force approach of enumerating and evaluating all

possible realizations unfeasible.  However, typical scientific component applications

possess solver components that are often responsible for a majority of the application’s



21

work.  Through identification and optimization of these dominant core components, an

approximately optimal solution can be achieved.  By eliminating “insignificant”

components from the optimization phase, the solution space can be reduced to a more

manageable size.  After optimizing the dominant core components, a complete, near

optimal application can be realized through incorporating any implementation of the

insignificant components.  The justification being that even a poor choice of

implementation for an insignificant component will have very little effect on the

application’s overall performance.

In order to identify the core components, the performance measurement framework

described was extended to create a component call-graph during the execution of the

application.  It is important to note that a component implementation may exist in

multiple places in the call-graph, since it may appear in multiple call-paths.  This raises

an interesting point about component implementations that appear in multiple places.

First, an implementation may have an instance in the call-graph that is determined to be

insignificant and another that is deemed to be significant.  It is appropriate to prune off

some instances of a component while leaving others behind.  The justification is that

insignificant instances of an implementation are still insignificant – they do not have a

large impact on the application’s overall performance. More importantly, multiple

instances in the component call-graph may require separate performance models, due to a

change of context since the instance may be interacting with different components.  One

instance may require a data layout transformation, while another instance may not.
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A simple, heuristic-based algorithm is employed to prune insignificant branches from the

call-graph generated from the performance measurement phase.  This approach is

detailed in the algorithm below:

A. Pruning Algorithm

Let CJ represent the set of children of node J.  Let Ti, i ∈ CJ be the inclusive time of child

i of node J. Let J have NJ children, i.e., the order of the finite set CJ is NJ.  When

examining the children of a given node, there are two cases that result in a prune:

1)   The total inclusive time of the children is insignificant compared the

inclusive time of node J i.e., ∑
 ∈

<
JC,

/
ji

ji TT α , where 0 < α < 1.  Thus, the

children that contribute little to the parent node’s performance may be

safely eliminated from further analysis.  For the experiments described in

this paper, α was typically around 0.1.

2)  The total inclusive time of the children is a substantial fraction of node J’s

inclusive time i.e., the children contribute significantly and ∑
 ∈

>
JC,

/
ji

ji TT α .

In this case, the children are analyzed to identify if insignificant siblings

exist.  Let ∑
∈

=
JCji,

j i /NTT  be the average, or representative, inclusive time
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for the elements of CJ.  Eliminate nodes of CJ where β<TTi / .  Thus,

children of J whose contributions are small relative to a representative

figure are eliminated.  Typically, β is chosen to be around 0.1.

In the pruning algorithm, inclusive time is used in the pruning decisions (rather than

exclusive time) to avoid pruning a branch that has an insignificant root, but significant

children.  The call-graph must be kept connected, in order to preserve the context of

interacting components.  The algorithm describes two ways for components to be deemed

insignificant.  First, if the total contribution of the children is less than some specified

threshold, all the children may be safely pruned.  The second heuristic is applied if the

first fails to prune the children.  In this case, each child is examined separately and its

contribution is compared to the average contribution of its siblings.  Pruning decisions are

made based on a parent or sibling’s contribution rather than to the overall application

execution time because the pruner is looking for relative significance and not absolute.

For example, consider a call-graph where the root node has 15 children.  Imagine that all

of the work is accomplished in the children and each child contributes equally (i.e., each

provides 1/15 of the overall execution time).  If the pruner made decisions relative to the

overall execution time (using a threshold of 0.1), all 15 children would be pruned, thus

leaving behind a single node tree.  Instead, with the rules described above, all 15 children

would be kept, as each child would be deemed significant relative to the contributions of

its siblings.
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B.  Example

Consider the pruning algorithm applied to the following example call graph in Figure 6.

The call-graph consists of 6 nodes.  Their

inclusive performance contributions are

indicated by the internal value in each

node.  For the example, threshold values of

0.1 are used for both α and β.  The pruning

algorithm works in a depth-first manner,

beginning at node A.  Children B and C do

contribute significantly, relative to A’s

inclusive contribution, so both children are

preserved (1000 / 1000 > 0.1).  Each child

is then examined with respect to its sibling’s contribution.  The average contribution for

the two siblings is 500.  Thus, with a 10% threshold, a node with a contribution less than

50 would be pruned.  In this example, node C is pruned (along with its children).

