
ADVANCES IN THE TAU PERFORMANCE SYSTEM

Allen D. Malony, Sameer Shende, Robert Bell, Kai Li, Li Li, Nick Trebon
University of Oregon

{malony,sameer,bertie,likai,lili,ntrebon}@cs.uoregon.edu

Abstract To address the increasing complexity in parallel and distributed systems and
software, advances in performance technology towards more robust tools and
broader, more portable implementations are needed. In doing so, new challenges
for performance instrumentation, measurement, analysis, and visualization arise
to address evolving requirements for how performance phenomena is observed
and how performance data is used. This paper presents recent advances in the TAU
performance system in four areas where improvements in performance technol-
ogy are important: instrumentation control, performance mapping, performance
interaction and steering, and performance databases. In the area of instrumen-
tation control, we are concerned with the removal of instrumentation in cases
of high measurement overhead. Our approach applies rule-based analysis of
performance data in an iterative instrumentation process. Work on performance
mapping focuses on measuring performance with respect to dynamic calling paths
when the static callgraph cannot be determined prior to execution. We describe an
online performance data access, analysis, and visualization system that will form
the basis of a large-scale performance interaction and steering system. Finally,
we describe our approach to the management of performance data in a database
framework that supports multi-experiment analysis.

Keywords: Performance, tools, parallel, distributed.



2

1. Introduction

There has long been a tension in the field of performance tools research be-
tween the need to invent new techniques to deal with performance complexity of
next-generation parallel and distributive systems, and the need to develop tools
that are robust, both in their function and in their scope of application. Perhaps
this is just the nature of the field. Yet there are important issues concerning
the advancement of performance tools “research” and the successful demon-
stration and use of performance “technology.” A cynical perspective might
argue against trying something new without first getting the existing technol-
ogy to just work, and work reliably in real applications and environments. The
all too commonly heard mantras “performance tools don’t work” and “perfor-
mance tools are too hard to use” might lead one to believe in this perspective,
but research history does not necessarily justify such a strong cynical stance.
There has been significant innovation in performance observation and analysis
techniques in the last twenty year to address the new performance challenges
parallel computing environments present [10]. Current attention is certainly be-
ing paid to easing the burden of tool use through automated analysis [1]. There
have also been important technology developments that add considerable value
to the performance tool repertoire, such as APIs for dynamic instrumentation
[4] and hardware performance counters [3]. Why, then, is there an apparent
disconnect between research results and the “reality” of tool usage in parallel
application environments?

From our perspective as performance tool researchers, we take, perhaps,
a controversial stance among our peers and argue that tool engineering is an
important factor in this regard. The controversial part primarily concerns the
notion of “research” and the rewards (or lack thereof) in a research career for
tool development. Our counter position is that innovation in performance tools
research is best advanced by “standing on the shoulders” of solid technology
foundations. When that foundation does not exist, it must be developed. When
a technology does exist, it should be integrated, if possible, and not reinvented.
Indeed, many tools do not work reliably and, as a consequence, are hard to
use. Many tools are not portable across parallel systems or reusable with differ-
ent programming paradigms, and, as a consequence, have limited application.
These results cannot be considered as positive results for the performance tool
research community, that is, if reliability, portability, and robustness, in gen-
eral, is considered worthy of research. We believe that they are, particularly in
parallel computing. Furthermore, we contend that the future advances in per-
formance tools research with the most direct potential effect in real application
will be those that can best leverage and amplify existing robust performance
technology.



Advances in the TAU Performance System 3

In this paper, we consider four research problems being investigated in the
TAU parallel performance system [9, 17] and describe the performance tools
being developed to address them. These tools build on and leverage the capa-
bilities in TAU (as well as the other technologies integrated in TAU) to provide
robust, value-added solutions. While none of these solutions are necessarily
“new,” in the sense of a new research finding, the technology being developed
is novel and will directly provide new capabilities to TAU users. After a brief
description of the TAU performance system, we look at the problem of instru-
mentation control to reduce measurement overhead. Our work here builds on
TAU’s rich instrumentation framework. The second problem of callpath pro-
filing requires a solution that maps performance measurements to dynamically
occurring callpaths. Here, TAU’s performance mapping API is utilized. Pro-
viding online performance analysis and visualization for large-scale parallel
applications is the third problem we consider. Finally, we describe our early
work to develop a performance database framework that can support multi-
experiment performance analysis.

