
Characterizing I/O Performance Using the 
TAU Performance System 

Sameer SHENDEa,1, Allen D. MALONYa, Wyatt SPEARa, and Karen 
SCHUCHARDTb 

a
 Performance Research Laboratory, University of Oregon 

b
 Pacific Northwest National Laboratory, Washington 

Abstract. TAU is an integrated toolkit for performance instrumentation, 
measurement, and analysis. It provides a flexible, portable, and scalable set of 
technologies for performance evaluation on extreme-scale HPC systems.  This 
paper describes alternatives for I/O instrumentation provided by TAU and the 
design and implementation of a new tool, tau_gen_wrapper, to wrap external 
libraries.  It describes three instrumentation techniques - preprocessor based 
substitution, linker based instrumentation, and library preloading based 
replacement of routines.  It demonstrates this wrapping technology in the context 
of intercepting the POSIX I/O library and its application to profiling I/O calls for 
the Global Cloud Resolution Model (GCRM) application on the Cray XE6 system.  
This scheme allows TAU to track I/O using linker level instrumentation for 
statically linked executables and attribute the I/O to specific code regions. It also 
addresses issues encountered in collecting the performance data from large core 
counts and representing this data to correctly identify sources of poor I/O 
performance. 
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Introduction 

The ability to grow parallel applications to execute efficiently at extreme 
scales is most often coupled with the ability to increase the size of the 
problem being solved.  Consequently, applications will see a steady 
increase in the volume of data they need to process and solution results 
they need to generate.  While parallel efficiency has previously been 
mainly concerned with computing and memory optimization, it is clear 
the I/O performance is becoming a key bottleneck in many cases at the 
extreme scale.  As the volume of data an application reads and writes 
increases, it is important to assess the scalability of I/O operations as a 
key contributor to overall application performance. Observing the 
performance of the I/O operations requires instrumentation to be inserted 
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in the I/O library layers of the software stack, including commonly used 
I/O interfaces such as POSIX I/O and MPI-IO.  However, 
characterization of I/O performance must also be done with respect to 
application context to fully understand overall performance impact. 

In this paper, we present extensions to the TAU Performance System® 
project to automate the creation of wrapper interposition libraries that 
intercept library calls and insert probes to trigger performance 
measurements.  Section 1 describes six techniques for inserting 
instrumentation in I/O operations in an application and discusses in the 
advantages and disadvantages of each approach.  TAU’s library 
wrapping capability has proven to be an effective technique to 
characterize I/O performance, particularly for automating the 
instrumentation of I/O packages in cases where the source code may not 
be available for direct probe-based instrumentation. This technique is 
described in Section 2. In Section 3, we describe our work in applying 
TAU’s I/O tracking features to measure the performance of the Global 
Cloud Resolving Model (GCRM) application on a Cray XE6 system.  
The paper concludes with directions for future work. 

1. Library Wrapping and I/O Instrumentation 

Many parallel applications are constructed using software library 
packages with interfaces callable from standard programming languages.  
Packages are often layered, internally calling other libraries to 
implement underlying functionality, which can be hidden to the user.  
Having an ability to intercept package calls at library routine interfaces 
enables performance tools to gather both semantic (contextual) and 
performance data for analysis purposes.  I/O libraries represent a 
challenging case study for performance observation.  During the 
compilation process, there are several phases of code transformation 
where instrumentation may be inserted to track I/O calls. 

1.1. Pre-processor Based Instrumentation 

Prior to compiling C and C++ code, compilers pre-process the source 
code and expand header files and macros before the code generation 
phase.  This provides the tools an excellent opportunity for tools to 
intercept and replace I/O calls, such as POSIX I/O open, close, read, and 
write, with their instrumented counterparts.  This can be done by re-
defining a header file (unistd.h) that internally redefines the name of an 



I/O routine as a macro that redirects all references to the given call with 
another.  The compiler’s pre-processor then replaces all references to the 
I/O call at the callsite in the source code with the corresponding call 
defined by the tool (e.g., read replaced by tau_read). 

To use this approach, a tool simply adds an include directive to a 
directory that contains the tool’s header file that performs the 
substitution.  In addition to the instrumentation, a tool then implements 
the wrapper interposition library where each wrapper routine (tau_read) 
contains whatever measurement statements before and after calling the 
original call (read).  Because the wrapper routine knows about the 
original routine’s interface, it has access to and can examine the 
parameters that flow through the call, for instance, to assess the size of 
data arrays being passed.  Once the tool wrapper library has been 
implemented, the tool is enabled by linking it to create the executable. 

The above approach, described more fully in [1], works well for C 
and C++ programs where POSIX I/O calls are replaced explicitly during 
compilation.  Unfortunately, this approach does not extend well to 
Fortran programs.  Moreover, the instrumentation technique is limited to 
application code regions where the source code is available for 
recompiling.  I/O library calls made from code where source code is not 
available (e.g., other libraries) will not be seen.  