Because inclusive time is used, there is no worry that one of C’s children could be

significant.  The final step in this example is to analyze B’s children.  In this case, 2/990

< 0.1, so both children are pruned.  The result is a dominant core tree.

Figure 6:  A simple call-graph example with
pruned nodes shaded.  The internal value
represents the inclusive performance
contribution
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C. Selecting an Optimal Core

Once the core components have been identified, an approximately optimal global solution

can be achieved through a brute-force search of the reduced solution space.  For this step,

a library was developed that enumerates each realization and evaluates the performance

for each ensemble.  Implementations of the same component are grouped into families

(i.e., implementations that may be swapped for one another exist in the same family).   In

the example call-graph depicted in Figure 6, each node represents a family member.

Thus, any alternate implementation of component B will exist in the same family as B.

Each family member implements a method that evaluates a hard-coded performance

model.  In Figure 7, the example C++ source code is presented for creating a family

member instance of component B (from Figure 6).  The getPerfPrediction method accepts

three input values.  The first is a vector of values that serve as inputs to the performance

class B : public virtual modeling::AbstractFamilyMember{
public:

B(string name) : AbstractFamilyMember(name){}
int getPerfPrediction(vector<double> inputs,

string method_name,
map<string, double> &
predictions){

if(method_name == “go”)
predictions[“Exec. Time”] = 

array_dims[0] * array_dims[0];
return 0;

}
};

Figure 7:  Example code for implementing a component performance model as a family
member.
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model.  Second, a method name is supplied that indicates which method is being called.

The final input is a map where the result of the performance model evaluation is stored.

After all the family members are declared, a user can explicitly group them into families.

A component ensemble is evaluated by selecting one implementation (i.e., family

member) from each family.  The configuration that produces the best result is returned.
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VI. Validation of the Software Measurement and Optimization Framework

In order to verify the measurement and optimization phases described in the previous

sections, a validation framework was developed.  Using “dummy” components that

implement a known performance model enables verification of both the measurement and

optimization stages.  These components do not actually perform any work; instead, they

sleep based upon their input parameter(s).  Thus, it is trivial to create a test application

that performs to any specification.

In order to test the framework, the component application depicted in Figure 8 was

implemented.  Components A

and B each have two

implementations that realize

distinct performance models.

Components C and D are

included as examples of

insignificant components.  Thus,

they contribute very little to the

overall performance of the

Figure 8:  Simple component application diagram.
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application.  In Figure 9, the wiring diagram for the application is displayed using the

first implementation of components A and B.  Similar to the previous figures, uses ports

are situated on the right of a component and provides ports on the left.

Component A’s implementations

execute the performance models y =

2x and y = x2.  These models are

graphed in Figure 10.  Component

B’s implementations execute the

models y = x3 and y = 2x2.   The

models for component B are plotted

in Figure 11.    The models for A

and B both have similar Figure 10: The performance models for both
implementations of component A are plotted.

Figure 9:  The component wiring diagram for the validation example.
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characteristics.  Both components

have a clear choice of which

implementation offers better

performance, but this choice

depends upon the input.  At input

values x > 2, the ideal

implementation is the realization

executing the lower order

performance model.  This attribute

enables the testing of the

implementation selection library

through modification of the inputs.

To test the measurement phase, the components were instrumented using proxies.

Multiple runs using distinct ranges of input values were used in the execution of the

application.  The first run consisted of a set of input values of x < 2 to components A and

B; the second run consisted of a set of input values x > 2; the third run consisted of a mix

of input values x >0.  Upon completion of the execution of the application, the

performance results were analyzed.  The proxies were successful in measuring the

performance of the components, as the measurements matched the expected results.   For

each set of input values, the models were evaluated by hand and matched to the results

recorded by the measurement framework.

Figure 11:  The performance models for both
implementations of component B are plotted.
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In order to test the optimization phase, the application call-graph

in Figure 12 was pruned using the 10% threshold levels.  As

expected, the pruner identified components A and B (along with

the Driver) as the core components.  Conversely, C and D were

removed from consideration.  Using performance models

generated from the measured data, the optimization library was

used to identify the optimal implementations.  For the

experiment consisting of input values of x < 2, implementations

A2 and B1 were correctly identified as the optimal choices.