2. TAU Performance System

For the past twelve years, the TAU project has conducted research on per-
formance tools for parallel and distributed systems. The goal of this work has
mainly been the development of robust technology to meet evolving perfor-
mance evaluation challenges of state-of-the-art parallel systems and applica-
tions. In particular, we have focused on problems of performance tool porta-
bility, extendability, and interoperation.

The TAU performance system [9, 17] is our integrated toolkit for performance
instrumentation, measurement, analysis, and visualization of large-scale paral-
lel applications. It targets a general computation model consisting of shared-
memory computing nodes where contexts reside, each providing a virtual ad-
dress space shared by multiple threads of execution. The model is general
enough to apply to many high-performance scalable parallel systems and pro-
gramming paradigms. Because TAU enables performance information to be
captured at the node/context/thread levels, this information can be mapped to
the particular parallel software and system execution platform under consider-
ation.

As shown in Figure 1, the TAU system supports a flexible instrumentation
model that applies at different stages of program compilation and execution.
The instrumentation targets multiple code points, provides for mapping of low-
level execution events to higher-level performance abstractions, and works with
multi-threaded, message passing, and mixed-mode parallel computation mod-
els. Different instrumentation techniques are supported, including dynamic
instrumentation using the DyninstAPI [4]. All instrumentation code makes



4

calls to the TAU measurement API to provide a common measurement model.
The TAU measurement library implements performance profiling and tracing
support for performance events occurring at function, method, basic block, and
statement levels. Performance experiments can be composed from different
measurement modules (e.g., hardware performance monitors, such as PAPI [3])
and measurements can be collected with respect to user-defined performance
groups. C, C++, Fortran 77/90, OpenMP, and Java languages are supported.
The TAU data analysis and presentation utilities offer text-based and graphical
tools to visualize the performance data as well as bridges to third-party soft-
ware, such as Vampir [11] and Paraver [12] for sophisticated trace analysis and
visualization.

Figure 1. Architecture of the TAU performance system.

TAU has been ported to nearly all high-performance computing platforms
and is being used extensively in the performance analysis of DOE applications.
TAU is also being applied as the primary performance technology across a
diverse set of code development projects, including Uintah [15], CCA [2],
VTF [18], and SAMRAI [7]. Although the current set of features in the TAU
performance system is quite substantial, it is important to note that users are
always requesting new capabilities. The interesting research problems that
arise concern how to develop new techniques to address these requests while



Advances in the TAU Performance System 5

maintaining tight integration with the rest of the TAU system. The four problems
below are all representative of such endeavors.

3. Measurement Overhead and Instrumentation Control

The selection of what “events” to observe when measuring the performance
of a parallel application is an important consideration, as it is the basis for how
performance data will be interpreted. The performance events of interest de-
pend mainly on what aspect of the execution the user wants to see, so as to
construct a meaningful performance view from the measurements made. Typi-
cal events include control flow events that identify points in the program that are
executed, or operational events that occur when some operation or action has
been performed. Events may be atomic or paired to mark begin and end points,
for example, to mark the entry and exit of a routine. Choice of performance
events also depends on the scope and resolution of the performance measure-
ment desired. However, the greater the degree of performance instrumentation
in a program, the higher the likelihood that the performance measurements will
alter the way the program behaves, an outcome termed performance perturba-
tion.

