
Characterizing I/O Performance Using the
TAU Performance System

Sameer SHENDEa,1, Allen D. MALONYa, Wyatt SPEARa, and Karen
SCHUCHARDTb

a
 Performance Research Laboratory, University of Oregon

b
 Pacific Northwest National Laboratory, Washington

Abstract. TAU is an integrated toolkit for performance instrumentation,
measurement, and analysis. It provides a flexible, portable, and scalable set of
technologies for performance evaluation on extreme-scale HPC systems. This
paper describes alternatives for I/O instrumentation provided by TAU and the
design and implementation of a new tool, tau_gen_wrapper, to wrap external
libraries. It describes three instrumentation techniques - preprocessor based
substitution, linker based instrumentation, and library preloading based
replacement of routines. It demonstrates this wrapping technology in the context
of intercepting the POSIX I/O library and its application to profiling I/O calls for
the Global Cloud Resolution Model (GCRM) application on the Cray XE6 system.
This scheme allows TAU to track I/O using linker level instrumentation for
statically linked executables and attribute the I/O to specific code regions. It also
addresses issues encountered in collecting the performance data from large core
counts and representing this data to correctly identify sources of poor I/O
performance.

Keywords. POSIX I/O, MPI-IO, TAU, Instrumentation, and GCRM.

Introduction

The ability to grow parallel applications to execute efficiently at extreme
scales is most often coupled with the ability to increase the size of the
problem being solved. Consequently, applications will see a steady
increase in the volume of data they need to process and solution results
they need to generate. While parallel efficiency has previously been
mainly concerned with computing and memory optimization, it is clear
the I/O performance is becoming a key bottleneck in many cases at the
extreme scale. As the volume of data an application reads and writes
increases, it is important to assess the scalability of I/O operations as a
key contributor to overall application performance. Observing the
performance of the I/O operations requires instrumentation to be inserted

1

 Corresponding Author.

in the I/O library layers of the software stack, including commonly used
I/O interfaces such as POSIX I/O and MPI-IO. However,
characterization of I/O performance must also be done with respect to
application context to fully understand overall performance impact.

In this paper, we present extensions to the TAU Performance System®
project to automate the creation of wrapper interposition libraries that
intercept library calls and insert probes to trigger performance
measurements. Section 1 describes six techniques for inserting
instrumentation in I/O operations in an application and discusses in the
advantages and disadvantages of each approach. TAU’s library
wrapping capability has proven to be an effective technique to
characterize I/O performance, particularly for automating the
instrumentation of I/O packages in cases where the source code may not
be available for direct probe-based instrumentation. This technique is
described in Section 2. In Section 3, we describe our work in applying
TAU’s I/O tracking features to measure the performance of the Global
Cloud Resolving Model (GCRM) application on a Cray XE6 system.
The paper concludes with directions for future work.

1. Library Wrapping and I/O Instrumentation

Many parallel applications are constructed using software library
packages with interfaces callable from standard programming languages.
Packages are often layered, internally calling other libraries to
implement underlying functionality, which can be hidden to the user.
Having an ability to intercept package calls at library routine interfaces
enables performance tools to gather both semantic (contextual) and
performance data for analysis purposes. I/O libraries represent a
challenging case study for performance observation. During the
compilation process, there are several phases of code transformation
where instrumentation may be inserted to track I/O calls.

1.1. Pre-processor Based Instrumentation

Prior to compiling C and C++ code, compilers pre-process the source
code and expand header files and macros before the code generation
phase. This provides the tools an excellent opportunity for tools to
intercept and replace I/O calls, such as POSIX I/O open, close, read, and
write, with their instrumented counterparts. This can be done by re-
defining a header file (unistd.h) that internally redefines the name of an

I/O routine as a macro that redirects all references to the given call with
another. The compiler’s pre-processor then replaces all references to the
I/O call at the callsite in the source code with the corresponding call
defined by the tool (e.g., read replaced by tau_read).

To use this approach, a tool simply adds an include directive to a
directory that contains the tool’s header file that performs the
substitution. In addition to the instrumentation, a tool then implements
the wrapper interposition library where each wrapper routine (tau_read)
contains whatever measurement statements before and after calling the
original call (read). Because the wrapper routine knows about the
original routine’s interface, it has access to and can examine the
parameters that flow through the call, for instance, to assess the size of
data arrays being passed. Once the tool wrapper library has been
implemented, the tool is enabled by linking it to create the executable.