Implementations A1 and B2 were identified as the optimal

choices for the set of input values x > 2.  For the third mix, the

majority of inputs were sufficiently greater than two such that A1 and B2 were the clear

choices.  The optimization library correctly identified this result.

Figure 12:  The call-
graph produced by
the component
application pictured
in Figure 7.
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VII. Case Study

The performance measurement framework was used to instrument a component-based

scientific simulation.  The code simulates the interaction of a shock wave with an

interface between

two gases [26].

The simulation

solves the Euler

equations (a set

of partial

differential

equations) using

structured

adaptive mesh

refinement [27 -

29].  The component application is depicted in Figure 13.  In order to simplify the figure,

not all the components needed for execution are included.  In the top left is the

ShockDriver that orchestrates the simulation.  The AMRMesh component is

responsible for managing the patches of the adaptive mesh refinement strategy.  Most of

the inter-processor communication is done within this component.  The

StatesConstructor and EFM component are called on a patch-by-patch basis.  In

Figure 13:  Simplified snapshot of simulation components assembled for
execution.
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the figure, only two proxies are included due to space constraints, but the simulation was

fully instrumented.  There is a GodunovFlux component that is not shown, which can

be substituted for the EFM component.  One of the goals of the case study was to compare

the performance between these two components.   In addition, the computation time for

the StatesConstructor component and the message passing costs of the AMRMesh

component were analyzed.

The simulation was run on three processors of a cluster of dual 2.8 Ghz Pentium Xeons

with 512 KB caches.  The components were compiled using –02 optimization flag for gcc

version 3.2.

In Figure 14, the execution times for the StatesConstructor component across all

three processors are plotted for a single simulation.  Note that multiple invocations of the

routine occur with the same array

size.  As the size of the input array

increases, the execution times

begin localizing into two groups.

This is the result of the component

using two modes of operation: a

sequential array access mode and a

strided array access mode.  For the

smaller, largely cache-resident

Figure 14: Execution time for StatesConstructor.
The invoked method has two modes of operation, one
that access the array in a sequential fashion and the
second accesses the array in a strided fashion.
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arrays, the two modes perform similarly, but once the cache begins to overflow, the

performance of the strided mode begins to decrease relative to the sequential mode.

Note, that at the largest array sizes, the strided access costs up to four times as much as

the sequential access.  The behavior of the Godunov and EFM components is very

similar, because both also utilize the two methods of array access.

The two modes of operation of these

components are invoked in an alternating

fashion during the execution of the

application.  As a result, the execution

times of the two modes are averaged to

create a single performance model for

each component.  In Figure 15, 16 and 17,

the average execution times for each array Figure 15: Average execution time for States
Constructor as a function of array size.

Figure 16:  Average execution time for
Godunov Flux as a function of array size.

Figure 17:  Average execution times for EFM
Flux as a function of array size.
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size are plotted.  Also included, is the standard deviation.  In all three cases, the variation

increases as the array size increases.  Regression analysis was used to fit a simple

polynomial or power equation to the mean execution time and standard deviation for each

component.  These equations are also plotted in each graph.   With the cache-effects

averaged out, the mean execution times scale linearly with the array size.

If TStates, TGodunov and TEFM are the execution times (in microseconds) for the three

components and Q is the input array size, the best-fit expressions plotted in each of the

figures are:

TStates = exp(1.19 log(Q) – 3.68)

TGodunov = -963 + 0.315Q

TEFM = -8.13 + 0.16Q

The corresponding expressions for the standard deviations, σ, are:

σStates = exp(1.29 log Q)

σGodunov = -526 + 0.152Q

σEFM = 66.7 – 0.015Q + 9.24 x 10-7 – 1.12 x 10-11Q3 + 3.85 x 10-17 Q4

These models indicate that the Godunov component offers poorer performance than the

EFM component, especially for large arrays.  The variability in timings is also more

severe for the Godunov component.  Based on these characteristics, EFM appears to be a

better a choice.  However, in reality, scientists often prefer the Godunov solver because

it provides greater accuracy.  This is indicative of the necessity to include a quality of
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service aspect (i.e., accuracy, stability and/or robustness) into the performance model.  As

a result, the performance of a component would be relative to the size of the problem as

well as the quality of the solution produced.