1.2. Source-Based Instrumentation 

While the above technique is specific to C and C++, TAU does support 
instrumentation of Fortran I/O constructs by re-writing the source code.  
TAU’s instrumentation tool (tau_instrumentor) examines the source 
code, its PDB file as generated by the Program Database Toolkit (PDT) 
[4], and re-writes the Fortran I/O calls in the instrumented source code.  
The user may specify I/O instrumentation requests via a selective 
instrumentation file that is passed to TAU’s compiler scripts using 
environment variables.  In this method, performance measurement code 
are inserted directly in the source code along with calls to track the sizes 
of arrays that are passed to the write and read calls. 

This above approach leverages work described in [3] where in order to 
track memory leaks it was necessary to instrument the source code 
around memory allocation/deallocation calls.  The technique works 
equally well for I/O.  However, the dependency on source code being 
available is still a problem.  



1.3.  MPI-IO Instrumentation 

The MPI message passing libraries provides a name-shifted interface 
that permits tools, including TAU [4], to intercept calls using the PMPI 
name-shifted interface.  TAU additionally uses this support to create a 
wrapper library for MPI-IO calls (e.g., MPI_File_read) that internally 
calls the name-shifted interface (e.g., PMPI_File_read).  Like before, 
the wrappers can examine the arguments that flow through the I/O calls 
to compute volume and bandwidth of individual I/O operations.  In 
addition to TAU, this instrumentation technique is used in a wide variety 
of HPC tools including Scalasca[8], VampirTrace[9], Score-P [10], 
MPIP[12], and IPM[7].  However, library interposition through name-
shifted interfaces is only available as a technique if such interfaces are 
implemented in the library.  This is not the case with POSIX I/O.    

1.4. Runtime Preloading of Instrumented Library  

Many HPC operating systems such as Linux, Cray Compute Node Linux 
(CNL), IBM BlueGene Compute Node Kernel (CNK), Solaris permit 
pre-loading of a library in the address space of an executing application 
specifying a dynamic shared object (DSO) in an environment variable 
(LD_PRELOAD).  It is possible to create a tool based on this technique 
that can intercept all I/O operations by means of a wrapper-library where 
the POSIX I/O calls are redefined to call the global routine (identified 
using the dlsym system call) internally.  Preloading instrumented 
libraries is a powerful technique implemented by the runtime linker and 
is used in TAU [3], VampirTrace[9], and IOTrack[11].  While it can 
resolve all POSIX-IO calls and operates on un-instrumented executables, 
it only supports dynamic executables.  Static executables are used by 
default on IBM BlueGene and Cray XE6 and XK6 systems, although 
dynamic executables may be created using the –dynamic command line 
flag.  A different technique will be necessary to support static binaries.  

1.5. Linker-Based Instrumentation 

A linker can redirect references to a wrapped routine when it is invoked 
with a special flag on the command line (-Wl,-wrap,function_name).  In 
this case, the application does need to be re-linked to use the wrapped 
library, but this instrumentation technique overcomes the limitation of 
the previous approach provided by the runtime linker and may be used 
with both static and dynamic executables. TAU has applied this 



approach to instrument POSIX I/O calls by creating a wrapper library.  
Since the number of wrapped routines that may be present in a library 
might be potentially large, listing each routine on the linker’s command 
line can interfere with predefined system limits for command line length.  
Instead, a linker may read a file that contains wrapped symbol names 
and expand these internally to construct the appropriate command line.  
TAU’s compiler scripts have been updated to automatically add the 
necessary flags to the linker command line when the user sets a special 
I/O instrumentation flag (-optTrackIO) in the TAU_OPTIONS 
environment variable.  We describe this approach in greater detail in 
Section 3 on GCRM profiling.   

1.6. Instrumented External I/O Libraries 

When the user needs to evaluate the time spent in un-instrumented I/O 
libraries (such as HDF5 [13]) and other system libraries, it is important 
to be able to generate custom user-directed wrapper libraries.  These 
wrapper libraries may be pre-loaded at runtime or re-linked to create an 
instrumented binary using linker-based instrumentation as described 
above.  However, manually building these libraries may prove to be 
cumbersome.  In the next section, we describe a way to automate the 
creation of instrumented wrapper libraries in the TAU performance 
system. 

2. Automating Generation of Wrapper Libraries 

Wrapper libraries can greatly enhance the performance observation 
capabilities of a tool.  Given the variety of interesting software packages 
one might want to observe during execution, it is important to facilitate 
the creation of wrapper libraries as much as possible.  We created a TAU 
tool, tau_gen_wrapper, to do the following: take an interface declaration 
of a library in the form of a header file and generate a wrapper library for 
TAU instrumentation.  It uses the PDT static analysis tool to parse the 
header file and generates for each routine, a complete representation of 
its signature.  A signature consists of the return type, the routine name, 
and a list of arguments.  Each argument, in turn, consists of the argument 
type and an optional argument name.  The user may supply an optional 
selective instrumentation file that describes an exclude or include list of 
routines or files that is used to select the subset of routines that are 
wrapped. 