The above approach, described more fully in [1], works well for C
and C++ programs where POSIX I/O calls are replaced explicitly during
compilation. Unfortunately, this approach does not extend well to
Fortran programs. Moreover, the instrumentation technique is limited to
application code regions where the source code is available for
recompiling. I/O library calls made from code where source code is not
available (e.g., other libraries) will not be seen.

1.2. Source-Based Instrumentation

While the above technique is specific to C and C++, TAU does support
instrumentation of Fortran I/O constructs by re-writing the source code.
TAU’s instrumentation tool (tau_instrumentor) examines the source
code, its PDB file as generated by the Program Database Toolkit (PDT)
[4], and re-writes the Fortran I/O calls in the instrumented source code.
The user may specify I/O instrumentation requests via a selective
instrumentation file that is passed to TAU’s compiler scripts using
environment variables. In this method, performance measurement code
are inserted directly in the source code along with calls to track the sizes
of arrays that are passed to the write and read calls.

This above approach leverages work described in [3] where in order to
track memory leaks it was necessary to instrument the source code
around memory allocation/deallocation calls. The technique works
equally well for I/O. However, the dependency on source code being
available is still a problem.

1.3. MPI-IO Instrumentation

The MPI message passing libraries provides a name-shifted interface
that permits tools, including TAU [4], to intercept calls using the PMPI
name-shifted interface. TAU additionally uses this support to create a
wrapper library for MPI-IO calls (e.g., MPI_File_read) that internally
calls the name-shifted interface (e.g., PMPI_File_read). Like before,
the wrappers can examine the arguments that flow through the I/O calls
to compute volume and bandwidth of individual I/O operations. In
addition to TAU, this instrumentation technique is used in a wide variety
of HPC tools including Scalasca[8], VampirTrace[9], Score-P [10],
MPIP[12], and IPM[7]. However, library interposition through name-
shifted interfaces is only available as a technique if such interfaces are
implemented in the library. This is not the case with POSIX I/O.

1.4. Runtime Preloading of Instrumented Library

Many HPC operating systems such as Linux, Cray Compute Node Linux
(CNL), IBM BlueGene Compute Node Kernel (CNK), Solaris permit
pre-loading of a library in the address space of an executing application
specifying a dynamic shared object (DSO) in an environment variable
(LD_PRELOAD). It is possible to create a tool based on this technique
that can intercept all I/O operations by means of a wrapper-library where
the POSIX I/O calls are redefined to call the global routine (identified
using the dlsym system call) internally. Preloading instrumented
libraries is a powerful technique implemented by the runtime linker and
is used in TAU [3], VampirTrace[9], and IOTrack[11]. While it can
resolve all POSIX-IO calls and operates on un-instrumented executables,
it only supports dynamic executables. Static executables are used by
default on IBM BlueGene and Cray XE6 and XK6 systems, although
dynamic executables may be created using the –dynamic command line
flag. A different technique will be necessary to support static binaries.

1.5. Linker-Based Instrumentation

A linker can redirect references to a wrapped routine when it is invoked
with a special flag on the command line (-Wl,-wrap,function_name). In
this case, the application does need to be re-linked to use the wrapped
library, but this instrumentation technique overcomes the limitation of
the previous approach provided by the runtime linker and may be used
with both static and dynamic executables. TAU has applied this

approach to instrument POSIX I/O calls by creating a wrapper library.
Since the number of wrapped routines that may be present in a library
might be potentially large, listing each routine on the linker’s command
line can interfere with predefined system limits for command line length.
Instead, a linker may read a file that contains wrapped symbol names
and expand these internally to construct the appropriate command line.
TAU’s compiler scripts have been updated to automatically add the
necessary flags to the linker command line when the user sets a special
I/O instrumentation flag (-optTrackIO) in the TAU_OPTIONS
environment variable. We describe this approach in greater detail in
Section 3 on GCRM profiling.