Most performance tools, including TAU, address the problem of performance
perturbation indirectly using techniques to reduce the performance intrusion
(i.e., overhead) associated with performance measurement. This overhead is a
result of two factors: 1) the execution time to make the measurement relative
to the “size” of the event, and 2) the frequency of event occurrence. The first
factor concerns the influence of the measurement overhead on the observed
performance of a particular event. If the overhead is large relative to the
size of the event, the performance measurement is less likely to be accurate
unless its overhead is compensated in some way. The overhead is typically
measured in execution time, but can also include the impact on other metrics,
such as hardware counts. The second factor relates to overheads as seen from
the perspective of the entire program. That is, the higher the frequency of
events, the larger percentage of the execution will be taken up by performance
measurement.

Techniques to control performance intrusion are directed towards making
performance measurement more efficient or controlling the performance in-
strumentation. The former is a product of engineering of the measurement
system. That is, the lighter-weight the measurment system, the lower the over-
head. Here, we are concerned with controlling performance instrumentation to
remove or disable performance measurement for “small” events or events that
occur with high frequency. Clearly this will eliminate the overhead otherwise
generated, but how are these events determined before a measurment is made?
It may be possible for sophisticated source code analysis to identify small code



6

segments, but this is not a complete solution since the execution time could
depend on runtime parameters. Plus, we would like a solution to work across
languages and few static analysis tools are available.

Instead, a direct measurement approach will likely be needed. The idea is
that a series of instrumentation experiments would be conducted to observe
the measurement overhead, weeding out those events resulting in unacceptable
levels of intrusion. Whereas this performance data analysis and instrumentation
control can be done manually, it is tedious and error-prone, especially when the
number of performance events is large. Thus, the problem we addressed was
how to develop a tool to help automate the process in TAU.

The TAU performance system instruments an application code using an op-
tional instrumentation control file that identifies events for inclusion and exclu-
sion. The TAU instrumentor’s default behavior is to instrument every routine
and method. Obviously, this instrumentation may result in high measurement
overhead, and the user can manually modify the file to eliminate small events, or
those that are not interesting to observe. As noted above, this is a cumbersome
process. Instead, the TAUreduce tool allows the user to write instrumentation
rules that will be applied to the parallel measurement data to identify which
events to exclude. The output of the tool is a new instrumentation control file
with those events de-selected for instrumentation, thereby reducing measure-
ment overhead in the next program run.

Table 1 shows examples of the TAUreduce rule language. A simple rule is
an arithmetic condition written as:

[EventName: | GroupName:] Field Operator Number

where Field is a TAU profile metric (e.g., numcalls, percent, usec, usec/call),
Operator is one of <, >, or =, and Number is any number. A rule applies to
all events unless specified explicitly, either by the EventName (e.g., routineA)
or by the event GroupName (e.g., TAU USER). In the latter case, all events
that belong to the group are selected by the rule. A compound rule is a logical
conjunction of simple rules. Multiple rules, appearing on separate lines, are
applied disjunctively.

As a simple example of applying the instrumentation reduction analysis,
consider two algorithms to find the kth largest element in a list of N unsorted
elements. The first algorithm (kth largest qs) uses quicksort first to sort the
list and then selects the kth element. The second algorithm (select kth largest)
scans the list keeping a sorted set of the k largest elements seen thus far. At
the end of the scan, it selects the least of the set. We ran the program on a
list of 1,000,000 elements with k=2324, first with minimal instrumentation to
determine the execution time of the two algorithms: kth largest qs (.188511



Advances in the TAU Performance System 7

Description Rule
Exclude all events that are members of the TAU USER
group and use less than 100 microseconds

TAU USER : usec < 100

Exclude all events that have less than 100 microseconds
and are called only once

usec < 100 & numcalls = 1

Exclude all events that have less than 100 microseconds usecs/call < 100

per call or have a total inclusive percentage less than 5 percent < 5

Table 1. Examples of TAUreduce rule language.

secs), select kth largest (.149594 secs). Total execution time was .36 secs on a
1.2 Ghz Pentium III machine.