The tau_gen_wrapper architecture is shown in Figure 1.  Internally, it 
invokes the parser and the tau_wrap tool and builds the instrumented 
source code emitted by it.  The wrapper generator tool allows the user to 
choose from the following instrumentation techniques for creating a 
wrapper library: 
• Pre-processor based redirection of routines (Section 1.1) 
• Runtime preloading of instrumented library using the runtime-linker 

(Section 1.4) 
• Linker-based instrumentation (Section 1.5) 

 
Figure 1. Architecture of tau_gen_wrapper, a tool that automates generation 

of wrapper libraries. 

The wrapper generator tool has been used successfully to create 
wrappers for the CUDA [5] and HDF5 [13].  The next section describes 
the use of TAU’s linker-based instrumentation capabilities for tracking 
POSIX I/O. 

3. Profiling GCRM 

The Global Cloud Resolving Model (GCRM) being developed by 
Randall et al [6] will model climate on the entire globe at a horizontal 
grid spacing of at least 4km and vertical dimension on the order of 256 
layers resulting in over 10 billion cells.  A single cell-based variable 
written in single precision will require approximately 43 GB of disk 
storage.  Corner data will require 85 GB and edge data 128 GB.  A 
single snapshot of history data will require 1.8 TB of storage as currently 



configured.  Climate scientists will want to write data as frequently as 
possible (down to the order of minutes) while maintaining an IO cost 
below 10% of the overall simulation.  Obviously, the efficiency of the 
I/O is of critical importance. 

Understanding and optimizing the behavior of the I/O system for an 
application is difficult for several reasons.  First there are several layers 
in the I/O stack, some of which are proprietary software.  Second, there 
are many options for controlling these layers varying from optional 
arguments, to hints to alternative APIs.  Third, there are often multiple 
implementations of some of the layers.  Figure 2 shows the layers and 
alternatives considered for GCRM.  

 
Figure 2. The GCRM I/O stack and some of the variations that make profiling 

a complex task. 

 
It is still critical to be able to profile all the layers of the GCRM I/O in 
order to determine where the true bottlenecks reside.  TAU provides the 
capabilities both to look deep into the various API layers and to organize 
and analyze the numerous configurations under evaluation. 
Here we discuss our experiences applying TAU on the CRAY systems at 
NERSC using PNetCDF [14], the Cray MPI-IO library, and Lustre.  We 
have ongoing efforts to examine the other variations shown.  Our use of 
TAU was not limited to examining I/O, as we also were looking at the 
performance of the GCRM overall.  In this respect, TAU supports 
breaking of the profile into multiple phases [4].  For our experiments, 



performance was evaluated with respect to three phases: initialization, 
I/O, and the numerical model itself.  This enabled us to look at 
performance of each phase in its context and see the relative cost of each 
phase. 

Figure 3 shows the profile configuration used during initial performance 
analysis.  Note that phases can be defined at the function level or 
through code ranges.   Our main purpose for identifying the Init phase, 
was to ensure that one-time initialization costs would not skew the 
overall model profiling results.  Selective loops within the numerical 
model were also profiled in more detail based on initial results. 

 

 
Figure 3. TAU selective instrumentation file that defines three phases: Init, 

I/O (GIO_DRIVER) and ZGrd (the numerical model) 

   
Figure 4. Right: The initial TAU profile when using TAU's phase capability. 
The first column represents the computational phase, the second column 
represents the initialization phase, and the third column represents the I/O 
phase.  Left: I/O phase detail with columns MPI_Write_all, MPI_File_open, 
POSIX I/O write, and everything else.  I/O aggregators are clearly identifiable. 

Figure 4 (left) shows the phase profile summary screen within TAU for a 
typical GCRM run using the TAU profile described above.  Profile runs 
tend to be of very short duration, which causes an over-representation of 
the Init phase.  The interesting take-way from this particular run is that 
I/O is taking a reasonable amount (8%) time relative to the numerical 
model itself.  Right clicking on the phase column and requesting the 
phase detail will result in a graph such as the I/O phase detail shown in 



Figure 4 (right).  Right clicking on a “node” label will generate a 
detailed profile of function times for that processor as shown in Figure 5. 

In these early runs, we were clearly able to see that the collective open 
calls were taking significant time and that it was not due to the cost of 
POSIX open.  Sharing these profiles with Cray engineers led to a 
detailed analysis of the cost of MPI_file_open and resulted in several 
changes to the Cray library that will be included with the next release. 
A final important feature provided by the new TAU I/O profiling 
capability is a summary of the read and write sizes and read and write 
bandwidths per processor.  An example is shown in Figure 6.  Here we 
can see that we are successfully writing large chunks of data and that the 
mean is also large.  Per-processor bandwidth and mean bandwidth can 
also be seen. 

 

 
Figure 5. I/O phase function call detail for processor 0. 

4. Conclusions 

Understanding the performance of software packages in combination 
with the applications in which they are used requires an ability to capture 
important events and performance data at the library interfaces.  In this 
paper, we presented several techniques for creating wrapper libraries 
with the TAU performance system.  We then demonstrated these 
techniques for tracking I/O performed by the GCRM application on a 
Cray XE6 system.  Our work has been instrumental in improving I/O 
performance in GCRM. 



 
Figure 6. Processor 0 Context Event Window showing write sizes and bandwidths. 
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