1.6. Instrumented External I/O Libraries

When the user needs to evaluate the time spent in un-instrumented I/O
libraries (such as HDF5 [13]) and other system libraries, it is important
to be able to generate custom user-directed wrapper libraries. These
wrapper libraries may be pre-loaded at runtime or re-linked to create an
instrumented binary using linker-based instrumentation as described
above. However, manually building these libraries may prove to be
cumbersome. In the next section, we describe a way to automate the
creation of instrumented wrapper libraries in the TAU performance
system.

2. Automating Generation of Wrapper Libraries

Wrapper libraries can greatly enhance the performance observation
capabilities of a tool. Given the variety of interesting software packages
one might want to observe during execution, it is important to facilitate
the creation of wrapper libraries as much as possible. We created a TAU
tool, tau_gen_wrapper, to do the following: take an interface declaration
of a library in the form of a header file and generate a wrapper library for
TAU instrumentation. It uses the PDT static analysis tool to parse the
header file and generates for each routine, a complete representation of
its signature. A signature consists of the return type, the routine name,
and a list of arguments. Each argument, in turn, consists of the argument
type and an optional argument name. The user may supply an optional
selective instrumentation file that describes an exclude or include list of
routines or files that is used to select the subset of routines that are
wrapped.

The tau_gen_wrapper architecture is shown in Figure 1. Internally, it
invokes the parser and the tau_wrap tool and builds the instrumented
source code emitted by it. The wrapper generator tool allows the user to
choose from the following instrumentation techniques for creating a
wrapper library:
• Pre-processor based redirection of routines (Section 1.1)
• Runtime preloading of instrumented library using the runtime-linker

(Section 1.4)
• Linker-based instrumentation (Section 1.5)

Figure 1. Architecture of tau_gen_wrapper, a tool that automates generation

of wrapper libraries.

The wrapper generator tool has been used successfully to create
wrappers for the CUDA [5] and HDF5 [13]. The next section describes
the use of TAU’s linker-based instrumentation capabilities for tracking
POSIX I/O.

3. Profiling GCRM

The Global Cloud Resolving Model (GCRM) being developed by
Randall et al [6] will model climate on the entire globe at a horizontal
grid spacing of at least 4km and vertical dimension on the order of 256
layers resulting in over 10 billion cells. A single cell-based variable
written in single precision will require approximately 43 GB of disk
storage. Corner data will require 85 GB and edge data 128 GB. A
single snapshot of history data will require 1.8 TB of storage as currently

configured. Climate scientists will want to write data as frequently as
possible (down to the order of minutes) while maintaining an IO cost
below 10% of the overall simulation. Obviously, the efficiency of the
I/O is of critical importance.

Understanding and optimizing the behavior of the I/O system for an
application is difficult for several reasons. First there are several layers
in the I/O stack, some of which are proprietary software. Second, there
are many options for controlling these layers varying from optional
arguments, to hints to alternative APIs. Third, there are often multiple
implementations of some of the layers. Figure 2 shows the layers and
alternatives considered for GCRM.

Figure 2. The GCRM I/O stack and some of the variations that make profiling

a complex task.

It is still critical to be able to profile all the layers of the GCRM I/O in
order to determine where the true bottlenecks reside. TAU provides the
capabilities both to look deep into the various API layers and to organize
and analyze the numerous configurations under evaluation.
Here we discuss our experiences applying TAU on the CRAY systems at
NERSC using PNetCDF [14], the Cray MPI-IO library, and Lustre. We
have ongoing efforts to examine the other variations shown. Our use of
TAU was not limited to examining I/O, as we also were looking at the
performance of the GCRM overall. In this respect, TAU supports
breaking of the profile into multiple phases [4]. For our experiments,

performance was evaluated with respect to three phases: initialization,
I/O, and the numerical model itself. This enabled us to look at
performance of each phase in its context and see the relative cost of each
phase.

Figure 3 shows the profile configuration used during initial performance
analysis. Note that phases can be defined at the function level or
through code ranges. Our main purpose for identifying the Init phase,
was to ensure that one-time initialization costs would not skew the
overall model profiling results. Selective loops within the numerical
model were also profiled in more detail based on initial results.