In Figure 18 the communication time spent at different levels of the grid hierarchy during

each communication step is

plotted.  The primary graph

plots the communication

time for processor 0.  The

simulation included a load

balance step, which caused a

new domain decomposition.

This resulted in the

clustering of timings evident

at levels 0 and 2.  Ideally,

these clusters should have

collapsed to a single point;

fluctuating network loads

causes the substantial scatter.  The inset graph includes the timings across all three

processors.  In comparison with the execution times displayed in Figures 15, 16 and 17,

the communication times are similar.  This indicates that the application, in its current

context (i.e., problem being solved and accuracy desired), is unlikely to scale well.

Figure 18:  Message passing times for different levels of the
grid hierarchy.  The clusterings are a result of a re-grid step
that resulted in a different domain decomposition.  INSET:
The timings across all three processors.
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Corroborating this hypothesis is the fact that nearly a quarter of the application’s entire

execution time was spent in message passing.

After analyzing the performance models by hand, the next step was to utilize the

optimization library to select the optimal component applications.  In Table 1, the

inclusive and exclusive computation times, along with the inclusive percentage of the

total execution time for each instrumented routine is presented.  All values are averaged

over the three processors.  The exclusive time is the time spent in a routine minus the

time spent in all instrumented routines called from within the routine. This table clearly

illustrates that not all component contributions are equal.  In fact, 10 out of the 15 total

instrumented routines individually contribute less than 10% of the total execution time.

Table 1:  The inclusive and exclusive times (in milliseconds) for each of the instrumented routines.
The percentage of inclusive time for each routine reltaive to the total execution time is also included.

Component Name Method Name Excl. Time (ms) Incl. Time (ms) %
driver_proxy go() 285 90,785 96
rk2_proxy Advance() 6,887 34,411 36.4
ee_proxy Regrid() 31,607 32,582 34.5
flux_proxy compute() 3,118 22,156 23.4
sc_proxy compute() 11,131 11,131 11.8
efm_proxy compute() 7,549 7,549 8.0
grace_proxy GC_Synch() 1,956 3,689 3.9
icc_proxy prolong() 1,044 1,044 1.1
grace_proxy GC_regrid_above() 644 946 1.0
icc_proxy restrict() 815 815 0.9
stats_proxy compute() 212 271 0.3
c_proxy compute() 129 253 0.3
rk2_proxy GetStableTimestep() 5 157 0.2
cq_proxy compute() 86 150 0.2
bc_proxy compute() 38 38 0.0
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In Figure 19, the call-graph generated by the measurement framework is presented.  As

mentioned in section III, multiple instances of the same component may exist in the call-

graph if a component exists along multiple call-paths (e.g., there are five instances of the

ICC component).

In order to identify the core components, the call-graph is first re-created by the tree

pruning algorithm, which prunes branches based upon the values of the α and β

thresholds.  Initially, these thresholds were set to 10%.  The resulting call-graph is

depicted in Figure 20, with the pruned branches shaded.  The original call-graph

consisting of 19 nodes (12 unique component instances) is reduced to a call-graph of 8

nodes (8 unique component instances).  The amount of nodes has been reduced by nearly

60%.

Figure 19:  The component call-graph for the shock hydro simulation.  Along with the component
name, the inclusive computation time (in microseconds) is included in each node.
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Figure 20:  The call-graph after pruning with 10% thresholds.

Figure 21:  The call-graph after pruning with 5% thresholds.
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The call-graph was also pruned using α and β thresholds of 5% and 20%.  The results are

presented in Figures 21 and 22.  As would be expected, by lowering both thresholds to

5%, the pruning algorithm removes fewer branches.  Also, by increasing the thresholds to

20%, the pruner removes a branch that the 10% thresholds had deemed “significant”.

Thus, manipulating the thresholds may result in a faster (smaller “core” call-graph), yet

less accurate (lower recovery of actual inclusive time of call-graph root from the “core”

call-graph).  Although not included in the case study, this flexibility enables a user to

conduct a sensitivity analysis (with respect to α and β), if desired.