Then the code was instrumented fully and run again. The profile results
are shown in the top half of Figure 2. Clearly, there is significant performance
overhead and the execution times are not accurate, even though TAU’s per event
measurement overhead is very low. We defined the rule

usec > 1000 & numcalls > 400000 & usecs/call < 30 & percent > 25

and applied TAUreduce, eliminating the events marked with “(*)”. Running
the code again produced the results in the lower half of Figure 2. As seen, the
execution times are closer to what we expect.

NODE 0;CONTEXT 0;THREAD 0:
---------------------------------------------------------------------------------------
%Time Exclusive Inclusive #Call #Subrs Inclusive Name

msec msec usec/call
---------------------------------------------------------------------------------------
100.0 13 4,982 1 4 4982030 int main
93.5 3,223 4,659 4.20241E+06 1.40268E+07 1 void quicksort (*)
62.9 0.00481 3,134 5 5 626839 int kth_largest_qs
36.4 137 1,813 28 450057 64769 int select_kth_largest
33.6 150 1,675 449978 449978 4 void sort_5elements (*)
28.8 1,435 1,435 1.02744E+07 0 0 void interchange (*)
0.4 20 20 1 0 20668 void setup
0.0 0.0118 0.0118 49 0 0 int ceil

NODE 0;CONTEXT 0;THREAD 0:
---------------------------------------------------------------------------------------
%Time Exclusive Inclusive #Call #Subrs Inclusive Name

msec total msec usec/call
---------------------------------------------------------------------------------------
100.0 14 383 1 4 383333 int main
50.9 195 195 5 0 39017 int kth_largest_qs
40.0 153 153 28 79 5478 int select_kth_largest
5.4 20 20 1 0 20611 void setup
0.0 0.02 0.02 49 0 0 int ceil

Figure 2. Example application of TAUreduce tool.



8

While the above example is rather simple, the TAUreduce tool can be applied
to large parallel applications. It is currently being used in Caltech’s ASAP
ASCI project to control instrumentation in the Virtual (Shock) Test Facility
(VTF) [18]. TAUreduce is part of the TAU performance system distribution
and, thus, is supported on all platforms where TAU is available. It is currently
being upgraded to include analysis support for multiple performance counters.

One important comment about this work is that it deals with a fundamentally
practical problem in parallel performance observation, that is, the tradeoff of
measurement detail and accuracy. By eliminating events from instrumentation,
we lose the ability to see those events at all. If the execution of small routines
accounts for a large portion of the execution time, that may be hard to discern
without measurement. On the other hand, accurate measurement is confounded
by high relative overheads. We could attempt to track these overheads at run-
time and subtract accummulated overhead when execution time measurements
are made. This is something we are pursuing in TAU to increase timing accu-
racy, but it requires determining a minimum overhead value from measurement
experiments on each target platform. Another avenue is to change performance
instrumentation on-the-fly as the result of identifying high overhead events. We
are also considering this approach in TAU.

4. Performance Mapping and Dynamic Callpath Profiling

To observe meaningful performance events requires placement of instrumen-
tation in the program code. However, not all information needed to interpret an
event of interest is available prior to execution. A good example of this occurs
in callgraph profiling. Here the objective is to determine the distribution of
execution time along the dynamic routine calling paths of an application. A
callpath of length k is a sequence of the last k − 1 routines called. To measure
execution time spent on a callpath requires identifying the begin and end points
during which a callpath is “active.” These points are just the entry and exit of
a called routine. If k = 1, callpath profiling is the measurement of amount of
time spent in a routine for each of its calling parents. The basic problem with
callpath profiling is that the identities of all k-length calling paths ending at a
routine may not, and generally are not, known until the application finishes its
execution. How, then, do we identify the dynamic callpath events in order to
make profile measurements?

One approach is not to try to not identify the callpaths at runtime, and instead
instrument just basic routine entry and exit events and record the events in a
trace. Trace analysis can then easily calculate callpath profiles. The problem,
of course, with this approach is that the trace generated may be excessively
large, particularly for large numbers of processors. Unfortunately, the instru-



Advances in the TAU Performance System 9

mentation and measurement problem is significantly harder if callpath profiles
are calculated online.