Figure 3. TAU selective instrumentation file that defines three phases: Init,

I/O (GIO_DRIVER) and ZGrd (the numerical model)

Figure 4. Right: The initial TAU profile when using TAU's phase capability.
The first column represents the computational phase, the second column
represents the initialization phase, and the third column represents the I/O
phase. Left: I/O phase detail with columns MPI_Write_all, MPI_File_open,
POSIX I/O write, and everything else. I/O aggregators are clearly identifiable.

Figure 4 (left) shows the phase profile summary screen within TAU for a
typical GCRM run using the TAU profile described above. Profile runs
tend to be of very short duration, which causes an over-representation of
the Init phase. The interesting take-way from this particular run is that
I/O is taking a reasonable amount (8%) time relative to the numerical
model itself. Right clicking on the phase column and requesting the
phase detail will result in a graph such as the I/O phase detail shown in

Figure 4 (right). Right clicking on a “node” label will generate a
detailed profile of function times for that processor as shown in Figure 5.

In these early runs, we were clearly able to see that the collective open
calls were taking significant time and that it was not due to the cost of
POSIX open. Sharing these profiles with Cray engineers led to a
detailed analysis of the cost of MPI_file_open and resulted in several
changes to the Cray library that will be included with the next release.
A final important feature provided by the new TAU I/O profiling
capability is a summary of the read and write sizes and read and write
bandwidths per processor. An example is shown in Figure 6. Here we
can see that we are successfully writing large chunks of data and that the
mean is also large. Per-processor bandwidth and mean bandwidth can
also be seen.

Figure 5. I/O phase function call detail for processor 0.

4. Conclusions

Understanding the performance of software packages in combination
with the applications in which they are used requires an ability to capture
important events and performance data at the library interfaces. In this
paper, we presented several techniques for creating wrapper libraries
with the TAU performance system. We then demonstrated these
techniques for tracking I/O performed by the GCRM application on a
Cray XE6 system. Our work has been instrumental in improving I/O
performance in GCRM.

Figure 6. Processor 0 Context Event Window showing write sizes and bandwidths.

5. Acknowledgements

The research was conducted at the University of Oregon and Pacific
Northwest National Laboratory (PNNL) under contract no. 113907 from
Battelle Memorial Institute, PNNL, and grants DE-SC0001777, DE-
FG02-08ER25846, and DE-SC0006723 from the Department of Energy,
Office of Science. Resources from NERSC were utilized in this work.

References

[1] S. Shende, A. Malony, A. Morris, and D. Cronk, “Observing Parallel Phase and I/O Performance Using
TAU,” in Proc. DoD UGC Conference, IEEE Computer Society, 2009.

[2] S. Shende, A. D. Malony, S. Moore, and D. Cronk, “Memory Leak Detection in Fortran Applications
using TAU,” in Proc. DoD UGC Conference, 2007.

[3] S. Shende, A. D. Malony, A. Morris, and A. Wissink, “Simplifying Memory, I/O, and Communication
Performance Assessment using TAU,” in Proc. DoD UGC Conference, IEEE Computer Society, 2010.

[4] S. Shende, and A. D. Malony, “The TAU Parallel Performance System,” in IJHPCA, Vol. 20 (2), pp.
287-311, Summer 2006, http://tau.uoregon.edu.

[5] A. D. Malony, S. Biersdorff, H. Jagode, S. Tomov, G. Juckeland, R. Dietrich, D. Poole, C. Lamb,
“Parallel Performance Measurement of Heterogeneous Parallel Systems with GPUs,” in ICPP 2011.

[6] Global Cloud Resolving Model, http://kiwi.atmos.colostate.edu/gcrm/, 2011.
[7] IPM, http://ipm-hpc.sourceforge.net/, 2011.
[8] Scalasca, http://www.scalasca.org, 2011.
[9] VampirTrace, www.tu-dresden.de/zih/vampirtrace, 2011.
[10] Score-P, www.score-p.org, 2011.
[11] IOTrack, http://www.pdc.kth.se/~pek/iotrack/, 2011.
[12] mpiP: Lightweight, Scalable MPI Profiling, http://mpip.sourceforge.net/, 2011.
[13] HDF Group, http://www.hdfgroup.org, 2011.
[14] Argonne National Laboratory, “Parallel-NetCDF: A High Performance API for NetCDF Access,”

http://trac.mcs.anl.gov/projects/parallel-netcdf, 2011.