Using the core call-graph depicted in Figure 20, the optimal set of implementations is

selected using the library detailed in section III.  Using the performance models for each

Figure 22: The call-graph after pruning with 20% thresholds.
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component that were generated after the performance measurement phase, the library

calculates the optimal configuration of component implementations.  For the shock hydro

simulation, the only choice between component implementations was between the EFM

and Godunov components. The library correctly identified the EFM implementation as

the “best” choice, as it resulted in the ensemble with the smallest execution time.

However, as mentioned earlier, Godunov is actually the preferred choice by scientists

due to its quality of service aspects, which are not included in the performance models at

this time.
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VIII. Future Work

There are numerous opportunities for further investigation in the measurement

framework and optimization library described in this paper.  Several of these areas of

interest are listed below.

A.  Performance Modeling

The performance models derived in this work are high-level and, as a result, are only

relevant if the component application is executed on a similar cluster of machines.  Any

change in the system, such as modifying the cache size, will have a large affect on the

coefficients in models derived in the case study.  Ideally, the coefficients should be

parameterized by the processor speed and cache model.

Another performance modeling aspect is how the models are represented in the

implementation selection phase.  Currently, the models are hand-coded in and evaluated

by the library.  A much more user-friendly and convenient approach would be to have the

library read in the performance models from a file, as an executable expression.  One

possible approach would be to express the models using XML [30] or MathML [31] and

have the optimization library parse the file and construct the expressions at runtime.
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Finally, as mentioned several times, the performance models do not take into

consideration any aspects of quality-of-service.  As a result, the optimization library

identified the solver with the shortest time to solution, even though it provides less

accuracy.  Future work would allow for these considerations to be included in the

evaluation of the performance models.

B.  Dynamic Implementation Selection

One of the interesting features about the Ccaffeine framework is the ability to

dynamically connect components at runtime.  This ability allows for the possibility of

swapping a poorly performing component implementation for another on the fly.

Preliminary work on an Optimizer component has begun.  This component has the

ability to swap one component instance for another, including inserting a proxy for the

new component and updating all connections to that proxy and to the Mastermind

component.  Future work would include enabling the Optimizer to analyze the actual

performance of current components compared to the expected performance.  Any

components that are not performing adequately and have an alternate implementation

available, could be swapped.
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IX.  Conclusions

This thesis proposes a software infrastructure designed to non-intrusively measure

performance in a high performance computing environment.  Proxies provide a clean and

simple solution to the performance measurement problem.  However, in order to model

the performance of a component, the context in which it is used must be taken into

account.  Specifically, the input parameters that affect the component’s performance must

be recorded.  The proxy is a logical choice to extract this information, but this does not

answer the question of which parameters to extract.

In addition, a technique is described to identify a nearly optimal selection of component

implementations.  First, the set of core components is identified by pruning insignificant

branches off of the component call-graph.  Multiple implementations of a single

component that exist in the reduced call-graph are grouped into families.  A global

performance model is synthesized and evaluated by selecting an instance from each

family and evaluating its individual model and its inter-component interactions.  A

complete, nearly optimal solution is achieved by adding in any implementation of the

insignificant components that were pruned in the first step.

In order to test the validity of the measurement and optimization framework, a

verification methodology was also proposed.  By implementing “dummy” components
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that implement a known performance model, the accuracy of the framework may be

evaluated.  A test application was presented in which two components each had two

separate implementations.  The optimal implementation, for each component, depended

upon the input.  Because the dummy components implemented known performance

models, the results of the measurement and optimization phases were easily verified by

hand.

Finally, a case study was presented in which the measurement and optimization

framework was applied to a real life scientific simulation code.  The framework enabled

the non-intrusive instrumentation of the application.  The measured performance data was

used in the generation of empirical performance models, which were used in the

optimization phase.  The case study included a choice of two implementations, and the

optimization phase correctly identified the implementation that provided the smallest

execution time.  However, the slower implementation is often the preferred choice by

scientists because it provides better accuracy.  This result indicates that a quality of

service aspect (e.g., accuracy, robustness, etc.) is also important in evaluating an optimal

selection.
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