If the whole source is available, it is possible to determine the entire static
callgraph and enumerate all possible callpaths, encoding this information in
the program instrumentation. These callpaths are static, in the sense that they
could occur; dynamic callpaths are the subset of static callpaths that actually do
occur during execution. Once a callpath is encoded and stored in the program,
the dynamic callpath can then be determined directly by indexing a table of
possible next paths using the current routine id. Once the callpath is known, the
performance information can be easily recorded in pre-reserved static memory.
This technique was used in the CATCH tool [5].

Unfortunately, this is not a robust solution for several reasons. First, source-
based callpath analysis is non-trivial and may be only available for particular
source languages, if at all. Second, the application source code must be available
if a source-based technique is used. Third, static callpath analysis is possible
at the binary code level, but the routine calls must be explicit and not indirect.
This complicates C++ callpath profiling, for instance.

To deliver a robust, general solution, we decided to pursue an approach where
the callpath is calculated and queried at runtime. The TAU measurement system
already maintains a callstack that is updated with each entry/exit performance
event (e.g., routine entry and exit). Thus, to determine the k-length callpath
when a routine is entered, all that is necessary is to traverse up the callstack
to determine the last k − 1 events that define the callpath. If this is a newly
encountered callpath, a new measurement profile must be created at that time
because it was not pre-allocated. The main problem is how to do all of this
efficiently.

Mapping callpath identity to its profile measurement is an example of what
we call performance mapping. TAU implements a performance mapping API
based on the Semantic Event Association and Attribute (SEAA) model [14].
Here an association is built between the identity of a performance event (e.g., a
callpath) and a performance measurement object (e.g., a profile) for that event.
Thus, when the event is encountered, the measurement object linked to that
event can be found, via a lookup in a mapping table, and the measurement
made.

In the case of callpath performance mapping, new callpaths occur dynami-
cally, requiring new profile objects to be created at runtime. This can be done
efficiently using the TAU mapping API. The callpath name is then hashed to
serve as the index for future reference. Because routine identifiers can be long
strings, TAU optimizes this process by computing the hash based on addresses
of the profile objects of its k − 1 parents. While the extra overhead to perform
this operation is fixed, the accumulated overhead will depend on the number



10

of unique k-length callpaths encountered in the computation, as each of these
will need a separate profile object created.

We have implemented 2-level callpath profiling in TAU as part of the current
TAU performance system distribution. The important result is that this capabil-
ity is available in all cases where TAU profiling is available. It is not restricted
by programming language, nor source code access required, as dynamic in-
strumentation (via DyninstAPI [4]) can be used when source is not available.
Also, all types of performance measurements are allowed, including measur-
ing hardware counts for each callpath. Finally, in the future, we can benefit
from the overhead reduction mechanisms to eliminate particular callpaths from
measurement consideration.

Unfortunately, unlike a static approach, the measurement overhead of this
dynamic approach increases as k increases because we must walk the callstack
to determine the callpath. We have discussed several methods to do this more
efficiently, but none lead to a fixed overhead for any k, and adopting a general
k solution for the 2-level case would result in greater cost. Most user requests
were for 2-level callpaths to determine routine performance distribution across
calling parents, and this is what has been implemented in TAU. It should be
noted that there are no inherent limitations to implementing solutions with
k > 2. Also, if it is possible to determine callpaths statically, TAU could
certainly use that information to implement a fixed-cost solution.

5. Large-Scale Performance Monitoring and Steering

Parallel performance tools offer the program developer insights into the ex-
ecution behavior of an application. However, most tools do not work well with
large-scale parallel applications where the performance data generated comes
from thousands of processes. Not only can the data be difficult to manage and the
analysis complex, but existing performance display tools are mostly restricted
to two dimensions and lack the customization and interaction to support full data
investigation. In addition, it is increasingly important that performance tools
be able to function online, making it possible to control and adapt long-running
applications based on performance feedback. Again, large-scale parallelism
complicates the online access and management of performance data. It may be
desirable to use existing computational steering systems for this purpose, but
this will require performance analysis and visualization to be integrated with
these tools.

As a result of our work with the University of Utah [16], we found ourselves
in a position to design and prototype a system architecture for coupling ad-
vanced three-dimensional visualization with online performance data access,
analysis, and visualization in a large-scale parallel environment. The archi-
tecture, shown in Figure 3, consists of four components. The “performance



Advances in the TAU Performance System 11

data integrator” component is responsible for interfacing with a performance
monitoring system to merge parallel performance samples into a synchronous
data stream for analysis. The “performance data reader” component reads the
external performance data into internal data structures of the analysis and visu-
alization system. The “performance analyzer” component provides the analysis
developer a programmable framework for constructing analysis modules that
can be linked together for different functionality. The “performance visualizer”
component can also be programmed to create different displays modules.

Figure 3. Online performance analysis and visualization architecture.

Our prototype is based on the TAU performance system, the Uintah compu-
tational framework [15], and the SCIRun [13] computational steering and vi-
sualization system. Parallel profile data from a Uintah simulation are sampled
and written to profile files during execution. The performance data integrator
reads the performance profile files, generated for each profile sample for each
thread, and merges the files into a single, synchronized profile sample dataset.
Each profile sample file is assigned a sequence number and the whole dataset is
sequenced and timestamped. A socket- based protocol is maintained with the
performance data reader to inform it of the availability of new profile samples
and to coordinate dataset transfer.

The performance profile reader, implemented as a SCIRun module, inputs
the merged profile sample dataset sent by the data integrator and stores the
dataset in an internal C++ object structure. A profile sample dataset is orga-



12

nized in a tree-like manner according to TAU profile hierarchy:

node→ context → thread→ profile data

Each object in the profile tree has a set of attribute access methods and a set of
offspring access methods.

Using the access methods on the profile tree object, all performance profile
data, including cross-sample data, is available for analysis. Utah’s SCIRun
[13] provides a programmable system for building and linking the analysis
and visualization components. A library of performance analysis modules can
be developed, some simple and others more sophisticated. We have imple-
mented two generic profile analysis modules: Gen2DField and Gen3DField.
The modules provide user control that allows them to be customized with re-
spect to events, data values, number of samples, and filter options. Ultimately,
the output of the analysis modules must be in a form that can be visualized.
The Gen2DField and Gen3DField modules are so named because they produce
2D and 3D Field data, respectively. SCIRun has different geometric meshes
available for Fields. We use an ImageMesh for 2D fields and a PointCloudMesh
for 3D fields.

The role of the performance visualizer component is to read the Field objects
generated from performance analysis and show graphical representations of
performance results. We have built three visualization modules to demonstrate
the display of 2D and 3D data fields. The Terrain visualizer shows ImageMesh
data as a surface. The user can select the resolution of the X and Y dimensions
in the Terrain control panel. A TerrainDenotator module was developed to
mark interesting points in the visualization. A different display of 2D field
data is produced by the KiviatTube visualizer. Here a “tube” surface is created
where the distance of points from the tube center axis is determined by metric
values and the tube length correlates with the sample. The visualization of
PointCloudMesh data is accomplished by the PointCloud visualizer module.

The SCIRun program graph in Figure 4 shows how the data reader, analyzer,
and visualizer modules are connected to process parallel profile samples from
a Uintah application. The visualization is for a 500 processor run and shows
the entire parallel profile measurement. The performance events are along the
left-right axis, the processors along the in-out axis, and the performance metric
(in this case, the exclusive execution time) along the up-down axis. Denotators
are used to identify the performance events in the legend with the largest metric
values. This full performance view enables the user to quickly identify major
performance contributors.

Although this work is in the early stages, it demonstrates the significant tool
advances possible through technology integration. As the Utah C-SAFE ASCI
project moves towards Uintah computations with adaptive-mesh refinement



Advances in the TAU Performance System 13

Figure 4. Performance profile visualization of 500 Uintah processes.

capabilities, we expect the relevance of online performance analysis to increase
in importance. We are developing new performance visualization modules
and extending the performance profile data to accommodate hardware counter
statistics. Since SCIRun is being positioned as a computational steering system
for Uintah, the implementation of the online performance tool in SCIRun well
positions it for use as a customizable performance steering tool.

6. Peformance Database Framework

Empirical performance evaluation of parallel and distributed systems often
generates significant amounts of performance data and analysis results from
multiple experiments as performance is being investigated and problems diag-
nosed. Yet, despite the broad utility of cross-experiment performance analysis,
most current performance tools support performance analysis for only a single
application execution. We believe this is due primarily to a lack of tools for
performance data management. Hence, there is a strong motivation to develop
performance database technology that can provide a common foundation for
performance data storage and access. Such technology could offer standard
solutions for how to represent the performance data, how to store them in a
manageable way, how to interface with the database in a portable manner, and
how to provide performance information services to a broad set of analysis
tools and users. A performance database system built on this technology could
serve both as a core module in a performance measurement and analysis system,
as well as a central repository of performance information contributed to and
shared by several groups.



14

To address the performance data management problem, we designed the
Performance DataBase Framework (PerfDBF) architecture shown in Figure
5. The PerfDBF architecture separates the framework into three components:
performance data input, database storage, database query and analysis. The
performance data is organized in a hierarchy of applications, experiments, and
trials. Application performance studies are seen as constituting a set of experi-
ments, each representing a set of associated performance measurements. A trial
is a measurement instance of an experiment. We designed a Performance Data
Meta Language (PerfDML) and PerfDML translators to make it possible to con-
vert raw performance data into the PerfDB internal storage. The Performance
DataBase (PerfDB) is structured with respect to the application/experiment/trial
hierarchy. An object-relational DBMS is specified to provide a standard SQL
interface for performance information query. A Performance DataBase Toolkit
(PerfDBT) provides commonly used query and analysis utilities for interfacing
performance analysis tools.

Figure 5. TAU performance database framework

To evaluate the PerfDBF architecture, we developed a prototype for the TAU
performance system for parallel performance profiles. The prototype PerfDBF
converts the raw profiles to PerfDML form, which is realized using XML tech-
nology. Database input tools read the PerfDML documents and store the per-
formance profile information in the database. Analysis tools then utilize the
PerfDB interface to perform intra-trial, inter-trial, and cross-experiment query
and analysis. To demonstrate the usefulness of the PerfDBF, we have devel-
oped a scalability analysis tool. Given a set of experiment trials, representing



Advances in the TAU Performance System 15

execution of a program across varying numbers of processors, the tool can com-
pute scalability statistics for every routine for every performance metric. As
an extension of this work, we are applying the PerfDBF prototype in a perfor-
mance regression testing system to track performance changes during software
development.

The main purpose of the PerfDBF work is to fill a gap in parallel performance
technology that will make it possible for performance tools to interoperate.
The PPerfDB [8] and Aksum [6] projects have demonstrated the benefit of
providing such technology support and we have hopes to merge our efforts. We
already see benefits within the TAU toolset. Our parallel performance profile,
ParaProf, is able to read profiles that are stored in PerfDBF. In general, we
believe the key will be to find common representations of performance data and
database interfaces that can be adopted as the lingua franca among performance
information producers and consumers. Its implementation will be an important
enabling step forward in performance tool research.

7. Conclusions

The research work we presented in this paper reflects our view that advances
in performance technology will be a product of both innovative ideas and strong
engineering. More importantly, as the performance complexity of parallel and
distributed systems increases, it will be important to develop performance tools
on a robust technology foundation, leveraging existing capabilities to realize
more sophisticated functionality. We believe the tools described above demon-
strate this result. Each is or will be implemented in a form that can be distributed
with the TAU performance system. While this may go beyond what is necessary
to “prove” a research result, it is in the application of a performance tool on real
performance problems where its merit will be truly determined.

References

[1] APART, IST Working Group on Automatic Performance Analysis: Real Tools. See
http://www.fz-juelich.de.

[2] R. Armstrong, et al., “Toward a Common Component Architecture for High-Performance
Scientific Computing,” High Performance Distributed Computing Conference, 1999. See
http://www.cca-forum.org.

[3] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A Portable Programming
Interface for Performance Evaluation on Modern Processors,” International Journal of
High Performance Computing Applications, 14(3), pp. 189–204, Fall 2000.

[4] B. Buck and J. Hollingsworth, “An API for Runtime Code Patching,” International Journal
of High Performance Computing Applications, 14(4), pp. 317–329, Winter 2000.

[5] Luiz DeRose and Felix Wolf, “CATCH - A Call-Graph Based Automatic Tool for Capture
of Hardware Performance Metrics for MPI and OpenMP Applications,” Euro-Par 2002,
pp. 167–176.



16

[6] T. Fahringer and C. Seragiotto, “Experience with Aksum: A Semi-Automatic Multi-
Experiment Performance Analysis Tool for Parallel and Distributed Applications,” Work-
shop on Performance Analysis and Distributed Computing, 2002.

[7] R. Hornung and S. Kohn, “Managing Application Complexity in the SAMRAI Object-
Oriented Framework, Concurrency and Computation: Practice and Experience, special
issue on Software Architectures for Scientific Applications, 2001.

[8] K. Karavanic, PPerfDB. See http://www.cs.pdx.edu/ karavan/research.htm.

[9] A. Malony and S. Shende, “Performance Technology for Complex Parallel and Distributed
Systems,” in Distributed and Parallel Systems From Instruction Parallelism to Cluster
Computing, G. Kotsis and P. Kacsuk (Eds.), Kluwer, pp. 37–46, 2000.

[10] A. Malony, “Tools for Parallel Computing: A Performance Evaluation Perspective,” in
Handbook on Parallel and Distributed Processing, J. Blazewicz, K. Ecker, B. Plateau, an
D. Trystram (Eds.), 2000, Springer-Verlag, pp. 342–363.

[11] W.Nagel, A.Arnold, M.Weber, H.Hoppe, and K.Solchenbach, “Vampir: Visualization and
Analysis of MPI Resources,” Supercomputing, 12(1):69–80, 1996.

[12] Paraver, European Center for Parallelism of Barcelona, Technical University of Catalonia.
See http://www.cepba.upc.es/paraver/index.html.

[13] S. Parker, D. Weinstein, and C. Johnson, “The SCIRun Computational Steering Software
System,” in Modern Software Tools in Scientific Computing, E. Arge, A. Bruaset, and H.
Langtangen (Eds.), Birkhauser Press, pp. 1–44, 1997.

[14] Sameer S. Shende, “The Role of Instrumentation and Mapping in Performance Measure-
ment,” PhD Thesis, University of Oregon, 2001.

[15] J. St. Germain, J. McCorquodale, S. Parker, and C. Johnson, “Uintah: A Massively Parallel
Problem Solving Environment,”High Performance Distributed Computing Conference,
pp. 33–41, 2000.

[16] J. St. Germain, A. Morris, S. G. Parker, A. D. Malony, and S. Shende, “Integrating Perfor-
mance Analysis in the Uintah Software Development Cycle,” International Symposium
on High Performance Computing, pp. 190–206, 2002.

[17] TAU (Tuning and Analysis Utilities). See http://www.acl.lanl.gov/tau.

[18] VTF, Virtual Test Shock Facility, Center for Simulation of Dynamic Response of Materials.
See http://www.cacr.caltech.edu/ASAP.


